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Abstract: A Cayley graph Γ = Cay(G, S) is said to be normal if the base group G is normal in AutΓ.
The concept of the normality of Cayley graphs was first proposed by M.Y. Xu in 1998 and it plays a
vital role in determining the full automorphism groups of Cayley graphs. In this paper, we construct
an example of a 2-arc transitive hexavalent nonnormal Cayley graph on the alternating group A119.
Furthermore, we determine the full automorphism group of this graph and show that it is isomorphic
to A120.
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1. Introduction

Throughout this paper, all graphs are assumed to be finite and undirected.
For a graph Γ, we use VΓ, EΓ, ArcΓ and AutΓ to denote the vertex set, edge set, arc

set and full automorphism group of the graph Γ, respectively. A graph Γ is said to be
arc-transitive if the full automorphism group AutΓ acts transitively on ArcΓ. We use valΓ to
denote the valency of the Γ, and we say Γ is a cubic, tetravalent, pentavalent or hexavalent
graph, meaning valΓ = 3, 4, 5 or 6.

Let G be a finite group with identity element 1 and S (say Cayley subset) a subset of
G such that 1 /∈ S and S = S−1 := {x−1 | x ∈ S}. Define the Cayley graph Cay(G, S), that
is, the Cayley graph of G with respect to the Cayley subset S as the graph with vertex set
G such that g, h ∈ G are adjacent if and only if hg−1 ∈ S. It is easy to see that the valency
of Cay(G, S) is |S|. As we all know, Cay(G, S) is connected if and only if 〈S〉 = G. On the
other hand, letting R(G) be the right regular representation of G and letting AutCay(G, S)
be the full automorphism group of Cay(G, S), there are clearly R(G) ≤ AutCay(G, S),
and R(G) acts transitively on the vertices of Cay(G, S). Then, the graph Cay(G, S) is
vertex-transitive, and G (or R(G)) can be viewed as a regular subgroup of AutCay(G, S).
Conversely, a connected graph Γ is isomorphic to a Cayley graph of a group G if and only if
the full automorphism group AutΓ contains a subgroup which acts regularly on VΓ and the
subgroup is isomorphic to G (see [1]). A Cayley graph Γ = Cay(G, S) is said to be a normal
Cayley graph if the base group G is normal in AutΓ; otherwise, Γ is said to be a nonnormal
Cayley graph (see [2]).

The study about Cayley graphs on finite non-abelian simple groups has always
attracted much attention because of Cayley graphs with high levels of symmetry; for
example, vertex-transitivity, edge-transitivity and arc-transitivity are widely used in the
design of interconnection networks. For more detailed applications, we recommend that
readers refer to [3,4]. Let G be a finite non-abelian simple group, and let Γ = Cay(G, S)
be a connected arc-transitive Cayley graph on G. The main motivation for classifying
2-arc-transitive nonnormal Cayley graphs comes from the fact that Fang, Ma and Wang [5]
proved all but finitely that many locally primitive Cayley graphs of valency d ≤ 20 or a
prime number of the finite non-abelian simple groups are normal. In [5] (Problem 1.2), they
proposed the following problem: classify nonnormal locally primitive Cayley graphs (note
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that 2-arc-transitive graphs must be locally primitive) of finite simple groups with valency
d ≤ 20 or a prime number. To solve this problem, we should study each valency d ≤ 20 or a
prime number. In the case where Γ is a cubic graph (3-valent), Li [6] proved that Γ must be
normal, except for seven exceptions. On the basis of Li’s result, Xu et al. [7,8] proved that Γ
must be normal, except for two exceptions on A47. In the case where Γ is a tetravalent graph
(4-valent), Fang et al. in [9] proved that most of such Γ are normal, except for Cayley graphs
on a list of G. Further, Fang et al. in [10] proved that Γ are normal when Γ is 2-transitive,
except for two graphs on M11. In the case where Γ is a pentavalent graph (5-valent), Zhou
and Feng [11] proved that all 1-transitive Cayley Γ of simple groups are normal. Ling and
Lou in [12] gave an example of a 2-transitive pentavalent nonnormal Cayley graph on A39.
Therefore, the next natural problem is to study the case of the 6-valent. However, there
are no known nonnormal examples of hexavalent 2-arc-transitive Cayley graphs on finite
simple groups.

The aim of this paper is to construct a nonnormal example of a connected 2-arc
transitive hexavalent Cayley graph on a finite non-abelian simple group. Our main result
is the following theorem.

Theorem 1. There exists a nonnormal example of a connected 2-arc-transitive hexavalent Cayley
graph on the alternating group A119, and the full automorphism group of this graph is isomorphic
to the alternating group A120.

2. Preliminaries

In this section, we give some necessary preliminary results which are used in later
discussions.

Let G be a finite group and let H be a subgroup of G. Then we have the following
result (see [13] (Ch. I, 1.4)).

Lemma 1. Let G be a group and let H be a subgroup of G. Let NG(H) be the normalizer of H in
G, and let CG(H) be the centralizer of H in G. Then, NG(H)/CG(H) is isomorphic to a subgroup
of the automorphism group Aut(H) of H.

We next introduce the definition of a Sabidussi coset graph. Let G be a group, g ∈ G\H
such that g2 ∈ H, and let H be a core-free subgroup of G. Define the Sabidussi coset graph
Cos(G, H, g) of G with respect to the core-free subgroup H as the graph with vertex set
[G : H] (the set of cosets of H in G) such that Hx and Hy are adjacent if and only if
yx−1 ∈ HgH. The following lemma follows from [14], and it can be easily proved by the
definition of the coset graphs (see [15] (Theorem 3) for example).

Lemma 2. Let G be a group, g ∈ G\H such that g2 ∈ H, and let H be a core-free subgroup
of G. Let Γ = Cos(G, H, g) be a Sabidussi coset graph of G with respect to H. Then, Γ is
G-arc-transitive and the following holds:

(1) The valency of the graph Γ is equal to |H : H ∩ Hg|.
(2) Γ is a connected graph if and only if 〈H, g〉 = G.
(3) If G contains a subgroup R is regular on VΓ, then Γ ∼= Cay(R, S), where S = R ∩ HgH.

Conversely, if Σ is an X-arc-transitive graph, then Σ is isomorphic to a Sabidussi coset graph
Cos(X, Xv, g), where g ∈ NX(Xvw) is a 2-element such that g2 ∈ Xv, and v ∈ VΣ, w ∈ Σ(v).

Proof. Let Σ be an X-arc-transitive graph. Let v ∈ VΣ be a vertex of Σ and w ∈ Σ(v). Since
Σ is X-arc-transitive, there is g such that vg = w. For each x ∈ X, define ϕ : Hx −→ vx.
Then we can verify that ϕ is a graph isomorphic from Σ to Cos(X, Xv, g). Since Σ is
undirected, we have g2 ∈ Xv. Hence, (H ∩ Hg)g = H ∩ Hg. Thus, we can choose a
2-element g satisfying g ∈ NX(Xvw).

Let t1 ≥ 0 and t2 ≥ 0 be two integers. We denote by the {2, 3}-group the finite group
of the order 2t13t2 . Following the definition of relevant objects in [16] (Theorem 3.1), we



Mathematics 2021, 9, 2935 3 of 7

have the following lemma, which is about the stabilizers of arc-transitive hexavalent graphs.
For the structure of the received stabilizers, see the proof in [16] (Page 926).

Lemma 3. Let s be a positive integer, and let Γ be a connected hexavalent (G, s)-transitive graph
for some G ≤ AutΓ. Let v ∈ VΓ. Then s ≤ 4 and one of the following statements holds:

(1) For s = 1, the stabilizer Gv is a {2, 3}-group.
(2) For s = 2, the stabilizer Gv ∼= PSL(2, 5), PGL(2, 5), A6 or S6.
(3) For s = 3, the stabilizer Gv ∼= D10× PSL(2, 5), F20× PGL(2, 5), A5×A6, S5× S6. (D10×

PSL(2, 5)) · Z2 with D10 · Z2 = F20 and PSL(2, 5) · Z2 = PGL(2, 5), or (A5 × A6)oZ2
with A5 oZ2 = S5 and A6 oZ2 = S6.

(4) For s = 4, the stabilizer Gv ∼= Z2
5 o GL(2, 5) = AGL(2, 5).

3. A 2-arc Transitive Hexavalent Nonnormal Cayley Graph on A119

In this section, we construct a connected 2-arc transitive hexavalent nonnormal Cayley
graph on A119 and determine its full automorphism group. In fact, if Γ := Cay(G, S) is a
Cayley graph of a non-abelian simple group G, then G is core free in X, where G ≤ X ≤
AutΓ. Let v ∈ VΓ and H = Xv. Suppose that |H| = n. Then by Lemma 3, n may be 60, 120,
etc. Consider the action of X on the set of [X : G] by right multiplication; then, X . Sn. So,
we may construct the nonnormal Cayley graph in Sn, where n = 60, 120, etc. The following
example is really the case where we construct n = 120.

Construction 1. Let G be the alternating group on the set {2, 3, . . . , 120}. Then, G ∼= A119. Let
H = 〈a, b〉 < X := A120 (the alternating group on {1, 2, . . . , 120}), where the following holds:

a= (1 2 4 3)(5 13 12 17)(6 14 11 18)(7 15 10 19)(8 16 9 20)(21 61 101 81)
(22 62 102 82)(23 63 103 83)(24 64 104 84)(25 65 105 85)(26 66 106 86)
(27 67 107 87)(28 68 108 88)(29 69 109 89)(30 70 110 90)(31 71 111 91)
(32 72 112 92)(33 73 113 93)(34 74 114 94)(35 75 115 95)(36 76 116 96)
(37 77 117 97)(38 78 118 98)(39 79 119 99)(40 80 120 100)(41 56 59 46)
(42 55 57 48)(43 54 60 45)(44 53 58 47)(49 51 52 50),

b= (1 21 41)(2 22 42)(3 23 43)(4 24 44)(5 25 45)(6 26 46)(7 27 47)
(8 28 48)(9 29 49)(10 30 50)(11 31 51)(12 32 52)(13 33 53)(14 34 54)
(15 35 55)(16 36 56)(17 37 57)(18 38 58)(19 39 59)(20 40 60)(61 85 110)
(62 86 112)(63 87 109)(64 88 111)(65 95 106)(66 93 108)(67 96 105)
(68 94 107)(69 81 113)(70 82 114)(71 83 115)(72 84 116)(73 100 119)
(74 99 117)(75 98 120)(76 97 118)(77 91 101)(78 89 102)(79 92 103)
(80 90 104).

Take x ∈ X as follows:

x= (1 79)(2 80)(3 60)(4 58)(5 113)(6 64)(7 114)(8 63)(9 112)(10 111)(11 12)
(13 47)(15 73)(16 106)(19 43)(20 41)(21 118)(22 120)(23 24)(25 50)(26 49)
(27 68)(28 66)(30 62)(32 61)(33 42)(34 44)(35 103)(36 101)(37 107)(38 45)
(40 75)(48 108)(53 54)(55 115)(56 116)(57 119)(59 117)(65 109)(67 110)
(69 102)(70 104)(71 72)(76 105)(81 89)(82 93)(84 99)(85 98)(87 91)(88 94)
(90 100)(96 97).

Define Σ = Cos(X, H, x).
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Lemma 4. The graph Σ = Cos(X, H, x) in Construction 1 is a connected 2-arc-transitive graph
and isomorphic to the nonnormal hexavalent Cayley graph Cay(G, S) of G, determined by S =
{x1, x−1

1 , x2, x3, x4, x5} with the following:

x1= (2 3 38 36 95 101 45 60 80 77)(4 37 97 103 46 35 96 107 58 78)
(5 90 106 66 51 28 16 100 113 74)(6 18 64 76 98 109 14 65 85 105)
(7 92 114 73 68 49 52 26 27 15)(8 20 31 41 63 75 59 83 117 40)
(9 88 104 11 69 93 120 54 21 81 115 23 56 91 111 71)
(10 87 116 24 55 89 118 53 22 82 102 12 70 94 112 72)
(13 34 30 17 62 44 47 67 86 110)(19 32)(29 42 48 99 119 39 57 84 108 33)
(43 61),

x2= (2 97)(4 99)(5 73)(6 74)(7 8)(9 41)(10 88)(11 78)(13 58)(14 96)
(15 60)(16 95)(17 66)(18 65)(19 52)(20 50)(22 40)(23 27)(24 32)(25 29)
(26 33)(28 39)(31 36)(35 38)(43 116)(44 77)(45 62)(46 48)(47 61)(49 107)
(51 105)(53 110)(54 75)(55 109)(56 76)(63 120)(64 119)(67 91)(68 92)
(69 103)(70 94)(71 104)(72 93)(79 113)(80 86)(81 112)(83 111)(87 114)
(89 90)(98 117)(100 118)(101 102),

x3= (3 39)(4 37)(5 106)(6 105)(7 50)(8 49)(9 35)(10 45)(11 36)
(12 47)(13 113)(14 114)(15 16)(18 118)(19 28)(20 56)(21 92)(23 91)
(26 120)(27 94)(29 30)(31 107)(32 108)(33 112)(34 110)(38 97)(40 98)
(41 42)(43 102)(44 101)(51 87)(52 85)(53 117)(54 96)(57 89)(58 90)
(59 116)(60 115)(62 80)(63 67)(64 72)(65 69)(66 73)(68 79)(71 76)
(75 78)(81 82)(83 109)(84 111)(93 119)(99 104)(100 103),

x4= (2 20)(3 7)(4 12)(5 9)(6 13)(8 19)(11 16)(15 18)(21 49)(23 84)
(24 101)(25 112)(26 28)(27 110)(29 94)(30 60)(31 96)(32 59)(33 85)
(34 120)(35 87)(36 118)(38 53)(40 55)(42 76)(44 74)(45 119)(46 117)
(47 48)(50 64)(51 102)(54 67)(56 65)(57 108)(58 106)(62 104)(63 82)
(66 116)(68 114)(69 86)(71 88)(73 97)(75 99)(77 105)(78 80)(79 107)
(81 103)(89 91)(90 115)(92 113)(98 109)(100 111),

x5= (2 111)(3 89)(4 32)(5 21)(6 118)(7 23)(8 117)(9 95)(11 93)
(13 99)(14 27)(15 100)(16 28)(17 106)(18 20)(19 105)(22 73)(24 75)
(29 112)(30 69)(33 108)(34 80)(35 107)(36 79)(37 38)(39 101)(40 103)
(41 49)(42 53)(44 59)(45 58)(47 51)(48 54)(50 60)(56 57)(61 116)
(62 64)(63 114)(65 94)(66 96)(67 102)(68 104)(71 90)(72 110)(77 84)
(78 82)(85 120)(86 119)(87 88)(91 109)(97 113)(98 115).

Proof. Let ∆ := {1, 2, . . . , 120}. Then, X has a natural action on ∆. By Magma [17],
〈H, x〉 = X, and so the graph Σ is connected by Lemma 2 (2). Furthermore, by Magma [17],
we have that H is regular on ∆. However, G is the stabilizer of point 1 in X. Hence, X
has a factorization X = GH = HG with G ∩ H = 1. Therefore, G is regular on [X : H].
By Lemma 2 (3), Σ is isomorphic to a Cayley graph of G = A119. Additionally, by the
computation of Magma [17] (for the Magma code, see Appendix A), we have |H|

|H∩Hx | = 6.
Hence, Lemma 2 (1) implies that Σ is a hexavalent graph. Since H ∼= PGL(2, 5), Lemma 3
implies that Σ is 2-arc transitive. Since X is a non-abelian simple group, G is not normal
in X ≤ AutΣ. It follows that Σ is nonnormal. Let x1, x2, x3, x4, x5 and S be defined as in
this lemma. By the computation of Magma [17] (for the Magma code, see Appendix B), we
have G ∩ (HxH) = S. Thus, by Lemma 2 (3), we have that Σ is isomorphic to Cay(G, S) .
This completes the proof of the lemma.

In the next lemma, we show that the full automorphism group AutΣ is isomorphic to
alternating group A120.

Lemma 5. The full automorphism group AutΣ of the 2-arc-transitive hexavalent graph Σ =
Cos(X, H, x) in Construction 1 is isomorphic to alternating group A120.
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Proof. Let A = AutΣ. Assume first that the full automorphism group A is quasiprimitive
on VΣ. Let N be a minimal normal subgroup of A. Then, N is transitive on VΣ. It implies
that N is insoluble. Thus, N is isomorphic to T1 × T2 × · · · × Td = Td, where Ti

∼= T for
each 1 ≤ i ≤ d, T is a non-abelian simple group, and d ≥ 1. Let p be the largest prime
factor of the order of A119. Then, p > 5 and p2 6

∣∣ |A119|. Since N is transitive on VΣ
and |VΣ| = |A119|, we have that p divides |N|. Assume that d ≥ 2. Then, pd divides
|N|. However, by Lemma 3, the order of the stabilizer Av divides 27 · 33 · 53, and so |A|
divides 27 · 33 · 53 · |A119| which is divisible by pd, a contradiction. Hence, we have d = 1
and N = T E A. Let C = CA(T) be the centralizer of T in A. Then, C E NA(T) = A and
CT = C×T. If C 6= 1, since A is quasiprimitive on VΣ, this implies that C is transitive on
VΣ. It implies that p divides |C|. Therefore, p2 divides |CT|, which divides |A|, and so we
have that p2 divides |A|, a contradiction. Hence, C = 1, and A ≤ Aut(T) is almost simple.

Since T ∩ X E X ∼= A120, it follows that T ∩ X = 1 or X. If T ∩ X = 1, then since
|A|
|X|

∣∣ 24 · 32 · 52, we have |T|
∣∣ 24 · 32 · 52; note that p > 5, p

∣∣ |T|, a contradiction. Thus,

T ∩ X = X, and so X ≤ T. It follows that |T : X| divides |A : X|, which divides 24 · 32 · 52.
By [18] (pp. 135–136), we can conclude that T = X ∼= A120. Thus, A ≤ Aut(T) ∼= S120. If
A ∼= S120, then |Av| = |A|

|G| = 240, a contradiction to Lemma 3. Hence, A ∼= A120.
Now assume that the full automorphism group A is not quasiprimitive on VΣ. Then

there is a minimal normal subgroup M of A that acts nontransitively on VΣ. Since M ∩
X E X, we have M ∩ X = 1 or X. For the latter case M ∩ X = X, we have X ≤ M, and so
M is transitive on VΣ, a contradiction. For the former case, M ∩ X = 1, then we have that
|M| divides |A||X| , which divides 24 · 32 · 52.

Assume that M is insoluble. Since |M| divides 24 · 32 · 52, and the simple groups
A5, A6, PSp(4, 3) are the only {2, 3, 5}-factor non-abelian simple groups (see [19] (Table 1),
and note that the definition of the {2, 3, 5}-group is similar to {2, 3}-group); by checking
the orders of these groups, it is easy to figure out M ∼= A5 or A2

5 or A6. Then since
|M| · |A120| = |M| · |X| = |L| = |VΣ| · |Lv| = |A119| · |Lv|, we have |Lv| = 25 · 32 · 52 or
27 · 33 · 53 or 26 · 33 · 52, a contradiction to the description of the orders of the stabilizers in
Lemma 3.

Assume that M is soluble. Then M ∼= Zr
2 or Zs

3 or Zl
5, where 1 ≤ r ≤ 4, 1 ≤ s ≤ 2

and 1 ≤ l ≤ 2. Let L = MX. Then L = M:X, a split expansion of M by X. Further, we
have L/CL(M) . Aut(M) ∼= GL(r, 2) or GL(s, 3) or GL(l, 5). We note that M is a subgroup
of CL(M). If M = CL(M), then we have L/CL(M) = L/M ∼= X ∼= A120 . GL(r, 2) or
GL(s, 3) or GL(l, 5). However, for each 1 ≤ r ≤ 4, 1 ≤ s ≤ 2 and 1 ≤ l ≤ 2, GL(r, 2),
GL(s, 3) or GL(l, 5) has no subgroup isomorphic to the alternating group A120. Hence, we
have M < CL(M) and 1 6= CL(M)/M E L/M ∼= A120. It implies that A120

∼= CL(M)/M;
then |CL(M)| = |M| · |X| = |L| since CL(M)E L, we have CL(M) = L = MX, and X
centralizes M. Hence, L = M × X. Then Lv/Xv = Lv/Lv ∩ X ∼= LvX/X ∼= L/X ∼= M.
Thus, Lv ∼= Xv.M. Note that with the order of the stabilizers given in Lemma 3, we conclude
M ∼= Z3 or Z5. In the case where M ∼= Z3, we have |Lv| = |Xv| · |M| = 360, then Lv ∼= A6,
A6 ∼= PGL(2, 5).Z3, but there is no normal subgroup which is isomorphic to PGL(2, 5) in
A6, a contradiction. In the case where M ∼= Z5, we have |Lv| = |Xv| · |M| = 600, then
Lv ∼= D10×PSL(2, 5), D10×PSL(2, 5) ∼= PGL(2, 5).Z5; by [17], there is no normal subgroup
with order 120 in D10 × PSL(2, 5), so clearly, PGL(2, 5) 5 D10 × PSL(2, 5), which also leads
to a contradiction. This completes the proof of the lemma.

Proof of Theorem 1. Now we are ready to prove our main Theorem 1. Let Σ = Cos(X, H, x)
be the graph as in Construction 1. Then, Lemma 4 shows that Σ is a connected 2-arc-
transitive graph and isomorphic to a nonnormal hexavalent Cayley graph Cay(G, S), with
G ∼= A119. This proves the statement of the former part of Theorem 1. The next Lemma 5
shows that the full automorphism group AutΣ of the graph Σ is isomorphic to alternating
group A120. This proves the statement of the latter part of Theorem 1, and so completes the
proof of Theorem 1.
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Appendix A. Magma Codes Used in Computing the Valency |H|
|H∩Hx|

val:=function(H,x);
m:=Order(H)/Order(H meet H^x);
return M;
end function;

Appendix B. Magma Codes Used in Computing the Elements of G ∩ (HxH)

elt:=function(a,b,x);
X:=Alt(120);
G:=Stabilizer(X,1);
H:=sub<X|a,b>;
M:=[];
for m in H do

for n in H do
if 1^(m*x*n) eq 1 then
if not m*x*n in M then
Append(~M,m*x*n);

end if;
end if;

end for;
end for;
return M;
end function;
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