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Abstract: The rough Heston model is a form of a stochastic Volterra equation, which was proposed to
model stock price volatility. It captures some important qualities that can be observed in the financial
market—highly endogenous, statistical arbitrages prevention, liquidity asymmetry, and metaorders.
Unlike stochastic differential equation, the stochastic Volterra equation is extremely computationally
expensive to simulate. In other words, it is difficult to compute option prices under the rough Heston
model by conventional Monte Carlo simulation. In this paper, we prove that Euler’s discretization
method for the stochastic Volterra equation with non-Lipschitz diffusion coefficient E[|Vt −Vn

t |p]
is finitely bounded by an exponential function of t. Furthermore, the weak error |E[Vt −Vn

t ]| and
convergence for the stochastic Volterra equation are proven at the rate of O(n−H). In addition,
we propose a mixed Monte Carlo method, using the control variate and multilevel methods. The
numerical experiments indicate that the proposed method is capable of achieving a substantial cost-
adjusted variance reduction up to 17 times, and it is better than its predecessor individual methods
in terms of cost-adjusted performance. Due to the cost-adjusted basis for our numerical experiment,
the result also indicates a high possibility of potential use in practice.

Keywords: rough Heston model; weak convergence error rate; Monte Carlo method; control variate
method; multilevel Monte Carlo method

1. Introduction

Rough volatility has recently emerged as an impressive tool to model an asset’s
volatility in the financial market. The empirical study [1] by Gatheral and his co-authors
have made all this possible. In short, rough volatility is a type of fractional Brownian
motion (fBm) with a Hurst parameter of 0 < H < 0.5, or in terms of alpha notation,
0.5 < α = H + 0.5 < 1. Specifically, fBm with 0 < H < 0.5 has rougher fluctuation
than the ordinary Brownian motion, whereas fBm with 0.5 < H < 1 has a smaller/lesser
fluctuation than the ordinary Brownian motion. Before continuing the discussion on rough
volatility, we would like to mention some of the work that made this discovery possible.
First, before the introduction of rough volatility, the fractional Brownian motion with
0.5 < H < 1 was used to model the long-term memory effect in the asset’s volatility by
Comte and Renault [2]. Subsequently, mixed fractional Brownian motion, composing the
sum of fractional Brownian motion and ordinary Brownian motion, was proposed to also
model the volatility of the asset return in the work by Cheridito et al. [3].

One of the earliest work that uses fractional Brownian motion with 0 < H < 0.5 as
a volatility component in option pricing is by Alos et al. [4]. In particular, the authors
managed to generate a short-time-to-maturity at-the-money-term-structure skew of the
order O(Tc) for c > −0.5. This is a great accomplishment, as the individual local and
stochastic volatility models are unable to replicate the mentioned behavior previously.
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Fukasawa [5] also demonstrated that option prices with volatility driven by the stochastic
volatility model with the fractional Brownian motion of the Hurst parameter 0 < H < 0.5
can generate an at-the-money volatility skew of the order O(TH−0.5).

Due to recent advancements in rough volatility, there are many studies revolving
around the development of rough volatility models. In particular, the authors of [6]
proposed the rough Bergomi (rBergomi) model, which is a rough extension of the Bergomi
model [7]. The result of the study found that the rBergomi model with fewer parameters
fits the SPX volatility relatively better than Markovian stochastic volatility models; this
is consistent with the SPX variance swap during the year 2008 economic crisis and the
flash crash event. The rough Heston model is the main discussion of this paper and it
was proposed by El Euch et al. in the work of [8,9]. What is so special about the rough
Heston model is that it can fit the implied volatility of the options very well, and it can
replicate the explosive behavior of the term-structure at-the-money skew observed in the
financial market. Several studies [10–15] mainly focus on computational reduction of the
rough Heston model. One of the greatest barriers to compute option prices under the
rough Heston model is due to the lack of an explicit solution for the fractional Riccati
equation, which is a part of the characteristic function of the option prices under the rough
Heston model.

This paper contributes in three ways: (1) presents and proves a time bound on Euler’s
discretization method for the simulation of the stochastic Volterra equation E[|Vt −Vn

t |p]
with a non-Lipschitz diffusion coefficient; (2) proves the weak error rate |E[Vt −Vn

t ]| and
weak convergence of Euler’s discretization method on the same stochastic Volterra equation;
and (3) proposes a control variate estimator and a mixed Monte Carlo method to enhance
the computational efficiency in computing the option price under the rough Heston model.
Our work is possible mainly due to the work of [16–21]. The following Section 1.1 provides
a simple and short introduction to our work. Section 2 mainly talks about discretization
methods—the Euler–Maruyama (first-order Euler) method for the stochastic differential
equation and stochastic Volterra equation, as well as the second-order Euler method for the
stochastic differential equation. The bounded and weak errors of the Euler discretization
method are also presented; the proofs are located in Appendices A–C. Furthermore, we
discuss some existing Monte Carlo methods (base, control variate, and multilevel) and
propose a mixed Monte Carlo (multilevel control variate) method in Section 3. Section 4
is dedicated to the numerical experiment of some existing methods and the proposed
method. Specifically, we consider a few of the tests to benchmark our methods: (1) the
capability of implied volatility to change on parameters ρ, α, and T; (2) cost-adjusted
variation comparisons for OTM, ATM, and ITM options as well as the comparisons for
different estimators; the (3) discretization bias for different estimators on a different number
of time steps n and level L.

1.1. Prerequisites

The rough Heston model can be formulated as follows:

dSt

St
= σt

[
ρdW1

t +
√

1− ρ2dW2
t

]
(1)

and

σ2
t = σ2

0 +
1

Γ(α)

∫ t

0
(t− s)α−1λ[θ − σ2

s ]ds +
ν

Γ(α)

∫ t

0
(t− s)α−1σsdW1

s , (2)

where S is the stock price, ρ is the correlation between dW1
t and dW2

t , 0.5 < α < 1 is the
parameter to control the roughness of the volatility movements, θ is the mean reversion
level for the variance of return, λ > 0 is the speed at which the variance is reverting to
its mean reversion level, ν > 0 is the magnitude of random movement of the variance of
the return.
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Proposition 1. Assume the rough Heston model in Equation (2), and then the conditional expecta-
tion of the variance is as follows:

E0[σ
2
t ] = σ2

0 + (θ − σ2
0 )
∫ t

0
f α,λ(s)ds, (3)

where
f α,λ(t) = λtα−1Eα,α(−λtα), (4)

such that Eα,β(x) = ∑∞
n=0

xn

Γ(αn+β)
denotes the generalized Mittag–Leffler function.

Proof. It was proven in several studies—Proposition 3.1 [22], Proposition 2.1 [23], and page
7–8 of [24].

2. Discretization Methods

This section mainly discusses the first-order Euler discretization method for the
stochastic differential equation and stochastic Volterra equation, and together with the
second-order Euler discretization methods for the stochastic differential equation.

2.1. Euler–Maruyama Discretization Method

We first consider the stock process S satisfying the following stochastic differential
equation (SDE):

dSt = a(St)dt + b(St)dWt, (5)

where a, b : R→ R are coefficient functions, and W is an independent standard Brownian
motion. Specifically, the coefficient functions a and b are assumed to satisfy the usual
conditions (see Appendix B.2 in [18]) for the existence and uniqueness of a strong solution
to the SDE (5). The initial condition of SDE (5) is set as S(0).

First off, we denote the time-discretized approximation of the process S as Ŝ. Under the
Euler–Maruyama method [25], the initial condition remains the same as Ŝ0 = S0, and the
SDE (5) is discretized on a time grid 0 = t0 < t1 < ... < tm as follows:

Ŝti+1 = Ŝti + a(Ŝti )[ti+1 − ti] + b(Ŝti )
√

ti+1 − tiZi+1, (6)

where i = 0, ..., m− 1, and Z is an independent standard Brownian motion Z ∼ N(0, 1).
In this work, we limit the method’s time grid to linear fixed spacing such that ti = iδ, where
δ is the fixed space. It is widely known that the Euler–Maruyama method for SDE has a
strong error of O(

√
δ). Furthermore, it can be easily further refined to O(δ), using Itô’s

formula to expand b(S(t)) [26] instead, but we will avoid further discussing this method,
as we will introduce the second-order Euler method or Milstein scheme later. See Chapter
6 in [18] for more details.

Suppose now we consider the stochastic Volterra equation (SVE) of the following
form:

Vt = V0 +
∫ t

0
K1(t, s)m(s, Vs)ds +

∫ t

0
K2(t, s)g(s, Vs)dWs, t ∈ [0, T], (7)

where m, g : [0, T]×R→ R and K1, K2 are the (possibly singular) kernels. We refer to the
work of [21] on the discussion of discrete-time simulation of SVE for the Lipschitz condition.
Notably, we can outline the following modified assumptions (one-dimensional space) stated
in page 3 of [21] in order to provide theorems on the error of Euler’s discretization method
for SVE related to the rough Heston model (non-Lipschitz diffusion coefficient).

Assumption 1. We first denote the fixed space as δ := ∆ti+1 = ti+1 − ti ≤ 1, then let n ≥ 1
such that tn = T. Furthermore, we denote η(s) := ti for s ∈ [ti, ti+1) for i ≥ 0 and again denote
the following fixed constants β ∈ (1, 1/(1− 2H)), H ∈ (0, 1/2), κ ∈ (0, 1), C > 0.
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(AA1) For i = 1, 2, let Ki(t, u) = 0 when u ≥ t, and the following holds:

∫ t

0

(
Ki(t, u)2 + Ki(t, u)2β + Ki(t, η(u))2 + Ki(t, η(u))2β

)
du < ∞ (8)

for all t ∈ [0, T].
(AA2) For i = 1, 2, and s ≤ t, the following holds:

∫ t

s
Ki(t, u)2ds +

∫ t

s
Ki(t, η(u))2ds ≤ C(t− s)2H . (9)

(AA3) For i = 1, 2, and s ≤ t, the following holds:

∫ t

s
Ki(t, u)2βds +

∫ t

s
Ki(t, η(u))2βds ≤ C(t− s)(2H−1)β+1. (10)

(AA4) For i = 1, 2, the following holds:

∫ t

0
[Ki(t + δ, u)− Ki(t, u)]2ds +

∫ t

0
[Ki(t + δ, η(u))− Ki(t, η(u))]2du ≤ Cδ2H . (11)

(AA5) For i = 1, 2, the following holds:

∫ t

0
[Ki(t + δ, u)− Ki(t, u)]2βdu ≤ Cδ(2H−1)β+1. (12)

(AA6) For i = 1, 2, the following holds:

∫ t

0
[Ki(t, u)− Ki(t, η(u))]2ds ≤ Cδ2H . (13)

(AA7) For i = 1, 2, the following holds:

∫ t

0
[Ki(t, u)− Ki(t, n(u))]2βdu ≤ Cδ(2H−1)β+1. (14)

(BB1) For x, y ∈ R and s, t ∈ [0, T], let |(m, g)(0, 0)| ≤ C hold. The following inequalities hold:

|m(t, x)−m(t, y)| ≤ C|x− y|, (15)

|g(t, x)− g(t, y)| ≤ C|x− y|κ , (16)

|(m, g)(t, x)| ≤ C(1 + |x|), (17)

|(m, g)(t, x)− (m, g)(s, x)| ≤ C|t− s|H(1 + |x|). (18)

Lemma 1. Suppose that we let Ki(t, u) = (t− u)H−1/2 for i = 1, 2; then, it satisfies conditions
(AA1)–(AA7).

Proof. See Appendix A.

The SVE in the first-order Euler discretized form is as follows:

Vn
ti+1

=Vn
ti
+

i−1

∑
k=0

(K1(ti+1, tk)− K1(ti, tk))m(tk, Vn
tk
)∆tk+1 + K1(ti+1, ti)m(ti, Vn

ti
)∆ti+1

+
i−1

∑
k=0

(K2(ti+1, tk)− K2(ti, tk))g(tk, Xn
tk
)∆Wk+1 + K2(ti+1, ti)g(ti, Vn

ti
)∆Wi+1,

(19)
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where ∆ti+1 = ti+1 − ti = δ and ∆Wi+1 = Wti+1 −Wti for i = 0, 1, ..., n− 1. Note that we
use the following solution Vn

t of the Euler scheme (integral form) in the bounded proof of
the Euler discretization method.

Vn
t = V0 +

∫ t

0
K1(t, η(u))m(η(u), Vn

η(u))du +
∫ t

0
K2(t, η(u))g(η(u), Vn

η(u))dWu. (20)

Theorem 1. Suppose that Assumption 1, conditions (AA1)–(AA7) and condition (BB1) hold. Let

p ≥ 2β

κ(β− 1)
for β ∈ (1, 1/(1− 2H)) and κ ∈ (0, 1); then, there exists a finite constant C > 0

that depends on T, p, V0, and β such that for t ∈ [0, T] and n→ ∞, the following is true:

lim
n→∞

E[|Vt −Vn
t |p] ≤ [C(exp(Ct)− 1)]1/(1−κ). (21)

Proof. Take the limit n→ ∞ in Theorem A1, and note that ε > 0; then, the result follows
directly. See Appendix B

Remark 1. We note that the Assumptions 1, conditions (AA1)–(AA7) and condition (BB1) satisfy
the case of the rough Heston model. In addition, in the case of the rough Heston model, we have
the non-Lipschitz diffusion coefficient factor of κ = 1/2. Finally, it can be seen that for small
time t, the bounded errors are small too. On the other note, we do have to mention that in the
case of the Lipschitz condition for the diffusion coefficient in the stochastic Volterra equation,
i.e., |g(t, x)− g(t, y)| ≤ C|x− y|, limn→∞ E[|Vt −Vn

t |p] = 0 as proven in [21].

Theorem 2. Suppose that Assumption 1, conditions (AA1)–(AA7) and condition (BB1) hold.
Then, the following is true:

lim
n→∞

|E[Vt]−E[Vn
t ]| = 0. (22)

Proof. Take the limit n → ∞ in Theorem A2, then the result follows immediately. See
Appendix C.

Remark 2. Theorem 2 shows the weak convergence of the variance process in the rough Heston
model. This was actually proven in [27], but here, we provide the weak error order for the variance
process of the rough Heston model. From Theorem 2, we know that the variance process converges
at the rate of δ(1/2β)[(2H−1)β+1], where δ = T/n and β ∈ (1, 1/(1− 2H)). Since β can be
specifically picked, our goal is to maximize the convergence order (1/2β)[(2H − 1)β + 1] by
changing β. We differentiate the order with respect to β as follows:

∂

∂β

[
1

2β
((2H − 1)β + 1)

]
= − 1

2β2 . (23)

From Equation (23), we know that (1/2β)[(2H− 1)β + 1] is strictly decreasing on the range
of β ∈ (1, 1/(1− 2H)). Then, the weak error order can be obtained as follows:

lim
β→1

1
2β

((2H − 1)β + 1) = H. (24)

This indicates that the weak error of the rough Heston model is O(n−H).

2.2. Second-Order Euler Discretization Method

In this subsection, we discuss the second-order Euler discretization method that was
introduced by Milstein [28] (we refer to the text [18]). Let us consider the stock process (5)
in another manner, i.e., the following:

St+δ = St +
∫ t+δ

t
a(u, Su)du +

∫ t+δ

t
b(u, Su)dWu. (25)
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We denote the following operators:

L0 =
∂

∂t
+ a

∂

∂s
+

1
2

b2 ∂2

∂s2 (26)

and
L1 = b

∂

∂s
. (27)

Then, the terms
∫ t+δ

t a(S(u))du and
∫ t+δ

t b(S(u))dWu can be approximated as follows:

∫ t+δ

t
a(u, S(u))du ≈ a(t, St)δ + L0a(t, St)I1 + L1a(t, St)I2 (28)

and ∫ t+δ

t
b(u, S(u))dWu ≈ b(t, St)[W(t + δ)−W(t)] + L0b(t, St)I3 + L1b(t, St)I4, (29)

where Ii for i = 1, ..., 4 denotes the double integral, which can be computed as follows:

I1 =
1
2

δ2, (30)

I3 = δ∆W − I2, (31)

I4 =
1
2
[(∆W)2 − δ], (32)

where ∆W = Wt+δ −Wt. The computation of I2 requires some derivation. Based on
Chapter 6.2 in [18], I2 can be simulated as follows:(

∆W
I2

)
∼ N

(
0,
(

δ 1
2 δ2

1
2 δ2 1

3 δ3

))
, (33)

The correlation between ∆W and I2 can be computed as follows:

ρ∆W,I2 =
Cov(∆W, I2)√

Var(∆W)Var(I2)
(34)

=
1
2 δ2

√
δ
√

1
3 δ3

=

√
3

2
. (35)

Then, we let B denote an independent Brownian motion and ∆B ∼ N(0, 1). Finally,
we can obtain the following:

I2 =

√
1
3

δ3

[
ρ∆W,I2

√
1
δ

∆W +
√

1− ρ2
∆W,I2

∆B

]
(36)

=

√
1
3

δ3

[√
3

2

√
1
δ

∆W +

√
1− 3

4
∆B

]
(37)

=
1
2

δ∆W +
1

2
√

3
δ3/2∆B. (38)

See [18] for specific details of the derivation of Equations (30)–(33). It was shown
by [29] that the second-order Euler discretization method has a weak order of error of
O(δ2); it has a better convergence order than the first-order Euler discretization method,
which possesses a weak error of O(δ). However, the requirement that comes with the
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weak order of convergence on the second-order Euler discretization method requires the
evaluated functions a and b to have uniformly bounded derivatives, and the functions
need to be six times continuously differentiable. The purpose of giving a short review on
this method is because while we will not be using this method for the discretization of
the stochastic Volterra equation, we can actually use this on the discretization of the stock
process in the control variate method and multilevel control variate method (control variate
part) instead of the first-order Euler discretization method. We can reduce the overall error
of the simulation in numerical experiment as per the weak error that the second-order
Euler discretization method has suggested.

3. Monte Carlo Methods

This section outlines the conventional Monte Carlo method, control variate method,
multilevel Monte Carlo methiod, and the novel multilevel control variate Monte Carlo method.

Suppose that the interest of our study is to estimate the E[P], the conventional Monte
Carlo method estimates E[P], using N independent samples of ω with a given probability
space (Ω,F ,P), that is, the following:

P̂ =
1
N

N

∑
n=1

P(ω(n)). (39)

The variance of this estimator is 1
N Var[P], and the root mean square error (RMS) of

the estimator has an order of O(N−1/2). Particularly, suppose that we require an accuracy
of ε for the RMS for the estimator; then, a total of N = O(ε−2) samples are needed for the
conventional Monte Carlo.

3.1. Control Variate Method

The control variate method is one of the variance reduction methods along with
antithetic variates, quasi Monte Carlo, and importance sampling methods. The idea of the
control variate method is somewhat simple. Suppose we consider another random variable
X that is paired with P such that the pairs (Xn, Pn) for n = 1, ..., N are simulated with the
sample path ω. Furthermore, it is required that E[X] is known, or it can be computed
relatively cheaply and accurately. Then, we denote a fixed constant ς such that we can
compute the following:

Pn(ς) = Pn − ς(Xn −E[X]). (40)

Equation (40) is a control variate estimator, and it is an unbiased estimator to P as
follows:

lim
N→∞

1
N

N

∑
n=1

Pn(ς) = lim
N→∞

1
N

N

∑
n=1

[Pn − ς(Xn −E[X])]

= E[P].

To optimally reduce the variance or mean square error of the estimator (40), we can
pick the constant ς to be the following:

ς∗ = σP
σX

ρX,P =
Cov(X, P)

Var(X)
. (41)

The ratio of the control variate estimator to the base estimator is as follows:

Var[P− ς(X−E[X])]

Var[P]
= 1− ρ2

X,P. (42)

Equation (42) tells us that as long as the correlation between the random variable X
and P is negatively correlated or positively correlated, variance reduction is guaranteed.
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Since the quantity of interest P is usually lacking E[P] in practice, we ought to use the
optimal sample estimate of ς from Equation (41) as follows:

ς̂∗ =
∑N

n=1(Xn − X)(Pn − P)

∑N
n=1(Xn − X)2

, (43)

where X and P are the sample mean of Xn and Pn, respectively. Accordingly, the expectation
E[P] can be estimated using the sample mean estimator P(ς̂∗) such that the optimally
variance reduced control variate estimator is as follows:

PCV =
1
N

N

∑
n=1

[
Pn − ς̂∗(Xn − X)

]
. (44)

In practice, ς̂∗ and X are most likely unknown variables, so it should be estimated
beforehand. Pre-running a small number of samples is usually the only way to estimate
ς̂∗ and X since this study focuses on call option pricing under the rough Heston model.
Obviously, P = (ST − K)+ is the payoff of the call option prices where ST is the stock price
at maturity time and K is the strike price. Now comes the question of what control variate
we should employ in order to get ρX,P to be closest to 1 or −1. We propose a control variate
based on the idea of [19].

Proposition 2. Let SCV
0 be the initial stock price and W be an independent Brownian motion.

Consider the stock process as follows:

dSCV
t = σ(t)SCV

t dWt, (45)

where σ(t) is a nonrandom function of t. Then, there is an analytic solution for the European call
option as follows:

C = E[(SCV
T − K)+]

= SCV
0 N(d+)− KN(d−),

where N(·) denotes the cumulative distribution function of the standard normal distribution and

d± =
log

SCV
0
K
± 1

2
σ2

TT

σT
√

T
(46)

such that σ2
T = 1

T
∫ T

0 σ2(t)dt.

Proof. See page 253 of [30].

We propose a control variate X by using Proposition 1. We start by denoting

XT = (SCV
T − K)+, (47)

where SCV
t is the stock process governed by the following:

dSCV
t = σ(t)SCV

t dWt. (48)

Specifically, σ(t) is a nonrandom function and the squared-function is denoted as fol-
lows:

σ2(t) = E0(σ
2
t+ε), (49)

where E0(σ
2
t ) is the expectation from Proposition 1, and ε > 0 is a small positive constant.

The use of t + ε in Equation (49) is to ensure that the conditions and requirements of
the second-order Euler discretization method are being met. We set ε = δ/10 for our
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study to avoid the singularity at
√
E′0(σ2

t )|t=0, where δ is the step-size of the discretiza-
tion method. Hence, the expectation of the call option price can be determined using
Proposition 2. In a numerical experiment, the forward variance of the rough Heston model
(Equation (3)) in Proposition 1 is computed through the truncated Mittag–Leffler function
and numerical integration.

3.2. Multilevel Monte Carlo

Multilevel Monte Carlo is a form of the control variate method which uses multiple
controls. Specifically, it uses itself with different level of coarseness as control variates.
Instead of simulating the process at the finest level, the method approximates PL, using
the sequence of P0, ..., PL−1. In particular, the sequence P0, ..., PL−1, PL is a sequence with
increasing cost to simulate. The expectation of E[PL] can be decomposed as follows:

E[PL] = E[P0] +
L

∑
i=1

E[Pi − Pi−1]. (50)

Consequently, we can rely on the following unbiased estimator of E[PL] in practice:

PML =
1

N0

N0

∑
k=1

P(0,k)
0 +

L

∑
i=1

1
Ni

Ni

∑
k=1

(
P(i,k)

i − P(i,k)
i−1

)
. (51)

For our study, we let M ≥ 2 and D > 1 such that the total discretization steps for
P(·,·)

i is ni = M/DL−i ∈ N for i = 0, ..., L, then the step size is defined as δi = T/ni. One

thing to take note of is that the difference P(i,k)
i − P(i,k)

i−1 in Equation (51) actually relies on
the same sample path ω but at a different coarseness level. For example, if k is the step
number of the simulation (same as in Equation (51)) and we have the following parameters
M = 256, D = 2, L = 4, and i = 4, we would simulate one set of sample stochastic path
ω(n4) with n4 = 256 discretization steps (in other words, the simulated Brownian motions
are Wa, a = 0, 1, ..., 256) to compute P(4,k)

4 , and using the same simulated set of sample path

ω(n4), we would only use W2a, a = 0, 1, ..., 128 to compute P(4,k)
3 . To achieve minimization

of the variance of the multilevel estimator using optimal Ni with a fixed total cost, we need
to solve an optimization problem. We first define V0 and C0 to be the variance and cost of
one sample P0 respectively, whereas we can define Vi and Ci to be the variance and cost
of one sample Pi − Pi−1 respectively. The total variance of the multilevel estimator is as
follows:

V(N0, N1, ..., NL) =
L

∑
i=0

1
Ni

Vi, (52)

and total cost of the multilevel estimator is as follows:

C(N0, N1, ..., NL) =
L

∑
i=0

NiCi. (53)

Note that each level of correction in Equation (51) uses independent samples as
indicated from the presence of the level i in superscript (i, k) of Equation (51), which is
why Equation (52) is of this form (absence of correlation on other random variables). Our
optimization problem is to do the following:

Minimize V(N0, N1, ..., NL), (54)

subject to Ψ(N0, N1, ..., NL) = C(N0, N1, ..., NL)− C = 0, (55)

where C > 0 is a fixed total cost. The Lagrangian function can be constructed as follows:

L(N0, ..., NL, λ) = V(N0, N1, ..., NL) + λLΨ(N0, N1, ..., NL), (56)
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where λL is the Langrange multiplier. Solving it, we can obtain the optimal Ni as follows:

N∗i =

√
Vi
Ci

(
C

∑L
a=0
√

VaCa

)
. (57)

Using Equation (57), we are able to achieve the optimal least total variance with a
fixed cost by distributing N∗i to a different coarse level of P(i,·)

i . In practice, we will never
know the exact Vi and Ci; therefore, we will need to replace them with the estimates V̂i and
Ĉi. What we can do in practice is that we can start by pre-running a small number of the
simulation to compute for V̂i and Ĉi; then, we can use V̂i and Ĉi to obtain an estimate of N∗i
in Equation (57), i.e., N̂∗i .

3.3. Multilevel Control Variate Method

We propose a mixed estimator that uses the idea of the control variate method and the
multilevel Monte Carlo method. Readers may also see similar work in [31,32]. We refer to
this method as the multilevel control variate method from now onward. From Equation (50),
we estimate E[P0] and E[Pi − Pi−1] using the control variate method. Let X0, X1, ..., XL be
the control variate estimator proposed in Equation (47) such that E[Xi] for i = 0, ..., L. Then,
the estimator for the decomposition E[PL] is the following:

PL(ς) = [P0 − ς0(X0 −E[X0])] +
L

∑
i=1

[Pi − Pi−1 − ςi(Xi − Xi−1 −E[Xi − Xi−1])]

= [P0 − ς0(X0 −E[X0])] +
L

∑
i=1

[Pi − Pi−1 − ςi(Xi − Xi−1)]. (58)

It can be easily shown that Equation (58) is an unbiased estimator for E[PL]:

E[PL(ς)] = E[P0 − ς0(X0 −E[X0])] +
L

∑
i=1

E[Pi − Pi−1 − ςi(Xi − Xi−1)]

= E[P0]− ς0 E[X0 −E[X0]] +
L

∑
i=1

E[Pi − Pi−1]− ςi E[Xi − Xi−1]

= E[P0] +
L

∑
i=1

E[Pi − Pi−1] = E[PL]. (59)

To obtain the ratio of variance of the proposed estimator to the Multilevel estimator,
we first define the total variance of the multilevel estimator as follows:

VML =
L

∑
i=0

1

N(1)
i

V(1)
i , (60)

where V(1)
0 = Var(P0) and V(1)

i = Var(Pi − Pi−1) for i = 1, ..., L. Similarly, we can define
the total variance for the multilevel control variate estimator as follows:

VMLCV =
L

∑
i=0

1

N(2)
i

V(2)
i , (61)
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where V(2)
0 = Var(P0 − ς0(X0 − E[X0])) and V(2)

i = Var(Pi − Pi−1 − ςi(Xi − Xi−1)) for
i = 1, ..., L. We can reduce the total variance for the multilevel control variate estimator by
minimizing V(2)

i individually with optimal ςi for i = 0, 1, ..., L, that is, the following:

∂V(2)
0

∂ς0
=

∂

∂ς0

[
σ2

P0
− 2ς0σP0 σX0 ρP0X0 + ς2

0σ2
X0

]
= 0 =⇒ ς∗0 =

σP0

σX0

ρP0X0 , (62)

where ς∗0 is the optimal value that minimizes V(2)
0 . Similarly, if we let Yi = Pi − Pi−1 and

Ri = Xi − Xi−1 for i = 1, ..., L, then the optimal ς∗i that reduces V(2)
i for i = 1, 2, ..., L is as

follows:
ς∗i =

σYi

σRi

ρYi Ri . (63)

Equations (62) and (63) thus imply the least individual variance as follows:

V(2)
0 = σ2

P0
(1− ρ2

P0X0
), V(2)

i = σ2
Yi
(1− ρ2

Yi Ri
) ∀i = 1, ..., L (64)

or in another form

V(2)
0 = V(1)

0 (1− ρ2
P0X0

), V(2)
i = V(1)

i (1− ρ2
Yi Ri

) ∀i = 1, ..., L. (65)

Using Equations (60), (61) and (65), we can compute the ratio of the total variance of
the optimally controlled multilevel control variate estimator to the total variance of the
multilevel estimator. Suppose we let Ni = N(2)

i = N(1)
i . To simplify the calculation, we can

obtain the following ratio:

VMLCV

VML =
∑L

i=0
1
Ni

V(2)
i

∑L
i=0

1
Ni

V(1)
i

=
1

N0
V(1)

0 (1− ρ2
P0X0

) + 1
N1

V(1)
1 (1− ρ2

Y1R1
) + ... + 1

NL
V(1)

1 (1− ρ2
YLRL

)

1
N0

V(1)
0 + 1

N1
V(1)

1 + ... + 1
NL

V(1)
1

= 1−
1

N0
V(1)

0 ρ2
P0X0

+ 1
N1

V(1)
1 ρ2

Y1R1
+ ... + 1

NL
V(1)

1 ρ2
YLRL

1
N0

V(1)
0 + 1

N1
V(1)

1 + ... + 1
NL

V(1)
1

. (66)

Equation (66) indicates that the variance reduction factor is weighted by ρ2
P0X0

, ρ2
Y1R1

, ...,
ρ2

YLRL
. Since −1 ≤ ρ ≤ 1, the variance reduction on the multilevel estimator is basically

guaranteed, unless ρP0X0 = ρY1R1 = ... = ρYLRL = 0. Furthermore, if ρP0X0 = ρY1R1 = ... =
ρYLRL = 1, then the variance is minimized to zero. Unfortunately, we are faced with the
same issue as any Monte Carlo estimation methods—we are unable simulate X0, X1, ..., XL
directly and exactly. Therefore, we do have to rely on discretization methods and therefore,
discretization bias is unavoidable. The estimator that we will be using to conduct numerical
experiment is as follows:

P̂L(ς) =
1

N(2)
0

N(2)
0

∑
k=1

(
P(0,k)

0 − ς0[X
(0,k)
0 −E[X]]

)

+
L

∑
i=1

1

N(2)
i

N(2)
i

∑
k=1

([
P(i,k)

i − P(i,k)
i−1

]
− ςi

[
X(i,k)

i − X(i,k)
i−1

])
,

(67)
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where the optimal ς0 and ςi from Equations (62) and (63) are estimated as follows:

ς̂∗0 =
∑

N(2)
0

k=1

(
P(0,k)

0 − P(0,·)
0

)(
X(0,k)

0 − X(0,·)
0

)
∑

N(2)
0

k=1

(
X(0,k)

0 − X(0,·)
0

)2
(68)

and

ς̂∗i =
∑

N(2)
i

k=1

([
P(i,k)

i − P(i,k)
i−1

]
−
[

P(i,·)
i − P(i,·)

i−1

])([
X(i,k)

i − X(i,k)
i−1

]
−
[

X(i,·)
i − X(i,·)

i−1

])
∑

N(2)
i

k=1

([
X(i,k)

i − X(i,k)
i−1

]
−
[

X(i,·)
i − X(i,·)

i−1

])2
(69)

such that (P(i,·)
i , P(i,·)

i−1 ) and (X(i,·)
i , X(i,·)

i−1 ) are the sample mean for (P(i,·)
i , P(i,·)

i−1 ) and (X(i,·)
i , X(i,·)

i−1 ).
In practice, we will not have the optimal ς̂∗i for i = 0, ..., L immediately; pre-running the

simulation with a small sample is needed. We need to clarify that X(·,·)
i has the same coarse-

ness level as P(·,·)
i . In other words, X(·,·)

i has the same number of discretization steps and

the same step size as P(·,·)
i . Additionally, in order to generate the largest correlation for the

pairs (P0, X0), (Y1, R1), ..., (YL, RL), we should employ the same sample path to each of the
pairs (P(0,k)

0 , X(0,k)
0 ), (P(1,k)

0 , X(1,k)
0 ), (P(1,k)

1 , X(1,k)
1 ), ..., (P(L,k)

L , X(L,k)
L ). Furthermore, to avoid

large discretization error on the simulation of Xi for i = 0, 1, ..., L, we will simulate Xi for
i = 0, 1, ...L, using the second-order Euler method (introduced in Section 2.2), which has a
weak order of convergence O(δ2). We will see that in the numerical experiment Section 4,
the discretization biases are ignorable once a certain level of the multilevel control variate
method is employed.

Remark 3. The total discretization steps ni and step size δi for the multilevel control variate method
are defined the same as the multilevel method. In addition, the optimal N(2)

i for Equation (61)
is computed similarly as in Section 3.2. Note that a fair comparison between the multilevel and
multilevel control variate should be done using cost-adjusted performance. In other words, the benefit
of using the extra control variates to reduce variance must outweigh the cost of generating the extra
paths for the control variate.

4. Numerical Experiments

This section discusses the numerical experiments for our evaluated Monte Carlo
methods in four different ways. First, we demonstrate that by using the multilevel control
variate Monte Carlo, the implied volatility under the rough Heston model has the ability
to change according to different ρ and α with different maturity time T. Then, we will
evaluate the cost-adjusted distribution for the OTM, ATM, and ITM volatility under the
rough Heston model on the following estimators: (1) base estimator (BE), (2) control variate
estimator (CV), (3) multilevel estimator (ML), and (4) multilevel control variate estimator
(MLCV). Subsequently, we will compare the bias of the four above-mentioned estimators.
Finally, we compare our methods to the implied volatility under the rough Heston model
computed, using the Fourier inversion method.

Accordingly, we define the following parameters for four estimators that will be used
in the following numerical experiment unless stated otherwise.

S = 100, K = 100, α = 0.6, σ2
0 = 0.16, T = 1

θ = 0.16, λ = 0.5, ν = 0.5, ρ = −0.6 n = 256

M = 256, D = 2, L = 4.

(70)

The parameter n is used by BE and CV, whereas the parameters M, D and L are used
by ML and MLCV. Note that we did not specify the number of simulations N for all the
estimators, and instead, we will be using the same run-time or cost for all the methods, as
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this will keep the benchmark of different methods fair. The general steps of our Monte
Carlo simulation are as follows:

1. Pre-run the simulation of the methods with relatively small N1 and store the in-
tended result.

2. Compute time-taken to run a single simulation.
3. Compute N2 as the number of simulations needed to achieve the specific run-time or

cost C.
4. With the previous N1 simulations stored, conduct the rest of N2 − N1 simulations.

The numerical experiments are coded in MATLAB R2019b software with i7-8750H
CPU @ 2.20 GHz (Max Turbo Frequency: 4.10 GHz) and 16 GB memory.

4.1. The ρ and α Change

Here, we show that the Monte Carlo method on implied volatility under the rough
Heston model is capable of demonstrating various smile shapes, according to α and ρ with
different maturity time T. Figure 1 is produced using MLCV with the parameters stated
in Equation (70), except for the α and ρ. In addition, in order to make the graph looks
smoother, we used 250 simulations of cost C = 1 and then averaged the computed implied
volatility values.

We can see that the behaviors from Figure 1 are quite reasonable for short- and long-
term implied volatility. The plots somewhat fit the empirical observation from the work
of [6], i.e. their Figures 4 and 8 indicate that as the maturity T of the implied volatility
plots gets smaller, the center of the smile approaches to log(K/S) = 0 becomes much more
obvious. In addition, we can observe the following effects from the implied volatility plots
Figure 1: (1) larger α causes the implied volatilities for different log-strike to have larger
discrepancies at in-the-money options, whereas out-of-the-money options are priced below
the Black–Scholes option prices on different maturity lengths T; (2) higher correlation ρ
flattens the implied volatility such that it behaves more like a smile shape.

Remark 4. Note that during the computational work in the numerical experiment, the implied
volatility with a higher correlation between the stock return and volatility movement ρ requires more
computational effort to compute to an accurate number as compared to the lower ρ. Furthermore,
while we have only used MLCV to estimate the implied volatility plots on Figure 1, similar plots can
be constructed using the BE, CV, and ML methods, but it would take a larger number of simulations
to create a smooth line across different log strikes in the figures. The reason that it requires a larger
number of simulations is discussed in the subsequent subsection.
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Figure 1. Implied volatility against log-strike log(K/S) plots on using α = {0.6, 0.8} and ρ = {−0.6,−0.2} with different
maturity time T.

4.2. Cost-Adjusted Variation and Bias

This section focuses on the following four matters: (1) evaluate the distribution and
standard deviation of the out-of-the-money (OTM), at-the-money (ATM), and in-the-money
(ITM) implied volatilities under the rough Heston model using MLCV; (2) compare the
standard deviation of the MLCV on the changes of the parameters T, ρ, and α; (3) evaluate
the distribution and standard deviations between the BE, CV, ML, and MLCV; and (4) com-
pute discretization biases for all the previously mentioned methods on a different number
of time steps n and level L. We set the cost of numerical experiments as C = 1 (second) to
avoid improper comparison between estimators.

Figure 2 shows the histogram plots of 1000(σi
imp − σimp) for i = 1, 2, ..., 3000 simula-

tions (3000 runs of 1 second performance) of MLCV with a normal distribution fit; σimp is the
sample mean of the computed implied volatility σimp. Furthermore, we have fitted normal
distribution plot N(0, σnorm), where σnorm is the standard deviation of 1000(σi

imp − σimp).
Based on Figure 2, we can observe that ITM options have the largest standard deviation,
and therefore, it is harder to pin down an exact option price as compared to the ATM and
OTM option. On a bright note, the concept of normal distribution ensures that there is a
99.7% (6 standard deviations gap) chance that the ITM implied volatility would have an
absolute error of at most 0.459% (implied volatility error) or roughly 1% percentage error
for the implied volatility.

Similarly, we can compute the standard deviations for ATM implied volatility on
different values of ρ, α, and T. Table 1 displays the standard deviation of the implied
volatility estimator computed by using the MLCV. From Table 1, we can infer that by using
the MLCV, option prices under the rough Heston model that have longer maturity time T
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incur more error than the shorter maturity time T. In addition, based on the observation of
the changes in ρ and α, it is evident that a higher α value will lead to a smaller error for
the implied volatility, whereas a higher ρ will do the opposite. It is important to realize
that among the evaluated ATM implied volatility standard deviations, even the worst case
scenario (ρ = −0.2, α = 0.6, T = 1) would have 99.7% chance of having a percentage error
of roughly 1.2% only.

In addition, we have computed and plotted the histogram shown in Figure 3 for
the ATM implied volatility of the four estimators. Unsurprisingly, the MLCV performed
the best, with the smallest standard deviation among all the estimators. To put it in a
perspective, by using the multilevel control variate estimator, we managed to achieve
a roughly 17 times variance reduction as compared to BE. CV and ML are also able to
demonstrate a substantial variance reduction of roughly 11 times and 12 times.

Figure 2. Histograms and normal distribution fits of OTM, ATM and ITM (k = log(K/S) = {−0.1053, 0, 0.0953}) implied volatility.
The x-axis is 1000(σk

imp − σimp), whereas the y-axis is simply the probability that the implied volatility falls into the interval of the
histogram. The σnorm is the standard deviation of the normal distribution fit.
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Table 1. Computation of implied volatility’s standard deviation.

σnorm

T = 1/52 T = 3/12 T = 6/12 T = 1

ρ = −0.6, α = 0.6 0.00084 0.00084 0.00100 0.00123
ρ = −0.6, α = 0.8 0.00025 0.00036 0.00045 0.00062
ρ = −0.2, α = 0.6 0.00089 0.00107 0.00123 0.00156
ρ = −0.2, α = 0.8 0.00033 0.00044 0.00062 0.00085

Figure 3. Histograms and normal distribution fits of ATM implied volatility errors for base, control variate, multilevel and multilevel
control variate estimator. The x-axis is transformed to 1000(σk

imp − σimp), whereas the y-axis is simply the probability that the implied
volatility falls into the interval of the histogram. The σnorm is the standard deviation of the normal distribution fit.

Finally, Figure 4 shows the discretization biases on n = 64, 128, 256, 512, 1024 for BE
and CV, as well as the biases on L = 1, ..., 4 for ML and MLCV. Note that for ML and MLCV,
we are using (L, M) = {{1, 128}, {2, 256}, {3, 512}, {4, 1024}}. Figure 4 shows the number
of time steps n or M against the ATM implied volatility. Evidently, the observed implied
volatilities of the estimators do differ by a slight bit. The most notable difference in implied
volatility is from ML. The result of ML seems to have slightly higher implied volatility,
but ultimately, when n becomes larger or level L becomes larger, Figure 4 shows that the
estimators do appear to converge and have little variance between one another. A 2 level
MLCV with M = 256 has 0.15% percentage error as compared to BE with number of time
steps n = 1024, which is acceptable in the financial industry.
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Figure 4. Number of time steps or levels against the implied volatility plot to assess the discretiza-
tion error.

4.3. Calibration to SPX Options

In this section, we will calibrate the implied volatility under the rough Heston model
computed through MLCV to the options of an index consisting of the top 500 companies in
the U.S. market, which is the S&P 500 (SPX) option. The SPX options prices and stock are
taken from the ending on 22 October 2021 with maturity dates ranging from T = 0.0992
up to T = 0.4812. The interest rate is assumed to be zero in the inversion of option price
to implied volatility and computation of implied volatility through the rough Heston
model. The main criterion of optimizing the parameters is the minimization of the root
mean squared error between the bid-ask implied volatility. The calibrated parameters are
as follows:

α = 0.7600, θ = 0.0450, V0 = 0.0095, (71)

λ = 2.0558, ν = 3.0480, ρ = −0.9507. (72)

Figure 5 shows the calibration of implied volatility under the rough Heston model to
the SPX options against log-moneyness log(K/S) (on the x-axis), using the MLCV Monte
Carlo method. It shows that the calibrated implied volatility performs reasonably well for
the different option maturities considered. It can be seen from Figure 5 that the implied
volatility on T = 0.2579 and T = 0.4812 have some deviations at its end (in-the-money
and out-of-the-money). One thing to take note of is that we have actually attempted to
calibrate the rough Heston’s implied volatility, using MLCV up to maturity of T = 1.66,
but were unable to do so because of two main reasons: (1) with cost C = 1 s, the implied
volatility at larger maturity actually has large deviation, so the optimization algorithm
simply would not work well with such a large deviation at each iteration; (2) there are
six parameters to consider, and therefore, the optimization cost is extremely high. We are
actually unsure whether the parameters in Equations (71) and (72) are even the global
minimum of the optimization problem or not. We have tried three different optimization
algorithms, including the gradient-based method (interior-point method), evolutionary
algorithm (genetic algorithm), and pattern search algorithm. The gradient-based method
obviously does not work well with stochastic problems, whereas the evolutionary algorithm
simply requires extremely large computational cost to give a moderate optimal parameter.
The parameters in Equations (71) and (72) are obtained through a pattern search algorithm
with initial parameters given by the genetic algorithm.
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Figure 5. Implied volatility surface of SPX options (22 October 2021) and its calibration. Red and blue solid lines are bid and ask
implied volatilities respectively, whereas green-dashed line is implied volatility under the rough Heston model computed through the
MLCV Monte Carlo method.

5. Conclusions and Future Research

This paper mainly contributes to the Monte Carlo computation for option prices
under the rough Heston model. In particular, we have proved finite bounds on t for
the stochastic Volterra equation with a non-Lipschitz diffusion coefficient as well as the
weak error and weak convergence of the discretization method. The proofs are located
in the Appendices A and B. In addition, we have proposed a Control Variate estimator
for variance reduction purpose and a mixed Monte Carlo method, which consists of the
control variate method and multilevel method.

In Section 4, we conducted extensive numerical experiments that consider many
scenarios, which we believe many readers or practitioners might find interesting. The most
notable part is in Section 4.2, where all the computations and simulations are performed,
using the cost-adjusted method rather than the number of simulations N. Time to time
comparisons make it easier to identify which estimator is performing the best. In this case,
the most favorable estimator goes to the proposed MLCV method. A substantial 17 times
variance reduction can be achieved by using MLCV as compared to the BE. The numerical
experiment for the discretization bias of the estimators was also conducted. The results
show that there is little difference between n = 256 and n = 1024 in terms of discretization
bias. A calibration of the SPX option was also performed on the MLCV Monte Carlo
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method at the end of Section 4. The overall performance of the calibration is overall
satisfied, but there were some struggles in calibrating the optimal parameters.

We are aware that there was a recent study on an efficient simulation method of the
stochastic Volterra equation [33] that used a hybrid exponential scheme. In particular, the
author proved the convergence of the method with Lipschitz coefficient functions to the
stochastic Volterra equation. The method can be potentially used to replace the discrete
simulation of the stochastic Volterra equation for rough Heston volatility in practice once
the convergence of the non-Lipschitz coefficient functions is proven. For future research, it
would be interesting to see the hybrid exponential scheme [20,34] being used on a rough
Heston model simulation and then consider the cost-adjusted performance of different
estimators, including the proposed multilevel control variate estimator. In general, we also
do hope to see improvements on the finite bound of E[|Vt −Vn

t |p] or perhaps even strong
convergence of the stochastic Volterra equation with a non-Lipschitz diffusion coefficient,
i.e., limn→∞ E[|Vt − Vn

t |p] = 0. The main hurdle of proving the strong convergence in
Lemma A1 is because we cannot use the Grönwall inequality to Equation (A37) the same
way as we did to Equation (A49). Instead, we have to use Perov’s inequality to prove the
convergence that is bounded on time t. In addition, Remark 2 indicates that the weak
convergence rate of stochastic Volterra equation |E[Vt]− E[Vn

t ]| is of the order O(n−H),
but in the study [35], the author proved that the discretization scheme of the Heston model
(with H = 1/2 in the stochastic Volterra process) under a certain hypothesis has a weak
convergence rate of O(n−1). This indicates that the weak convergence rate of stochastic
Volterra equation |E[Vt]−E[Vn

t ]| can potentially be improved to the order of O(n−H−1/2),
which we leave for future work.
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Appendix A. Proof of Lemma 1

We prove that the kernel K(t, u) := Ki(t, u) = (t− u)H−1/2 for i = 1, 2 satisfies the
conditions (AA1)–(AA7). Let C > 0 be a fixed constant. We omit the proofs for conditions
(AA1)–(AA3), as they are easy to prove. As for condition (AA4), the proof is the same as that
for condition (AA5) when β = 1. Hence, we prove that it satisfies condition (AA5) instead.∫ t

0
[K(t + δ, u)− K(t, u)]2βdu =

∫ t

0
[(t + δ− u)H−1/2 − (t− u)H−1/2]2βdu. (A1)

Let v = u− t, then it follows that∫ t

0
[K(t + δ, u)− K(t, u)]2βdu =

∫ 0

−t
[(δ− v)H−1/2 − (−v)H−1/2]2βdu. (A2)

Furthermore, let w =
v
δ

. Then we have the following:∫ t

0
[K(t + δ, u)− K(t, u)]2βdu =

∫ 0

−t/δ
[(δ− wδ)H−1/2 − (−wδ)H−1/2]βδdw

= δ(2H−1)β+1
∫ 0

−t/δ

[
(1− w)H−1/2 − (−w)H−1/2

]2β
dw. (A3)

Finally, we let w = −a and the fact that for x, y ∈ R+, x > y, and q ∈ (0, 1). Then, we
notice that (x− y)q ≥ xq − yq to obtain the following:∫ t

0
[K(t + δ, u)− K(t, u)]2βdu = δ(2H−1)β+1

∫ t/δ

0

[
(1 + a)H−1/2 − aH−1/2

]2β
da

= δ(2H−1)β+1
∫ t/δ

0

[
a1/2−H − (1 + a)1/2−H

[(1 + a)a]1/2−H

]2β

da

≤ δ(2H−1)β+1
∫ t/δ

0

[
(1 + a)1/2−H − a1/2−H

[(1 + a)a]1/2−H

]2β

da

≤ δ(2H−1)β+1
∫ t/δ

0

[
1

[(1 + a)a](1−2H)β

]
da

≤ Cδ(2H−1)β+1. (A4)

The last inequality is because the integral is finite only if (1− 2H)B < 1, which is
fulfilled for the conditions B ∈ (1, 1/(1− 2H)) and H ∈ (0, 1/2). The second sum of
condition (AA4) can be easily shown by taking note of the following:∫ t

0
[Ki(t + δ, u)− K(t, u)]2ds ≥

∫ t

0
[Ki(t + δ, η(u))− Ki(t, η(u))]2du. (A5)

Similarly, we skip condition (AA6), as it can be shown easily when B = 1 in condition
(AA7). For K(t, u) = (t− u)H−1/2, condition (AA7) can be shown as follows:∫ t

0
[K(t, u)− K(t, η(u))]2βdu =

∫ t

0
[(t− u)H−1/2 − (t− η(u))H−1/2]2βdu

=
∫ t

0
[(t− u)H−1/2 − (t− u + u− η(u))H−1/2]2βdu. (A6)

Note that 0 ≤ u− η(u) < δ.∫ t

0
[K(t, u)− K(t, η(u))]2βdu ≤

∫ t

0

[
(t− u)H−1/2 − (t− u + δ)H−1/2

]2β
du. (A7)

Then, it follows the same from the proof of condition 1.



Mathematics 2021, 9, 2930 21 of 32

Appendix B. Proof of Theorem 1

Before proving Theorem 1, we do need to prove two lemmas first. The following
proofs are somewhat similar to the work of [21] in proving the convergence of the stochastic
Volterra equation on the Lipschitz conditions, but with different rate of convergence in time.
Note that Fubini’s theorem is repeatedly used in the the following proofs to interchange the
sign of expectation and integral without being mentioned. We assume that Assumption 1
and conditions (AA1)–(AA7) hold in all the proofs.

Lemma A1. Let p ≥ 2β

κ(β− 1)
for κ ∈ (0, 1) and β ∈ (1, 1/(1− 2H)); then, there exists a

finite constant C > 0 that depends on T, p, V0, β such that for t ∈ [0, T] and n ≥ 1, we have
the following:

E[|Vt|p] +E[|Vn
t |p] ≤ C, (A8)

where Vt and Vn
t are defined in Equations (7) and (20).

Proof. We start from the stochastic Volterra Equation (7). Then, by the Cauchy–Schwarz
inequality and the Buckholder–Davis–Gundy (BDG) inequality, we have the following:

E[|Vt|p] ≤ CE[|V0|p] + CE
[∣∣∣∣∫ t

0
K1(t, u)g(u, Vu)du

∣∣∣∣p]
+ CE

[∣∣∣∣∫ t

0
K2(t, u)m(u, Vu)dWu

∣∣∣∣p]
≤ C + CE

[∣∣∣∣∫ t

0
K1(t, u)2du

∫ t

0
g(u, Vu)

2du
∣∣∣∣p/2

]

+ CE
[∣∣∣∣∫ t

0
K2(t, u)2m(u, Vu)

2du
∣∣∣∣p/2

]
. (A9)

By using Condition (AA1), Assumption (BB1), Jensen’s inequality and Hölder’s in-
equality, we can obtain the following:

E[|Vt|p] ≤ C + C
∫ t

0
E
[
|1 + Vp

u |
]
du

+ CE

∣∣∣∣∣
(∫ t

0
K2(t, u)2βdu

)1/β(∫ t

0
m(u, Vu)

2β∗du
)1/β∗

∣∣∣∣∣
p/2
 (A10)

≤ C + C
∫ t

0
E
[
|1 + Vp

u |
]
du

+ CE
[∣∣∣∣∣
(∫ t

0
m(u, Vu)

2β∗du
)(p(β−1))/2β

∣∣∣∣∣
]

. (A11)

Notice that from the Hölder inequality, β > 1, 0 < κ < 1, and hence p > 2. Then it
follows from condition (BB1) and Jensen’s inequality that the following holds:
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E[|Vt|p] ≤ C + C
∫ t

0
E[1 + |Vu|p]du

+ CE
[∫ t

0
m(u, Vu)

pdu
]

≤ C + C
∫ t

0
E[1 + |Vu|p]du

+ CE
[∫ t

0
(1 + |Vu|)pdu

]
≤ C + C

∫ t

0
E[|Vu|p]du. (A12)

Lastly, we use Grönwall’s inequality to obtain the following:

E[|Vt|p] ≤ C (A13)

For the proof of E[|Vn
t |p], the exact same can be done, except for the last step, where

we obtain the following:

E[|Vn
t |p] ≤ C + C

∫ t

0
E[|Vn

η(u)|
p]du. (A14)

We then define the following function as follows:

fn(t) := sup
s∈[0,t]

E[|Vn
s |p]. (A15)

We continue with

E[|Vn
t |p] ≤ fn(t)

≤ C + C
∫ t

0
sup

s∈[0,u]
E[|Vn

η(s)|
p]du

≤ C + C
∫ t

0
sup

s∈[0,u]
E[|Vn

s |p]du

≤ C. (A16)

The last inequality is due to Grönwall’s inequality.

Lemma A2. Let p ≥ 2β

κ(β− 1)
for κ ∈ (0, 1) and β ∈ (1, 1/(1− 2H)), then for t− s ≤ δ there

exists a finite constant C > 0 that depends on T, p, V0, β such that for t ∈ [0, T] and n ≥ 1, we
have the following:

E[|Vt −Vs|p] +E[|Vn
t −Vn

s |p] ≤ Cδ(p/2β)[(2H−1)β+1]. (A17)

where Vt and Vn
t are defined in Equations (7) and (20).

Proof. We first rearrange Vt −Vs as follows:
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Vt −Vs =
∫ t

s
K1(t, u)m(u, Vu)du +

∫ t

s
K2(t, u)g(u, Vu)dWu

+
∫ s

0
K1(t, u)m(u, Vu)− K1(s, u)m(u, Vu)du

+
∫ s

0
K2(t, u)g(u, Vu)− K2(s, u)g(u, Vu)dWu

= R1 + R2 + R3 + R4. (A18)

We start with E[|R1|p] where we use the Cauchy–Schwarz inequality, condition (AA2)
and Jensen’s inequality.

E[|R1|p] ≤ E
[∣∣∣∣∫ t

s
K1(t, u)2du

∫ t

s
m(u, Vu)

2du
∣∣∣∣p/2

]

≤ E
[∣∣∣∣Cδ2H

∫ t

s
m(u, Vu)

2du
∣∣∣∣p/2

]

≤ CδpH
[∫ t

s
C(1 +E[|Vu|p])du

]
. (A19)

Using Lemma A1, we can obtain the following:

E[|R1|p] ≤ CδpH
[∫ t

s
C(1 + C)du

]
≤ CδpH . (A20)

For E[|R2|p], we will be using BDG inequality, Hölder inequality, condition (AA3),
Jensen’s inequality, condition (BB1) and Lemma A1, we can obtain the following:

E[|R2|p] ≤ E
[∣∣∣∣∫ t

s
K2(t, u)g(u, Vu)dWu

∣∣∣∣p]
≤ CE

[∣∣∣∣∫ t

s
K2(t, u)2g(u, Vu)

2du
∣∣∣∣p/2

]

≤ CE

∣∣∣∣∣
(∫ t

s
K2(t, u)2βdu

)1/β(∫ t

s
g(u, Vu)

2β∗du
)1/β∗

∣∣∣∣∣
p/2


≤ Cδ(p/2β)[(2H−1)β+1] E
[∫ t

s
g(u, Vu)

pdu
]

≤ Cδ(p/2β)[(2H−1)β+1]
∫ t

s
C(1 +E[|V0|p])du

≤ Cδ(p/2β)[(2H−1)β+1]. (A21)

Do note that for β ∈ (1, 1/(1− 2H)) and H ∈ (0, 1/2), (2H − 1)β + 1 > 0. As for
E[|R3|p], the Cauchy–Schwarz inequality, the Hölder inequality, condition (AA4), Jensen’s
inequality, condition (BB1) and Lemma A1 are used.
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E[|R3|p] ≤ E
[∣∣∣∣∫ s

0
K1(t, u)m(u, Vu)− K1(s, u)m(u, Vu)du

∣∣∣∣p]
≤ E

[∣∣∣∣∫ s

0
[K1(t, u)− K1(s, u)]m(u, Vu)du

∣∣∣∣p]
≤ E

[∣∣∣∣∫ s

0
[K1(t, u)− K1(s, u)]2du

∫ s

0
m(u, Vu)

2du
∣∣∣∣p/2

]

≤ CδpH E
[∫ s

0
m(u, Vu)

pdu
]

≤ CδpH . (A22)

Lastly, we prove the bounded E[|R4|p] by using the BDG inequality, the Hölder
inequality and condition (AA5).

E[|R4|p] ≤ E
[∣∣∣∣∫ s

0
K2(t, u)g(u, Vu)− K2(s, u)g(u, Vu)dWu

∣∣∣∣p]
≤ E

[∣∣∣∣∫ s

0
[K2(t, u)− K2(s, u)]2g(u, Vu)

2du
∣∣∣∣p/2

]

≤ E

∣∣∣∣∣
(∫ s

0
[K2(t, u)− K2(s, u)]2βdu

)1/β(∫ s

0
g(u, Vu)

2β∗du
)1/β∗

∣∣∣∣∣
p/2


≤ Cδ(p/2β)[(2H−1)β+1] E
[∫ s

0
g(u, Vu)

pdu
]

≤ Cδ(p/2β)[(2H−1)β+1]. (A23)

Henceforth, we can conclude the following:

E[|Vt −Vs|p] ≤ Cδ(p/2β)[(2H−1)β+1]. (A24)

This is due to (1/2β)[(2H − 1)β + 1] ≤ H for β ∈ (1, 1/(1− 2H)). The above steps
can be repeated to prove the case of E[|Vn

t −Vn
s |p|] as well.

We move to the proof of E[|Vt −Vn
t |p],

Theorem A1. Let p ≥ 2β

κ(β− 1)
for κ ∈ (0, 1) and β ∈

(
1,

1
1− 2H

)
; then, there exists a

finite constant C > 0 that depends on T, p, V0, β and ε = (pκ/2β)[(2H − 1)β + 1] such that for
t ∈ [0, T] and n ≥ 1, we have the following:

E[|Vt −Vn
t |p] ≤

[
(Cδε)1−κ exp(Ct) + C(exp(Ct)− 1)

]1/(1−κ)
. (A25)

Proof. We split Vt −Vn
t as follows:
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Vt −Vn
t =

∫ t

0
(K1(t, u)− K1(t, η(u)))m(u, Vu)du

+
∫ t

0
K1(t, η(u))(m(u, Vu)−m(η(u), Vη(u)))du

+
∫ t

0
K1(t, η(u))(m(η(u), Vη(u))−m(η(u), Vn

η(u)))du

+
∫ t

0
(K2(t, u)− K2(t, η(u)))g(u, Vu)dWu

+
∫ t

0
K2(t, η(u))(g(u, Vu)− g(η(u), Vη(u)))dWu

+
∫ t

0
K2(t, η(u))(g(η(u), Vη(u))− g(η(u), Vn

η(u)))dWu

= Q1 + Q2 + Q3 + Q4 + Q5 + Q6. (A26)

We find the individual bound for each term starting for E[|Q1|p], as follows:

E[|Q1|p] ≤ E
[∣∣∣∣∫ t

0
(K1(t, s)− K1(t, η(u)))m(u, Vu)

∣∣∣∣p]
≤ E

[∣∣∣∣∫ t

0
(K1(t, u)− K1(t, η(u)))2ds

∫ t

0
m(u, Vu)

2du
∣∣∣∣p/2

]

≤ CE
[∣∣∣∣δ2H

∫ t

0
m(u, Vu)

2du
∣∣∣∣p/2

]

≤ CδpH E
[∣∣∣∣∫ t

0
m(u, Vu)

2du
∣∣∣∣p/2

]
≤ CδpH , (A27)

where we used the Cauchy–Schwarz inequality, condition (AA6), Jensen’s inequality and
Lemma A1. As for E[|Q2|p], we use the Hölder inequality, condition (AA1), Jensen’s
inequality and condition (BB1) as follows:

E[|Q2|p] ≤ E
[∣∣∣∣ ∫ t

0
K1(t, η(u))(m(u, Vu)−m(η(u), Vu)

+ m(η(u), Vu)−m(η(u), Vη(u))du
∣∣∣∣p]

≤ E
[∣∣∣∣∫ t

0
K1(t, η(u))2du

∫ t

0
(m(u, Vu)−m(η(u), Vu))

2du
∣∣∣∣p/2

]

+E
[∣∣∣∣∫ t

0
K1(t, η(u))2du

∫ t

0
(m(η(u), Vu)−m(η(u), Vη(u)))

2du
∣∣∣∣p/2

]

≤ CE
[∣∣∣∣∫ t

0
(m(u, Vu)−m(η(u), Vu))

2du
∣∣∣∣p/2

]

+ CE
[∣∣∣∣∫ t

0
(m(η(u), Vu)−m(η(u), Vη(u)))

2du
∣∣∣∣p/2

]

≤ CδpH
∫ t

0
(1 +E[|Vu|p])du + CE

[∣∣∣∣∫ t

0
(m(η(u), Vu)−m(η(u), Vη(u)))

2du
∣∣∣∣p/2

]

≤ CδpH + C
∫ t

0
E[|Vu −Vη(u)|p]du. (A28)
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By Lemma A2 and noticing that H > (1/2β)[(2H − 1)β + 1], we obtain the following:

E[|Q2|p] ≤ CδpH + Cδ(p/2β)[(2H−1)β+1]

≤ Cδ(p/2β)[(2H−1)β+1]. (A29)

For E[|Q3|p], we use the Cauchy–Schwarz inequality, condition (AA1) and Jensen’s
inequality such that the following holds:

E[|Q3|p] ≤ E
[∣∣∣∣∫ t

0
K1(t, η(u)(m(η(u), Vη(u))−m(η(u), Vn

η(u)))

∣∣∣∣p]
≤ E

[∣∣∣∣∫ t

0
K1(t, η(u)2du

∫ t

0
(m(η(u), Vη(u))−m(η(u), Vn

η(u)))
2du
∣∣∣∣p/2

]

≤ CE
[∣∣∣∣∫ t

0
(m(η(u), Vη(u))−m(η(u), Vn

η(u)))
pdu
∣∣∣∣]

≤ C
∫ t

0
E[|Vη(u) −Vn

η(u)|
p]du. (A30)

For E[|Q4|p],E[|Q5|p] and E[|Q6|p], they are somewhat similar in the structure of their
proof, but we do need to switch out the Cauchy–Schwarz inequality for the BDG inequality.
As such, we prove E[|Q4|p] by using the BDG inequality, the Hölder inequality, condition
(AA7), Jensen’s inequality, condition (BB1) and Lemma A1.

E[|Q4|p] ≤ E
[∣∣∣∣∫ t

0
(K2(t, u)− K2(t, η(u)))g(u, Vu)dWu

∣∣∣∣p]
≤ E

[∣∣∣∣∫ t

0
(K2(t, u)− K2(t, η(u)))2g(u, Vu)

2du
∣∣∣∣p/2

]

≤ E

∣∣∣∣∣
∫ t

0

(
K2(t, u)− K2(t, η(u)))2βdu

)1/β
(∫ t

0
g(u, Vu)

2β∗du
)1/β∗

∣∣∣∣∣
p/2


≤ Cδ(p/2β)[(2H−1)β+1] E

∣∣∣∣∣
(∫ t

0
g(u, Vu)

2β∗du
)1/β∗

∣∣∣∣∣
p/2


≤ Cδ(p/2β)[(2H−1)β+1]
∫ t

0
E[|g(u, Vu)|p]du

≤ Cδ(p/2β)[(2H−1)β+1]. (A31)

Similarly, by the BDG inequality, the Hölder inequality, condition (AA1), Jensen’s
inequality, and condition (BB1), we have the following:
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E[|Q5|p] ≤ E
[∣∣∣∣∫ t

0
K2(t, η(u))(g(u, Vu)− g(η(u), Vη(u)))dWu

∣∣∣∣p]
≤ E

[∣∣∣∣∫ t

0
K2(t, η(u))2(g(u, Vu)− g(η(u), Vu) + g(η(u), Vu)− g(η(u), Vη(u)))

2du
∣∣∣∣p/2

]

≤ E
[∣∣∣∣∫ t

0
K2(t, η(u))2(g(u, Vu)− g(η(u), Vu))

2du
∣∣∣∣p/2

]

+E
[∣∣∣∣∫ t

0
K2(t, η(u))2(g(η(u), Vu)− g(η(u), Vη(u))

2du
∣∣∣∣p/2

]

≤ E

∣∣∣∣∣
(∫ t

0
K2(t, η(u))2βdu

)1/β(∫ t

0
(g(u, Vu)− g(η(u), Vu))

2β∗du
)1/β∗

∣∣∣∣∣
p/2


+E

∣∣∣∣∣
(∫ t

0
K2(t, η(u))2βdu

)1/β(∫ t

0
(g(η(u), Vu)− g(η(u), Vη(u)))

2β∗du
)1/β∗

∣∣∣∣∣
p/2


≤ CδpH + CE
[∫ t

0
(g(η(u), Vu)− g(η(u), Vη(u)))

pdu
]

. (A32)

Again from condition (BB1) and Lemma A2, we have the following:

E[|Q5|p] ≤ CδpH + C
∫ t

0
E
[∣∣∣Vu −Vη(u))

∣∣∣pκ]
du

≤ CδpH + Cδ(pκ/2β)[(2H−1)β+1]

≤ Cδ(pκ/2β)[(2H−1)β+1] (A33)

as H > (κ/2β)[(2H − 1)β + 1] for H ∈ (0, 0.5), β ∈ (1, 1/(1− 2H)) and κ ∈ (0, 1). For the
last E[|Q6|p], it can be bounded as follows:

E[|Q6|p] ≤ E
[∣∣∣∣∫ t

0
K2(t, η(u))(g(η(u), Vη(u))− g(η(u), Vn

η(u)))dWu

∣∣∣∣p]
≤ E

[∣∣∣∣∫ t

0
K2(t, η(u))2(g(η(u), Vη(u))− g(η(u), Vn

η(u)))
2du
∣∣∣∣p/2

]

≤ E

∣∣∣∣∣
(∫ t

0
K2(t, η(u))2βdu

)1/β(∫ t

0
(g(η(u), Vη(u))− g(η(u), Vn

η(u)))
2β∗du

)1/β∗
∣∣∣∣∣

p/2


≤ CE
[(∫ t

0
|g(η(u), Vη(u))− g(η(u), Vn

η(u))|
pdu
)]

≤ C
∫ t

0
E
[∣∣∣Vη(u) −Vn

η(u)

∣∣∣pκ]
du

≤ C
∫ t

0
E
[∣∣∣Vη(u) −Vn

η(u)

∣∣∣p]κ
du, (A34)

where we have used the BDG inequality, the Hölder inequality, Jensen’s inequality, condi-
tion (AA1), condition (BB1) and Jensen’s inequality again. From all the inequalities above,
we can then conclude it as follows:
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E[|Vt −Vn
t |p] ≤ CδpH + Cδ(p/2β)[(2H−1)β+1] + Cδ(pκ/2β)[(2H−1)β+1]

+ C
∫ t

0
E[|Vη(u) −Vn

η(u)|
p]du + C

∫ t

0
E
[∣∣∣Vη(u) −Vn

η(u)

∣∣∣p]κ
du

≤ Cδ(pκ/2β)[(2H−1)β+1]

+ C
∫ t

0
E[|Vη(u) −Vn

η(u)|
p]du + C

∫ t

0
E
[∣∣∣Vη(u) −Vn

η(u)

∣∣∣p]κ
du. (A35)

Let ε = (pκ/2β)[(2H − 1)β + 1] and the following hold:

hn(t) := sup
s∈[0,t]

E[|Vs −Vn
s |p]. (A36)

Then,

E[|Vt −Vn
t |p] ≤ hn(t)

≤ Cδε + C
∫ t

0
sup

s∈[0,u]
E[|Vη(u) −Vn

η(u)|
p]du

+ C
∫ t

0
sup

s∈[0,u]
E
[∣∣∣Vη(u) −Vn

η(u)

∣∣∣p]κ
du

≤ Cδε + C
∫ t

0
sup

s∈[0,u]
E[|Vu −Vn

u |p]du

+ C
∫ t

0
sup

s∈[0,u]
E
[
|Vu −Vn

u |
p]κdu

≤ Cδε + C
∫ t

0
hn(u)du + C

∫ t

0
hn(u)κdu. (A37)

By Perov’s inequality (page 360 in [36]), we obtain the following:

E[|Vt −Vn
t |p] ≤ hn(t)

≤
[
(Cδε)1−κ exp(Ct) + C(exp(Ct)− 1)

]1/(1−κ)
. (A38)

That concludes the proof.

Appendix C. Proof of Theorem 2

The following proof is similar to Theorem A1.

Theorem A2. Let p ≥ 2β

κ(β− 1)
for κ ∈ (0, 1) and β ∈

(
1,

1
1− 2H

)
; there exists a finite

constant C > 0 that depends on T, p, V0, and β such that for t ∈ [0, T] and n ≥ 1, the following
is true:

|E[Vt]−E[Vn
t ]|p ≤ Cδ(1/2β)[(2H−1)β+1]. (A39)

Proof. The expectations of Vt and Vn
t take the following form:

E[Vt] = E[V0] +
∫ t

0
K1(t− u)E[m(u, Vu)]du (A40)

and

E[Vn
t ] = E[V0] +

∫ t

0
K1(t− η(u))E[m(η(u), Vn

η(u))]du. (A41)

It follows that
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|E[Vt]−E[Vn
t ]|p =

∣∣∣∣ ∫ t

0
K1(t− u)E[m(u, Vu)]− K1(t− η(u))E[m(η(u), Vn

η(u)]du
∣∣∣∣p

=

∣∣∣∣ ∫ t

0
K1(t− u)E[m(u, Vu)] + K1(t− η(u))E[m(u, Vu)]

− K1(t− η(u))E[m(u, Vu)]− K1(t− η(u))E[m(η(u), Vn
η(u))]

+ K1(t− η(u))E[m(η(u), Vη(u))]− K1(t− η(u))E[m(η(u), Vη(u))]du
∣∣∣∣p

=

∣∣∣∣ ∫ t

0
(K1(t− u)− K1(t, η(u))E[m(u, Vu)]du

+
∫ t

0
K1(t, η(u))

[
E[m(u, Vu)]−E[m(η(u), Vη(u)]

]
du

+
∫ t

0
K1(t, η(u))

[
E[m(η(u), Vη(u))]−E[m(m(η(u), Vn

η(u)]
]
du
∣∣∣∣p

= |G1 + G2 + G3|p

≤ C(|G1|p + |G2|p + |G3|p), (A42)

where the last inequality is due to the finite form of Jensen’s inequality. We start with the
bounding of |G1|p:

|G1|p =

∣∣∣∣ ∫ t

0
(K1(t− u)− K1(t, η(u))E[m(u, Vu)]du

∣∣∣∣p
≤
∣∣∣∣ ∫ t

0
(K1(t− u)− K1(t, η(u))2du

∫ t

0
E[m(u, Vu)]

2du
∣∣∣∣p/2

≤ C
∣∣∣∣δ2H

∫ t

0
E[m(u, Vu)]

2du
∣∣∣∣p/2

≤ CδpH
∣∣∣∣ ∫ t

0
E[(1 + |Vu|)]2du

∣∣∣∣p/2

≤ CδpH
∣∣∣∣ ∫ t

0
E[(1 + |Vu|)]pdu

∣∣∣∣
≤ CδpH

∣∣∣∣ ∫ t

0
E[1 + |Vu|p]du

∣∣∣∣
≤ CδpH

∣∣∣∣ ∫ t

0
1 +E[|Vu|p]du

∣∣∣∣
≤ CδpH

∣∣∣∣ ∫ t

0
1 + C(1 +E[|V0|p])du

∣∣∣∣
≤ CδpH , (A43)

where we used the Cauchy inequality, condition (AA6), condition (BB1), Jensen’s inequality,
and Lemma A1. We move on to the bound of |G2|p, i.e., we used the Cauchy inequality,
condition (BB1), Lemma A1, Jensen’s inequality, and Lemma A2 to obtain the following:
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|G2|p =

∣∣∣∣ ∫ t

0
K1(t, η(u))[E[m(u, Vu)]−E[m(η(u), Vη(u))]]du

∣∣∣∣p
=

∣∣∣∣ ∫ t

0
K1(t, η(u))[E[m(u, Vu)]−E[m(η(u), Vu)]]

+ K1(t, η(u))[E[m(η(u), Vu)] +E[m(η(u), Vη(u))]]du
∣∣∣∣p

≤
∣∣∣∣(∫ t

0
K1(t, η(u))2du

∫ t

0
(E[m(u, Vu)]−E[m(η(u), Vu)])

2du
)1/2

+

(∫ t

0
K1(t, η(u))2du

∫ t

0
(E[m(η(u), Vu)]−E[m(η(u), Vη(u))])

2du
)1/2∣∣∣∣p

≤ C
[∣∣∣∣ ∫ t

0
(E[m(u, Vu)]−E[m(η(u), Vu)])

2du
∣∣∣∣p/2

+

∣∣∣∣ ∫ t

0
(E[m(η(u), Vu)]−E[m(η(u), Vη(u))])

2du
∣∣∣∣p/2]

≤ C

[∣∣∣∣ ∫ t

0
E[δH [1 + |Vu|]]2du

∣∣∣∣p/2

+

∣∣∣∣ ∫ t

0
E[Vu −Vη(u)]

2du
∣∣∣∣p/2

]

≤ C
[

δpH
∫ t

0
(1 +E[|Vu|p])du +

∫ t

0

∣∣E[Vu −Vη(u)]
∣∣pdu

]
≤ CδpH + C

∫ t

0
E[|Vu −Vη(u)|p]du

≤ CδpH + Cδ(p/2β)[(2H−1)β+1]. (A44)

Since H ≥ (1/2β)[(2H − 1)β + 1], we can conclude the bound for |G2|p as follows:

|G2|p ≤ Cδ(p/2β)[(2H−1)β+1]. (A45)

Then, by using the Cauchy inequality and condition (AA1), the bound |G3|p can be
formulated as follows:

|G3|p =

∣∣∣∣ ∫ t

0
K1(t, η(u))

[
E[m(η(u), Vη(u))]−E[m(η(u), Vn

η(u))]
]
du
∣∣∣∣p

=

∣∣∣∣ ∫ t

0
K1(t, η(u))2du

∫ t

0

[
E[m(η(u), Vη(u))]−E[m(η(u), Vn

η(u))]
]2

du
∣∣∣∣p/2

≤ C
∫ t

0

∣∣E[m(η(u), Vη(u))]−E[m(η(u), Vn
η(u))]

∣∣pdu

≤ C
∫ t

0

∣∣E[Vη(u)]−E[Vn
η(u)]

∣∣pdu. (A46)

Combining the bounds |G1|, |G2|, and |G3|, we have the following:∣∣E[Vt]−E[Vn
t ]|p ≤ CδpH + Cδ(p/2β)[(2H−1)β+1]

+ C
∫ t

0

∣∣E[Vη(u)]−E[Vn
η(u)]

∣∣pdu

≤ Cδ(p/2β)[(2H−1)β+1] + C
∫ t

0

∣∣E[Vη(u)]−E[Vn
η(u)]

∣∣pdu. (A47)
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Suppose that we let the following hold:

gn(t) := sup
s∈[0,t]

∣∣E[Vs]−E[Vn
s ]
∣∣p, (A48)

and then∣∣E[Vt]−E[Vn
t ]
∣∣p ≤ gn(t)

≤ Cδ(p/2β)[(2H−1)β+1] + C sup
s∈[0,t]

∫ s

0

∣∣E[Vη(u)]−E[Vn
η(u)]

∣∣pdu

≤ Cδ(p/2β)[(2H−1)β+1] + C
∫ t

0
sup

s∈[0,u]

∣∣E[Vη(s)]−E[Vn
η(s)]

∣∣pdu

≤ Cδ(p/2β)[(2H−1)β+1] + C
∫ t

0
gn(u)du

≤ Cδ(p/2β)[(2H−1)β+1], (A49)

where the last inequality is due to Grönwall’s inequality. Finally, apply the power of 1/p to
both sides of the inequality, and the result follows.
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