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Abstract: The application of artificial intelligence (AI) to various medical subfields has been a
popular topic of research in recent years. In particular, deep learning has been widely used and has
proven effective in many cases. Topological data analysis (TDA)—a rising field at the intersection of
mathematics, statistics, and computer science—offers new insights into data. In this work, we develop
a novel deep learning architecture that we call TopoResNet that integrates topological information
into the residual neural network architecture. To demonstrate TopoResNet, we apply it to a skin
lesion classification problem. We find that TopoResNet improves the accuracy and the stability of the
training process.

Keywords: deep learning; topological data analysis; persistent homology; persistence statistics;
persistence curves; hybrid models

1. Introduction

Early medical image analysis mainly focused on the interpretation and numerical
analysis of images. For example, Statistical Parametric Mapping provides medical staff
with reference values for images such as MRI and PET images to assist physicians in
making treatment decisions [1–3]. Due to the rapid development of AI over the past
decade, numerous research teams have developed computer diagnostic systems to assist
physicians [4–7]. There are two main tasks that computer-aided medical image analysis
tools perform: segmentation and diagnosis. In the medical field, image analysis is usually
performed for specific regions of the body, such as tumors, organs, or the brain [8–13]. The
analyzed images are then segmented. Notably, various automated image segmentation
methods [14,15] have been developed in recent years. These methods still suffer from
human biases and fail to identify some differences in real data [16]. However, the latest
deep learning methods have shown reliable results in addressing these problems. In this
regard, Convolutional Neural Networks (CNN) are the most groundbreaking application
platforms. They play a dominant role in the field of image analysis [17,18]. However, the
main disadvantage of CNNs is that they require large numbers of of data for training, and
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the acquisition of medical images is difficult and expensive. Furthermore, the training
process relies on subjective judgments for obtaining accurate information. In addition,
medical images are geometrically and biologically complex. For example, angiogenesis,
which commonly accompanies cancer, is mainly affected by protein signalling in the overall
microenvironment. Although there are correlations between them, CNN analysis is unable
to resolve homology problems [19].

Topological data analysis (TDA) offers a different viewpoint from CNN analysis. TDA
has been used for the classification of biomolecular data [19–21]. In topological studies,
independent entities, rings, and higher-dimensional faces in a space are characterized
through the connectivity of different components in space. Many biological problems
exhibit topology-function relationships in biomolecular systems. For example, topological
analysis can predict protein–ligand binding affinities for 3D biological protein molecular
structures [19]. It can also provide reliable immunohistochemical (IHC) data for diagnosis
of pathological slides [22].

The application of deep learning to the field of medical image analysis has made
significant progress in recent years. Hybrid methods have been employed in numerous
studies to improve the accuracy of deep learning classification [23,24]. For example,
Mahbod et al. (2019) pointed out that when a combination of AlexNet, VGG-16 and ResNet-
18 is applied for classification, the accuracy can be as high as 90.69%, and if the images are
only classified for seborrheic keratosis disease, the accuracy can reach up to 97.55% [23].
This suggests that a combination of multiple algorithms can provide high accuracy in skin
lesion classification.

Topological features calculated from images can improve classification accuracy.
In [19], the, authors applied topology-based deep learning methods to successfully predict
biomolecular properties. The main advantage is that topology allows for effective structural
classification, mainly via the application of homology. The deep learning method in [19]
was combined with topology to successfully predict protein–ligand binding affinity. It
was demonstrated that topology results in accurate classification when the classes in the
classification task are distinguished by their structure.

We hypothesized that skin lesions can be identified by their topological structure, so
we developed a novel deep learning architecture, called TopoResNet-101, that combines
topological features computed based on the persistence curve framework (defined in
Section 2.3) and persistence statistics (defined in Section 2.2) with features produced by
ResNet-101 [25]. We use PC and PS as abbreviations for persistence curves and persistence
statistics, respectively. These can be viewed as summaries of the topological features in the
images that are invariant under smooth transformations of the image, such as rotations
and stretchings. The features generated by ResNet-101 are often local and geometric (e.g.,
gradients, edges) information. On the other hand, topological ones are global information.
Hence, they can be used as additional information for the original neural network model.
As shown in Section 3, TopoResNet-101 has advantages in accuracy and stability over
other models not using topology. To the best of our knowledge, our work is the first to
combine such topological features with a convolutional neural network (CNN) such as
ResNet-101 in a classification task. To measure the stability of our classification model’s
performance, we utilize the the top-n accuracy evaluation metric of testing results among
training epochs. In deep learning, the weights of parameters in an architecture are usually
determined by observing the convergence behaviors and (local) maxima of the accuracy
curve on a validation dataset. However, this method has a significant drawback in that
the chosen weights would strongly depend on validation datasets. In our experiments, we
show that TopoResNet-101 has a higher top-n accuracy than ResNet-101, and the accuracy
curves between validation and testing sets are more compatible than the same for pure
ResNet-101. This phenomenon shows that PS and PC may provide more robust features of
skin lesions.

The outline of this paper is as follows. In Section 2, we discuss the mathematical back-
ground needed to properly define PC and PS. In Section 3, we introduce the TopoResNet-101
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and its topological rate α. The main classification results are shown in Section 3 and the
conclusion is in Section 5.

2. Mathematical Background

In this section, we introduce our topological features: persistence curves (PCs) and per-
sistence statistics (PS). We provide some of the necessary mathematical background for this.
Because these features are based on persistence diagrams and persistent homology, we re-
view those in Section 2.1. The PS and PC features will be presented in Sections 2.2 and 2.3,
respectively. Persistence diagrams contain topological information about the image. How-
ever, they cannot be used in machine learning algorithms directly. In fact, transforming
persistence diagrams into vectors is one of the main research areas in TDA [26–29]. PCs
were proven to be useful for classification of texture data sets in [30]. Persistence statistics
were used in [31] to classify sleep stages from heart rate signals.

In addition to feature engineering, our previous work [32] proposed an intuitive
method for segmenting the lesion part of the image. See the left part of Figure 1 for an
example. There are deep learning methods to perform image segmentation, such as [33,34].
It would be interesting to explore those segmentation methods in the context of skin
images, but this will be beyond the scope of this paper. The focus of this paper is to design
topological features and combine them with ResNet-101.

Figure 1. The architecture of TopoResNet-101. The blue bar is the concatenation of the PS and PC topological data and
α ∈ [0, 1] is the topological rate. The yellow bar is the output vector of ResNet-101 before a final fully-connected layer.
The part of ResNet-101 architecture used in this figure is generated by the Deep Network Designer in the Matlab toolbox.
Reproduced with permission from [32]; published by IEEE, 2018.

2.1. Persistent Homology

Algebraic topology is a classical subject and has a long history within mathematics.
Persistent homology, formally introduced in [35], brings the power of algebraic topology
to bear on real world data. The field has proven useful in many applications, such as
neuroscience [36], medical biology [37], sensor networks [38], and social networks [39].
Here, we give a brief overview of homology and persistent homology for images.

Homology is a tool in topology that allows us to associate an algebraic object (such as
a group) to a topological space. In this work, we are concerned with topological spaces
that are built as finite unions of n-cubes glued together at points, edges, or faces. Such
a space is called a cubical complex. For instance, a digital image fits naturally in this
framework. A pixel can be expressed as a unit square, i.e., a 2-cube, and a collection
of pixels in a digital image forms a cubical complex. Given a cubical complex X, we
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denote its corresponding k-th homology group by Hk(X). For a more formal introduction
and development of cubical homology, we refer the reader to [40]. Informally, homology
counts topological features such as connected components (0-dimensional homological
features), loops (1-dimensional homological features), voids (2-dimensional homological
features), and more. Mathematically, 3- or higher-dimensional homological features exist,
but they are difficult to visualize. In practice, 0-dimensional and 1-dimensional homology
already provide useful information. The counts of such k-dimensional features are the
well-known Betti numbers. In binary images, a black pixel is indicated by a value of 0 and
a white pixel by a value of 1. We interpret 0- and 1-dimensional homological features in
binary images as follows. We count connected clusters of white pixels as 0-dimensional
homological features and connected clusters of black pixels (surrounded by white pixels)
as 1-dimensional homological features. For example, the Betti numbers of the binary image
shown in Figure 2 are β0 = 4 because there are four separate clusters of white pixels and
β1 = 2 because there are two clusters of black pixels enclosed by the white ones. Let X be a
binary image. We treat X as a cubical set (made up of a finite union of pixels or squares)
and denote the k-th Betti number of X by βk(X). Note that the connectivity in the 2D
cubical complex is four-connectivity.

Figure 2. The Betti numbers of a binary image. By convention, a binary image represents the cubical
complex X of white pixels in the image. Its Betti numbers are β0(X) = 4 and β1(X) = 2. Note that if
the image is surrounded by a boundary of white pixels, then β0(X) = 5 and β1(X) = 3. Reproduced
with permission from [32]; published by IEEE, 2018.

To generalize the idea of homology, consider a filtration, an increasing sequence of
cubical complexes {Xi} that satisfies

X0 ⊆ X1 ⊆ . . . ⊆ Xn. (1)

One could count Betti numbers for each Xi and the inclusion allows one to track the
changes of the Betti numbers. More precisely, each inclusion fi : Xi → Xi+1 (sending x in
Xi to the same x in Xi+1) extends linearly to a homomorphism, also denoted fi, between
the corresponding homology groups (see [41]) so that for each k we have

Hk(X1)
f1−→ Hk(X2)

f2−→ . . .
fn−1−→ Hk(Xn).

Furthermore, if j ≥ i, the inclusion of Xi ⊆ Xj induces a map fi,j on the corresponding
homology groups. Functoriality of homology concludes that these maps satisfy the relation
fk,j ◦ fi,k = fi,j for i ≤ j ≤ k. We say a homology class α is born at b if we have α ∈ Hk(Xb)
and α /∈ im fb−1,b. We say that α is born at b and dies at d (with d ≥ b), if fb,d−1(α) /∈
im fb−1,d−1, but fb,d(α) ∈ im fb−1,d, i.e., if α merges with a previous class. The ranks
βk

b,d = rank im fb,d for d ≥ b form the k-th persistent Betti numbers of the filtration. These
persistent Betti numbers count the number of classes that were born at or before b and are
still alive at d. Inclusion–exclusion allows us to count exactly the number µk

b,d of classes
born at b and that die at d by µk

b,d = βk
b,d−1 − βk

b−1,d−1 + βk
b−1,d − βk

b,d [42]. Every homology
feature α has a birth time. However, certain classes might not have death times. For such
classes, we assign the “death time” as ∞. This procedure allows one to define a unique
multi-set of points, one point (b, d) for each homology class where b is the birth time of
the class and d is its death time. By collecting these pairs accounting for their multiplicity,
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we obtain a summary of the data called a persistence diagram for each dimension k. To
summarize, given a filtration {Xi}, its k-dimensional persistence diagram is denoted by
Pk({Xi}). These diagrams are an integral part of persistence statistics and persistence
curves as described in Sections 2.2 and 2.3.

To conclude this subsection, we describe how to find a persistence diagram for a
digital image. Consider a grayscale image g as a function g : Z2 → R. It is straightforward
to show that its sublevel sets form a filtration. More precisely, for any t1, t2 ∈ R

g−1(t1) ⊆ g−1(t2), ∀t1 ≤ t2, (2)

where g−1(t) denotes the sublevel set of g at the value t, i.e., g−1(t) := {(x, y) ∈ Z2 :
g(x, y) ≤ t}. Such a filtration is also known as sublevel set filtration. In this work, we
use the sublevel set filtration of a grayscale image to produce the persistence diagrams,
denoted by Pk({g−1(ti)}N

i=0) for k = 0, 1. Typically, when considering an 8-bit grayscale
image, a natural choice of sublevel set filtration would be {g−1(i)}255

i=0. See Figure 3 for
an illustration of a grayscale image (Top), some of its sublevel sets (Middle), and the
corresponding persistence diagrams (Bottom). If the image is not a gray-scale image, we
consider each color channel (such as RGB) separately. In other words, let f = ( fR, fG, fB) be
a colored image, and we consider Pk({ f−1

R (ti)}N
i=0), Pk({ f−1

G (ti)}N
i=0), Pk({ f−1

B (ti)}N
i=0),

for k = 0, 1.

Figure 3. (Top): An image from the ISIC dataset. (Middle): A small sample of the full filtration of the top image. (Bottom):
The 0 and 1 dimensional persistence diagrams corresponding to the full filtration of the top image. Reproduced with
permission from [32]; published by IEEE, 2018.

2.2. Persistence Statistics

Persistence statistics are statistical measurements of the birth and death coordinates of
the points in a persistence diagram. Recall that from Section 2.1, persistence diagrams are
multi-sets of pairs of points, (b, d), where b and d indicate the birth and death values of a
homological feature, respectively. For each 2D image, we compute the 0- and 1-dimensional
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persistence diagrams, P0 and P1. We consider only those nontrivial pairs, i.e., (b, d) where
b < d. Hence our diagrams contain only finitely many points. For a birth–death pair (b, d),
the quantity, d− b, represents the life of the corresponding generator. We consider sets
of numbers

Lk = {d− b|(b, d) ∈ Pk}, Mk =

{
(b + d)

2
, (b, d) ∈ Pk

}
, (3)

for k = 0, 1. Lk is the set of lifespans. In some sense, it measures the robustness of
homological features. Mk is the set of the midlives of the features. Thus, Mk describes the
locations of points in a persistence diagram. Our PSs are a set of statistical measurements
of Mk and Lk. In particular, we use

1. means of Mk, and Lk;
2. standard deviations of Mk, and Lk;
3. coefficient of variation of Mk and Lk;
4. skewness of Mk, and Lk;
5. kurtosis of Mk, and Lk;
6. 25-th percentiles of Mk, and Lk;
7. medians of Mk, and Lk;
8. 75-th percentiles of Mk, and Lk;
9. interquartile ranges of Mk, and Lk;
10. persistent entropy of Lk.

where k = 0, 1. Note that persistent entropy was introduced in [43] and is defined as

− ∑
(b,d)∈P

d− b
∑(d− b)

log
(

d− b
∑(d− b)

)
, (4)

where P is a given persistence diagram. Persistent entropy can be viewed as the diversity
of the lifespans. Note also that the PS is a 19-dimensional vector (9× 2 + 1). As an example,
Table 1 shows samples of PS used in the article.

Table 1. Sample M0 persistence statistics from the X channel of the XYZ color space of images in
Figure 4. Reproduced with permission from [32]; published by IEEE, 2018.

Disease Mean std Skewness Kurtosis Median iqr

MEL 2.2533 1.6644 3.6107 3.0519 2.4897 2.0668
NV 2.6123 2.3389 2.0343 2.2425 2.7211 3.4245
BCC 6.8147 3.0709 3.2841 2.1271 10.9705 2.7159

AKIEC 3.3722 3.3452 3.8697 2.7465 4.4496 6.8388
BKL 4.2876 2.7614 3.7254 7.5341 3.5813 4.6003
DF 1.8916 6.4557 1.9783 3.4724 2.3310 2.8247

VASC 2.5901 2.0824 4.6341 2.7230 2.5502 1.8615

2.3. Persistence Curves

Although the term “persistence curve” has traditionally been used to describe the
count of persistence pairs (b, d) in a persistence diagram with persistence d − b higher
than a threshold t as a function of t [42,44], in this work, we use a generalization that
allows flexible vectorization of persistence diagrams [30]. The motivation for this class
of curves lies in the Fundamental Lemma of Persistent Homology [42]. Suppose we
have a k-dimensional persistence diagram P corresponding to a filtration X1 ⊆ . . . ⊆ Xn.
Then this lemma states that we can recover the k-th Betti number of any member of the
filtration, say Xt, corresponding to a threshold value t by counting the number of points
that lie in the upper left quadrant whose corner lies on the diagonal at (t, t). That is,
βk(Xt) = |{(b, d) ∈ P | b ≤ t, d > t}|. We recall the formal definition of PCs from [30].
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(a) MEL (b) NV (c) BCC (d) AKIEC

(e) BKL (f) DF (g) VASC

Figure 4. Sample images of the seven types of skin lesions present in the ISIC training datasets. They are melanoma (MEL),
melanocytic nevus (NV), basal cell carcinoma (BCC), actinic keratosis (AKIEC), benign keratosis (BKL), dermatofibroma
(DF), and vascular lesion (VASC). The number of images for MEL, NV, BCC, AKIEC, BKL, DF, and VASC are 1113, 6705, 514,
327, 1099, 115, and 142, respectively. Reproduced with permission from [32]; published by IEEE, 2018.

Let D represent the set of all persistence diagrams. Let F represent the set of all
functions ψ : D ×R3 → R so that ψ(D; x, x, t) = 0 for all x ∈ R. Let T represent the set of
operators that map multi-sets to the reals, and finally letR represent the set of functions
on R. We define a map P : D ×F × T → R where

P(D, ψ, T)(t) = T({ψ(D; b, d, t) | b ≤ t, d > t}). (5)

The function P(D, ψ, T) is called a persistence curve on D with respect to ψ and T.
In [30], it is shown that persistence landscapes [29] are a special case of PCs.

In the present application, all filtrations have exactly 255 spaces. Thus, for each
diagram, a persistence curve is a vector in R255. The two functions that were of greatest
use were the functions ψ(b, d, t) = 1, giving rise to the Betti curve β(t) and e(b, d, t) =
− d−b

∑(d−b) log d−b
∑(d−b) giving rise to a variant of the entropy summary (curve) E(t). The

entropy summary and its stability are discussed in [43,45]. In [30], a general stability result
for an entire class of PC is given. We calculate the curves for the 0- and 1-dimensional
persistence diagrams for each channel in our color space. Finally, we fed these features into
machine learning models. The persistence curves we used in our final model are

1. β0(t) and β1(t).
2. E0(t) and E1(t).

The β0(t) and β1(t) curves and the E0(t) and E1(t) curves are the β(t) and E(t) curves
that correspond to the 0 and 1 dimensional diagrams, respectively.

3. TopoResNet

Convolutional neural networks (CNN) have become important tools in deep learning.
Some of the most important models have been AlexNet [46], VGG [47], and ResNet [25].
These models have been very successful at image recognition tasks [25,33,34]. In this work,
we will base our neural nets on the residual neural network (ResNet); in particular, we will
use ResNet-101 [25], which provides an end-to-end architecture for image classification.
ResNet optimizes the residuals between the input and the desired convolution features.
The desired features can be extracted in a more efficient way than in other CNN models.
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Therefore, this optimization of residues can be applied to reduce the number of parameters
in the network. Because of the benefit of reduction of parameters, the number of layers can
be increased. We created the Topological ResNet-101 neural net (or TopoResNet-101).

3.1. Topological Features

In our implementation, these features are described in the RGB and XYZ color spaces
with the following dimensions:

• PS-RGB (dimension = 19× 3× 2 = 114);
• PS-XYZ (dimension = 19× 3× 2 = 114);
• PC-RGB (dimension = 255× 3× 2 = 1530);
• PC-XYZ (dimension = 255× 2× 2 = 1020).

These features serve as part of the input for TopoResNet-101.
Note that for both PS-RGB, and PS-XYZ, each channel produces two persistence

diagrams (0th and 1st level), and each persistence diagrams summarizes to PS as a 19-
dimensional vector. Therefore, both PS-RGB and PS-XYZ are of dimension 114. PC-RGB
contains six PCs in total, which are β0(t) and β1(t) for each channel. We found that the X
component of the XYZ color space performed well in our experiments. Hence, PC-XYZ
contains four PCs in the X channel: β0(t), β1(t), E0(t), and E1(t). Figure 5 illustrates
samples of persistence curves.

There are nine models of the TopoResNet-101 type. Each model uses a different
combination of topological features. These models and the topological features they use
are listed below:

Model 1: none (original ResNet-101);
Model 2: PS-RGB;
Model 3: PS-XYZ;
Model 4: PC-RGB;
Model 5: PC-XYZ;
Model 6: Reduced PC-RGB (dimension = 512);
Model 7: Reduced PC-XYZ (dimension = 512);
Model 8: Reduced {PS-RGB, PS-XYZ, PC-RGB, PC-XYZ} (dimension = 512);
Model 9: Random noise data (dimension = 512).

Because features with large dimensions (PC-RGB and PC-XYZ) may result in instabili-
ties in the training process, we also design Reduced PC-RGB (Model 6), Reduced PC-XYZ
(Model 7), and Reduced ALL (Model 8). In those models, we reduce the dimension of
the topological feature vector before concatenation. We replaced the blue layer shown
in Figure 1 by a fully connected layer with 512 output nodes, and Figure 6 depicts this
reduction step. The input feature vectors were min–max normalized to have all their
coordinates in the interval [0, 1].

Note that in Model 8, we combined all features used in Models 2, 3, 4, and 5. Therefore,
the total number of features prior to reduction is 2 · 114 + 1530 + 1020 = 2778. In addition,
for the comparison purpose, we also include the Model 9 which substitutes random noise
(the uniform distribution on [−1, 1]) for the topological features.
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(a) MEL (b) NV (c) BCC (d) AKIEC

(e) BKL (f) DF (g) VASC (h) Average of β

curves.

(i) MEL (j) NV (k) BCC (l) AKIEC

(m) BKL (n) DF (o) VASC (p) Average of E
curves.

Figure 5. Sample PCs from X channel of XYZ color space of images from different classes. For each class, 30 images are
selected at random to illustrate their persistence curves. (a–g) Betti number curves, β0(t) and β1(t), for each class. When
t ∈ [0, 255], β0(t) is shown; when t ∈ [256, 512], β1(t) is shown. (h) Average of β curves over those 30 images. (i–o) Entropy
curves, E0(t) and E1(t), for each class. When t ∈ [0, 255], E0(t) is shown; when t ∈ [256, 512], E1(t) is shown. (p) Average of
E curves over those 30 images. In our earlier work [32], a support vector machine model was built based on these curves
and the classification score was 67.2%.
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Figure 6. The fully connected sub-network that is used for reducing the topological features. For
the reduced models (Models 6–8), we replace the blue layer in Figure 1 with this sub-network. The
dimensional of this sub-network is 512. Weights of links in the sub-network are also optimized by
the back-propagation algorithm.

3.2. TopoResNet Main Architecture Features

The main architecture of TopoResNet-101 is as follows. The image itself is fed to
ResNet with 101 layers. Persistence curves and persistence statistics derived from the
image are fed to a series of parallel layers. The outputs of these two branches are then
processed by additional layers to give a final output. The architecture of TopoResNet-101 is
depicted in Figure 1.

We introduce a parameter α ∈ [0, 1], called the topological rate, that weights the
contributions of the convolutional features and the topological ones. We multiply each
component in the topological feature and ResNet-101 output feature by α and 1 − α,
respectively. Thus, the input vector before the last fully connected layer, i.e., the pink bar in
Figure 1, is

v = (1− α) · vResNet−101 ⊕ α · vTopology, (6)

where vResNet−101 is the vector of ResNet-101 output features (the yellow bar in Figure 1)
and vTopology is the vector of topological features (the blue bar in Figure 1), and ⊕ is
the concatenation operator. Formally, if vResNet−101 = (x1, . . . , xn) (n = 2048 in ResNet-
101), vTopology = (t1, . . . , tm), and w = (y1, . . . , yl) is the first layer of the fully connected
network, then for each k ∈ {1, 2, . . . , l} we have

yj = βk + (1− α)
n

∑
i=1

ωikxi + α
m+n

∑
j=n+1

ωjktj (7)

where βk is a bias and ωik, ωjk, i ∈ {1, 2, . . . , n}, j ∈ {n + 1, 2, . . . , n + m} are the weights of
links. In particular, if ti = εi’s are random variables that are i.i.d. uniform distributions on
[−1, 1], then the value yi is defined by adding noise on vResNet−101 from the random variable
α ∑n+m

j=n+1 ωjkεj.Therefore, the Model 9 can be viewed as a modification of ResNet-101 by
adding random noise on the input layer of the fully-connected network.

Since α is a parameter in the TopoResNet-101, it will be changed in the learning
process. In practice, α was initially set to be σ(0.5) ≈ 0.6, where σ : R → (0, 1) is the
sigmoid function

σ(t) =
1

1 + e−t .
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We will always apply the sigmoid function to α to ensure that it is in the interval (0, 1).
The topological rate, α, records the importance of topological features. We also allow α as a
weight in the network so it can be optimized over the training epochs. The terms α and
1− α can be viewed as a layer of two nodes in the model; hence, it can be optimized by the
back-propagation technique.

We summarize our approach as follows. First, we apply the segmentation algorithm
based on our previous work [32] to obtain image masks. Second, we apply the mask to
the original image. Third, we consider both the RGB and XYZ color space and treat each
channel separately. Fourth, we use persistent homology software, specifically, Perseus [48]
and CubicalRipser [49], to compute persistence diagrams for each channel. Finally, from
each persistence diagram, we calculate persistence curves and persistence statistics as
features. This schematic pipeline is shown as a data pre-processing stage in Figure 1.

4. Experiment Results
4.1. Description of the Data Set

In the United States, the five-year survival rate for treated melanoma in the United
States is 98% among those with localized disease and 17% among those in whom spread
has occurred [50]. The ISIC 2018 challenge [51] tasked competitors to use ISIC’s archive
of over 13,000 dermatoscopic images collected from a variety of sources [52] to design
models with the goal of detecting melanoma. Each image belonged to one of the following
seven types: melanoma (MEL), melanocytic nevus (NV), basal cell carcinoma (BCC),
actinic keratosis (AKIEC), benign keratosis (BKL), dermatofibroma (DF), and vascular
lesion (VASC). Figure 4 demonstrates sample images. Note that the number of available
images varies widely per class, as shown in the caption of Figure 4. This imbalance makes
classification a challenging task. The International Skin Imaging Collaboration (ISIC, [53])
has put forth a number of imaging challenges to the scientific community [52,54,55]. These
challenges have presented unique opportunities for researchers to test novel computer
vision ideas to improve the detection of skin cancer with the long-term goal of facilitating
early treatment and greatly improving patient outcomes.

Since the beginning of the ISIC skin lesion classification challenge in 2018, numerous
studies have adopted CNNs and proposed further improvements to this network. In
some studies, transfer learning or entropy-controlled neighborhood component analysis
(ECNCA) were used [23], whereas in others, features were extracted from the images in
spatial and frequency domains to improve the sensitivity and accuracy of the deep learning
methods [56,57]. Recently, to improve the accuracy and sensitivity of image classification,
several studies have adopted the concept of hybrid methods by combining different calcu-
lation methods [24,58,59]). In view of the advantages of introducing topological homology
in biological image analysis, this study developed a PC and PS classification method com-
bined with a CNN algorithm to improve the accuracy and sensitivity of image analysis.
The method adopted in this study can be combined with different deep learning or hybrid
deep learning methods for optimizing deep learning classification analysis. Therefore, our
team applied ResNet-101 and TopoResNet-101 in combination with PC and PS analysis
methods based on the persistent homology (called TopoResNet) to compare and analyze
skin lesion classification results.

We separated the 10,015 ISIC images into three parts: the training set, validation set,
and testing set. To construct a balanced test set, we define a testing set of 350 images
by collecting 50 images from each class. We used 70% of the remaining 9965 images for
training and the others for validation. We report our scores from the training set.

4.2. Performance of TopoResNet-101

Hyperparameters of a neural network are determined by assessing the performance
of a fully trained model on a validation set. If a validation set has a smaller cardinality
than the training set or is unbalanced in certain classes of images, then the weight-choosing
criterion may be heavily biased. Because our validation set is quite small, we opt to use an
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evaluation metric known as the top-n accuracy, which quantifies the stability of a model.
The top-n accuracy of a model is defined to be the average value of balanced accuracy on
the testing dataset among the training epochs. A classification model or a feature extractor
that has a higher top-n accuracy has more possibilities to pick models that have high
performance among the training epochs. This means the final performance is more stable
and reliable.

Table 2 shows that, amongst the nine models, Reduced ALL has the best performance
and PS-RGB has the second-best performance. We illustrate the effect of utilizing topo-
logical features in Figure 7. There, we plot the accuracies of ResNet-101, PS-RGB, and
Reduced ALL on the validation and test data. We see that the performance of Reduced
ALL, which uses all the topological data, is more stable than that of PS-RGB, which only
uses the PS-RGB topological data. In addition, PS-RGB is more stable than ResNet-101,
which uses none of the topological data.

(a) Accuracy curves on the validation set (b) Accuracy curves on the testing set

Figure 7. The mean accuracy curves for the Models ResNet-101, PS-RGB, and Reduced ALL over the course of the training
process. There are 100 training epochs in total. The mean accuracy on the testing set is balanced. (a) Validation dataset;
(b) testing dataset.

Table 2. The Top 5, 10, 15, 20, 25, and 30 balanced accuracies of all models. The Std column tabulates
the standard deviations of the Top 30 accuracies. Values with bold denote the best in correspond-
ing columns.

Model Top-5 Top-10 Top-15 Top-20 Top-25 Top-30 Std * 100

ResNet-101 0.829 0.823 0.820 0.818 0.816 0.815 0.788
PS-RGB 0.833 0.827 0.823 0.820 0.817 0.815 1.023
PS-XYZ 0.827 0.823 0.820 0.818 0.816 0.814 0.811
PC-RGB 0.762 0.759 0.756 0.754 0.752 0.751 0.707
PC-XYZ 0.778 0.774 0.772 0.770 0.769 0.767 0.622

Reduced PS-RGB 0.819 0.817 0.816 0.814 0.813 0.811 0.538
Reduced PS-XYZ 0.817 0.814 0.812 0.811 0.810 0.809 0.455

Reduced ALL 0.848 0.845 0.843 0.842 0.841 0.840 0.459
Noise 0.823 0.821 0.820 0.819 0.818 0.818 0.288

In Figure 8, we show the accuracy curves on the validation/testing datasets of ResNet-
101 and TopoResNet-101. Comparing Figure 8a and Figure 8b, we see that the learning
process of TopoResNet-101 shows more stability than that of ResNet-101. For example,
by observing the accuracy curve of Reduced ALL on the testing dataset (the red curve in
Figure 8b), we see that the accuracies are ≥0.75 after epoch 30. However, the convergence
behavior of ResNet-101 seems to be unstable as some epochs have testing accuracy < 0.75
after epoch number ≥ 40 (Figure 8a). On the other hand, the curves in Figure 7 show that
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the balanced accuracy of TopoResNet-101 on the testing data is more stable and reliable
than that of ResNet-101.
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Figure 8. Comparisons of accuracy curves on validation set and balanced testing set of (a) ResNet-101, (b) PS-RGB, and
(c) Reduced ALL.

Secondly, we observe that the convergence behavior of the blue curve in Figure 8b is
closer to the red curve than curves in Figure 8a. We see this in Figure 8a. Although the
blue curves appear to be converging between epochs 10∼50 and 60∼100, the red curve is
changing, especially in epochs 60∼80. In contrast with the neural model, which operates
without topological assistance, the blue and red curves were more consistent and had a
similar increasing property.

We list Top-5, 10, 15, 20, 25, and 30 accuracies of ResNet-101, TopoResNet-101 and
ResNet-101, with noisy input in Table 2.

4.3. Topological Rates in TopoResNet-101

In TopoResNet-101, α is designed as a new layer for the model. and hence it can be
optimized (by backpropagation) as a weight of a neuron of the model. The motivation is to
let model automatically decide the importance of features from ResNet and topological
ones. Figure 9 shows the behaviors of α in the training process of models with topological
assistance (Models 2–9). We observe that topological rate α converges in all models, as
shown in Figure 9.
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Figure 9. Behaviors of topological rates α in the training process of models with topological assistance. The horizontal axis
is the number of training epochs, and the vertical axis is α. (a) PS-RGB (dim = 114) and PS-XYZ (dim = 114). (b) PC-RGB
(dim = 1530) and Reduced PC-RGB (dim = 512). (c) PC-XYZ (dim = 1020) and Reduced PC-XYZ (dim = 512). (d) Reduced
ALL (dim = 512) and random noise (dim = 512).

As shown in Figure 9, α seems to be influenced by the dimension of the input features.
Indeed, by comparing Figure 9b and Figure 9c to Figure 9a, we see that PC-RGB and
PC-XYZ have higher feature dimension and higher α rates than PS-RGB and PS-XYZ. In
addition, as shown in Figure 9b, Reduced PC-RGB utilizes the full PC-RGB data and has
a higher α rate than Reduced ALL which only uses the reduced version of this data. We
observe the same effect in the PC-XYZ feature in Figure 9c. There, we see that the model
which uses the full PC-XYZ data has a higher α-rate than the model that uses the Reduced
PC-XYZ data.

To investigate the effects of dimension reduction, we plot the α curves of Models 4–7
in Figure 9b,c. This figure shows that reduction does help the α rate converge more quickly,
even if to a lower value. We also observe that curves of PC-RGB and PC-XYZ (the yellow
curve and green curve) in Figure 9 also show more variation in the α rate in earlier epochs.
We believe that it shows the reduction can benefit ResNet to learn topological features.

The fact that α 6= 0 in Models 2–8 might suggest PS and PC features may be useful
for recognizing skin lesions. To validate our hypothesis, we replace topological features
with random noise. As we discussed above, α seems to be influenced by the dimensions
of features. In comparable settings, we consider Models 6–9 where the dimensions of
topological features are all 512. As shown in Figure 9b–d, the converged α for Reduced PC-
RGB, Reduced PC-XYZ, and Reduced ALL are 0.220, 0.210, and 0.230, respectively, whereas
α for the noise input is 0.191. It would be interesting to further investigate properties of
α, such as the correlation between α and accuracy of the model or extending α to a vector.
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Moreover, except for using the convergence and accuracy to observe the influence of α
rates, other unknown measurements seem necessary for studying the behavior of α.

We also observe that the model with noisy input (Model 9) has the second-best perfor-
mance in Table 3. The literature provides some explanation for this puzzling phenomenon.
In short, noisy input could benefit the robustness of machine learning models. Indeed,
certain dropout techniques regularize a neural network by adding noise to its hidden units.
In [60], the authors analyze this random dropout and conclude that its can be used to
prevent neural networks from overfitting. The paper [61] also shows that adding Gaus-
sian noise boosted the robustness of neural models. As shown in (7), the main difference
between [60,61] and Model 9 is the random variables. Adding different types of random
noise in hidden layers is now a widely applied method and has been implemented in deep
learning frameworks, e.g., Keras and Tensorflow. This technique is believed to be helpful
for improving the robustness of deep learning models (e.g., [62], Figure 3).

Table 3. (a) Average accuracies and standard deviations for Epoch n to Epoch 100 for (n = 50, 60, 70, 80, 90) on the testing
dataset of all models. (b) Average accuracies and standard deviations from Epoch 10 to Epoch n for (n = 20, 30, 40, 50) for
ResNet-101. Values with bold denote the best scores in corresponding columns.

(a)

Epochs ≥50 ≥60 ≥70 ≥80 ≥90

ResNet-101 0.778 ± 0.033 0.786 ± 0.028 0.794 ± 0.021 0.805 ± 0.008 0.811 ± 0.004
PS-RGB 0.795 ± 0.024 0.795 ± 0.022 0.798 ± 0.019 0.791 ± 0.016 0.787 ± 0.018
PS-XYZ 0.791 ± 0.022 0.788 ± 0.021 0.787 ± 0.021 0.792 ± 0.015 0.790 ± 0.014
PC-RGB 0.743 ± 0.011 0.743 ± 0.012 0.743 ± 0.012 0.743 ± 0.013 0.742 ± 0.017
PC-XYZ 0.763 ± 0.008 0.764 ± 0.008 0.763 ± 0.008 0.764 ± 0.008 0.763 ± 0.006

Reduced PC-RGB 0.800 ± 0.011 0.799 ± 0.010 0.801 ± 0.009 0.802 ± 0.009 0.802 ± 0.008
Reduced PC-XYZ 0.803 ± 0.009 0.802 ± 0.010 0.803 ± 0.010 0.803 ± 0.010 0.802 ± 0.010

Reduced ALL 0.832 ± 0.011 0.832 ± 0.011 0.832 ± 0.011 0.830 ± 0.012 0.831 ± 0.010
Noise 0.814 ± 0.005 0.814 ± 0.005 0.815 ± 0.005 0.815 ± 0.004 0.813 ± 0.003

(b)

Epochs 10∼20 10∼30 10∼40 10∼50

ResNet-101 0.808 ± 0.02 0.806∼0.02 0.804∼0.02 0.804∼0.01

Alternatively, because the same training image may frequently appear in training
epochs, adding random noise on layers can be viewed as a way to extend the training
features. We think it would be an interesting future work to train the model by adding
random noise to data, hidden layers, and topological features.

4.4. Online Testing on ISIC 2018 and 2019

We utilized the live leaderboard provided by ISIC 2018 and uploaded our TopoResNet-
101 and ResNet-101 results on the system. The balanced accuracies of TopoResNet-101 and
ResNet-101 were 0.728 and 0.711, respectively, as measured on the 1512 testing images.

ISIC 2019 provided 25,331 skin lesion images for training across eight different cate-
gories and 8238 images for testing (https://challenge2019.isic-archive.com/, accessed
11 November 2021). We also uploaded our classification result on that system and
achieved a balanced accuracy of 0.518. The best accuracy on that leaderboard is 0.636
(DAISYLab, Hamburg University of Technology/University Medical Center; Website:
https://daisylabs.github.io/, accessed 11 November 2021). That model used HAM10000
(https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000, accessed 11 November
2021) images as an additional dataset for training. It was also an ensemble of 15 neural
models. We also compared the result of using ResNet-152 (the experiment is provided by
BMIT (Biomedical and Multimedia Information Technology, University of Sydney); website:

https://challenge2019.isic-archive.com/
https://daisylabs.github.io/
https://daisylabs.github.io/
https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000
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http://bmit-network.org/, accessed 11 November 2021) and denseNet-201 architectures,
which had balanced accuracies of 0.481 and 470.

5. Discussion and Conclusions

In this work, we developed a hybrid deep learning model that uses topological
features in conjunction with original image features to improve the performance of deep
learning classification. Up to the top-n accuracy, the results show that the inclusion of these
topological features improves the balanced accuracy of the classification by ∼2% over the
same model excluding the topological features.

We used a weight (α), i.e., the topological rate, to determine the relative importance of
topological features used in the method. In our architecture, α was a trained feature based
on the output of ResNet-101 and the topological features we selected. We notice in Figure 9
that in each model, the trained value of α was relatively small (<0.5) but never close to
0. This indicates that, although the raw topological features may not be more important
than the features returned by ResNet-101, they do play a role in improving classification
performance. In particular, ResNet-101 + PS-RGB and ResNet-101 + all features (reduce)
achieved the highest accuracy. In these models, α was 0.152 and 0.230, respectively. In
Figure 9, we see that the topological rate converged quickly in the training process, in each
case converging at around 30 epochs. We believe that a higher value of α indicates that a
higher importance was placed on a topological feature. However, we also observe that
although PS-XYZ has higher α rates than PS-RGB (Figure 9a), it does not seem to perform
better than PS-RGB (Table 2). Note also that although the feature dimension of PC-XYZ
has a lower α rate than PC-RGB in the earlier training epochs, the α rate curve of PC-XYZ
(Figure 9c) is more unstable than the curve of PC-RGB (Figure 9b). We speculate that a
possible reason for this is that the XYZ representation for images may provide additional
information that a CNN model pre-trained on RGB images cannot easily pick up. We plan
to investigate this phenomenon in our future work.

We also saw in Figure 8 that the convergence of the balanced accuracy from TopoRes-
Net on the Validation and Testing sets occurred quickly after epoch 30. In comparison,
ResNet-101 seems to converge, but stutters around epochs 50–80. In addition, Table 2
shows the top-n accuracy results for the three models: ResNet-101, TopoResNet-101, and
ResNet-101 with noise. Notably, TopoResNet-101 was the most accurate and its standard
deviation was the third lowest, and it exhibited strong stability. As a result, we believe
TopoResNet-101 to be the better classification model in terms of accuracy and stability.

5.1. More on Performances of Models

As we can see in Figures 7 and 8, the mean accuracy curves on the testing sets are
lower than those on the validation sets. For example, although ResNet-101 has 0.829
Top-5 accuracy on the testing dataset, the parameters that achieve this might not be the
parameters in the final model. In fact, ResNet-101 achieves its best performance at epoch 98
with accuracy 0.903 on the validation set, while the corresponding model has an accuracy
0.814 on the testing set. On the other hand, if we choose Epoch 27 as a local maximum
(accuracy 0.899) of the blue curve in Figure 8a, then the corresponding model will have an
accuracy of 0.789.

In Table 3, we consider a better measure of the accuracy of the models, the average
accuracy from Epoch n to Epoch 100 for n = 50, 60, 70, 80, and 90 on the testing dataset.
Table 3a shows that the ResNet models with topological features perform better when the
training curve converges earlier. For a fair comparison, in Table 3b, we see that the training
curve of ResNet-101 that seems to converge between Epochs 10 and 50. By comparing (a)
and (b) in Table 3, we see that Reduced ALL and the model with noise input (Model 9)
perform more accurately and more stably than ResNet-101.

We also present the accuracy curve per class on the testing set. The curves in Figure 10
show that TopoResNet-101 may perform more accurately and more stably on Class 2
and Class 3 than on the other classes. On the other hand, we see that both ResNet and

http://bmit-network.org/
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TopoResNet do not perform as well as Class 1, Class 4, and Class 5. The PS-RGB features
may help ResNet to achieve a higher accuracy (e.g., Epoch 80 in Figure 10d). A similar
phenomenon also occurs on PS-XYZ, PC-RGB, and PC-XYZ in the performances on Class 1
and Class 3. For example, the curves in Figure 11c,d show that PC-RGB and PC-XYZ may
contain important topological features useful for classifying BCC lesions (Class 3).
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Figure 10. The accuracy curves of ResNet-101, PS-RGB, and Reduced ALL plotted versus training epoch on each of the 7
classes in the testing set. (a) Class 1 (melanoma, MEL). (b) Class 2 (melanocytic nevus, NV). (c) Class 3 (basal cell carcinoma,
BCC). (d) Class 4 (actinic keratosis, AKIEC). (e) Class 5 (benign keratosis, BKL). (f) Class 6 (dermatofibroma, DF). (g) Class 7
(vascular lesion, VASC).

(a) (b)

(c) (d)

Figure 11. Examples of models that use topological features that achieve accuracy scores higher than those of ResNet-101 in
at least some epochs of training. (a) Class 1 (melanoma, MEL). (b) Class 3 (basal cell carcinoma, BCC). (c) Class 3 (basal cell
carcinoma, BCC). (d) Class 3 (basal cell carcinoma, BCC).

5.2. Future Work and Summary

In this method, topological features calculated from the image are used to improve
classification accuracy. The proposed method can be applied to different deep learning
algorithms. In [19], authors applied topology-based deep learning methods to successfully
predict biomolecular properties. The main advantage is that topology allows for effective
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structural classification, mainly via the application of homology. Their deep learning
method was combined with topology to successfully predict protein–ligand binding affinity.
It was demonstrated that topology results in accurate classification when the classes in
the classification task are distinguished by their structure. In view of this and with the
assumption that skin lesion diagnosis can be described by lesion (topological) structure,
our study utilized the homology of skin lesion images to generate features that improve
the accuracy of the original deep learning method.

Many studies on skin lesion classification have been published in recent years. For
example, Mahbod et al., (2017) applied AlexNet, VGG-16, and the hybrid of these two to
achieve an accuracy range of 79.9–89.2%, thereby demonstrating that different methods
have their own limitations. However, they showed that the optimized Fusion mode had
the highest accuracy (Mahbod et al., 2017). In addition, Mahbod et al. (2019) pointed out
that when a combination of AlexNet, VGG-16, and ResNet-18 is applied for classification,
the accuracy can be as high as 90.69%, and if the images are only classified for seborrheic
keratosis disease, the accuracy can reach up to 97.55% [23]. This suggests that a combination
of multiple algorithms can provide high accuracy in skin lesion classification. To the best of
our knowledge, this study is the first to provide a combined method involving two concepts.
In particular, in theory, topological features have been proved to be advantageous in image
analysis. Therefore, it is believed that the use of the above-mentioned methods combined
with topological features may lead to more comprehensive skin lesion classification and
more satisfactory accuracy. This is conducive to the future classification of medical images
using AI.

The appeal of including topological information such as persistence curves (PC) and
persistence statistics (PS) lies in the simplicity of calculating these features. The features
themselves do not require user defined parameters; thus, one only needs to tune the
attached machine learning algorithm. In addition, these features give intuitive shape
summaries of the original space. The generalized nature of the persistence curve definition
allows for a rich library of usable curves. In this paper, we have chosen to combine the PCs
and PSs with the Betti and entropy curves and then fed them into SVM and ResNet-101.
The corresponding performances show that using PS and PC can boost performance over
models that use only convolutional features. One future direction we will consider is the
application of these features to other classification tasks. Furthermore, the phenomenon
shown in Figures 10 and 11 shows that using PS and PC features may boost performance
in specific classes (e.g., Class 1, 2, and 3). Understanding which PS/PC features best help
with classification for images in each class is also an important direction for future research.

In summary, this study sufficiently provides an empirical basis for image classification
based on PC/PS applied to various color spaces. ResNet-101 facilitates the automatic
extraction of features from raw image input and the influence of the topological features
can be evaluated by training the α parameter proposed in this study. This basic architecture,
which appears in our proposed model, TopoResNet-101, is an architecture that can be used
in different hybrid methods. The techniques presented in this study form a basis for more
innovative ideas to incorporate topological information in hybrid deep learning algorithms.
For example, we may seek to exchange the dense net at the head of our architecture for
some other machine learning algorithm. Or, prior to the topological rate, we may wish
to do further preprocessing of the topological features themselves. Our team expects that
different hybrid deep learning methods combined with the proposed topological features
will provide more promising results in the future.
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