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Abstract: The answers to extreme phenomena both in nature and in business sectors are the construc-
tions of the distribution of random variables with extreme values. Another area in which appropriate
theoretical research is conducted regarding the influence of suppressor (third) variables in categorical
data. When examining dependencies in PivotTables, we often find it necessary to merge data into
larger sets (e.g., due to a greater number of theoretical frequencies lower than their critical value). A
phenomenon many exist wherein the partial relation is stronger than the zero relation. For example,
in such a combination, instability may occur, which indicates contingent subgroups with the merged
group. The dependence of dependencies is practically manifested because the data of contingent
subgroups indicate inconsistent (inverted) conclusions compared to the associated group. For this
reason, this paper aimed to find the critical ratios of partial probabilities in the contingency table
of subgroups of the original variables, and to determine the conditions of result consistency and
contingency stability, including the proof. For practical use and for the ease of repeating the proposed
procedure, the solution is based on a case study that compares the effectiveness of vaccination.

Keywords: partial probability; suppressive variable; contingency; causality; consistency

1. Introduction

Regarding the portability of statistical testing (parametric/nonparametric) and the
search for categorical data dependencies through correlations to the causality factors of
corporate governance, the current state of the knowledge of the professional community is
that experts focus on some criticism, which states “correlation does not imply causality”.
In addition to this, another critique mentions the absence of a proposed solution to unam-
biguously verify which correlation is causal, and uncertainty in how one can determine the
direction of causality of factors. The direction of the management factors is critical in terms
of effective business management.

Theoretical and applied scientists regularly aim for strict, unbiased approximation
when making cogent presumptions regarding scientific problems (A). The prevailing,
standard approach has been formulated in terms of two opposing statistical hypotheses:
one representing no difference between two populations (i.e., the null hypothesis (Ho)) and
the other representing either unidirectional or bidirectional options (i.e., the alternative
hypothesis (Ha)). These hypotheses primarily correspond to different models. For example,
when comparing two samples of populations, the presumption is that they are from the
same primary data set, so the difference between their correct means is equal to 0.

A statistical test and a multinomial regression model are usually calculated from sam-
ple data, and are equated to the hypothesized null distribution to explore the conformity
of the data with the null hypothesis. More extreme values of a statistical test indicate that
the sample data are not consistent with the null hypothesis. A mainly random level (a) is
often present to serve as a cut-off point (i.e., the unambiguous background for a verdict)
for statistically relevant versus negligible events. This approach is known by different
names, e.g., null hypothesis testing or null hypothesis significance testing. This method is
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a modification of Fisher’s (1928) significance testing [1], and Neyman and Pearson’s (1933)
hypothesis testing [2–5]. There are many problems that surround the application of the null
hypothesis testing method, especially if we consider the test result or the parameters of the
regression model as an indication of a causal relationship. Thus, in the case of hypothesis
testing, we believe these problems are the result of a binary expression of causality. Some
of these problems are mentioned in [6–9]. Although uncertainties among statisticians
concerning the utility of null hypothesis testing are hardly new [10–12], the prevalence of
criticism has increased in the scientific literature in the last five years. More than 200 ref-
erences now exist in the academic literature that point out the limitations of regression
models and statistical hypothesis testing in the sense that the statistical correlation test is
not guaranteed to find the causality of the studied phenomena, but finding the causality of
phenomena/processes is essential for effective business management.

A specific area in which conventional statistical approaches fail is the area of asso-
ciation and contingency dependencies. The question of how to transform an association
dependency into a causal relation is an issue. A second, little-known problem is the incon-
sistency of subgroups of categorical data with their associated group. The initial description
of these issues, using conditional probability, was expressed by Judea Pearl in [13]. This
basic framework was then used in [14–17].

The problem of causality direction can be described using the phenomenon whereby
an event (C) increases the probability (E) in a given population (p) and, at the same time,
decreases the probability (E) in every sub-population of (p). In other words, if F and ¬F
(a negation of (F)) are two complementary properties describing two subpopulations, we
might well encounter inequalities (expressed by conditional probability and the negation
of phenomena), as expressed by Pearl [13]:

P(E|C) > P(E|¬C) (1)

P(E|C, F) < P(E|¬C, F) (2)

P(E|C,¬F) < P(E|¬C,¬F) (3)

Although such a reversal order is not surprising from the perspective of the theory
of probability, it is paradoxical by causal interpretation. For example, if C is associated
(implying cause) with taking a certain financial recovery of the company (for example,
through state subsidies), E (implying effect) with recovery, and F with being a company
producing services, then—under the causal interpretation of (2) and (3)—financial recovery
seems to be harmful to both manufacturing companies and companies producing services,
but yet beneficial to the whole population of companies (Equation (1); Pearl [13]).

In a case study that represents the numerical interpretation of the paradoxical case
study, we can, for example, assume that overall, the recovery rate for a company in financial
crisis receiving financial recovery (C) at 50% exceeds that of the control (¬C) at 40%, and
so the state subsidy treatment is apparently preferred. However, when we inspect the
separate data regarding manufacturing companies and companies producing services, the
recovery rate for “financially untreated” companies is 10% higher than for the treated ones
(for both manufacturing companies and companies producing services).

The explanation for this paradox can be clear from an exact viewpoint because it
has taken appropriate care to distinguish “seeing from doing”. The conditional operator
in probability calculus represents the causal dependent “given that we do”. In contrast,
the do operator was devised to represent the causal conditional “given then we do” [13].
According to the previous statement, the inequalities are as follows:

P(E|C) > P(E|¬C) (4)

P(E|do (C)) > P(E|do (¬C)) (5)

The C can be positive evidence for E, which may be due to spurious confounding
factors that cause both C and E. In this case study, financial recovery appears beneficial
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overall because manufacturing companies are more often in a financial crisis (regardless of
the state subsidies) than companies producing services and are more likely to use financial
recovery. Indeed, finding a financial recovery-using company C of unknown company
type (making services versus products) would benefit from inferring that the company
is more likely to be a manufacturing company and, hence, more likely to recover. This
statement agrees with Formulas (1)–(3).

Thus, from a theoretical point of view, it is appropriate to supplement the current
state of knowledge with an analytical point of view, which will make it possible to un-
ambiguously determine whether the data in the contingency table show inconsistencies
of the sorted subgroups with the merged group. For subsequent practical application,
this aspect should use relationships at associated frequencies and distinguish whether the
association indicates causality. For this purpose, it is appropriate to discard the analytical
form of the critical ratio of marginal probabilities of the pool. Furthermore, for practical
purposes, it is reasonable to create a graph of stability, which relates the real ratios of
marginal probabilities with the theoretical values of marginal probabilities determined
using combined frequencies. This diagram then makes it possible to identify a consistent
and inconsistent case unambiguously. In the area of categorical data, there is a gap in the
design of solutions.

Because the human population is still facing a worldwide coronavirus pandemic and
vaccination appears to be the most effective interim solution to date, the theoretical solution
is illustrated in a vaccination case study.

When evaluating the efficacy of a given type of vaccine, the stratified population
is usually vaccinated with the vaccine, and the same control population is administered
the substance without affecting infectious resistance. After that, the control population is
monitored, and after infecting a certain proportion of the population, the amounts infected
are compared between the vaccinated and control groups. Thus, if 100 infected individuals
from the control group were expected and the number of those infected in the vaccinated
group was 10, then the difference in 100% = 90 would lead to a 90% vaccine efficacy. This
indirect method of determining vaccine efficacy replaces an unethical method of direct
experimentation that would directly infect the vaccinated population and measure the
level of antibody resistance (proportion of infections manifested).

The reliability of a method for indirectly determining vaccine efficacy is usually exam-
ined in terms of stratification and randomization experimental and control populations
and in terms of a sample size of the population. It is assumed that a larger experimental
and control population automatically indicates greater reliability under the condition of
randomization and stratification [18]. It is here that a paradoxical phenomenon can be
found, where one vaccine dominates in terms of the total population, and the other vaccine
dominates in sorted groups according to the third criterion (this is the number of vaccine
doses, i.e., one or two vaccine doses). Therefore, it is interesting to examine the consistency
of the results after one dose of vaccine, after two doses of vaccine, and after merging these
two groups when comparing the two types of vaccine.

2. Materials and Methods

Thus, we will first label the variables to meet the objectives described at the end of
Section 1. Next, we derive a critical ratio of marginal probabilities. We start from a special
case where the theoretical equality of the associated frequencies n.12 = n.22 which indicates
the same aggregated efficacy of the vaccines. We also determine the theoretical values of
the ratio of marginal probabilities concerning real marginal probabilities for different cases.
Using these cases, we then derive the rules of consistency. We then summarize these rules
in the combinational consistency of data subgroups and a merged groups table. Then, we
create a stability diagram that visualizes this table.

First, we introduce the labeling of variables:
Let i ∈ (1, 2), j ∈ (1, 2), k ∈ (1, 2), be:
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nijk is the number of individuals who were in the i-th state had the j-th treatment, and
the action ended in the k-th result;

nij is number of individuals who were in the i-th state and had the j-th treatment;
ni.k is the number of individuals who were in the i-th state and the action ended with

the k-th result;
n.jk is the number of individuals who had the j-th treatment and the action ended in a

k-th result;
ni.. is the number of individuals who were in the i-th state;
n.j. is the number of individuals who had j-th treatment;
n.k is the number of individuals for whom the action ended in a k-th result;
n... is the number of all individuals.
These variables apply to the following:

nij. =
2

∑
k=1

nijk

ni.k =
2
∑

j=1
nijk

n.jk =
2
∑

i=1
nijk

ni.. =
2
∑

j=1

2
∑

k=1
nijk

n.j. =
2
∑

i=1

2
∑

k=1
nijk

n..k =
2
∑

i=1

2
∑

j=1
nijk

n... =
2
∑

i=1

2
∑

j=1

2
∑

k=1
nijk.

These variables can be applied to the case of vaccination where the dependence is
reversed, e.g., in the association/contingency table (or the determination of the sample size
for the interval estimation error will not work), where the examined subcategories show a
different conclusion than when the whole population is merged (populations are the same
size). The effect of a partial relationship (partial correlation) is probably stronger than the
primary relationship between variables (zero relationships).

The relationship between two variables, X and Y, may not always express the rela-
tionship that actually exists. According to A, the relationship between X and Y is called a
zero-order relationship. After introducing the third variable, called the test variable labeled
Z, a first-order relationship is established. To illustrate, consider the association table sorted
by income (low–high) and by gender (female–male). A man has a 1.5 higher frequency
of a high income than a woman. It would probably confirm the association dependence
that the income is gender-dependent. By introducing the third variable, Z, the number of
hours worked, we men find that men work at a three times higher frequency. Thus, the
partial correlation (association) will probably be stronger than the zero-order association.
Thus, more hours worked for the average man than for the average woman will explain
the average higher income for men than for women. Therefore, there will probably be no
discrimination against gender in income. This designation of correlation has been used, for
example, in scholarly articles [19–23].

3. Results

Table 1 shows a case where the total population n... = 5000 is divided according to the
criterion of the type of vaccine (A and B) and according to the criterion (variation) of the
number of vaccinations (one or two doses of vaccine). The subpopulation vaccinated with
vaccine A is the same size as the subpopulation vaccinated with vaccine B (n.1. = n.2. = 2500).
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The data in Table 1 are intended to provide essential information on which vaccine is
preferred in terms of vaccine efficacy. Vaccine efficacy is expressed here as the combined
value of the number without infection to the total number (n.11/n.1. = 1 − p.1. = 0.8) for
vaccine A. Furthermore, for vaccine B, for the combined value of the number without
infection to the total number (n.21/n.2. = 1 − p.2. = 0.9. In the pooled value, therefore,
vaccine B is more effective than vaccine A. However, if we sort the pooled group according
to the number of vaccinations, we come to the opposite conclusion. In this case, the
efficacy of vaccine A for one dose of vaccination (n111/n11. = 1 − p11. = 0.525) is greater
than the efficacy of vaccine B (n121/n12. = 1 − p12. = 0.300). The efficacy of vaccine A for
two doses of vaccination (n211/n21. = 1 − p21. = 0.984) is again greater than the efficacy
of vaccine B (n221/n22. = 1 − p22. = 0.967). For the instability of the conclusions of the
sorted and combined set, the criterion of the critical ratio of marginal probabilities p11./p12
and p21./p22. is derived in the following text using the combined frequencies indicated in
Table 1. Furthermore, the rules between the critical probability ratio and the real values of
these ratios are derived (see Table 2).

Table 1. Frequencies for determining the unreliability of the effect of vaccination (probability of infection after vaccination
in the observed period).

Total Population (Combined)

No Infection
(Tested Negative) N

With Infection
(Tested Positive) P

Total
N + P

Probability of
Infection

A-type vaccine 2000 n.11 500 n.12 2500 n.1. 0.2 p.1.

B-type vaccine 2250 n.21 250 n.22 2500 n.2. 0.1 p.2.

Total 4250 n..1 750 n..2 5000 n . . .
B-type is better than

A-type vaccine

Vaccinated Once

No Infection
(Tested Negative) N

With infection
(Tested Positive) P

Total
N + P

Probability of
Infection

A-type vaccine 525 n111 475 n112 1000 n11. 0.475 p11.

B-type vaccine 75 n121 175 n122 250 n12. 0.700 p12.

Total 600 n1.1 650 n1.2 1250 n1..
A-type is better than
the B-type vaccine

Vaccinated Twice

No Infection
(Tested Negative) N

With Infection
(Tested Positive) P

Total
N + P

Probability of
Infection

A-type vaccine 1475 n211 25 n212 1500 n21. 0.016 p21.

B-type vaccine 2175 n221 75 n222 2250 n22. 0.033 p22.

Total 3650 n2.1 100 n2.2 3750 n2..
A-type is better than
the B-type vaccine

Suppose we have equally large total populations that we can compare with each other.
In our case, these populations are the number of people vaccinated with vaccine A and
vaccine B. Thus, in this case, n.1. = n.2. = 2500. Then, we can start from the theoretical
equality of the associated frequencies n.12 = n.22, from which we calculate the probability
of the investigated phenomenon (here, the likelihood of infection). This theoretical equality
of combined frequencies allows us to determine the cut-off point (or indifferent limit) at
which vaccine A is as effective as vaccine B. This indifferent ratio means that if it uses a
blunt sign comparing the partial efficacy of vaccines A and B, then:

p11.

p12.
≤ 1∧ p11.

p12.
≥ 1;

p21.

p22.
≤ 1∧ p21.

p22.
≥ 1
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Table 2. Combinational consistency of data subgroups and merged groups.

Situation

Real Ratios of Marginal
Likelihoods

Real Ratios of
Combined

Likelihoods

Theoretical Ratios of
Marginal Likelihoods

Occupancy
Quadrants of
the Stability

Graph

Consistency

p11.real
p12.real

p21.real
p22.real

p.1.
p.2.

p11.
p12.

p21.
p22.

Q1, Q2, Q3,
Q4, Q3c, Q4c Yes, No

1. (0; 1) (0; 1) (0; 1) p11.
p12.

>
p11.real
p12.real

p21.
p22.

<
p21.real
p22.real

Q2 ∨ Q3 Yes

2. (0; 1) (0; 1) (0; 1) p11.
p12.

<
p11.real
p12.real

p21.
p22.

>
p21.real
p22.real

Q1 ∨ Q4 Yes

3. (0; 1) (0; 1) (1; ∞) p11.
p12.

<
p11.real
p12.real

p21.
p22.

<
p21.real
p22.real

Q3 ∧ Q3c No

4. (1; ∞) (1; ∞) (0; 1) p11.
p12.

>
p11.real
p12.real

p21.
p22.

>
p21.real
p22.real

Q1 ∧ Q2 No

5. (1; ∞) (0; 1) (0; 1) p11.
p12.

<
p11.real
p12.real

p21.
p22.

>
p21.real
p22.real

Q2 ∨ Q4 Yes

6. (1; ∞) (0; 1) (1; ∞) p11.
p12.

>
p11.real
p12.real

p21.
p22.

<
p21.real
p22.real

Q2 ∨ Q4 Yes

7. 1 1 1 p11.
p12.

=
p11.real
p12.real

p21.
p22.

=
p21.real
p22.real

{1; 1} Yes

In this way, consistency will be maintained between the associated group and the
subgroups of PivotTable values. To find this indifferent ratio of probabilities in terms of
associations of frequencies, we start from the theoretical equality of the associated frequencies:

n.12 = n.22 (6)

After substituting for n.22 :

n.12 = n112 + n212 = n122 + n222. (7)

Thus:
n122 = n.12 − n222. (8)

Then, instead of the real ratio n112
n11.

, the theoretical marginal probability p11. is expressed
by the theoretical ratio:

p11. =
n122

n11.
=

n.12 − n222

n11.
(9)

After substituting the values for the combined frequencies, n122, n222 and n11., we
obtain the following:

p11. =
500− 75

1000
= 0.425 (10)

The p11. = 0.425 value is the maximum value of the marginal probability (probability
of infection with one dose of vaccine A) for the consistency of the pooled data with the
data sorted by the number of vaccine applications (one dose or two doses). This value of
marginal probability will vary not only depending on the associated frequencies, but will
also be implicitly affected by the value of the likelihood of infection with a single dose of
vaccine B. Therefore, it is appropriate to determine the probability of infection with a single
dose of vaccine A concerning the likelihood of infection with a single dose of vaccine B.

Thus:
p11.

p12.
=

n.12−n222
n11.
n122
n12.

(11)

After substituting values for the combined frequencies of n112, n212, n11., and n12. to
the previous relationship, we obtain:

p11.

p12.
=

500−75
1000
175
250

= 0.607 (12)
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The ratio p11./p12. = 0.607 is the theoretically critical (maximum) value that cannot
be exceeded by the actual ratio of marginal probabilities p11.real/p12.real to maintain the
consistency of the results of the total (combined) file with sorted files, in this case, according
to the method of treatment (vaccine used) in a single dose. In our case, the actual ratio of
marginal probabilities p11.real/p12.real is greater than the critical (maximum) value of the
consistent ratio, i.e.,

p11.real
p12.real

=
0.475
0.700

= 0.679 > 0.607 =
p11.

p12.
. (13)

This relationship indicates a reversal of the correlation, where exceeding the critical
value of the ratio of marginal probabilities leads to inconsistencies in the sub-files and the
associated file. The primary cause of inconsistency is due to excessive unevenness of the
associated frequencies in the classification by a number of vaccinations, which acts as the
third factor (mediator factor) of causality, in addition to the number of vaccinations and
the type of vaccine. We proceed similarly for two batch applications. We start again from
the equality of combined frequencies for the positive tested for different vaccinations:

n.12 = n.22. (14)

After substituting for n.22:

n.22 = n122 + n222 = n112 + n212. (15)

Thus:
n212 = n.22 − n212. (16)

Here, the theoretical marginal probability p21. is expressed by the theoretical ratio
instead of the real ratio, n212

n21.
:

p21. =
n212

n21.
=

n.22 − n112

n21.
. (17)

After substituting the values for the combined frequencies of n112, n21., and n22.,
we obtain:

p21. =
250− 475

1500
= −0.150 (18)

Thus, the marginal probability p21. (the association with both possible vaccination
results (infection/without infection) is less than 0, i.e., outside its domain) that the sorted
subsets indicate the same tendency of vaccination efficiency as their combined set is
n.12 = n.22. In reality, however:

n.12 > n.22. (19)

A more complex explanation is based on the extension of the range of probability
values respective to the complex probability in the analogy of complex numbers. If we
want to determine the likelihood of infection after the second dose of vaccine A in relation
(in proportion) to the likelihood of infection with two doses of vaccine B, we can express
this ratio as:

p21.

p22.
=

n.22−n112
n21.
n222
n22.

. (20)

After substituting values for combined frequencies of n112, n212, n11., and n12.,
we obtain:

p21.

p22.
=

250−475
1500
n222
n22.

(21)

p21.

p22.
=

250−475
1500

75
2250

= −4.5 (22)
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If we omit that the ratio of marginal probabilities is outside the range of values, then
even in this case, the critical value of the ratio p21./p22. =−4.5 is exceeded by the actual ratio
of marginal probabilities p21.real/p12.real. In this case, the necessary condition to maintain
the consistency of the total (combined) group with sorted groups according to the method
of treatment (vaccine used) in one-dose administration is not fulfilled. In this case, the
actual ratio of marginal probabilities p21.real/p22.real is greater than the critical (maximum
allowable) value of the consistent ratio.

Table 2 shows the rules for combinations of values of real marginal probabilities
p11.real /p11.real and p21.real/p22.real, and real associated probabilities p.1./p.2. with their
respective theoretical ratios. Theoretical ratios are obtained by substituting the derived
relations into (11) and (20). Thus, this table represents a small expert system to decide
whether the data in a particular pooled table are consistent with its subgroup classifications.
That is, whether we can trust the conclusions of the aggregated data. This expert system is
complemented by the evidence represented by Formulas (23)–(39).

Proof for selected rows of Table 2
The seventh row of Table 2
We start from the simplest seventh situation Thus:

n.12−n222
n11.
n122
n12.

=

n112
n11.
n122
n12.

(23)

Here, the denominators of the upper fractions of the equation are equal, as are the
lower fractions of the equation. Therefore:

n.12 − n222 = n122. (24)

Which is applied for equations: p.1. = p.2. ∨ n112 = n122. Additionally, when: n11. = n12.,
it must be applied again.

The first row of Table 2
Furthermore, to prove the validity of the first line of the situation, both real ratios are

less than one, and it is assumed that the following applies:

p11.

p12.
>

p11.real
p12.real

∨ p21.

p22.
<

p21.real
p22.real

, (25)

n.12−n222
n11.
n122
n12.

=

n112
n11.
n122
n12.

. (26)

To achieve Equality (26), we add 1 to the combined frequency n222, and to maintain
the total frequencies, we add this 1 to n212, so that aby n.1. = n.2. = const. Let us mark the
combined frequencies adjusted in this way with the index “*”:

n∗222 = (n222 + 1) ∨ n∗212 = (n212 + 1). (27)

Then, Relation (26) is adjusted to the form:

n.12−n∗222
n11.
n122
n12.

6=
n112
n11.
n122
n12.

. (28)

Because we reduce the value of the left side of the previous equation and left the right
side unchanged, the inequality must apply:

n.12−n222+1
n11.
n122
n12.

<

n112
n11.
n122
n12.

(29)



Mathematics 2021, 9, 2917 9 of 12

Thus: p11.

p12.
<

p11.real
p12.real

(30)

The following inequality applies to the second share of theoretical probabilities:

p21.

p22.
6= p21.real

p22.real
(31)

Expressed as a ratio of the associated frequencies, we obtain:

p21.

p22.
6=

n.22−n112
n21.
n222
n22.

. (32)

Under the achievement of associated frequencies instead of marginal frequencies, we
obtain the equation:

n212
n21.
n222
n22.

6=
n.22−n112

n21.
n222
n22.

. (33)

Because we introduce star frequencies on the left side, increase the frequency n212 by
1, and increase the numerator n222 + 1 (i.e., decreased the left side of the inequality) at the
same time, the following must apply:

n212
n21.
n222
n22.

>

n.22−n112
n21.
n222
n22.

. (34)

The third row of Table 2
Assume that, unlike the situation represented by line 7, the probability of p11 is much

greater than the probability of p21, and also, that of p12 is much greater than the probability
of p22:

p11. >> p21. ∨ p12. >> p22.. (35)

In our case, this difference is because the effectiveness of two doses of a vaccine is
20–30 times more than that of one dose. Next, suppose that the combined frequency of
n112 is much greater than the frequency of n212, and also that n112 is much greater than the
frequency of n112:

n112 >> n212 (36)

Thus, the efficacy of two doses of vaccine is significantly higher, but concerns, for
example, a significantly smaller population in one case. The marginal frequency n21. and
n22. do not differ by order. Let us make these frequencies equal to x:

n21.
∼= n22. ∼= x

n112
n11.
n122
n12.

6=
n.12−n222

n11.
n122
n12.

(37)

Because the lower fractions in the previous equation are equal to:

n122

n12.
=

n122

n12.
. (38)

Likewise, the denominators of the upper fractions are equal: n11. = n11. At the same
time, the following applies: n112 > n.12 − n222. Then, the following must apply:

n112
n11.
n122
n12.

>

n.12−n222
n11.
n122
n12.

. (39)
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The left side of the equation represents the ratio of real marginal probabilities, and the
right side of the equation represents the ratio of the respective theoretical probabilities.

Similarly, it is possible to make evidence for the remaining rows of the table.

4. Discussion

The theoretical goal was to create an analytical solution for determining the critical
ratio of partial probabilities in terms of the consistency of conclusions with a merged group
of data. This task was solved through part 2.

For practical purposes, the subsequent goal was formulated in the form of a stability
diagram. Therefore, a stability diagram is created in order to process control and for
use in the visual assessment of the consistency between causality and contingency (see
Figure 1). The stability diagram is divided into four real quadrants (Q1, Q2, Q3, and Q4),
supplemented by two complex quadrants (Q3c and Q4c) and three forbidden areas (i.e.,
more precisely than the quadrates; the areas should be called ninths of the graph). Here, the
Cartesian system is shifted to point [1,1]. This shift is because real–theoretical likelihood
ratios are applied in the system, where the horizontal axis is determined for real likelihood
ratios, and the vertical axis is determined for theoretical probability ratios. A ratio value
equal to one indicates the identity of the marginal frequencies for the data subsets for real
ratios. A value different from one then tends to dominate in a given classification of one set.

Because we always calculate two ratios (from real and also from theoretical probabili-
ties (in our case, from two states, and from two treatments), we always have a combination
of two resulting values (each value has its real and theoretical coordinates). A totally
stable solution (data consistent with both subsets) is only possible when placing just one
theoretical ratio in the interval (0; 1) and the other theoretical ratio in the interval (1; ∞);
therefore, the point [1,1] is selected as the primary (central) point of the diagram of stability
and consistency of data subgroups with their merged group. In other words, for total con-
sistency, it is sufficient if one point (given by the coordinates of theoretical and real marginal
ratios) lies in a conditionally unstable region (Q1 or Q3). The other point (provided by the
second coordinates of theoretical and real marginal ratios) lies in a stable region (Q2 or Q4).
This finding has a surprising practical impact on finding a stably consistent solution in
which all data subgroups are consistent (e.g., in terms of the magnitude of the effect of the
vaccine) with their associated data group. A sufficient condition to ensure the consistency
of all data subgroups with their associated data group is based on finding exactly one point
(given by the coordinates of theoretical and real marginal ratios) in the stable region and
exactly one point in the conditionally unstable region. If we connect these two points with
a line, this line intersects the boundary between the stable and conditionally unstable areas.
Point [1,1] is then a special case, where all associations of theoretical and real marginal
probabilities are equal.

The point [1,1] geometrically intersects the boundary of a conditionally unstable and
stable region in just one place. Therefore, in this situation, the solution of data consistency is
also totally stable. Conversely, a sufficient condition for finding an unstable implementation
of data subgroups with their merged group is if at least one point (given by the coordinates
of theoretical and real marginal ratios) lies in an unstable region (Q3c or Q47c). This is just
a case of a data paradox. Data subgroups indicate the exact opposite conclusion to their
combined data group (e.g., in terms of vaccine effect, one subgroup shows better efficiency
in both applications; after merging the data, the second subgroup appears to be better).
Another possibility is that both points (given by the coordinates of the theoretical and real
marginal ratios) lie in a stable region, but each point lies in a different quadrant (Q2 and
Q4). In this case, it is a stable solution (or particularly stable), which is realized by just one
case of consistency of the data subgroup with the merged data group. The last possibility
is the description of three forbidden areas, which express the range of values of real ratios
of marginal probabilities less than zero. Such a realization is impossible even in the field of
complex values of probabilities. Therefore, they are marked as forbidden.
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Figure 1. Stability diagram of contingent subgroups with an associated group.

5. Conclusions

Undoubtedly, in statistics, the larger the amount of data, the more reliable the re-
sults. There is a case where partial relations are significantly stronger than zero-order
relationships (this association is shown in the original, aggregated table). Still, this weak
zero-order relationship is significantly amplified when a third variable is introduced, called
(in this case) a suppressor variable, to the point where the zero relationships are completely
reversed. A paradoxical phenomenon occurs, where the correlation (with respect to contin-
gency or association of data) implies the opposite causality (e.g., consequences precede
their causes, or contingency subgroups indicate opposite conclusions than aggregated
groups). For practical use, this is supplemented by a diagram of the stability of contingent
subgroups with an associated group, which allows for the easy identification of cases of
the data paradox.
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Subsequent research on this topic will be based on solving cases where the ratio of
marginal probabilities is outside the range of values. For this purpose, a theory of complex
probability will be introduced, which will use the direction vector of the square of a certain
phenomenon. This phenomenon will even make it possible to formally solve situations
where the ratio of marginal probabilities is outside the range of values. Furthermore,
this use of the direction vector of the square of a certain phenomenon will allow for
consistent and inconsistent cases of association to be differentiated in a different way and
for correlations to be made regarding the relation of causality.
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