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Abstract: The aim of this paper is to compute the exact solutions and conservation of a generalized
(1 + 1) dimensional system. This can be achieved by employing symbolic manipulation software
such as Maple, Mathematica, or MATLAB. In theoretical physics and in many scientific applications,
the mentioned system naturally arises. Time, space, and scaling transformation symmetries lead to
novel similarity reductions and new exact solutions. The solutions obtained include solitary waves
and cnoidal and snoidal waves. The familiarity of closed-form solutions of nonlinear ordinary and
partial differential equations enables numerical solvers and supports stability analysis. Although
many efforts have been dedicated to solving nonlinear evolution equations, there is no unified
method. To the best of our knowledge, this is the first time that Lie point symmetry analysis in
conjunction with an ansatz method has been applied on this underlying equation. It should also be
noted that the methods applied in this paper give a unique solution set that differs from the newly
reported solutions. In addition, we derive the conservation laws of the underlying system. It is also
worth mentioning that this is the first time that the conservation laws for the equation under study
are derived.

Keywords: auxiliary equations; associated solutions; Lie symmetry analysis; conservation laws

1. Introduction

The illustrious equation
ut + 6uux + uxxx = 0 (1)

is an example of a nonlinear evolution equation (NLEE) [1,2]. The term ut describes the
time evolution of the wave [3,4] and, as such, (1) is considered an evolution equation.
The nonlinear term uux accounts for the steepening of the wave [5,6], whereas the linear
dispersive term uxxx describes the spreading of the wave [7,8]. Moreover, this essential
equation illustrates the subtleties of solitary waves. Primarily, it was developed to portray
shallow water waves of long wavelength and small amplitude. Equation (1) is a significant
equation in the theory of integrable systems since it has an infinite number of conservation
laws, multiple-soliton solutions, and many other physical properties [1].

The modified KdV (mKdV) equation is similar

ut + 6u2ux + uxxx = 0 (2)

to the KdV equation in the sense that both of them are completely integrable, and each
has many conserved quantities. The mKdV equation arises in electric circuits and multi-
component plasmas. The mKdV equation yields algebraic soliton solutions in the form of
rational functions. The stability and instability circumstances of algebraic solitons of the
mKdV equation have been investigated extensively.
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Numerous variations of the above equations [9–12] have been introduced by many
scientists, especially coupled systems of the above equations. Among these variations is
the coupled KdV-mKdV system [12]:

ut + uxxx − 6uux + 3vvxxx + 3vxvxx − 3uxv2 + 6uvvx = 0, (3a)

vt + vxxx − 3v2vx − 3uvx + 3vux = 0. (3b)

The aim of this paper is to compute the exact solutions and conservation of a general-
ized (1 + 1) dimensional system:

ut + uxxx + auux + bvvxxx + bvxvxx − buxv2 + auvvx = 0, (4a)

vt + vxxx − bv2vx − buvx − bvux = 0, (4b)

where a and b are arbitrary constants. The motivation for computing closed-form solutions
of nonlinear ordinary and partial differential equations is that it enables numerical solvers
and supports stability analysis. Although many efforts have been dedicated to solving
nonlinear evolution equations, there is no unified method. To the best of our knowledge,
this is the first time that Lie point symmetry analysis in conjunction with an ansatz method
has been applied to this underlying equation. It should also be noted that the methods
applied in this paper give a unique solution set that differs from the newly reported
solutions. In addition, we derive the conservation laws of the underlying system. It is
also worth mentioning that this is the first time that the conservation laws for the equation
under study are derived.

2. Lie Point Symmetries of (4)

The infinitesimal generator [13–15]

Θ = ξ1(x, t, u, v)
∂

∂x
+ ξ2(x, t, u, v)

∂

∂t
+ η1(x, t, u, v)

∂

∂u
+ η2(x, t, u, v)

∂

∂v
, (5)

where ξ1(x, t, u, v), ξ2(x, t, u, v), η1(x, t, u, v), η2(x, t, u, v) are coefficient functions, is a point
symmetry of (4) if

Θ[3]
{

ut + uxxx + auux + bvvxxx + bvxvxx − buxv2 + auvvx, vt + vxxx − bv2vx − buvx − bvux

}∣∣∣∣
(ut+uxxx+auux+bvvxxx+bvxvxx−buxv2+auvvx=0),(vt+vxxx−bv2vx−buvx−bvux=0) = 0,

(6)

where Θ[3] is the third extension of (5). The infinitesimal invariance criterion (6) is consid-
ered the determining equation as it generates the defining or the determining equations
of (4). The above algorithmic procedure leads to following theorem courtesy of symbolic
manipulation.

Theorem 1. The infinitesimal point symmetries of (4) form the three-dimensional Lie algebra
spanned by the following linearly independent operators:

Θ1 =
∂

∂t
,

Θ2 =
∂

∂x
,

Θ3 = 3t
∂

∂t
+ x

∂

∂x
− 2u

∂

∂u
− v

∂

∂v
.

Remark 1. The operators Θ1, Θ2 denote time translation and space translation, respectively, and,
finally, the vector Θ3 represents a scaling transformation.

3. Point Symmetry Reductions of (4)

In this section, we derive point symmetry reductions. In order to achieve this goal,
one has to solve the associated system of Lagrange equations given by
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dx
ds

= ξ1(x, t, u, v), (7a)

dt
ds

= ξ1(x, t, u, v), (7b)

du
ds

= η1(x, t, u, v), (7c)

dv
ds

= η1(x, t, u, v). (7d)

We consider the following cases.
Case 1. k1Θ1 + k2Θ2 + k3Θ. Here, k1, k2, k3 are non-zero arbitrary real constants.

ζ =
k3x + k2

3
√

3k3t + k1k3
, u(x, t) =

F(ζ)

(3k3t + k1)
2/3 , v(x, t) =

G(ζ)
3
√

3k3t + k1
, (8)

where F(ζ), G(ζ) satisfy the following system:

G2bGζ + FbGζ + GbFζ + ζGζ k3 + Gk3 − Gζζζ = 0,

−FGaGζ + G2bFζ − FaFζ − GbGζζζ − Gζ Gζζb + ζFζk3 + 2Fk3 − Fζζζ = 0.

Case 2. k1Θ1 − k2Θ2

ζ = k1x + k2t + k3, u(x, t) = F(ζ), v(x, t) = G(ζ) (9)

where the functions F(ζ), G(ζ) satisfy

GbGζζζ k1
3 + bGζk1

3Gζζ + FGaGζ k1 − G2bFζk1 + FaFζ k1 + Fζζζk1
3 + Fζk2 = 0, (10a)

−G2bGζ k1 − FbGζ k1 − GbFζk1 + Gζζζk1
3 + Gζ k2 = 0. (10b)

4. Exact Solutions Using an Anstaz Method

An ansatz method is used to solve the system (10) and, as a result, we obtain the exact
solutions of our system (4).

Let us consider the solutions of (10) in the form

F(ζ) =
M

∑
i=0

Ai(Ψ(ζ))i, (11)

G(ζ) =
M

∑
i=0

Bi(Ψ(ζ))i, (12)

where Ψ(ζ) satisfies the associated auxiliary equation, M is a positive integer, and Ai,
Bi (i = 0, 1, · · · , M) are parameters to be determined. The auxiliary equations and their
associated solutions are given as follows:

Ψ′(ζ) = αΨ(ζ) + βΨ2(ζ). (13)

Ψ′(ζ) = αΨ2(ζ) + βΨ(ζ) + γ (14)

Ψ′(ζ)2 = Ψ(ζ)2(α + βΨ(ζ)), (15)

Ψ′(ζ)2 =
(

1−Ψ2(ζ)
)(

1−ω + ωΨ2(ζ)
)

(16)

Ψ′(ζ)2 =
(

1−Ψ2(ζ)
)(

1−ωΨ2(ζ)
)

(17)
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Ψ(ζ) = α

{
cosh[α(ζ + C)] + sinh[α(ζ + C)]

1− β cosh[α(ζ + C)]− β sinh[α(ζ + C)]

}
. (18)

Ψ(ζ) = − β

2α
− θ

2α
tanh

[
1
2

θ(ζ + C)
]

(19)

Ψ(ζ) = − β

2α
− θ

2α
tanh

(
1
2

θζ

)
+

sech
(

θζ
2

)
C cosh

(
θζ
2

)
− 2α

θ sinh
(

θζ
2

) , (20)

θ2 = β2 − 4αγ (21)

Ψ(ζ) = − α

β
sech2

[
1
2
√

α(ζ + C)
]

. (22)

Ψ(ζ) = cn(ζ|ω) (23)

Ψ(ζ) = sn(ζ|ω), (24)

respectively, and α, β, γ are non-zero arbitrary real constants.

4.1. Solutions of (4) Using (13)

The balancing procedure yields M = 4, N = 2 so the solutions of (10) are of the form

F(ζ) = A0 + A1Ψ(ζ) + A2Ψ(ζ)2 + A3Ψ(ζ)3 + A4Ψ(ζ)4, (25a)

G(ζ) = B0 + B1Ψ(ζ) + B2Ψ(ζ)2 (25b)

Substituting (25) into (10), making use of (13), and then equating all coefficients
of the functions Ψ(ζ)i to zero, we obtain an algebraic system of equations in terms of
A0, A1, A2, A3, A4 and B0, B1,B2. Upon solving the system of algebraic equations with the
aid of Mathematica, we obtain the following solutions:

u(x, t) = A0 + A1a
{

cosh[a(ζ + C)] + sinh[a(ζ + C)]
1− b cosh[a(ζ + C)]− b sinh[a(ζ + C)]

}
+A2a2

{
cosh[a(ζ + C)] + sinh[a(ζ + C)]

1− b cosh[a(ζ + C)]− b sinh[a(ζ + C)]

}2

+A3a3
{

cosh[a(ζ + C)] + sinh[a(ζ + C)]
1− b cosh[a(ζ + C)]− b sinh[a(ζ + C)]

}3

+A4a4
{

cosh[a(ζ + C)] + sinh[a(ζ + C)]
1− b cosh[a(ζ + C)]− b sinh[aFC(ζ + C)]

}4

(26a)

v(x, t) = B0 + B1a
{

cosh[a(ζ + C)] + sinh[a(ζ + C)]
1− b cosh[a(ζ + C)]− b sinh[a(ζ + C)]

}
+B2a2

{
cosh[a(ζ + C)] + sinh[a(ζ + C)]

1− b cosh[a(ζ + C)]− b sinh[a(ζ + C)]

}2

, (26b)

A0 = −13909320 k1
8β4α2 + 2925 k1

6B2
2α4 + 5826168 k1

5β4k2 − 50310 k1
3B2

2α2k2 − 17199 B2
2k2

2

42250 k1
4B2

2α2 − 25350 k1B2
2k2
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A1 = −972 k1
5β4α + 65 k1

3B2
2α3 + 39 k2B2

2α

1170 k1
3β3

,

A2 = −972 k1
5β4 + 455 k1

3B2
2α2 + 39 k2B2

2

1170 k1
3β2

,

A3 = −2 B2
2α

3 β
,

A4 = −B2
2

3
,

B0 = −−5832 k1
5β4 − 65 k1

3B2
2α2 − 39 k2B2

2

780 k1
3B2β2

,

B1 =
B2α

β
,

a =
26
3

,

b =
13
9

,

ζ = k1x + k2t + k3,

510, 183, 360 k1
10β8 − 4225 k1

6B2
4α4 − 1667952 B2

2k2k1
5β4 + 1521 B2

4k2
2 = 0.

The parameter B2 can be computed from the above fourth-degree polynomial in B2.

4.2. Solutions of (4) Using (14)

This subsection employs the methodology of the previous subsection and, consequently,
one obtains the following desired solutions. It should be pointed out that this procedure is
used in the following subsections. In this particular subsection, the solution is as follows:

A0 = − 1
3, 380, 000 k1

7α2γ2B2
2 − 1, 690, 000 β2k1

7α γ B2
2 + 211, 250 β4k1

7B2
2 − 76, 050 k1k2

2B2
2

{
3, 947, 097, 600 k1

11α6γ2

+860, 803, 200 β2k1
11α5γ + 69, 546, 600 β4k1

11α4 + 1, 872, 000 k1
9α3γ3B2

2 − 702, 000 β2k1
9α2γ2B2

2 + 14, 625 β6k1
9B2

2

+566, 870, 400 k1
8α5γ k2 + 70, 858, 800 β2k1

8α4k2 − 13, 150, 800 k1
6α2γ2k2B2

2 − 2, 691, 000 β2k1
6α γ k2B2

2

−242775 β4k1
6k2B2

2 + 17, 478, 504 k1
5α4k2

2 − 1, 895, 400 k1
3α γ k2

2B2
2 − 236, 925 β2k1

3k2
2B2

2 − 51, 597 k2
3B2

2
}

,

A1 = −972 β k1
5α4 + 520 β k1

3γ B2
2α + 65 k1

3B2
2β3 + 39 k2B2

2β

1170 α3k1
3 ,

A2 = −972 k1
5α4 + 520 B2

2k1
3γ α + 455 B2

2k1
3β2 + 39 k2B2

2

1170 k1
3α2

,

A3 = −2 B2
2β

3 α
,

A4 = −B2
2

3
,

B0 = −−5832 k1
5α4 − 520 B2

2k1
3γ α− 65 B2

2k1
3β2 − 39 k2B2

2

780 α2B2k1
3 ,

B1 =
B2β

α
,

a =
26
3

,

b =
13
9

,

ζ = k1x + k2t + k3,

−510, 183, 360 α8k1
10 + 67, 600 α2γ2B2

4k1
6 − 33, 800 α β2γ B2

4k1
6 + 4225 β4B2

4k1
6 + 1, 667, 952 α4B2

2k1
5k2

−1521 B2
4k2

2 = 0.
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Note that parameter B2 can be computed from the fourth-degree polynomial in B2.

u(x, t) = A0 + A1

{
− β

2α
− θ

2α
tanh

[
1
2

θ(ζ + C)
]}

+A2

{
− β

2α
− θ

2α
tanh

[
1
2

θ(ζ + C)
]}2

+A3

{
− β

2α
− θ

2α
tanh

[
1
2

θ(ζ + C)
]}3

+A4

{
− β

2α
− θ

2α
tanh

[
1
2

θ(ζ + C)
]}4

(27a)

v(x, t) = B0 + B1

{
− β

2α
− θ

2α
tanh

[
1
2

θ(ζ + C)
]}

+B2

{
− β

2α
− θ

2α
tanh

[
1
2

θ(ζ + C)
]}2

, (27b)

u(x, t) = A0 + A1

{
− β

2α
− θ

2α
tanh

(
1
2

θζ

)
+

sech
(

θζ
2

)
C cosh

(
θζ
2

)
− 2α

θ sinh
(

θζ
2

)}

+A2

{
− β

2α
− θ

2α
tanh

(
1
2

θζ

)
+

sech
(

θζ
2

)
C cosh

(
θζ
2

)
− 2α

θ sinh
(

θζ
2

)}2

+A3

{
− β

2α
− θ

2α
tanh

(
1
2

θζ

)
+

sech
(

θζ
2

)
C cosh

(
θζ
2

)
− 2α

θ sinh
(

θζ
2

)}3

+A4

{
− β

2α
− θ

2α
tanh

(
1
2

θζ

)
+

sech
(

θζ
2

)
C cosh

(
θζ
2

)
− 2α

θ sinh
(

θζ
2

)}4

, (28a)

v(x, t) = B0 + B1

{
− β

2α
− θ

2α
tanh

(
1
2

θζ

)
+

sech
(

θζ
2

)
C cosh

(
θζ
2

)
− 2α

θ sinh
(

θζ
2

)}

+B2

{
− β

2α
− θ

2α
tanh

(
1
2

θζ

)
+

sech
(

θζ
2

)
C cosh

(
θζ
2

)
− 2α

θ sinh
(

θζ
2

)}2

. (28b)

4.3. Solutions of (4) Using (15)

This subsection aims to employ the methodology in Section 4.1. This leads to the
following solutions of the system (4):

u(x, t) = A0 + A1

{
− α

β
sech2

[
1
2
√

α(ζ + C)
]}

+A2

{
− α

β
sech2

[
1
2
√

α(ζ + C)
]}2

+A3

{
− α

β
sech2

[
1
2
√

α(ζ + C)
]}3

+A4

{
− α

β
sech2

[
1
2
√

α(ζ + C)
]}4

, (29a)

v(x, t) = B0 + B1

{
− α

β
sech2

[
1
2
√

α(ζ + C)
]}

+B2

{
− α

β
sech2

[
1
2
√

α(ζ + C)
]}2

, (29b)
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A0 = −1, 738, 665 k1
8β2α + 5850 k1

6α2B1
2 + 728, 271 k1

5β2k2 − 100, 620 k1
3k2α B1

2 − 34, 398 k2
2B1

2

84, 500 k1
4α B1

2 − 50, 700 k1k2B1
2 ,

A1 = −243 k1
5β2 + 260 k1

3α B1
2 + 156 k2B1

2

1170 k1
3β

,

A2 = −B1
2

3
,

A3 = 0,

A4 = 0,

B0 = −−729 k1
5β2 − 130 k1

3α B1
2 − 78 k2B1

2

390 β B1k1
3 ,

B2 = 0,

a =
26
3

,

b =
13
9

,

ζ = k1x + k2t + k3,

7, 971, 615 β4k1
10 − 16, 900 α2B1

4k1
6 − 416, 988 β2B1

2k1
5k2 + 6084 B1

4k2
2 = 0,

It must be mentioned that parameter B1 can be computed symbolically from the above
fourth-degree polynomial in B1.

4.4. Solutions of (4) Using (16)

This subsection aims to substitute (25) into (10) by making use of (16) and then
equating all coefficients of the functions Ψ(ζ)i to zero; we obtain an algebraic system of
equations in terms of A0, A1, A2, A3, A4 and B0, B1,B2. Solving this system, one obtains the
following solutions:

u(x, t) = A0 + A1cn(ζ|ω) + A2cn2(ζ|ω) + A3cn3(ζ|ω) + A4cn4(ζ|ω), (30a)

v(t, x) = B0 + B1cn(ζ|ω) + B2cn2(ζ|ω) + B3cn3(ζ|ω) + B4cn4(ζ|ω), (30b)

A0 = − 1
821, 340, 000 ω2B2

2k1
7 − 821, 340, 000 ω B2

2k1
7 + 821, 340, 000 B2

2k1
7 − 18, 480, 150 B2

2k1k2
2

{
454, 896, 000 ω3B2

2k1
9

−959, 144, 716, 800 ω3k1
11 + 127, 088, 000 k1

7ω2B2
4 − 682, 344, 000 ω2B2

2k1
9 + 270, 397, 180, 800 ω2k1

11

+137, 749, 507, 200 ω3k1
8k2 − 127, 088, 000 k1

7ω B2
4 + 682, 344, 000 ω B2

2k1
9 − 59, 894, 640 ω2B2

2k1
6k2

−68, 874, 753, 600 ω2k1
8k2 + 127, 088, 000 k1

7B2
4 − 227, 448, 000 B2

2k1
9 + 3, 195, 644, 400 ω B2

2k1
6k2

+4, 247, 276, 472 ω2k1
5k2

2 − 943, 909, 200 B2
2k1

6k2 − 460, 582, 200 ω B2
2k1

3k2
2 − 2, 859, 480 k1B2

4k2
2

+230, 291, 100 B2
2k1

3k2
2 − 12, 538, 071 B2

2k2
3
}

,

A1 = 0,

A2 = −−972 ω2k1
5 − 520 ω B2

2k1
3 + 260 B2

2k1
3 − 39 B2

2k2

1170 ω k1
3 ,

A3 = 0,

A4 = −B2
2

3
,

B0 = −5832 ω2k1
5 + 520 ω B2

2k1
3 − 260 B2

2k1
3 + 39 B2

2k2

780 ω B2k1
3 ,

B1 = 0,

a =
26
3

,

b =
13
9

,

510, 183, 360 ω4k1
10 − 67, 600 ω2B2

4k1
6 + 67, 600 ω B2

4k1
6 − 1, 667, 952 ω2B2

2k1
5k2 − 67, 600 B2

4k1
6 + 1521 B2

4k2
2 = 0,

ζ = k1x + k2t + k3.
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The term B2 can be computed from the fourth-degree polynomial in B2.

4.5. Solutions of (4) Using (17)

Here, we aim to employ the methodology of Section 4.4 and, as a result, one obtains
the following solutions:

u(x, t) = A0 + A1sn(ζ|ω) + A2sn2(ζ|ω) + A3sn3(ζ|ω) + A4sn4(ζ|ω), (31a)

v(x, t) = B0 + B1sn(ζ|ω) + B2sn2(ζ|ω) + B3sn3(ζ|ω) + B4sn4(ζ|ω), (31b)

A0 = − 1
821, 340, 000 ω2B2

2k1
7 − 821, 340, 000 ω B2

2k1
7 + 821, 340, 000 B2

2k1
7 − 18, 480, 150 B2

2k1k2
2

{
−227, 448, 000 ω3B2

2k1
9 + 418, 350, 355, 200 ω3k1

11 + 35, 828, 000 ω2B2
4k1

7 + 270, 397, 180, 800 ω2k1
11

−68, 874, 753, 600 ω3k1
8k2 − 35, 828, 000 ω B2

4k1
7 − 59, 894, 640 ω2B2

2k1
6k2 − 688, 74, 753, 600 ω2k1

8k2

+35, 828, 000 B2
4k1

7 − 227, 448, 000 B2
2k1

9 − 1, 307, 826, 000 ω B2
2k1

6k2 + 4, 247, 276, 472 ω2k1
5k2

2

−943, 909, 200 B2
2k1

6k2 + 230, 291, 100 ω B2
2k1

3k2
2 − 806, 130 B2

4k1k2
2 + 230, 291, 100 B2

2k1
3k2

2 − 12, 538, 071 B2
2k2

3
}

,

A1 = 0,

A2 = −972 ω2k1
5 − 260 ω B2

2k1
3 − 260 B2

2k1
3 + 39 B2

2k2

1170 ω k1
3 ,

A3 = 0,

A4 = −B2
2

3
,

B0 = −−5832 ω2k1
5 + 260 ω B2

2k1
3 + 260 B2

2k1
3 − 39 B2

2k2

780 ω B2k1
3 ,

B1 = 0,

a =
26
3

,

b =
13
9

,

510, 183, 360 ω4k1
10 − 67, 600 ω2B2

4k1
6 + 67, 600 ω B2

4k1
6 − 1, 667, 952 ω2B2

2k1
5k2 − 67, 600 B2

4k1
6 + 1521 B2

4k2
2 = 0,

ζ = k1x + k2t + k3.

Note that B2 can be computed from the fourth-degree polynomial in B2.

Remark 2. The functions cn(ζ|ω), sn(ζ|ω) have the following features:

(i) When ω → 1 converts to cn(ζ|ω)→ sech(ζ), sn(ζ|ω)→ tanh(ζ).
(ii) When ω → 0 transforms to cn(ζ|ω)→ cos(ζ), sn(ζ|ω)→ sin(ζ).
(iii) nc(ζ|ω) = 1

cn(ζ|ω)
, ns(ζ|ω) = 1

sn(ζ|ω)
.

Remark 3. Various methods to solve partial differential equations have been presented in the
literature; there is no unified method. Here, for the first time, the above ansatz method is applied to
search solutions for the underlying system. The familiarity of closed-form solutions of nonlinear
ordinary and partial differential equations enables numerical solvers and supports stability analysis.
Closed-form solutions of nonlinear ordinary and partial differential equations can serve as bench-
marks against numerical simulations of the underlying equation. Indeed, the exact solutions offered
in this paper relate to homoclinic and heteroclinic orbits in phase space, which are the separatrices of
steady and volatile regions.

5. Conservation Laws

A local conservation law is of the form [13]

DtΞ1 + DxΞ2 = 0, (32)
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which holds for all solutions of Equation (4). Ξ1 is a conserved density, while Ξ2 denotes
spatial flux. Ξi(i = 1, 2) are functions of t, x, u, v and derivatives of u, v. The multipliers
Γi(i = 1, 2) of Equation (4) are determined by invoking the Euler Lagrange operator on
Equation (4) and we obtain

δ

δu
(Γ1)

(
ut + uxxx + auux + bvvxxx + bvxvxx − buxv2 + auvvx

)
= 0, (33a)

δ

δv
(Γ2)

(
vt + vxxx − bv2vx − buvx − bvux

)
= 0. (33b)

Solving the above equations prompts this proposition.

Proposition 1. A generalized (1 + 1) dimensional system (4) admits the multiplier of the form

Γ1 = C1, (34a)

Γ2 = − (a + 2b)v
b

C1 + C2. (34b)

Thus, corresponding to the above multiplier, we derive the following conserved
vectors:

Ξt
1 =

2 ub− v2a− 2 v2b
2b

,

Ξx
1 =

1
4b

(
v4ab + 2 v4b2 + 4 uv2ab + 4 uv2b2 + 2 u2ab + 4 vvxx b2 − 4 vvxx a− 8 vvxx b

+2 v2
xa + 4 v2

xb + 4 uxx b
)

;

Ξt
2 = v,

Ξx
2 = −1

3
v3b− uvb + vxx.

Remark 4. Conservation laws are valuable in the numerical integration of partial differential
equations—for example, to control numerical errors. The Korteweg–de Vries equation’s conservation
laws were the primary point of discovery for many approaches to solving evolutionary equations.
Conservation laws play a fundamental role in the theory of non-classical transformations, standard
forms, and asymptotic integrability.

6. Concluding Remarks

Modern group analysis was systematically performed here, pioneering a generalized
(1 + 1) dimensional system. The infinitesimal generators consisted of time translation,
space translation, and a scaling transformation. Similarity reductions and exact solutions
with an ansatz method were derived. Finally, conservation laws were computed.
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