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Abstract: This paper centers on a discrete-time retrial queue where the server experiences breakdowns
and repairs when arriving customers may opt to follow a discipline of a last-come, first-served (LCFS)-
type or to join the orbit. We focused on the extensive analysis of the system, and we obtained the
stationary distributions of the number of customers in the orbit and in the system by applying the
generation function (GF). We provide the stochastic decomposition law and the application bounds
for the proximity between the steady-state distributions for the queueing system under consideration
and its corresponding standard system. We developed recursive formulae aimed at the calculation of
the steady-state of the orbit and the system. We proved that our discrete-time system approximates
M/G/1 with breakdowns and repairs. We analyzed the busy period of an auxiliary system, the
objective of which was to study the customer’s delay. The stationary distribution of a customer’s
sojourn in the orbit and in the system was the object of a thorough and complete study. Finally,
we provide numerical examples that outline the effect of the parameters on several performance
characteristics and a conclusions section resuming the main research contributions of the paper.

Keywords: discrete-time queueing system; general retrial times; breakdown; repairs; sojourn times

1. Introduction

Queueing systems are an important tool in different applications such as performance
analysis and modeling. These types of systems are in our everyday life activities, and
the theory of queueing systems was developed to provide models for forecasting the
behaviors of systems subject to random demand. The practical and useful applications of
discrete-time queues motivate researchers to continue investigating these models.

Service disruptions are an inescapable occurrence in a wide variety of real-world cir-
cumstances. In actuality, we often encounter a situation when a server fails and can be fixed.
The applications of such models can be found in the areas of computer communication
networks and flexible manufacturing systems. For a general survey on service disruptions,
we refer to [1–4].

Numerous queueing systems may serve tasks repeatedly for a variety of reasons.
When a job is not performed satisfactorily, the task may be repeated as many times as
required until the task is completed successfully. This kind of queueing system arises in
the stochastic modeling of a wide variety of real-world scenarios. For example, in data
transmission, a packet transmitted from the source to the destination can be returned
or it can continue until the packet is finally transmitted. In the retrial group, upon the
completion of each service, the server will remain idle in the system until the arrival of the
next primary or retrial task.

A retrial queueing model is characterized by the fact that when an arriving customer
or task encounters a busy server, it is displaced or expelled by the system, as illustrated
in [5,6], and thus neither joins the waiting line nor exits the system immediately, but
instead, travels to some virtual space, called the orbit, and retries obtaining service after
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some random time. For a study of this subject, see [1]; for engineering applications, see [7];
for communication network applications, see [8,9].

Such queueing systems arise in many communication protocols, local area networks,
wireless and computer networks, and everyday life situations. For a general survey on
retrial queues and a summary of many results, we refer to [10–12].

The rest of this work is organized in the following manner. The next section discusses
the assumptions of the queueing system. Section 3 is devoted to the Markov chain. The
queue and system size distributions are determined in conjunction with numerous system
performance measures. Section 4 presents a stochastic decomposition property and, as an
application, upper and lower bounds on the distance between the studied system’s steady-
state distribution and its corresponding standard system. In Section 5, we devise recursive
formulas to determine the steady-state distributions of the orbit and system sizes. Section 6
examines the relationship between continuous-time and discrete-time systems. In Section 7,
the busy period of an auxiliary system is determined, which is valuable for analyzing
customer delay. In Section 8, we detail the sojourn periods of a customer in the queue
and across the system, along with their associated methods. Section 9 contains numerical
findings illustrating the influence of the settings on a variety of performance factors. Finally,
a conclusions section is offered that discusses the paper’s primary scientific contributions.

2. The Mathematical Model

In this section, we present the mathematical model that was used in this work. Specif-
ically, we considered a discrete-time queueing system where the time axis is split into a
sequence of equal intervals, 0, 1, . . . , m, . . . , called slots. We assumed that arrivals, depar-
tures, retrials, and repairs (all queueing activities) take place around the slot boundaries.
We considered the epoch m and supposed that the departure and ending of repairs occur in
the interval (m−, m) and the arrivals, beginning of repairs, and retrials occur in the interval
(m, m+), in this order.

The stream of incoming customers into the system is described by means of a Bernoulli
process where a is the probability that an arrival occurs in a slot. If an arriving customer
finds the server idle, it begins its service immediately; otherwise, the following two situa-
tions can occur: (1) with probability θ, the arriving customer is expels from the system the
customer that is currently being served and begins its service or (2) with complementary
probability θ̄, it enters a group of blocked customers called the “orbit” in accordance with a
first-come, first-served (FCFS) discipline. We assumed that only the customer at the head
of the orbit is allowed access to the server. During a service time, failures in the server may
occur, and in this case, the customer that was taking its service is placed at the head of the
orbit. Customers that enter the system when the server is down go directly to the orbit. It
was assumed that the server lifetime is geometrically distributed with parameter ν = 1− ν̄,
where ν is the probability that a failure does not occur in a slot.

Successive inter-retrial times are governed by an arbitrary distribution {ai}∞
i=0 with

generating function A(x) =
∞

∑
i=0

aixi. The service times are independent and distributed

with arbitrary distribution {si}∞
i=1 and generating function S(x) =

∞

∑
i=1

sixi. Hence, si is the

probability that a service lasts i slots. The probability that the service times last no less than

k slots is denoted by Sk =
∞

∑
i=k

si. The repair times are governed by an arbitrary distribution

{ri}∞
i=1 with generating function R(x) =

∞

∑
i=1

rixi.
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3. The Markov Chain

At time m+, the state of the system can be described by the process:

Ym =
(

Cm, ξ0,m, ξ1,m, ξ2,m, Nm

)
where Cm denotes the state of the server, 0, 1, or 2 according to whether the server is
free, busy, or under repair, and Nm is the number of repeat customers: iff Cm = 0 and
Nm > 0, ξ0,m represents the remaining retrial time; if Cm = 1, 2 ξ1,m and ξ2,m correspond
to the remaining service and repair time, respectively.

It can be shown that {Ym : m ∈ N} is the Markov chain of the queueing system,
whose states space is:{

(0, 0); (0, i, k) : i ≥ 1, k ≥ 1; (1, i, k) : i ≥ 1, k ≥ 0; (2, i, k) : i ≥ 1, k ≥ 1
}

.

Our objective is to find the stationary distribution:

π0,0 = lim
m→∞

P[Cm = 0, Nm = 0]

π0,i,k = lim
m→∞

P[Cm = 0, ξ0,m = i, Nm = k]; i ≥ 1, k ≥ 1,

π1,i,k = lim
m→∞

P[Cm = 1, ξ1,m = i, Nm = k]; i ≥ 1, k ≥ 0,

π2,i,k = lim
m→∞

P[Cm = 2, ξ2,m = i, Nm = k]; i ≥ 1, k ≥ 1,

of the Markov chain {Ym : m ∈ N}.
The system of equilibrium equations (SEE) for the stationary distribution is:

π0,0 = āπ0,0 + āπ1,1,0 ⇐⇒ aπ0,0 = āπ1,1,0 (1)

π0,i,k = āπ0,i+1,k + āaiπ1,1,k + āaiπ2,1,k; i ≥ 1, k ≥ 1, (2)

π1,i,k = δ0,kasiπ0,0 + āsiπ0,1,k+1 + (1− δ0,k)asi

∞

∑
j=1

π0,j,k +

+ asiπ1,1,k + āa0siπ1,1,k+1 +

+ (1− δ0,k)aθ̄νπ1,i+1,k−1 + āνπ1,i+1,k +

+ aθsi

∞

∑
j=2

π1,j,k +

+ (1− δ0,k)asiπ2,1,k + āa0siπ2,1,k+1, i ≥ 1, k ≥ 0, (3)

π2,i,k = (1− δ1,k)aπ2,i+1,k−1 + āπ2,i+1,k +

+ (1− δ1,k)aθ̄ν̄ri

∞

∑
j=2

π1,j,k−2 +

+ āν̄ri

∞

∑
j=2

π1,j,k−1; i ≥ 1, k ≥ 1, (4)

where ā = 1− a and δi,j denotes Kronecker’s delta.
The normalization condition is:

π0,0 +
∞

∑
i=1

∞

∑
k=1

π0,i,k +
∞

∑
i=1

∞

∑
k=0

π1,i,k +
∞

∑
i=1

∞

∑
k=1

π2,i,k = 1.
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To solve Equations (1)–(4), we use the following generating functions:

ϕ0(x, z) =
∞

∑
i=1

∞

∑
k=1

π0,i,kxizk

ϕ1(x, z) =
∞

∑
i=1

∞

∑
k=0

π1,i,kxizk

ϕ2(x, z) =
∞

∑
i=1

∞

∑
k=1

π2,i,kxizk,

and the auxiliary generating functions:

ϕ0,i(z) =
∞

∑
k=1

π0,i,kzk, i ≥ 1

ϕ1,i(z) =
∞

∑
k=0

π1,i,kzk, i ≥ 1

ϕ2(x, z) =
∞

∑
k=1

π2,i,kzk, i ≥ 1.

Multiplying (2)–(4) by zk, summing over k, and taking into account (1), these equa-
tions become:

ϕ0,i(z) = āϕ0,i+1(z) + āai ϕ1,1(z) + āai ϕ2,1(z)− aaiπ0,0, i ≥ 1 (5)

ϕ1,i(z) = (ā + aθ̄z)νϕ1,i+1(z) +
ā
z

si ϕ0,1(z) + asi ϕ0(1, z) +

+
āa0 + aθ̄z

z
si ϕ1,1(z) + aθsi ϕ1(1, z) +

+
āa0 + az

z
s1 ϕ2,1(z) +

z− a0

z
asiπ0,0, i ≥ 1, (6)

ϕ2,i(z) = (ā + az)ϕ2,i+1(z) + (ā + aθ̄z)zν̄ri ϕ1(1, z)−
− (ā + aθ̄z)zν̄ri ϕ1,1(z), i ≥ 1, (7)

Then, multiplying (5)–(7) by xi and summing over i lead to:

x− ā
x

ϕ0(x, z) = ā[A(x)− a0]ϕ1,1(z) + ā[A(x)− a0]ϕ2,1(z)−

− āϕ0,1(z)− a[A(x)− a0]π0,0, (8)

z
x− (ā + aθ̄z)ν

x
ϕ1(x, z) = āS(x)ϕ0,1(z) + azS(x)ϕ0(1, z) +

+ [(āa0 + aθ̄z)S(x)− z(ā + aθ̄z)ν]ϕ1,1(z) +

+ aθzS(x)ϕ1(1, z) + (āa0 + az)S(x)ϕ2,1(z) +

+ (z− a0)aS(x)π0,0 (9)
x− (ā + az)

x
ϕ2(x, z) = (ā + aθ̄z)zν̄R(x)ϕ1(1, z)−

− (ā + aθ̄z)zν̄R(x)ϕ1,1(z)− (ā + az)ϕ2,1(z), (10)
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Choosing x = 1 in (8) yields:

aϕ0(1, z) = ā(1− a0)ϕ1,1(z) + ā(1− a0)ϕ2,1(z)− āϕ0,1(z)−
− a(1− a0)π0,0, (11)

and inserting (11) in (9) gives:

z
x− (ā + aθ̄z)ν

x
ϕ1(x, z) = ā(1− z)S(x)ϕ0,1(z) +

+
[(

āa0(1− z) + (ā + aθ̄)z
)

S(x)−

− z(ā + aθ̄z)ν
]

ϕ1,1(z) + aθzS(x)ϕ1(1, z) +

+ [z + āa0(1− z)]S(x)ϕ2,1(z)−
− aa0(1− z)S(x)π0,0 (12)

while setting x = 1 in (12) yields:

zk(z)ϕ1(1, z) = ā(1− z)ϕ0,1(z) + [āa0(1− z) + zk(z)]ϕ1,1(z) +

+ [z + āa0(1− z)]ϕ2,1(z)− aa0(1− z)π0,0. (13)

where k(z) = 1− aθ − (ā + aθ̄z)ν.
From (10), (12), and (13), we obtain:

zk(z)
x− (ā + aθ̄z)ν

x
ϕ1(x, z) = ā(1− z)[1− (ā + aθ̄z)ν]S(x)ϕ0,1(z) +

+
[(

zk(z) + āa0(1− z)[1− (ā + aθ̄z)ν]
)

S(x)−

− zk(z)(ā + aθ̄z)ν
]

ϕ1,1(z) +

+ [z + āa0(1− z)][1− (ā + aθ̄z)ν]S(x)ϕ2,1(z)−
− aa0(1− z)[1− (ā + aθ̄z)ν]S(x)π0,0 (14)

k(z)
x− (ā + az)

x
ϕ2(x, z) = ā(1− z)(ā + aθ̄z)ν̄R(x)ϕ0,1(z) +

+ āa0(1− z)(ā + aθ̄z)ν̄R(x)ϕ1,1(z) +

+
[
[z + āa0(1− z)](ā + aθ̄z)ν̄R(x)−

− (ā + az)k(z)
]

ϕ2,1(z)−

− aa0(1− z)(ā + aθ̄z)ν̄R(x)π0,0 (15)

Setting x = ā in (8), x = (ā + aθ̄z)ν in (14), and x = ā + az in (15), we obtain:
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a[A(ā)− a0]π0,0 = ā[A(ā)− a0]ϕ1,1(z) + ā[A(ā)− a0]ϕ2,1(z)− āϕ0,1(z)

aa0(1− z)
[
1− (ā + aθ̄z)ν

]
S
[
(ā + aθ̄z)ν

]
π0,0 =

= ā(1− z)
[
1− (ā + aθ̄z)ν

]
S
[
(ā + aθ̄z)ν

]
ϕ0,1(z) +

+
[(

zk(z) + āa0[1− z][1− (ā + aθ̄z)ν]
)

S[(ā + aθ̄z)ν]−

− zk(z)(ā + aθ̄z)ν
]

ϕ1,1(z) +
[
z +

+ āa0(1− z)
][

1− (ā + aθ̄z)ν
]
S
[
(ā + aθ̄z)ν

]
ϕ2,1(z),

aa0(1− z)(ā + aθ̄z)ν̄R(ā + az)π0,0 =

= ā(1− z)(ā + aθ̄z)ν̄R(ā + az)ϕ0,1(z) +

+ āa0(1− z)(ā + aθ̄z)ν̄R(ā + az)ϕ1,1(z) +

+
[
[z + āa0(1− z)](ā + aθ̄z)ν̄R(ā + az)−

− (ā + az)k(z)
]

ϕ2,1(z),

and from the above system, we obtain the generating functions ϕ0,1(z), ϕ1,1(z), and ϕ2,1(z):

ϕ0,1(z) =
1

D(z)

[
az
[

A(ā)− a0

][
(ā + aθ̄z)ν− S[(ā + aθ̄z)ν]

]
·

·
[
(ā + az)k(z)− z(ā + aθ̄z)ν̄R(ā + az)

]]π0,0

ā
(16)

ϕ1,1(z) =
aA(ā)(1− z)

[
1− (ā + aθ̄z)ν

]
(ā + az)S

[
(ā + aθ̄z)ν

]
D(z)

π0,0 (17)

ϕ2,1(z) =
1

D(z)

[
azA(ā)(1− z)(ā + aθ̄z)ν̄R(ā + az) ·

·
[
(ā + aθ̄z)ν− S[(ā + aθ̄z)ν]

]]
π0,0 (18)

where:

D(z) = āA(ā)(1− z)(ā + az)
[
1− (ā + aθ̄z)ν

]
S[(ā + aθ̄z)ν]−

− z
[
(ā + aθ̄z)ν− S[(ā + aθ̄z)ν]

]{
(ā + az)k(z)−

−
[
z + āA(ā)(1− z)

]
(ā + aθ̄z)ν̄R(ā + az)

}
.

Substituting (16), (17), and (18) into (8), (14), and (15), we have the generating functions:

ϕ0(x, z) =
A(x)− A(ā)

x− ā
·

·
axz
[
(ā + aθ̄z)ν− S[(ā + aθ̄z)ν]

][
(ā + az)k(z)− z(ā + aθ̄z)ν̄R(ā + az)

]
D(z)

π0,0 (19)
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ϕ1(x, z) =
S(x)− S

[
(ā + aθ̄z)ν

]
x− (ā + aθ̄z)ν

·

·
axA(ā)(1− z)

[
1− (ā + aθ̄z)ν

]
(ā + aθ̄z)ν(ā + az)

D(z)
π0,0 (20)

ϕ2(x, z) =
R(x)− R(ā + az)

x− (ā + az)
·

·
axzA(ā)(1− z)(ā + aθ̄z)ν̄(ā + az)

[
(ā + aθ̄z)ν− S[(ā + aθ̄z)ν]

]
D(z)

π0,0. (21)

Using the normalization condition, which can be written as π0,0 + ϕ0(1, 1) + ϕ1(1, 1) +
ϕ2(1, 1) = 1, we can find the unknown constant π0,0:

π0,0 =
−D′(1)

(ā + aθ̄)
[

aθν + ν̄S[(ā + aθ̄)ν]
]

A(ā)
, (22)

where:

−D′(1) = āA(ā)
[
1− (ā + aθ̄)ν

]
S
[
(ā + aθ̄)ν

]
−

−
[
(ā + aθ̄)ν− S[(ā + aθ̄)ν]

][
aθ̄ +

+ (ā + aθ̄)ν̄
[

ā[1− A(ā)] + aR′(1)
]]

(23)

We suppose that the condition:

−D′(1) > 0 (24)

is fulfilled in the rest of the paper.
We summarize the above results in the following theorem.

Theorem 1. The generating functions of the stationary distribution of the Markov chain
{Ym : m ∈ N} are given by:

ϕ0(x, z) =
A(x)− A(ā)

x− ā
·

·
axz
[
(ā + aθ̄z)ν− S[(ā + aθ̄z)ν]

][
(ā + az)k(z)− z(ā + aθ̄z)ν̄R(ā + az)

]
D(z)

π0,0

ϕ1(x, z) =
S(x)− S[(ā + aθ̄z)ν]

x− (ā + aθ̄z)ν
·

·
axA(ā)(1− z)

[
1− (ā + aθ̄z)ν

]
(ā + aθ̄z)ν(ā + az)

D(z)
π0,0

ϕ2(x, z) =
R(x)− R(ā + az)

x− (ā + az)
·

·
axzA(ā)(1− z)(ā + aθ̄z)ν̄(ā + az)

[
(ā + aθ̄z)ν− S[(ā + aθ̄z)ν]

]
D(z)

π0,0
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where:

D(z) = āA(ā)(1− z)(ā + az)
[
1− (ā + aθ̄z)ν

]
S
[
(ā + aθ̄z)ν

]
−

− z
[
(ā + aθ̄z)ν− S[(ā + aθ̄z)ν]

]{
(ā + az)k(z)−

−
[
z + āA(ā)(1− z)

]
(ā + aθ̄z)ν̄R(ā + az)

}
.

π0,0 =
−D′(1)

(ā + aθ̄)
[

aθν + ν̄S[(ā + aθ̄)ν]
]

A(ā)
,

and:

D′(1) = āA(ā)
[
1− (ā + aθ̄)ν

]
S
[
(ā + aθ̄)ν

]
−

−
[
(ā + aθ̄)ν− S[(ā + aθ̄)ν]

][
aθ̄ + (ā + aθ̄)ν̄

[
ā[1− A(ā)] + aR′(1)

]]

Corollary 1. 1. The probability-generating function of the number of customers in the retrial
group (i.e., of the variable N) is given by:

ψ(z) = π0,0 + ϕ0(1, z) + ϕ1(1, z) + ϕ2(1, z) =

=
(1− z)(ā + az)(ā + aθ̄z)

[
a(1− θ̄z)ν + ν̄S[(ā + aθ̄z)ν]

]
D(z)

A(ā)π0,0;

2. The probability-generating function of the number of customers in the system (i.e., of the
variable L) is given by:

Φ(z) = π0,0 + ϕ0(1, z) + zϕ1(1, z) + ϕ2(1, z) =

=
(1− z)(ā + az)(ā + aθ̄z)

[
aθνz + [1− (ā + az)ν]S[(ā + aθ̄z)ν]

]
D(z)

A(ā)π0,0

Corollary 2. 1. The mean number of customers in the retrial group is given by:

E[N] = ψ′(1) =
5
4

where:

5 = 2aD′(1)
{
[aθν + ν̄](ā + (1 + a)θ̄)− θ̄ν(ā + aθ̄)

[
1− ν̄S′[(ā + aθ̄)ν)]

]}
− (ā + aθ̄)

[
aθν + ν̄S[(ā + aθ̄)ν]

]
D′′(1)

and:

4 = 2D′(1)(ā + aθ̄)
[

aθν + ν̄S[(ā + aθ̄)ν]

with:

D′′(1)
2

= −aāA(ā)[1− (ā + aθ̄)ν][S[(ā + aθ̄)ν] + aθ̄νS′[(ā + aθ̄)ν]] +

+ [ā + 2aθ̄ν− S[(ā + aθ̄)ν− aθ̄νS′[(ā + aθ̄)ν]][a + (ā +

+ aθ̄)ν̄[ā[1− A(ā)] + aR′(1)]] + a[(ā + aθ̄)ν− S[(ā + aθ̄)ν]][a(1− θ̄ν̄) +

+ [1− āA(ā)](θ̄ν + (ā + 2aθ̄ν̄)R′(1)) +
1
2
(ā + aθ̄)ν̄a2R′′(1)];
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2. The mean number of customers in the system is:

E[L] = Φ′(1) = E[N] + ϕ1(1, 1),

where:

ϕ1(1, 1) =
1− S

[
(ā + aθ̄)ν

]
aθν + ν̄S

[
(ā + aθ̄)ν

] aν.

4. Stochastic Decomposition

Queueing systems with server vacations are studied using the stochastic decomposi-
tion law; see, for example, [13]. The above-mentioned law defines the distribution of the
number of customers in the system as the sum of two independent random variables. One
of them is the number of customers in the corresponding standard queueing system, which
is the system without vacations. The second variable is the size of the system when the
server is on vacation.

In [14,15], the stochastic decomposition in some discrete-time queueing systems was
studied. This decomposition has also been analyzed for discrete-time Geo/G/1 retrial
queues; see [5,16–18]. The system under study can be considered as a standard queue
Geo/G/1/∞ with server breakdowns, repairs, and server vacations. This model describes
a server that starts its vacation when a previous service finishes and there are no arrivals or
retrials. The duration of the vacation depends on the arrival process and inter-retrial times.
The vacation ends whenever an activity in the system is recognized, that is if an external
customer arrives or a repeat customer retries for service.

The probability-generating function Φ(z) of the number of customers in the system
can be written as:

Φ(z) = Φ∗(z) · π0,0 + ϕ0(1, z)
π0,0 + ϕ0(1, 1)

,

where the first factor Φ∗(z) is:

Φ∗(z) =
(1− z)(ā + aθ̄z)

[
aθνz + [1− (ā + az)ν]S[(ā + aθ̄z)ν]

]
ā(1− z)

[
1− (ā + aθ̄z)ν

]
S
[
(ā + aθ̄z)ν

]
− z
[
(ā + aθ̄z)ν− S[(ā + aθ̄z)ν]

](
k(z)− (ā + aθ̄z)ν̄R(ā + az)

) · π∗0 ,

with:

π∗0 =
ā(ν̄ + aθν)S

[
(ā + aθ̄)ν

]
−
[
(ā + aθ̄)ν− S[(ā + aθ̄)ν]

]
(aθ̄ + (ā + aθ̄)ν̄aR′(1))

(ā + aθ̄)
[

aθν + ν̄S[(ā + aθ̄)ν]
]

corresponding to the probability-generating function of the number of customers in the
queueing system Geo/G/1/∞ with server breakdowns and repairs, and the second fraction
is the probability-generating function of the number of customers in the orbit given that
the server is idle.
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This result can be summarized in the next theorem.

Theorem 2. The total number of customers in the system under study (L) can be represented as
the sum of two independent random variables: one of them is the total number of customers in
the system Geo/G/1/∞ with server breakdowns and repairs (L0), and the other is the number of
repeated customers given that the server is idle (M). That is, L = L0 + M.

As an application of the stochastic decomposition law, in the next theorem, we pro-
vide a measure of the proximity between the steady-state distributions for the standard
Geo/G/1/∞ with server breakdown and repairs and the system under consideration.

Theorem 3. The following inequalities hold:

2

[
(ā + aθ̄)ν− S[(ā + aθ̄)ν]

](
aθ̄ + (ā + aθ̄)ν̄[ā + aR′(1)]

)
(ā + aθ̄)

[
νS[(ā + aθ̄)ν] + aθν

] [1− A(ā)] ≤

≤
∞

∑
j=0

∣∣∣P[L = j]− P[L0 = j]
∣∣∣ ≤

≤ 2

[
(ā + aθ̄)ν− S[(ā + aθ̄)ν]

](
aθ̄ + (ā + aθ̄)ν̄[ā + aR′(1)]

)
ā(ν̄ + aθν)S

[
(ā + aθ̄)ν

]
−
[
(ā + aθ̄)ν− S[(ā + aθ̄)ν]

](
aθ̄ + (ā + aθ̄)ν̄aR′(1)

) ·
· [1− A(ā)]

The proof of this theorem is omitted, but can be deduced using the steps given in [19].

Finally, let us observe that the distance
∞

∑
j=0

∣∣∣P[L = j]− P[L0 = j]
∣∣∣ between the distributions

of the random variables L and L0 decreases as A(ā) approaches one.

5. Calculation of Steady-State Probabilities

This section introduces recursive formulae to calculate the steady-state distributions
of the orbit and system size.

Theorem 4. The steady-state distribution of the orbit size is given by the following recursive formulae:

ψ0 = P[N = 0] =
aν + ν̄S(āν)

(1− āν)S(āν)
· π0,0 (25)

ψk = P[N = k] =

=

k−1

∑
n=0

[
lk−n − āA(ā)ck−n

]
ψn +

[
γk − ābk+1 − aθ̄bk

]
A(ā)π0,0

A(ā)S(āν)
ν, k ≥ 1 (26)
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where:

ln =
n

∑
i−1

biln−i, n ≥ 1

e0 = 1− āν− āA(ā)R(ā)ν̄

e1 =
{

1− aθ −
(

ā2 A(ā)d1 +
[
1 + aθ̄A(ā)

]
R(ā)

)}
ν̄

en =
{
(1− aθ)

[ ā− R(ā)
ā

−
n−2

∑
i=1

di
]
− ā
[
1 + aθ̄A(ā)

]
dn−1 − āA(ā)dn

}
ν̄, n ≥ 2

dn =
∞

∑
i=n

(
n
i

)
ri+1 āi−nan, n ≥ 1

bn =
∞

∑
i=n

(
n− 1
i− 1

)
)Si+1νi−1 āi−n(aθ̄)n−1, n ≥ 1

cn =
∞

∑
i=n

(
n
i

)
si+1νi āi−n(aθ̄)n, n ≥ 1

γn =
∞

∑
i=n

(
n
i

)
Si+1νi āi−n(aθ̄)n, n ≥ 1

γ0 =
1− S(āν)

1− āν
.

Proof. Let us note that the GF ψ(z) of the number of customers in the orbit satisfies the
following relation:

ψ(z)G(z) =
1

1− (ā + aθ̄z)ν

[
1− S[(ā + aθ̄z)ν]− (ā + aθ̄z)

[
1−

−
S
[
(ā + aθ̄z)ν

]
(ā + aθ̄z)ν

]]
A(ā)π0,0 (27)

where:

G(z) = āA(ā)
S
[
(ā + aθ̄z)ν

]
(ā + aθ̄z)ν

− z
1− (ā + aθ̄z)ν

[
1−

S
[
(ā + aθ̄z)ν

]
(ā + aθ̄z)ν

]( k(z)
1− z

−

− z + āA(ā)(1− z)
1− z

(
ā + aθ̄z

)
ν̄

R(ā + az)
ā + az

)
=

∞

∑
n=0

gnzn.

In order to obtain the sequence {gn}∞
n=0, we use the properties of the generating

functions and Newton’s binomial (see [17]), obtaining:

G(z) = A(ā)
S(āν)

ν
−

∞

∑
n=1

[ln − āA(ā)cn]zn.

Taking into account that the development in power series of the right-hand side of
(27) is: ( aν + ν̄S(āν)

ν(1− āν
+

∞

∑
n=1

[
γn − ābn+1 − aθ̄bn

]
zn
)

A(ā)π0,0
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and equating the coefficients of zk on both sides of (27) lead to:

ψ0g0 =
aν + ν̄S(āν)

ν(1− āν)
A(ā)π0,0

k

∑
n=0

ψngk−n =
[
γk − ābk+1 − aθ̄bk

]
A(ā)π0,0

Since g0 =
A(ā)S(āν)

ν
and gn = āA(ā)cn − ln, n ≥ 1, Equations (25) and (26) are

readily obtained.

Theorem 5. The steady-state distribution of the system size is given by the following recursive formulae:

Φ0 = P[L = 0] = π0,0 (28)

Φk = P[L = k] =

=
1

A(ā)S(āν)

[ k−1

∑
n=0

[
lk−n − āA(ā)ck−n

]
Φn + [āγk +

+ aγk−1 − ābk+1 − aθ̄bk]A(ā)π0,0

]
ν (29)

Proof. The GF Φ(z) of the number of customers in the system satisfies the following relation:

Φ(z)G(z) =
1

1− (ā + aθ̄z)ν

[
(ā + az)

[
1− S[(ā + aθ̄z)ν]

]
−

− (ā + aθ̄z)
[
1−

S
[
(ā + aθ̄z)ν

]
(ā + aθ̄z)ν

]]
A(ā)π0,0 (30)

where G(z) and its expression in power series are given in the proof of the previous theorem.
The development in power series of the right-hand side of (30) is given by:[S(āν)

ν
+

∞

∑
n=1

[
āγn + aγn−1 − ābn+1 − aθ̄bn

]
zn
]

A(ā)π0,0.

After comparing the coefficients of zk on both sides in Equation (30), we obtain:

Φ0g0 =
S(āν)

ν
A(ā)π0,0

k

∑
n=0

Φngk−n = (āγk + aγk−1 − ābk+1 − aθ̄bk)A(ā)π0,0, k ≥ 1.

Then, taking into account the expression of the sequence {gn}∞
n=0, we obtain

Equations (28) and (29).

6. Relation to the Continuous-Time System

This section analyzes the link between the discrete-time system under study and its
continuous counterpart. More specifically, we see the approximation of the continuous-
time retrial queue with server breakdowns by the considered discrete-time system. In order
to achieve this approximation, the time is slotted into small intervals of equal length, so the
approximation tends to an exact value when the length of the intervals goes to zero.
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We studied the continuous-time M/G/1 retrial queue with general retrial times and
server breakdowns where the customers arrive in accordance with a Poisson flow with
rate λ.

An arriving customer that finds the server free begins its service immediately; oth-
erwise, with probability θ it expels from the system the customer that is currently being
served and commences its service, or with complementary probability θ̄, it leaves the server
and joins the retrial group in accordance with an FCFS discipline (that is, only the customer
at the head of the orbit can access the server). Successive inter-retrial times are governed by
an arbitrary probability distribution function Γ(x) with the corresponding Laplace–Stieltjes
transform γ(s). Customer service times are identically and independently distributed
random variables with a common distribution function B(x) and the Laplace–Stieltjes
transform β(s).

We supposed that the server can fail after a random time with an exponential distribu-
tion with parameter α. A server with a breakdown is sent to be repaired immediately, and
the customer that was receiving service goes to the head of the orbit. Repair times follow a
general distribution U(x) with the Laplace–Stieltjes transform u(s) and finite mean µ−1. It
is assumed that the interarrival times, inter-retrial times, service times, server lifetime, and
repair times are mutually independent.

If it is supposed that time is divided into intervals of equal length ∆, the continuous-
time system can be approximated by a discrete-time system, where:

a = λ∆, ν = 1− α∆, ai =
∫ (i+1)∆

i∆
dΓ(x), i ≥ 0, si =

∫ i∆

(i−1)∆
dB(x), i ≥ 1,

ri =
∫ i∆

(i−1)∆
dU(x), i ≥ 1

and ∆ must be chosen small enough so that a and ν are probabilities.
Our objective was to prove that lim

∆→0
Φ(z) is the probability-generating function of

the number of customers in the M/G/1 retrial queueing system with general retrial times
and server breakdowns. First, it is easy to prove the following equalities by applying the
definition of Lebesgue integration:

lim
∆→0

A(ā) = γ(λ)

lim
∆→0

S
[
(ā + aθ̄z)ν

]
= β

[
α + λ(1− θ̄z)

]
lim
∆→0

R(ā + az) = u
[
λ(1− z)

]
.

The proof of these relations is omitted; the technique used can be seen in [17], Theorem 5.
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Considering the above results, we obtain the next relation:

lim
∆→0

Φ(z) = lim
∆→0

A(ā)(1− z)(ā + az)(ā + aθ̄z)
[(

1− (ā + az)ν
)

S
[
(ā + aθ̄z)ν

]
+ aθνz

]
D(z)

·

· π0,0 =

= lim
∆→0

(
A(ā)(1− z)

[
1− λ∆(1− z)

][
1− λ∆(1− θ̄z)

][
∆
{

α +

+ λ(1− z)− αλ∆(1− z)
}

S
[
(ā + aθ̄z)ν

]
+ ∆λθz[1− α∆]

])
·

·
{
(1− λ∆)A(ā)(1− z)

[
1− λ∆(1− z)

]
∆
{

α + λ(1− θ̄z)−

− λα∆(1− θ̄z)
}

S
[
(ā + āθ̄z)ν]− z

[
[1− λ∆(1− θ̄z)][1− α∆]−

− S[(ā + aθ̄z)ν]
][
[1− λ∆(1− z)]∆

[
α + λθ̄(1− z)− λα∆(1− θ̄z)

]
−

−
[
z + (1− λ∆)A(ā)(1− z)

]
α∆
[
1− λ∆(1− θ̄z)

]
R(ā + az)

]}−1
π0,0

=
N
D

π∗0,0

where:

N = γ(λ)(1− z)
[
[α + λ(1− z)]β[α + λ(1− θ̄z)] + λθz

]
D = γ(λ)(1− z)

[
α + λ(1− θ̄z)

]
β
[
α + λ(1− θ̄z)

]
−

− z
[
1− β[α + λ(1− θ̄z)]

][
α + λθ̄(1− z)− [z + γ(λ)(1− z)]αu[λ(1− z)]

]
π∗0,0 =

γ(λ)(α + λθ)β(α + λθ)−
[
1− β[α + λθ]

][
λθ̄ + α{1− γ(λ) + λµ−1}

]
[
αβ(α + λθ) + λθ

]
γ(λ)

.

7. Busy Period

At this point, we studied an auxiliary system that is different from the original one
by two facts: one is that the probability of an arrival is aθ, and the other is that a customer
entering the system goes directly to the server, interrupting the current customer’s service,
if any. As in the original system, the interrupted customer is expelled from the system, and
in the case that during a service, the server’s failure occurs, the customer that was in the
server is placed at the head of the orbit. For this auxiliary system, we find the distribution
of the busy period that will be useful to study the customers’ delay in the original system.

A busy period is defined as the period starting with the arrival of a customer that finds
the system empty and ending at the first service completion when the system becomes
empty again, and no external arrivals take place.

Let hk, k ≥ 0, be the probability that the busy period lasts k slots. Then, we have:

h0 = 0

hk =
[
(1− aθ)ν

]k−1
(1− aθ)sk +

k

∑
i=1

[
(1− aθ)ν

]i−1
siaθhk−i +

+
k

∑
i=1

[
(1− aθ)ν

]i−1
Si+1aθhk−i +

+
k

∑
i=1

[
(1− aθ)ν

]i−1
Si+1(1− aθ)ν̄

k−i

∑
j=1

rj

k−i−j

∑
m=0

w∗mhk−i−j−m, k ≥ 1 (31)
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where w∗m, m ≥ 0, is the probability that the customer displaced in the moment of the
failure occurrence to the first place of the orbit spends there m slots since the ending of the
repair time till the beginning of its service.

We mention the less obvious terms of the above formula, that is the third and fourth
ones, respectively:

• The arriving customer chooses a service time that lasts no less than i + 1, i = 1 . . . , k
slots (with probability Si+1). In the first i− 1 slots, no customer arrives and no failures
take place (with probability ((1− aθ)ν)i−1), and in the slot i, a new customer arrives
(with probability aθ), initiating a busy period of length k− i slots (with probability
hk−i);

• This term differs from the previous one, that in the slot i, a failure takes place with
probability ν̄, then after a repair time of j, j = 1, . . . , k− i, slots, the displaced customer
to the orbit will last m, m = 0, . . . , k− i− j, slots, to begin its service and, then, once
in the server, will open a busy period of k − i − j − m slots (all with probability
rj w∗m hk−i−j−m).

The GF h(x) =
∞

∑
k=0

hkxk of the BP satisfies the following equation:

h(x) =
1
ν

S
[
(1− aθ)νx

]
+

aθ

(1− aθ)ν
S
[
[(1− aθ)νx

]
h(x) +

+
aθ

(1− aθ)ν
·
(1− aθ)νx− S

[
(1− aθ)νx

]
1− (1− aθ)νx

h(x) +

+
ν̄

ν
·
(1− aθ)νx− S

[
(1− aθ)νx

]
1− (1− aθ)νx

· R(x)w∗(x)h(x),

where w∗(x) is the GF associated with the distribution {w∗m, m ≥ 0}.
The above equation can be written in the form:[

aθ[1− (1− aθ)νx]S
[
(1− aθ)νx

]
+ aθ

[
(1− aθ)νx− S[(1− aθ)νx]

]
+

+ (1− aθ)ν̄
[
(1− aθ)νx− S[(1− aθ)νx]

]
R(x)w∗(x)−

− (1− aθ)ν
[
1− (1− aθ)νx]

]]
h(x) +

+ (1− aθ)
[
1− (1− aθ)νx

]
S
[
(1− aθ)νx

]
= 0. (32)

In order to obtain the GF w∗(x), we need to know first the probabilities wk, k ≥ 0, that
the period of time, that the customer placed at the head of the orbit remains there since the
end of a BP till the beginning of its service, lasts exactly k slots.

The probabilities wk, k ≥ 0, are governed by the following recursive formulae:

w0 = a0 (33)

wk = (1− aθ)kak + (1− δ1,k)aθ
k−1

∑
l=1

(
1− aθ

)l−1
Al

k−l

∑
i=1

hiwk−l−i, k ≥ 1,

where Al = ∑∞
k=l ak is the probability that, until the slot l, no retrial has taken place.

Let us explain the above formula. Let us call 0 the slot in which a BP finishes. At
this moment, the customer at the head of the orbit will start its service immediately with
probability a0 (we remind that no customer arrives in Slot 0, since in this slot, a BP has
finished). Now. we consider the equation for k ≥ 1. The customer at the head of the orbit
will wait there k slots, k ≥ 1, from the completion of a BP till the beginning of its service if:
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(a) In the first k slots, no customers arrive, and in the slot k, a retrial occurs (with proba-
bility (1− aθ)kak) or;

(b) Before the slot l, 1 ≤ l ≤ k − 1, no customer arrives at the system and no retrial
occurs (with probability (1− aθ)l−1 Al), and in the slot l, a new customer arrives at
the system, opening a BP with length i (i = 1, ..., k− l); upon the completion of this
BP, the customer placed at the head of the orbit will wait there till the beginning of its
service k− l − i slots (all with probability aθhiwk−l−i).

The GF of the distribution w(x) = ∑∞
k=0 wk xk is given by:

w(x) =

[
1− (1− aθ)x

]
A
[
(1− aθ)x

]
1− (1− aθ)x− aθxh(x)

[
1− A[(1− aθ)x]

] , (34)

with mean

w̄ = w′(1) =
(1 + aθh̄)

[
1− A(1− aθ)

]
aθA(1− aθ)

, (35)

where h̄ = h’(1).
Now, we are in a position to write down the expression of the GF w∗(x), which has

the following form:

w∗(x) =
(

1− aθ + aθh(x)
)

w(x). (36)

with mean:

w̄∗ = (w∗)′(1) = aθh̄ + w̄ =

=

[
1− A(1− aθ)

]
+ aθh̄

[
1− (1− aθ)A(1− aθ)

]
aθA(1− aθ)

. (37)

Inserting the expression of w∗(x) in (32), we obtain:

α(x)h2(x) + β(x)h(x) + γ(x) = 0, (38)

where:

α(x) = aθ
[
− aθx[1− A[(1− aθ)x]

][
1− (1− aθ)νx

]
S
[
(1− aθ)νx

]
−

− aθx
[
1− A[(1− aθ)x]

][
(1− aθ)νx− S[(1− aθ)νx]

]
+

+
[
1− (1− aθ)x

]
A
[
(1− aθ)x

]
(1− aθ)ν̄

[
(1− aθ)νx−

− S[(1− aθ)νx]
]

R(x) +
[
1− A[(1− aθ)x]

]
·

· (1− aθ)νx
[
1− (1− aθ)νx]

]
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β(x) = aθ
[
1− (1− aθ)νx

][
1− (1− aθ)x

]
S
[
(1− aθ)νx

]
+

+ aθ
[
1− (1− aθ)x

][
(1− aθ)νx− S[(1− aθ)νx]

]
+

+ (1− aθ)2ν̄
[
1− (1− aθ)x

]
A
[
(1− aθ)x

][
(1− aθ)νx−

− S[(1− aθ)νx]
]

R(x)− (1− aθ)ν
[
1− (1− aθ)x

]
·

·
[
1− (1− aθ)νx

]
− aθ(1− aθ)

[
1− A[(1− aθ)x]

][
1− (1− aθ)νx

]
·

· S
[
(1− aθ)νx

]
and:

γ(x) = (1− aθ)
[
1− (1− aθ)x

][
1− (1− aθ)νx

]
S
[
(1− aθ)νx

]
.

Equation (38) shows that the GF h = h(x) satisfies the quadratic equation:

f (h) = 0 (39)

where:

f (h) = α(x)h2 + β(x)h + γ(x).

Let us note that for any fix, x ∈ (0, 1) is:

α(x) > 0

f (0) = γ(x) > 0

f (1) < (1− aθ)ν(x− 1)
[
1− S[(1− aθ)νx]

]
.

The above relations show that for any x ∈ (0, 1), Formula (35) has two solutions, h(x)
and h∗(x), satisfying the inequalities 0 < h(x) < 1 < h∗(x) and given by:

h(x) =
−β(x)−

[
β2(x)4α(x)γ(x)

]1/2

2α(x)

h∗(x) =
−β(x) +

[
β2(x)4α(x)γ(x)

]1/2

2α(x)
.

For x = 1, it is f (1) = 0, which means that at least one of the two solutions h(x) or
h∗(x) takes the value one for x = 1. Let us observe that the inequality h∗(1) > 1 holds if
and only if:√

β(1)2 − 4α(1)γ(1) > 2α(1) + β(1) =

= aθ
[
− (1− aθ)(ν̄ + aθν)A(1− aθ)S

[
(1− aθ)ν

]
+

+
[
(1− aθ)ν− S[(1− aθ)ν]

]
·

· (1− aθ)ν̄
[
1− (1− aθ)A(1− aθ)

]]
However, if the stability condition (24) is fulfilled, the right-hand side of the above

inequality is negative and, as a consequence, h∗(1) > 1 and h(1) = 1; therefore, the GF of
the busy period is h(x).
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The mean length of a BP is given by:

h̄ = h′(1) =
N
D

where:

N = (1− aθ)ν
[
1− S[(1− aθ)ν]

]
+
[
(1− aθ)ν− S[(1− aθ)ν]

]
·

·
[
(1− aθ)ν̄[1− A(1− aθ)] + R′(1)

D = aθ
{
(1− aθ)(ν̄ + aθν)A(1− aθ)S

[
(1− aθ)ν

]
−
[
(1− aθ)ν− S[(1− aθ)ν]

]
·

· ((1− aθ)ν̄[1− (1− aθ)A(1− aθ)]
}

At this stage, we consider the GF h(x; m) of the BP that starts with a customer
with m remaining slots to finish its service. This GF will be useful in the study of the
customers’ delay.

The GF h(x, m) is given by:

h(x; m) =

[
(1− aθ)νx

]m

(1− aθ)ν

[
1− aθ + aθh(x)

]
+

+ x
1−

[
(1− aθ)νx

]m−1

1− (1− aθ)νx

[
aθh(x) + (1− aθ)ν̄R(x)w∗(x)h(x)

]
, m ≥ 1

Let us explain the above formula:
If after the first m − 1 slots, no customer arrives at the system and no failure has

occurred (with probability
[
(1− aθ)ν

]m−1
), and in the slot m, either a new customer does

not arrive, then the BP ends with probability 1− aθ, or another customer arrives, with
probability aθ, then a new BP is opened with GF h(x).

If after k− 1 slots, k = 1, . . . , m− 1, a new customer does not arrive and no failures

have taken place (with probability
[
(1− aθ)ν

]k−1
) and in the slot k, a new customer arrives

(with probability aθ) opening a BP with GF h(x) or no customer arrives and a failure
occurs (with probability (1− aθ)ν̄), then a period of repair time begins with GF R(x); once
this repair time has finished, the customer displaced to the orbit in the moment of the
occurrence of the failure will wait there till the beginning of its service time with GF w∗(x),
after which this customer will open a BP with GF h(x). Summing over k from one to m− 1,
the formula of h(x; m) is obtained.

Let us note that the expression of h(x; m) can be written as follows:

h(x; m) =
1

ν
[
1− (1− aθ)νx

]{[(1− aθ)νx
]m[

1− νx
(

1− aθ + aθh(x)
)
−

− ν̄R(x)w∗(x)h(x)
]
+ νx

[
aθh(x) + (1− aθ)ν̄R(x)w∗(x)h(x)

]}
(40)

8. Sojourn Times
8.1. Sojourn Time of a Customer in the Server

This section is dedicated to obtaining the distribution of the time that a customer
spends in the server. As the service of a customer can be interrupted, in case a failure in
the server takes place, the sojourn time of a customer in the server may consist of separate
time intervals.
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Let us denote by bk the probability that the sojourn time of a customer in the server
(taking into account possible disruptions) lasts exactly k slots. The distribution {bk, k ≥ 0}
is governed by the following recursive formulae:

b0 = 0

bk =
[
(ā + aθ̄)ν

]k−1
sk +

[
(ā + aθ̄)ν

]k−1
Sk+1aθ +

+
k

∑
i=1

[
(ā + aθ̄)ν

]i−1
(ā + aθ̄)ν̄Si+1bk−i, k ≥ 1

The GF b(x) =
∞

∑
k=0

bkxk is given by:

b(x) =
1

(ā + aθ̄)ν
S
[
(ā + aθ̄)νx

]
+

+
aθ

(ā + aθ̄)ν
·
(ā + aθ̄)νx− S

[
(ā + aθ̄)νx

]
1− (ā + aθ̄)νx

+

+
ν̄

ν
·
(ā + aθ̄)νx− S

[
(ā + aθ̄)νx

]
1− (ā + aθ̄)νx

b(x)

that is,

b(x) =
[1− νx]S

[
ā + aθ̄)νx

]
+ aθνx[

1− (ā + aθ̄)x
]
ν + ν̄S

[
(ā + aθ̄)νx

] ,

and the mean sojourn time of a customer in the server is:

b̄ = b′(1) =
ν
[
1− S[(ā + aθ̄)ν]

]
aθν + ν̄S

[
(ā + aθ̄)ν

] .

8.2. Sojourn Time of a Customer in the Orbit

The stationary distribution of the waiting time that a customer spends in the orbit
until the beginning of its service has the following GF:

W(x) = π0,0 +
∞

∑
i=1

∞

∑
k=1

π0,1,k +
∞

∑
i=1

∞

∑
k=0

π1,1,k +
∞

∑
k=0

π2,1,k +

+ θ
∞

∑
i=1

∞

∑
k=0

π1,i+1,k +

+ θ̄w(x)
∞

∑
i=1

∞

∑
k=0

π1,i+1,kh(x; i)
(

h(x)w(x)
)k

+

+ w∗(x)
∞

∑
i=1

∞

∑
k=1

π2,i+1,kxi
(

h(x)w(x)
)k

. (41)
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Using (40) and the GF’s introduced in Section 3 the above formula becomes:

W(x) = π0,0 + ϕ0(1, 1) + θ̄ϕ1,1(1) + ϕ2,1(1) + θϕ1(1, 1) +

+ θ̄w(x)
{

F1(x)
1

(1− aθ)νx
ϕ1

[
(1− aθ)νx, h(x)w(x)

]
+

+ F2(x)ϕ1

[
1, h(x)w(x)

]
− 1− ν̄R(x)w∗(x)h(x)

ν
ϕ1,1

(
h(x)w(x)

)}
+

+ w∗(x)
[ 1

x
ϕ2

(
x, h(x)w(x)

)
− ϕ2,1

(
h(x)w(x)

)]
, (42)

where:

F1(x) =
1− νx

(
1− aθ + aθh(x)

)
− ν̄R(x)w∗(x)h(x)

ν
[
1− (1− aθ)νx

] , F1(1) = 0

F2(x) =
x
[

aθh(x) + (1− aθ)ν̄R(x)w∗(x)h(x)
]

1− (1− aθ)νx
, F2(1) = 1

and its expected value is:

W = W ′(1) =

= θ̄
{

w̄
[

ϕ1(1, 1)− ϕ1,1(1)
]
+

+ F′1(1)
1

(1− aθ)ν
ϕ1

(
(1− aθ)ν, 1

)
+ F′2(1)ϕ1(1, 1) + ϕ′1

(
1, h(x)w(x)

)
x=1

+

+
1
ν

[
ν̄
(

R′(1) + w̄∗ + h̄
)]

ϕ1,1(1)− ϕ′1,1

(
h(x)w(x)

)
x=1

}
+

+ w̄∗
[

ϕ2(1, 1)− ϕ2,1(1)
]
+
( ϕ

′
2

(
x, h(x)w(x)

)
x

)
x=1
− ϕ′2,1

(
h(x)w(x)

)
x=1

where:

F′1(1) =
ν(1 + aθh̄) + ν̄

(
R′(1) + w̄∗ + h̄

)
ν(ν̄ + aθν)

F′2(1) =
1 + aθh̄ + (1− aθ)ν̄

(
R′(1) + w̄∗ + h̄

)
ν̄ + aθν

.

ϕ1

[
(1− aθ)ν, 1

]
(1− aθ)ν

=
S′
[
(1− aθ)ν

]
aν(ν̄ + aθν)

aθν + ν̄S[(1− aθ)ν]
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ϕ1,1

(
h(x)w(x)

)′
x=1

=

=
(ν̄ + aθν)S

[
(ā + aθ̄)ν

]
D′′(1)− 2a

{
(ν̄ + aθν− θ̄ν̄)S

[
(ā + aθ̄)ν

]
S
[
(ā + aθ̄)ν

]
+ θ̄ν(ν̄ + aθν)S′

[
(ā + aθ̄)ν

]}
D′(1)

−2D′(1)(ā + aθ̄)
[

aθν + ν̄S[(ā + aθ̄)ν]
]

ϕ2,1

(
h(x)w(x)

)′
x=1

=

=
1

−2D′(1)(ā + aθ̄)
[

aθν + ν̄S[(ā + aθ̄)ν]
] [(ā + aθ̄)

[
(ā + aθ̄)ν− S[(ā + aθ̄)ν]

]
D′′(1)−

− 2
{[

(ā + aθ̄)ν− S[(ā + aθ̄)ν]
][

aθ̄ + (ā + aθ̄)[1 + aR′(1)]
]
+ aθ̄ν(ā + aθ̄)

[
1− S′[(ā + aθ̄)ν]

]}
D′(1)(h̄ + w̄)aν̄

]
.

ϕ1

[
1, h(x)w(x)

]′
x=1

=

=

[
1− S[(ā + aθ̄)ν]

]
(ā + aθ̄)νD′′(1)− 2a

{[
1− S[(ā + aθ̄)ν]

](
θ̄ + (ā + aθ̄)

)
(ā + aθ̄)θ̄νS′

[
(ā + aθ̄)ν

]}
D′(1)

−2D′(1)(ā + aθ̄)
[

aθν + ν̄S[(ā + aθ̄)ν]
] ·

· (h̄ + w̄)aν

[ ϕ2

(
x, h(x)w(x)

)
x

]′
x=1

=
aν̄

2(ā + aθ̄)
[

aθν + ν̄S[(ā + aθ̄)ν]
] ·

· R′′(1)
[
1 + a(h̄ + w̄)

]
(ā + aθ̄)

[
(ā + aθ̄)ν− S[(ā + aθ̄)ν]

]
+

+ R′(1)
1

−2D′(1)

[
(ā + aθ̄)[(ā + aθ̄)ν− S[(ā + aθ̄)ν]D′′(1)− 2a[(ā + aθ̄)ν−

− S[(ā + aθ̄)ν]](θ̄ + ā + aθ̄) + aθ̄ν(ā + aθ̄)ν[1− S′[(ā + aθ̄)ν]]D′(1)
]

8.3. Sojourn Time of a Customer in the System

We first find the distribution of the period of time that a customer spends in the system
since its service begins until the moment of its departure. Let gk be the probability that this
period of time lasts exactly k slots. Then, we have:

g0 = 0

gk =
[
(ā + aθ̄)ν

]k−1
sk +

[
(ā + aθ̄)ν

]k−1
aθSk+1 +

+
k

∑
i=1

[
(ā + aθ̄)ν

]i−1
(ā + aθ̄)ν̄Si+1

k−i

∑
j=1

rj

k−i−j

∑
l=1

w∗l gk−i−j−l , k ≥ 1.

The GF g(x) =
∞

∑
k=0

gkxk is given by:

g(x) =
1

(ā + aθ̄)ν
S
[
(ā + aθ̄)νx

]
+

aθ

(ā + aθ̄)ν
·

[
(ā + aθ̄)νx− S[(ā + aθ̄)νx]

]
1− (ā + aθ̄)νx

+

+
ν̄

ν
·
(ā + aθ̄)νx− S

[
(ā + aθ̄)νx

]
1− (ā + aθ̄)νx

R(x)w∗(x)g(x)

that is:

g(x) =
aθνx + (1− νx)S

[
(ā + aθ̄)νx

]
ν
[
1− (ā + aθ̄)νx

]
− ν̄
[
(ā + aθ̄)νx− S[(ā + aθ̄)νx]

]
R(x)w∗(x)

·
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and its corresponding mean is:

g = g′(1) =
ν
[
1− S[(ā + aθ̄)ν]

]
+ ν̄
[
(ā + aθ̄)ν− S[(ā + aθ̄)ν]

](
R′(1) + w̄∗

)
aθν + ν̄S

[
(ā + aθ̄)ν

] .

Obviously, if ν = 1, then g(x) = b(x).
The GF v(x) of the stationary distribution of the sojourn time of a customer in the

system is:

v(x) = W(x)g(x)

with mean:

v = v′(1) = W + g.

The mean total time WT that a customer spends in the orbit is given by:

WT = W + g− b̄.

9. Numerical Results

This section presents some numerical results that illustrate the effect of the parameters
on several performance characteristics of the system. Throughout this section, it was
assumed that the service and repair times take exactly two slots and that the retrial times
are governed by a geometrical distribution with GF A(x) = 1−r

1−rx .
In Figure 1, the probability that the system is empty is plotted versus the parameter ν.

Three curves corresponding to θ = 0, 0.5, 1 are presented. As expected, π0,0 increases with
increasing values of ν and θ.

Figure 2 illustrates the behavior of E[N] against the parameter ν. As intuition tell
us, E[N] decreases with increasing values of ν and θ. When ν approaches the stability
condition, the mean orbit size tends to infinity due the system becoming unstable.

In Figure 3, the stability abscissa ν∗, that is the number ν∗ for which for all ν ∈ (ν∗, 1]
the system is stable, is plotted against the mean repair time. The values of ν∗ increase with
increasing values of R

′
(1) and decreasing values of θ, as expected, and when R

′
(1) tends

to infinity, ν∗ tends to one.
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Figure 1. Probability of an empty system against ν.
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Figure 2. EN against ν.
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Figure 3. The stability abscissa against the mean repair time.

The graphics tell us that for any θ ∈ [0, 1] and any value of the mean repair time, there
are always values of ν for which the system is stable, specifically those belonging to the
interval (ν∗, 1], which is never empty.

An important feature of this paper is the recursion scheme provided by Theorems 4 and 5,
whose formulae where implemented in Tables 1 and 2.
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Table 1. The stationary distribution of the orbit size when a = 0.2, θ = 1, r = 0.3.

ψk ν = 0.4 ν = 0.6 ν = 0.8 ν = 1

k = 0 0.1374995 0.6166664 0.8562507 1
k = 1 0.1057027 0.2106944 0.1097071 0
k = 2 0.0941494 0.0976813 0.027435 0
k = 3 0.0822 0.0421533 0.0052292 0
k = 4 0.072084 0.0184723 0.0010985 0
k = 5 0.0631288 0.0080676 0.0002224 0
k = 6 0.055288 0.003526 0.0000455 0
k = 7 0.0484209 0.0015408 0.0000055 0
k = 8 0.0424067 0.0006733 0.0000014 0
k = 9 0.0371401 0.0002941 0.0000001 0

k = 10 0.032527 0.0001284 ≈0 0

Table 2. The stationary distribution of the system size when a = 0.2, θ = 1, r = 0.3.

Φk ν = 0.4 ν = 0.6 ν = 0.8 ν = 1

k = 0 0.0676921 0.3482352 0.5219052 0.64
k = 1 0.1218458 0.3874122 0.4012145 0.36
k = 2 0.100015 0.1468754 0.0595602 0
k = 3 0.088395 0.0663243 0.0134 0
k = 4 0.0772642 0.0287805 0.0027115 0
k = 5 0.0676758 0.0125967 0.0005567 0
k = 6 0.0592692 0.0055029 0.0001136 0
k = 7 0.0519077 0.0024049 0.0000231 0
k = 8 0.0454475 0.0010508 0.0000046 0
k = 9 0.039804 0.0004592 0.0000008 0

k = 10 0.0348599 0.0002005 ≈0 0

10. Conclusions and Research Results

This paper analyzed a discrete-time retrial queue with the server subject to break-
downs and repairs is analyzed. Customers arriving at the system can decide to follow an
LCFS-PR discipline or to join the orbit. We carried out an extensive study of the model and
obtained the distribution of the number of customers in the orbit and in the system using a
generating function approach.

An important feature of this paper is the recursive algorithm provided by Theorems 4 and 5
used to compute the steady-state probabilities of the number of customers in the orbit and
in the system. We provided the stochastic decomposition law and application bounds for
the proximity between the steady-state distribution of the system under consideration and
the corresponding system without retrials.

We showed that the continuous-time M/G/1 retrial queue with the server subject
to breakdowns and repairs can be approximated by the corresponding discrete-time sys-
tem. We analyzed the busy period of an auxiliary system useful in the study of the
customers’ delay.

A new and important research contribution to the theory of queues with general
retrial times is the complete and thorough study carried out in this paper of the sojourn
time distribution of a customer in the orbit and in the system. Finally, numerical examples
to illustrate the influence of the parameters on several performance characteristics were
given.
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