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Abstract: In this paper, we study the general solution of the functional equation, which is derived
from additive-quartic mappings. In addition, we establish the generalized Hyers-Ulam stability of
the additive-quartic functional equation in Banach spaces by using direct and fixed point methods.

Keywords: additive—quartic functional equation; Hyers—Ulam stability; fixed point method
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1. Introduction

The concept of stability for various functional equations arises when one replaces a
functional equation by an inequality, which acts as a perturbation of the equation. The first
stability problem of the functional equation was introduced by the mathematician S.M.
Ulam [1] in 1940. Since then, this question has attracted the attention of many researchers.
Note that the first solution to this question of Ulam was given by D.H. Hyers [2] in 1941 in
the case of approximately additive mappings. Thereafter, Hyers’ result was generalized by
Aoki [3] and improved for additive mappings, and subsequently improved by Rassias [4]
for linear mappings by allowing the Cauchy difference to be unbounded.

During the last eight decades, the stability problem of various functional equations
was studied and established by several mathematicians for different kinds of mappings in
various spaces, including random normed spaces and fuzzy Banach spaces [5,6], etc. For
various other results on the stability of functional equations, see [7-17]. Most of the proofs
of stability problems in the sense of Hyers—Ulam have used Hyers’ direct method. The
exact solution of the functional equation is explicitly obtained as the limit of a sequence,
which starts from the given approximate solution.

In 2003, Radu [18] introduced a new method, called the fixed point alternative method,
to investigate the existence of exact solutions and error estimations and established that
a fixed point alternative method is more essential to the solution of the Ulam stability
problem for approximate homomorphisms. Subsequently, some authors [19,20] applied the
fixed alternative method to investigate the Hyers—Ulam stability of several functional equa-
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tions in various directions [21,22]. To further explore the oscillation theory of functional
differential equations, we refer the readers to [23-28].

In 2020, C. Park et al. [29] obtained the general solution and proved the Hyers—Ulam
stability of the following quadratic-multiplicative functional equation of the form

f(st —uv) + f(sv+tu) = [f(s) + FW][f(£) + f(v)]

by using the direct method and the fixed point method. In the same year, Abasalt et al. [30]
established the system of functional equations defining a multi m-Jensen mapping to a
single equation. Using a fixed point theorem, they studied the generalized Hyers—Ulam
stability of such an equation. Moreover, they proved that the the multi m-Jensen mappings
are hyperstable.

Recently, Badora et al. [31] studied the Ulam stability of some functional equations
using the Banach limit. They also illustrated the results with the examples of the linear
functional equation in single variable and the Cauchy equation. In addition, Karthikeyan
et al. [32] discussed the solution in vector spaces, proved the Ulam-Hyers stability of the
quartic functional equation originating from the sum of the medians of a triangle in fuzzy
normed space by using both direct and fixed point methods, and proved the Ulam-Hyers
stability of the considered functional equation in paranormed spaces using both direct and
fixed point methods. For more, see also [33-35].

One of the most famous functional equations is the additive functional equation:

h(w+ x) = h(w) + h(x). 1)

In 1821, it was first solved by A. L. Cauchy in the class of continuous real-valued
functions. It is often called an additive Cauchy functional equation in honor of Cauchy. The
theory of additive functional equations is frequently applied to the development of theories
of other functional equations. Moreover, the properties of additive functional equations are
powerful tools in almost every field. Every solution of the additive functional Equation (1)
is called an additive function.

In [13], Lee et al. considered the following functional equation:

h(2w + x) + h(2w — x) = 4h(w + x) + 4h(w — x) + 24h(w) — 6h(x). ()

It is said to be a quartic functional equation because the quartic function i(x) = ax*is a
solution of the functional Equation (2).
Based on the above investigations, the main purpose of this paper is to prove the

general solution of the additive-quartic functional equation of the form

h(wy + n*wy + Pws) + h(—nwy + 77w, + 1°ws) + h(gwy — nw, + y’ws) + h(gwy + n*ws — Pws)

= 2[hgn + ywn) + h(rP + pws) + gy +1Pws) + by = 7w2) + k(e — )
h(wy = ws) | = 2[* (h(w1) + h(=w1)) + 1 (h(w2) + h(=w2)) + 52 (n(w3) + h(—w3))]

= [1(h(w1) = h(=w1)) + 12 (h(w2) = h(=w2)) + 1P (h(w3) = h(~w3))] G)

in different cases, where 7 is a fixed real number. It is easy to see that i(w) = aw and
h(w) = aw* satisfies the functional Equation (3). Moreover, by using the direct and fixed
point method, we prove the generalized Hyers—-Ulam stability of the additive—quartic
functional Equation (3) in Banach spaces.

2. General Solution of the Additive Functional Equation (3) (When k Is Odd)

In this section, the authors investigate the general solution of the additive functional
Equation (3).
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Lemma 1. Let W and X be real vector spaces. If an odd mapping h : W — X satisfies (3), then h
is additive.

Proof. Let h : W — X be a function which satisfies the functional Equation (3). Setting
(wq,wy, w3) by (0,0,0) in (3), we get h(0) = 0. Replacing (w, wy, w3) by (w,0,0) in (3),
we get
h(nw) = nh(w), 4)

for all w € W. Replacing (w1, w,, w3) by (0,w,0) in (3), we obtain

h(n*w) = nh(w), (5)
for all w € W. Replacing (wq, wa, w3) by (0,0, w) in (3), we get

h(nw) = ’h(w), (6)
for all w € W. In general, by using (4), (5) and (6), for any positive integer 4, we have

h(aw) = ah(w), (7)

for all w € W. One can easily verify from (7) that

w(%) = hw), ®

a
for all w € W. Replacing (w1, w,, w3) by (%, 7]%,0) in (3), we get
2h(w+x) +h(—w+x) + h(w — x) = 2h(w + x) + 2h(x — w) + 2h(—x) + 2h(w), (9)
for all w, x € W. Using oddness of & in (9), we get
0 =2h(x —w) — 2h(x) + 2h(w), (10)
for all w, x € W. Setting w by —w in (10), we have
2h(x +w) — 2h(x) + 2h(—w) =0, (11)
for all w, x € W. Using oddness of & in (11), we get
h(w+ x) = h(w) + h(x), (12)
forallw,x e W. O

3. General Solution of the Functional Equation (3) (When h Is Even)

In this section, we study the general solution of the quartic functional Equation (3) for
an even case.

Lemma 2. Assume that W and X are real vector spaces. If an even mapping h : W — X satisfies
the functional equation

h(2w + x) + h(2w — x) = 4h(w + x) + 4h(w — x) + 24h(w) — 6h(x), (13)
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forallw,x € Wifonlyif h : W — X satisfies the functional equation

h(wy + 12wy + 1Pws) 4+ h(—ywy + 12wy + 13ws) + h(ywy — 2wy + 1Pws) + h(gwy + n2w, — 1’ws)
=2 {h(rywl + 772w2) + h(qzwz + 773w3) + h(nwy + 173203) + h(nqwy — 772w2) + h(iyzwz — 7]3W3) (14)
+h(ey —pPw3)] = 2[* (h(awn) + h(=w1)) + 7 ((w2) + h(=w2)) + 52 (h(w5) + h(~w3))

= [n(h(w1) = h(=w1)) + 1 (h(awz) = h(=w2)) + 17 (h(w3) = h(~ws)) |

forall wy, wy, w3 € W.

Proof. Leth: W — X satisfy the functional Equation (2). Setting (w, x) by (0,0,0), we get
h(0) = 0. Replacing (w, x) by (0, x), we get

h(=x) = h(x) (15)
for all x € W. Setting (w, x) by (w,0) and (w, w) in (2), we obtain
h(2w) = 16h(w) and h(3w) = 81h(w) (16)
for all w € W. In general, for any positive integer m, such that
h(mw) = m*h(w) (17)

for all w € W. Replacing w and x by nw; + n?w, and yw; — 7%w, in (2), respectively, we
have

h(3nwy + n*ws) + h(ngwy + 3n%w,) = 64h(ywy) + 64h(7*ws) + 24h(nwy + n*w;) — 6h(nwy — *wz) (18)

for all wy, wy € W. Replacing 7w and 72w, by nw; + n%w, and 2772w, in (2), respectively,
we get

4h(nwy + n*wy) + 4h(nwr) = h(gwy + 3y*ws) + h(nwy — n*w;) + 6h(nwy + n*w,) — 24h(Pwy)  (19)
for all wy, w, € W. Interchanging nw; and 172w2 in (19), we obtain
4h(n*w; + 25wy ) + 4h(*ws) = h(y*wy + 3ywy) + h(Pws — quwy) + 6h(y*w, + nwy) — 24h(nwy) (20)

for all wy, w, € W. Adding (19) and (20) and using (18), we get

4h(nwy + n*w;) + 4h(nwy) + 4h(7%wy + 2w ) + 4h(7%ws) = h(n*wy + 3ywy) + h(n?w, — ywy)
+ 6h (1w + wy) — 24k (pwy) + h(nwy +3n>w2) + h(ywy —n*ws) + 6h(nw + n*ws) — 24h(n*w;)

for all wy, w, € W. Now, using Equation (18), we get

4h(nwy + ﬂzwz) + 4h(172wZ + 2nwq) = 64h(nwy) + 64h(172w2) + 24h(qwy + 172w2)
— 6h(nwy — n*wy) + 12k (ywy + n*ws) + h(nwy — 17wy) + h(n*ws — qwy ) — 28h(nw ) — 28h(n*w;)

for all wy, w, € W. Again using h(—w) = h(w), we have

h(nwy +2n%ws) + h(n?wy 4 25w1) = h(ywy) + 9h(17%wy) 4+ 9h(nwy + n?ws) — h(nwy — ?w,) (21)
for all wy, wp, € W. Replacing z = qw; and x = 5%wj3 in (2), we have

h(2nw + 7’ws) + h(2gwy = i°ws) = 24h(wr) — 6h(y°ws) + 4h(wy + ws) + 4h(nwr — ’ws) (22)
for all w1, wy € W. Substituting z = 5w, and x = 73w; in (2), we get

h(2*ws + 1Pws) + h(2n*wy — nws) = 24h(n*ws) — 6h(Pws) + 4h(Pws + Pws) + 4h(n*wy — n’ws)  (23)
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for all wy, wp, € W. Adding (22) and (23), we obtain
N (2nwy + 7Pws) + O (2nwy — 1Pws) 4+ (2P ws + 13ws) + (252w, — Pws)
= 36h(nwy + 13ws3) + 36k (wy — Pws) + 36k (17Pws + nPws) + 36h(ywy — 1Pws) (24)

+ 216h(ywy ) + 216k (7%*w,) — 108k (y3w3),

for all wy, wy, w3 € W. Interchanging yw; = 25wy + 3w; and 7%x? = 25w, + 3w in
Equation (21), we have

h(2nwy + 47wy + 3y°w3) + h(4nwy + 27wy + 3y°w3) = 9h(2ywy + w3 ) + I (2% ws + 1’ ws)
+ 9h(2nwy + 2172wz + 2173203) — h(2nw, — 2172w2), (25)

for all w1, wp, w3 € W. Substituting yw; and 7%w, by 2w, — w3 and 7w, = 2n%w, —
7 ws
in (21), we get

h(2nw + 4%ws — 343ws) + h(dywy + 257wy — 37%ws) = Ih(2nwy — nPws) + I (22w, — Pws3)

+ 9 (25wy + 27wy — 27w3) — h(2nwy — 2n%w,), (26)

for all wy, wop, w3 € W. Adding (25) and (26) and using (2), we get

O (2nwy + 1Pws) + 9 (2rw, + y3w3) = Yh(2nwi — Pws) + (2% w, — iws)

= 4h(qwy + 25%wo + 37°ws) + 4h(wy + 252wy — 3y3ws) 4 24h(yw; + 2% w,)

— 6h(317%w3) + 4h(2nw1 4 7Pws + 343w3) + 4h(2nwy + 2wy — 3%ws) 4 24h(ywy + nPw,) (27)
— 6h(31%w3) — 144h(nwy + 5w, + y3ws)

— 144h(nwy + n?wy — n3ws) + 32h(ywy — *ws),

for all wy, wp, w3 € W. By Equations (24) and (27), we obtain

36h(nwy + 1°ws) + 36h(gwy — 1Pws) + 216k (gwy ) — 54h(113ws3) + 36k (177w, + ’w3)

+ 36h (52w, — y3ws) + 216 (11%wy) — 54h(3y°ws) = 4h(jywy + 217%w, + 3°ws)

+4h (w1 + 277wy — 3y’ ws) + 24h(wy + 27*ws) — 6h(3y°ws) + 4h(2wi + Pwy +Pws)  (28)
+ 4h(2qwy + 7wy — 3Pws) + 24h(2nwy + nPw,) — 6h(3Pws) — 144h(qw; + n*w, + 1Pws)

— 144h(yw; + 1*wy — 1Pws) + 32k (nwy — n*wy),

for all w1, wp, w3 € W. Substituting yw; and %w, by 25wy + w3 and 7w, = 2n%w, —
n3ws in (21), we have

Oh(2nwy + ws) + 9h(2nwy — Pws) = h(2nwy + 477wy — Pws) + h(4nwy + 277w, + nws)
— 9h(2nwy + 27 w) + h(2nwy — 27w, + 2 ws), (29)

for all wy,wp, w3 € W. Putting nw; = 2yw; — 773w3 and 172w2 = 2172w2 + 773ZU3 in (21),
we have

9h(2ywy — 773u73) + 9h(2172wz + 173w3) = h(2nw, + 4172wz + 173w3)
+ h(4ywy + 202wy — pPws) — (2w, + 25%ws) + h(2ywy — 202wy — 2% ws), (30)
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for all wy, wo, w3 € W. Adding (29) and (30), we get

9h(2nwy + 7w3) + 92wy — 7 ws) + (21 — P ws) + (2 wa + P ws)

= h(2qwy + 452wy — Pws) + h(dnwy + 2n%w, + 13ws) — Ih 2wy + 24%w,) (31)
+ h(2nwy — 27%w, + 213w3) + h(2qwy + 42wy 4 1°ws) + k(4w + 277w, — Pws)

— 9 (2nwy + 2177wy + h(2nwy — 252w, — 213w3),

for all w1, wp, w3 € W. Using (2) in the above Equation (31), we get

Oh(2ywy + 11°ws) + (2P wa — 1P ws) + k(w1 — i’ ws) + (2 wa + i’ w3)

= 4h(qwy + 277wy + Pws) + 4h(wy + 2% wa — 1Pws) + 24h(gwy + 25w,

— 6h(1%w3) 4+ 4h(2nwy + 1Pwo + nPws) + 4h(2qwy + nPwy — Pws) + 24h(2nwy + 12ws) (32)
— 6h(n3ws3) — 288h(yw; + n*w,)

+16h(ywy — 7wy + 1Pws3) + 16h(nwy — nw, — n’ws),

for all wy, wp, w3 € W. Replacing 73ws3 by 35°wj3 in (32), we get

9h(2nwy + 317°ws3) + 9h(2nws — 31Pws) + 9K (2nwy — 3°ws) + 9 (2w, + 3P ws)

= 4h(nwy + 277wy + 3y3ws) + 4h(wy + 27%ws — 317°ws3) + 24h(ywy + 25w,

— 6h(317%w3) 4+ 4h(2nwy 4 7wo + 3y3w3) + 4h(2qwy + yPwy — 3%ws) 4 24h(2nwy + *w,)  (33)
— 6h(31%w3) — 288h(nwy + nPw;)

+16h(qwy — 7?wy + 3°ws3) + 16h(ywy — n*ws — 3°w3),

for all wy, wo, w3 € W. Using (28) in (33), we have

O (2nwy + nPws) + (2w, — 1Pws) + h(2nwy — Pws3) + h(2Pws + nPws)
= 36h(nwy + 1Pws3) + 36h(gwy — y3ws) + 216h(w;) — 54h(y3w3) + 36k (17w, + 13w3)
+ 36h(n?wy — Pws3) + 216k (17 w,) — 54h(7Pws) + 144h(ywy + 2w, + Pws) (34)
+ 144h(qwy + 112w2 — 173uJ3) — 32h(wy — V]sz) — 288h(wy + 772w2)
+16h(ywy — 7wz + 317°ws3) + 16h(gwy — n>w, — 3n°w;),
for all wy, wo, w3 € W. Substituting yw; = nwy — 172w2 + 3173w3 and 172w2 = nwi — 172w2 -
3n3wj3 in (21), we have
Oh(nwy — *wa + 3y°ws) + 9h(wy — Pwy — 3 ws)
= 81h(wy — 11wy — °w3) + 81h(jjwy — Pwy + 11°w3) (35)
— 144h(qwy — ?wy) + 1296h(7°w3),

for all wy, wo, w3 € W. Dividing (19—6) on both sides of the last inequality, we get

16h(wy — 1w, + 317°w3) + 16h(wy — 1w, — 317°w3)
= 144h(qw; — n*wy — PPws) + 144h(nw; — y?wy + 7°ws) (36)
— 256h(qwy — nwy) + 2304h(1Pws),
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for all wy, wo, w3 € W. Substituting (36) in (34), we obtain

925wy + 3n°ws) + (27w, — 3Pws) + 9h(2nwy — 3Pws) + (27w, + 3P ws)
= 36h(nwy + 1Pws) + 36wy — 3ws) + 2161wy ) — 54 (3 w3) + 36k (12w, + 13w3)
+ 36h(nwy — Pws3) + 216k (1 w,) — 54h(yPws) + 144h(ywy + n?w, + Pws) (37)
+ 1440 (ywq + 72wy — Pws) — 32kh(w1 — yPws) — 288h (wy + 72w,
+ 1440 (ywy + n?wy — PPw3) + 144k (w1 — 2w, + 1Pws) + 2304k (13ws),
for all wy, wy, w3 € W. Replacing nwy = 2ywq + 3113w3 and nzwz =2nw; — 3173w3 in (21),
we have
h(6nwy — 3n°ws3) + h(6nw; + 3n°ws)
= 9h(2wy + 3nws3) + 9 (2nwy — 33ws) + 92k (4nw,) — h(61°ws3), (38)
for all wy, w,, w3 € W. Substituting nw, = 27w, — 3w and nwy = 272w, + 31°w;
in (21), we get
h(617%w, + 317%w3) + h(65%ws — 357ws)
= 9h(2n*wy — 3Pws3) + 9 (27w, + 37 w3) + I (4nw;) — h(6y ws), (39)
for all wy, wp, w3 € W. Adding (38) and (39), we have

9h(2nwy + 3n°ws) + (27w, — 31Pws) + 9 (2n*wa — 3y3ws) + k(217w + 3n°ws)
= 324k (w1 + 1Pws) + 324h(gwy — 3ws) 4+ 1944k (nw, ) — 4861 (71°w3) (40)

+ 324h(n?wy + 1Pws3) + 324k (1w, — y3w3) + 1944k (1%w,) — 486h(nws) — 2304k (17w, )
— 2304h(n2wy) — 2592k (1Pws),

for all w1, wp, w3 € W. From (37) and (40), the left-hand sides are equal, and we get

36h(nwy + n°ws) + 36h(n>wy — Pws) + 216 (w1 ) — 54h(13ws3) + 36k (7w, — 73ws)
+216h(i*w2) — 54h(i°w3) + 144h (w1 + w2 + °ws) + 144k (w1 + w2 — °ws3)

— 32h(yqwy — y?wy) — 288h(nwy + n?w,) + 144h(wy — *ws — 1°ws) 41)
+ 144h(qwy — g?wy + 11Pw3) — 256k (wy — 42wy ) + 2304k (gwy — 7w,) + 2304k (y3w3)

= 324h(nw + Pws) + 324h(qwy — 7°ws) + 1944h(qw, ) — 486k (1°ws3)

+ 324h (172w + 3w3) + 324k (1Pwy — 11Pws3) + 1944h(n%w,) — 486k (113 w3) — 2304k (1w )
— 2304h(n%wy) + 2592k (113ws),

for all w1, wop, w3 € W. From the resultant Equation (41), we get
h(igwy + 177w + °ws) + h(qwy + Pws — °ws) + h(qwy — i’w, — i’ws)
+ h(wy + 1wy — Pws) = 2(h(gon +y7wz) + by + pPws) + ez +w3)) - (42)
+2 (g1 — 1Pw3) + Wy = Pws) + Bz — i'ws) )
— 4 (h(ywn) + h(w2) + h(ws) ),

for all wy, wo, w3 € W. Adding nh(wy) + %h(wy) + 1%h(w3) on the two sides of (42) and
using the evenness of 1, we obtain our desired result.
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Conversely, h : W — X satisfies the functional Equation (3). Using the evenness of h
in (3), we have

h(ywy + *wy + Pws) + h(—nwy + 1°wa + nws) + h(gwy — n*wy + Pws)
+ By + 1wy — iws) = 2(h(pws + 17w2) + h(Pws + Pws) + h(gwy + Pws)) - (43)
+ 2(’1(7’]2’(1}2 —nwy) + h(173w3 - 7]sz) + h(ngwy — r]3w3)>

- 4;74h(w1) — 4i78h(wz) - 41112h(W3),

for all wy, wy, w3 € W. Setting (w1, wp, w3) by (0,0,0) in (43), we get 1(0) = 0. Replacing
(w1, wp, w3) by (w,0,0),(0,w,0) and (0,0, w) in (43), we get

h(yw) = y*h(w), h(n*w) = p°h(w) and h(n*w) = 1'2h(w) (44)
for all w € W. It is easy to verify from (44) that

w

h() ~ L), i=1,2,3 (45)

aj aj

for all w € W. Replacing (wq, wy, w3) by (%, %, %) in (43), we get

h(2w + x) 4+ 2h(x) + h(2w — x) = 2h(2w)+
4h(w + x) + 2h(x — w) + 2h(w — x) — 8h(w) — 4h(x), (46)
for all w, x € W. Using the evenness of / in (46), we obtain
h(2w + x) + h(2w — x) = 4h(w + x) + 4h(w — x) + 24h(w) — 6h(x), (47)
for all w, x € W. Therefore, & is quartic. O

4. Stability Results for (3) (Direct Method)

In this section, we present the generalized Hyers-Ulam stability of the functional
Equation (3). Throughout this section, let us consider W to be a normed space and X a
Banach space. Define a mapping A : W — X defined by

A(wy, wy, ws) = h(nwy + n*wy + 1°ws) + h(—yqwy + 1*ws + 1Pws)
+ h(qwy — ?wa + °ws) + h(wy + P wy — w3
-2 [h(ﬂwl +1Pw2) + h(p*wa + °ws) + h(wy + i’ws)
+h(wr = *wz) + h(yPw; — 1ws) + h(pw) — iws)]
+2[ i ((wn) + h(=w1)) + 1 (1 (w2) + B(=w3)) + 712 ((w3) + h(~ws))]
+ [n(h(w1) = h(=w1)) + 72 (h(ws) = h(=w2)) + 1 (h(ws) — h(~w3))] .

Lemma 3. Let h be a solution of the quartic functional Equation (3),j € {—1,1} and B : W3 —
[0, 00) be a function such that

i P11, 100, 13)

kj =0,
k—o0 n ]

for all wy, wy, w3 € W. Moreover, let A : W — X be a function satisfying the inequality

| A(wr, w2, w3) || < B(wr, w2, w3)
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forall wy, wy, w3 € W. Then, there exists a unique additive function B : W — X such that

1 & plrf*w)
llh(W)—B(W)IISZWk_Xl‘,?_ ra

where y(w) = P(w,0,0). The mapping B(w) is defined by

1
B(w) = Jim h (le)
—» 00

forallw € W.

Corollary 1. Let ¢ and t be non-negative real numbers. Then, there exists a function A : W — X
satisfying the inequality

S

| A(wr,ws, )| < { 64T i},
e{TT oo+ 2

for all wy, wy, w3 € W. Then, there exists B : W — X, which is a unique additive function such
that

¢
A
ollzll .
”h(w) - B(ZU)” < 2|p—n3|’ t#1
ollz[* 1
2[p—n]’ 3

forallw € W.

Theorem 1. Let h be a solution of the quartic functional Equation (3) and j € {—1,1}. Let
B: W3 — [0, 00) be a function such that

i P01, 7505, 73)
k—o0 174kj

=0, (48)

forall wy, wy, w3 € Wand let Q : W — X be a function fulfilling the inequality

[Q(w1, wa, w3)|| < B(wy, wa, w3), (49)

for all wy, wy, w3 € W. Then, there exists a unique additive function B : W — X such that

[[h(w) = R(w)]| <

21 V(Z4kw) , (50)

forallw € W, where u(w) = B(w,0,0). The mapping R(w) is defined by

7

R(w) = lli_{?o h(Zilw) (51)

forallw € W.

Proof. Consider that j = 1. Replacing (w1, wp, w3) by (w,0,0) in (49), we get

H4174h(w) —4h(;7w)H < B(w,0,0), (52)
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for all w € W. It follows from (51) that

H h(qw)
174

1
h(w)H < Mﬁ(w,O,O), (53)

for all w € W. Now, setting w by 7w and dividing by #* in (53), we arrive at
h(pPw)  h(qw)

7 7
for all w € W. Adding (53) and (54), we have

H h(n*w)
;78

1
H < @ﬁ(nz, 0,0), (54)

B(12,0,0)
4

7

— h(w)H < 4’174 [ﬁ(w,0,0) +

for all w € W. In general, for any positive integer /, one can easily verify that

1
M )

for allw € W and

(55)

h(n'w)
,741

for all w € W. To prove the convergence of the sequence { }, replacing w by #°w and

dividing 7% in (55), we get

h(n'*w) — h(pw)

,74(l+c) ,74c

—0asc — oo, (56)

foralll,c > 0,w € W. Consequently, {h(gif”) } is a Cauchy arrangement. Since X is Banach

space, there exists a mapping R : W — X to such an extent that

for all w € W. Replacing I — oo in (55), we see that (51) holds for w € W. To prove that R
satisfies (3), replacing (wq, w2, w3) by (1°z, 7%z, 1> w) and partitioning 7% in (49), we find

1 1
|| QU e, 7 w)| < PO w W w)
for all wy, wy, w3 € W. Let ¢ — oo in the above inequality and the value of R(w), we find
that R(wq, wy, w3) = 0. Thus, R satisfies (3) for all w; € W;i = 1,2,3 to show that R is
unique. Let S(w) be another quartic mapping satisfying (3) and (51), such that

IR(w) = S(w)]| < 17146{||R(77‘TW) —h(y w)|| + [[h(n‘w) = S(r‘w)||}

1 & &y w)
SMZZW%()&SC%OO,

forall w € W and, also, R is unique. For j = —1, we obtain proof similar to that of Theorem 1.
O
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Corollary 2. Let ¢ and t be non-negative real numbers. The mapping A : W — X satisfying
the disparity

G
JAGor, wa w3l < { 6] S0 il &)
{TT el + 2 )

for all wy, wy, w3 € W. Then, there exists a unique additive mapping R : W — X such that

¢
41|
Ih(w) — R(w)|| < { 7kl t#4 (58)

cllw]* . 4
=P t# 3

forallw € W.

5. Stability Result for (3) (Fixed Point Method)

In this section, we investigate the generalized Ulam-Hyers stability of the functional
Equation (3) fixed point method.

Lemma 4. Let A : W — X be mapping of this. There is a function p : w® — [0,00) with the
conditions

iz BUIE©1 w2, fe0s)

=0
k—o0 171k

where

fulfilling the functional inequality
HA(wl/ wy, w3) || S ﬁ(wl/ wy, ZU3),

for all wy, wy, w3 € W. If there exists | = (i) such that the function

z - y(w) = %5(%,0,0)

has the property

W
1
for all w € W. Then, there exists a unique additive function R : W — X fulfilling the functional
Equation (3) and

1—i
I(w) - Rw)] < {—7(w)

forallw € W.

Corollary 3. Let ¢ and t be non-negative real numbers. Then, there exists a mapping A : W — X,
satisfying the disparity

S
JAGor, wp, w3l < { 6] S il
e{TT oo+ 22 ]
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forall wy, wy, w3 € W. Then, there exists a unique additive mapping R : W — X such that

!
w .
Ih(w) = R@)|| < § 2y~ t#1
¢ |wf** 1
2] t#3
forallw € W.
Theorem 2. Let Q : W — X be a mapping for this. There is a function B : w3 — [0, ) with the
condition . ) )
lim P o, 22 i ws) _g (59)
k—o0 1;
where
n, 1 ;
i = {1
gl 1
fulfilling the functional inequality
1Q(wr, wa, w3) || < B(wr, wa, w3), (60)

for all wy, wy, w3 € W. If there exists | = J(i) such that the function
1 (w
w— y(w) = 4ﬁ<’7,0,0>

= Jy(w), (61)

has the property

forall w € W. Then, there exists R : W — X fulfills (3) and

]1 i
[h(w) = R@)l| < {—57(w), (62)

forallw € W.
Proof. Let e be the complete metric on (), with the property that

e(q,r) = inf{k € (0,00) : () — r(w) | < ky(w), w0 € W},
It is easy to see that (€}, e) is complete. Define S : O — Q by Sh(w) = #h(mw) for all
w € W. Forg,r € Qand w € W, we have l

d(%)—kéﬂq H<k7 w),

1 771

= [15g(w) — Sr(w)]|| < ﬂ*kv(ﬂz w),

1

= [[Sq(w) = Sr(w)]|| < Jky(w)
= e(Sq(w), Sr(w)) < kJ.

ky (niw),

This implies e(Sq,Sr) < Je(q,r). Hence, S is strictly contractive mapping on Q) with
Lipschitz constant J. It is follows from (52) that

145*h (w) — 4h ()| < B(w,0,0), (63)
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for all w € W. It follows from (63) that

In*h(w) ~ ()] < B2, (64

for all w € W. Using the above condition, for i = 0, it reduces to

h 1
Hh(w) - ﬂ’jj“) H < 3710 = () = Sh(w)| < Jr(w)
for all w € W. Hence, we get

e(Sh(w) —h(w)) < J =], (65)

for all w € W. Replacing w by % in (64), we have

(s )< (.00

for all w € W. Using the above condition, for i = 1, we get

for all w € W. Hence, we get

s (%= o) )| < 2t = 1) < )] < 1),
e(h(w) — Sh(w)) < y* =], (67)

for all w € W. From (65) and (67), we can conclude

e(h(w) = Sh(w)) < J' < oo, (68)

for all w € W. It follows a fixed point R : S — (), such that

k
R(w) = lim hriw)

, (69)

forall w € W. In order to prove that R : Z — X satisfies the quartic functional Equation (3),
the evidence is similar to that of Theorem 1. Since R is a unique fixed point S on the set
A ={g€Q/e(g R) < o}, R is the unique function such that

1
e(g,R) < f_je(g, S8),

that is,
]l—i
implies that
]171‘
I7(w) = R(w)]} < 7 _]’Y(w)/

forallw e W. O
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Corollary 4. Let ¢ and t be non-negative real numbers. If a function Q : W — X fulfilling the
functional inequality

G
10 (w1, wa, w3)|| < ¢ 61 Lot Hwth}, (70)
o{ Ty il + 25y Jfoi

for all wy, wy, w3 € W. Then, there exists R : W — X such that

G
4|17471t\
glwll” .
[h(w) = R(w)|| < qamyy 74 (71)
gllwl* . 4
At =3t E# 3

forallw € W.

Proof. Setting
G
B(wq, wa, w3) < GEZ?—l ||wi||t}/
o{ T Il + 2y Il
for all wq, wy, w3 € W. Now,

4

Ak 7

; { —1 as k— o0

=
=

k k k
UL ARG LR v Y PR ! 51 as ko

,74k 1; -
! —1 as k — oo

=

S { T N1+ S5y i,
1

Hence, Equation (59) holds. Since we have

and
¢
1 (w gl
’)’(ZU) = 1,8 710/0 - 4qt
T gllw|?*
4qt
In addition,
1
! —4
1 4 clialty! ;- (w)
j’Y(Uz‘w) =9 7 =q 17, y(w) VweW. 5.
i 1 cllwlty! 74y (w)
o At

Therefore, the inequality (61) holds for the following cases:
Case1: Let ] = y~*

[h(w) = R(w)]| <

Case 2: Let | = 1

1—i
() = R(w)]| < I—y(w) =




Mathematics 2021, 9, 2881

150f 16

References

Case 3: Let ] = /4

1—i t—4 t t
I ) = 12 clolt _ il s

—R <
Ihe) ~ R(w)| < e
Case4: Let ] = y*~*

JH 1wl gl
T KA T A T (T

Case 5: Let | = 5%~

for t>4,i=1.

Ih(w) = R(w)]| <

1—i 3t—4 3t 3t
Ui gllwl| cl[w]| 4.
w w)| < w) = = g
Case 6: Let ] = 543
J 1 €”w”3t €||w||3t 4 .
R < — .
[h(w) — R(w)]| < 1 ]'y(w) T3 a4t (& — ) for t> 3 1

Hence, the proof is completed. [

6. Conclusions

In this paper, we have introduced the mixed-type additive—quartic functional Equation (3)
and have obtained the general solution of the mixed-type additive-quartic functional
Equation (3). Furthermore, we have proven the generalized Hyers—Ulam stability for the
mixed-type additive—quartic functional Equation (3) in Banach space using direct and fixed
point methods.
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