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Abstract: We define a process calculus to describe multi-agent systems with timeouts for commu-
nication and mobility able to handle knowledge. The knowledge of an agent is represented as sets
of trees whose nodes carry information; it is used to decide the interactions with other agents. The
evolution of the system with exchanges of knowledge between agents is presented by the operational
semantics, capturing the concurrent executions by a multiset of actions in a labelled transition system.
Several results concerning the relationship between the agents and their knowledge are presented.
We introduce and study some specific behavioural equivalences in multi-agent systems, including a
knowledge equivalence able to distinguish two systems based on the interaction of the agents with
their local knowledge.

Keywords: mobile agents; timeouts; knowledge as set of trees; behavioural equivalences

1. Introduction

Process calculi are used to describe concurrent systems, providing a high-level de-
scription of interactions, communications and synchronizations between independent
processes or agents. The main features of a process calculus are: (i) interactions between
agents/processes are by communication (message-passing), rather than modifying shared
variables; (ii) large systems are described in a compositional way by using a small num-
ber of primitives and operators; (iii) processes can be manipulated by using equational
reasoning and behavioural equivalences. The key primitive distinguishing the process
calculi from other models of computation is the parallel composition. The compositionality
offered by the parallel composition can help to describe large systems in a modular way,
and to better organize their knowledge (for reasoning about them).

In this paper we define an extension of the process calculus TIMO [1] in order to
model multi-agent systems and their knowledge. In this framework, the agents can move
between locations and exchange information, having explicit timeouts for both migration
and communication. Additionally, they have a knowledge of the network used to decide
the next interactions with other agents. The knowledge of the agents is inspired by a model
of semi-structured data [2] in which it is given by sets of unordered trees containing pairs
of labels and values in each node. In our approach, the knowledge is described via sets of
trees used to exchange information among agents about migration and communication.
Overall, we present a formal way to describe the behaviour of mobile communicating
agents and networks of agents in a compositional manner.

A network of mobile agents is a distributed environment composed of locations where
several agents act in parallel. Each agent is represented by a process together with its
knowledge that is used to decide interactions with other agents. Taking the advantage that
there already exists a theory of parallel and concurrent systems, we define a prototyping
language for multi-agent systems presented as a process calculus in concurrency theory. Its
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semantics is given formally by a labelled transition system; in this way we describe the
behaviour of the entire network, and prove some useful properties.

In concurrency, the behavioural equality of two systems is captured by using bisimu-
lations. Bisimulations are important contributions to computer science that appeared as
refinements of ‘structure-preserving’ mappings (morphisms) in mathematics; they can be
applied to new fields of study, including multi-agent systems. Bisimilarity is the finest be-
havioural equivalence; it abstracts from certain details of the systems, focusing only on the
studied aspects. The equivalence relations should be compositional such that if two systems
are equivalent, then the systems obtained by their compositions with a third system should
also be equivalent. This compositional reasoning allows for the development of complex
systems in which each component can be replaced by an equivalent one. Furthermore,
there exist efficient algorithms for bisimilarity checking and compositionality properties
of bisimilarity, algorithms that are usually used to minimize the state-space of systems.
These are good reasons why we consider that it is important to define and study some
specific behavioural equivalences for multi-agent systems enhanced with a knowledge of
the network for deciding the next interactions. To be more realistic, we consider systems
of agents with timing constraints on migration and communication. Therefore, a notable
advantage of using our framework to model systems of mobile agents is the possibility to
naturally express compositionality, mobility, local communication, timeouts, knowledge,
and equivalences between systems in a given interval of time (up to a timeout).

The paper is structured as follows: Section 2 presents the syntax and semantics of
the new process calculus knowTIMO and provides some results regarding the timing and
knowledge aspects of the evolution. In Section 3 we define and study various bisimulations
for the multi-agent systems described in knowTIMO . The conclusion, related work and
references end the article.

2. The New Process Calculus knowTIMO

In order to model the evolution of multi-agent systems handling knowledge, timed
communication and timed migration, we define a process calculus named knowTIMO ,
where know stands for ‘knowledge’ and TIMO stands for the family of calculi introduced
in [1] and developed in several articles.

In Table 1 we present the syntax of knowTIMO, where:
• Loc= {l, l′ . . .} is a set of distributed locations or location variables, Chan={a, b, . . .}

is a set of channels used for communication among agents, Id= {id, . . .} is a set of
names used to denote recursive processes, and N = {N, N′, . . .} is a set of networks;

• a unique process definition id(u1, . . . , umid)
def
= Pid is available for all id ∈ Id;

• timeouts of actions are denoted by t ∈ N; thresholds appearing in tests are denoted by
k ∈ Z; variables are denoted by u; expressions (over values, variables and allowed
operations) are denoted by v; fields are denoted by f ; path of fields are denoted by p
and are used to retrieve/update the value of the fields. Also, if Q ∈ Id and Q(u) is a
process definition, then for v1 6= v2 we obtain two different process instances Q(v1)
and Q(v2).

An agent A is a pair P�K, where A behaves as prescribed by P and K is the knowledge
used by process P during its execution. An agent A = got l then P � K is ready to migrate
from its current location to the location l by consuming the action got l of agent A. In got,
the timer t indicates the fact that agent A is unavailable for t units of time at the current
location; then, once the timer t expires, got l then P executes process P at the new location l.
Since l can be a location variable, it may be instantiated after communication between
agents. The use of location variables allows agents to adapt their behaviours based on the
interactions among agents.

An agent A = a∆t!〈v〉 then P else Q � K is available for up-to t units of time to com-
municate on channel a the value v to another agent A′ = a∆t′?(u) then P′ else Q′ � K′

available for communication at the same location and awaiting for a value on the same
communication channel a. In order to simplify the presentation in this paper, we consider a
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synchronous calculus; this means that when a communication takes place, the message sent
by one process is instantly received by the other process. If the communication happens,
then agent A executes process P, while agent A′ executes process P′ by making use of the
received value v. If the timers t and t′ of the agents A and A′ expire, then they execute
processes Q and Q′, respectively.

Table 1. Syntax of our Multi-Agent Systems.

Processes P, Q ::= got l then P (move)
p a∆t!〈v〉 then P else Q (output)
p a∆t?(u) then P else Q (input)
p if test then P else Q (branch)
p 0 (termination)
p id(v) (recursion)
p create(〈f | v; ∅〉) then P (create)
p update(p/f , v) then P (update)

Knowledge K ::= ∅ (empty)
p 〈 f | ε; K〉 p 〈 f | v; K〉 (tree)
p K K (set)

Paths p, p′ ::= / f p p p′ p p[test(p)] p p[test(p/f )]

Tests test(p) ::= true p ¬test(p) p K(p) > k p K(p) = v p
. . .

test ::= test(p) ∧ test(p′) p ¬test
Agents A, B ::= P � K
Set of
Agents Ã ::= 0 p Ã || A

Networks N ::= l[[Ã]] p N | N

An agent A = if test then P else Q � K uses its knowledge K to check the truth value
of the test. If the value is true, then agent A executes process P, while if the value is false,
then agent A executes process Q.

The agent A = create(〈f | v; ∅〉) then P � K extends its knowledge K by adding the
new piece of knowledge 〈 f | v; ∅〉 in parallel with K, and then executes process P. The
agent A = update(p/f , v) then P � K updates its knowledge K by adding the value v into
the field identified by f reached following path p/ f , and then executes process P; if the
field f does not exist, then the field is created and the value v is assigned to it. The agent
A = 0 � K has no actions to execute, and its evolution terminates.

The knowledge K of an agent A is used either for storing information needed for
communication with other agents or for deciding what process to execute. We define the
knowledge as sets of trees in which the nodes carrying the information are of two types:
〈 f | ε; K′〉 and 〈 f | v; K′〉. Both types of nodes contain a field f and a knowledge K′; they
differ only in the value stored in the field f , which can be either the symbol ε indicating the
empty value, or a non-empty value v. An agent A = P�K can use the information stored in
its knowledge K to perform tests. For example, a test K(p/ f ) > k is true only if, following
a path p in knowledge K, the value stored in the field f is greater than k (otherwise, it
is evaluated to false); a path is used to select a node in knowledge K. Predicates, always
embedded in square brackets and attached to fields in a path, are used to analyze either
the value of the current node by using p[test(p)] or the values of the inner nodes by using
p[test(p/f )]. We say that a knowledge K is included in another knowledge K′ (denoted
K ⊆ K′) if for all paths p appearing in K it holds that K(p) = K′(p).

In Table 1 there exist only one possibility to bind variables; namely, the variable u of
the process a∆t?(u) then P else Q is bound within process P, while it is not bound within
process Q. We denote by fv(P) and fv(N) the sets of free variables appearing in process P
and network N, respectively. Moreover, we impose that fv(Pid) ⊆ {u1, . . . , umid}, where

id(u1, . . . , umid)
def
= Pid. We denote by {v/u}P the process P having all the free occurrences

of the variable u replaced by value v, possibly after using α-conversion to avoid name
clashes in process P.



Mathematics 2021, 9, 2869 4 of 26

A network is composed of distributed locations, where l[[Ã]] denotes a location l
containing a set Ã of agents, while l[[0]] denotes a location without any agents. Over
the set N of networks we define the structural equivalence ≡ as the smallest congruence
satisfying the equalities:

l[[Ã || 0]] ≡ l[[Ã]] , l[[Ã]] | l[[B̃]] ≡ l[[Ã || B̃]] ,
N ≡ N , N | N′ ≡ N′ | N , (N | N′) | N′′ ≡ N | (N′ | N′′) .

The structural congruence ≡ is needed when using the operational semantics presented
in Tables 2 and 3 for either executing actions or indicating time passing. In Table 2 the

relation N Λ−→ N′ denotes the transformation of a network N into a network N′ by executing
the actions from the multiset of actions Λ; if the multiset of actions Λ contains only a single

action λ, namely Λ = {λ}, then we use N λ−→ N′ instead of N
{λ}−−→ N′.

The operational semantics of knowTIMO is presented in Table 2.

Table 2. Operational Semantics for our Multi-Agent Systems

(STOP) l[[0]] 6−→

(COM) l[[a∆t1 !〈v〉 then P1 else Q1 � K1 || a∆t2 ?(u) then P2 else Q2 � K2 || Ã]]
a!?@l−−−→ l[[P1 � K1 || {v/u}P2 � K2 || Ã]]

(PUT0) l[[a∆0!〈v〉 then P else Q � K || Ã]]
a!∆0@l−−−→ l[[Q � K || Ã]]

(GET0) l[[a∆0?(u) then P else Q � K || Ã]]
a?∆0@l−−−→ l[[Q � K || Ã]]

(MOVE0) l[[go0 l′ then P � K || Ã]] | l′[[B̃]] l.l′−−→ l[[Ã]] | l′[[P � K || B̃]]

(IFT) test@K = true

l[[if test then P else Q � K || Ã]]
true@l−−−→ l[[P � K || Ã]]

(IFF) test@K = false

l[[if test then P else Q � K || Ã]]
false@l−−−→ l[[Q � K || Ã]]

(CREATE) l[[create(〈f | v; ∅〉) then P � K || Ã]]
createf @l
−−−−→ l[[P � K 〈f | v; ∅〉 || Ã]]

(UPDATE)
∃p/ f = / f ′ . . . / f K = 〈 f ′ | v′; . . . 〈 f | v′′; K1〉 K2〉 K3

K′ = 〈 f ′ | v′; . . . 〈 f | v; K1〉 K2〉 K3

l[[update(p/f , v) then P � K || Ã]]
updp@l
−−−→ l[[P � K′ || Ã]]

(EXTEND)
∃p = / f ′ . . . / f ′′ 6 ∃p/ f K = 〈 f ′ | v′; . . . 〈 f ′′ | v′′; K1〉 K2〉 K3

K′ = 〈 f ′ | v′; . . . 〈 f ′′ | v′′; 〈 f | v; ∅〉K1〉 K2〉 K3

l[[update(p/f , v) then P � K || Ã]]
updp@l
−−−→ l[[P � K′ || Ã]]

(CALL) l[[id(v)� K || Ã]]
call@l−−−→ l[[{v/u}Pid � K || Ã]], where id(u)

def
= Pid

(PAR)
N1

Λ1−→ N′1 N2
Λ2−→ N′2

N1 | N2
Λ1|Λ2−−−→ N′1 | N′2

(EQUIV)
N ≡ N′ N′ Λ−→ N′′ N′′ ≡ N′′′

N Λ−→ N′′′

In rule (STOP), l[[0]] denotes a network without agents, and thus 6−→ marks the fact
that no action is available for execution. Rule (COM) is used if at location l two agents
A1 = a∆t1 !〈v〉 then P1 else Q1 � K1 and A2 = a∆t2 ?(u) then P2 else Q2 � K2 can communi-
cate successfully over channel a. After communication, both agents remain at the current
location l with their knowledge unchanged; agent A1 executes P1, while agent A2 exe-
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cutes {v/u}P2. The successful communication over channel a at location l is marked by
label a!?@l.

Rules (PUT0) and (GET0) are used for an agent A = a∆0 ∗ then P else Q � K (where
∗ ∈ {!〈v〉, ?(u)}) to remove action a when its timer expires. Afterwards, agent A is ready
to execute Q. Knowledge K remains unchanged. Since rule (COM) can be applied even if t1
and t2 are zero, it follows that when a timer is 0, only one of the rules (COM), (PUT0) and
(GET0) is chosen for application in a nondeterministic manner.

Rule (MOVE0) is used when at location l an agent A = go0 l′ then P � K migrates to lo-
cation l′ to execute process P. Rules (IFT) and (IFF) are used when an agent
A = if test then P else Q � K should decide what process to execute (P or Q) based on
the Boolean value returned by test@K; this value is determined by performing the test on
the knowledge K of agent A. Notice that in order to perform a test, the agent A can only
read its knowledge K.

Rule (CREATE) is used when an agent A = create(〈f | v; ∅〉) then P � K extends its
knowledge K with 〈 f | v; ∅〉; afterwards, the agent A executes process P.

Rule (UPDATE) is used when an agent A = update(p/f , v) then P � K updates to v
the value of K(p/ f ) of the existing field f , while rule (EXTEND) is used when the agent
A = update(p/f , v) then P � K expands (at the end of) an existing path p with a field f such
that K(p/ f ) = v; afterwards the agent A executes process P.

Rule (CALL) is used when an agent A = id(v)� K is ready to unfold the process id(v)
into {v/u}Pid. Rule (PAR) is used to put together the behaviour of smaller subnetworks.
while rule (EQUIV) is used to apply the structures congruence over networks.

In Table 3 are presented the rules for describing time passing, while the knowledge of

the involved agents remains unchanged. The relation N t N′ indicates the transformation
of a network N into a network N′ after t units of time.

Table 3. Operational Semantics of knowTIMO : Time Passing.

(DSTOP) l[[0]] t l[[0]]

(DPUT)
t ≥ t′ ≥ 0

l[[a∆t!〈v〉 then P else Q � K]] t′ l[[a∆t−t′ !〈v〉 then P else Q � K]]

(DGET)
t ≥ t′ ≥ 0

l[[a∆t?(u) then P else Q � K]] t′ l[[a∆t−t′?(u) then P else Q � K]]

(DMOVE)
t ≥ t′ ≥ 0

l[[got l′ then P � K]] t′ l[[got−t′ l′ then P � K]]

(DPAR)
N1

t N′1 N2
t N′2 N1 | N2 6−→

N1 | N2
t N′1 | N′2

(DEQUIV)
N ≡ N′ N′ t N′′ N′′ ≡ N′′′

N t N′′′

In rule (STOP), l[[0]] denotes a network without agents; the passing of time does not
affect such a network. Rules (DPUT), (DGET) and (DMOVE) are used to decrease the timers
of actions, while rules (DPAR) is used to put together the behaviour of composed networks.
In rule (DPAR), N1 | N2 6−→ denotes a network N1 | N2 that cannot execute any action; this
is possible because the use of negative premises in our operational semantics does not lead
to inconsistencies.
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Given a finite multiset of actions Λ = {λ1, . . . , λk} and a timeout t, a derivation

N Λ,t
==⇒ N′ captures a complete computational step of the form:

N
λ1−→ N1 . . . Nk−1

λk−→ Nk
t N′.

The fact that a knowTIMO network N is able to perform zero or more actions steps
and a time step in order to reach a network N′ is denoted by N ==⇒∗ N′. Notice that the

consumed actions and elapsed time are not recorded. By N λ
==⇒∗N′ we denote the fact that

there exist networks N1 and N2 such that N ==⇒∗ N1
λ−−→ N2 ==⇒∗ N′; in this way we

emphasize only the consumed action λ out of all consumed actions.
In our setting, at most one time passing rule can be applied for any arbitrary given

process. This is the reason why, by inverting a rule, we can describe how the time passes
in the subprocesses of a process. This result is useful when reasoning by induction on the
structure of processes for which time passes.

Proposition 1. Assume N t′ N′. Then exactly one of the following holds:
• N = l[[0]] and N′ = l[[0]];

• N = l[[a∆t!〈v〉 then P else Q � K]] and N′ = l[[a∆t−t′ !〈v〉 then P else Q � K]], where
t ≥ t′ ≥ 0;

• N = l[[a∆t?(u) then P else Q � K]] and N′ = l[[a∆t−t′?(u) then P else Q � K]], where
t ≥ t′ ≥ 0;

• N = l[[got l′ then P � K]] and N′ = l[[got−t′ l′ then P � K]], where t ≥ t′ ≥ 0;
• N = N1 | N2 such that N1 | N2 6−→, and there exist N′1 and N′2 such that N′ = N′1 | N′2,

N1
t′ N′1 and N2

t′ N′2.

Proof. Straightforward, by observing that the time passing rules in Table 3 can be deter-
ministically inverted; namely, each network of Table 1 performing a time step can use at
most one rule of Table 3.

The following theorem claims that time passing does not introduce nondeterminism
in the evolution of a network.

Theorem 1. The next two statements hold for any three networks N, N′ and N′′:

1. if N 0 N′, then N = N′;

2. if N t N′ and N t N′′, then N′ = N′′.

Proof. 1. We proceed by induction on the structure of N.

• Case N = l[[0]]. Since N 0 N′, by using Proposition 1, it holds that N′ = l[[0]],
meaning that N = N′ (as desired).

• Case N = l[[a∆t!〈v〉 then P else Q � K]]. Since N 0 N′, by using Proposition 1, it
holds that N′ = l[[a∆t−0!〈v〉 then P else Q � K]] = l[[a∆t!〈v〉 then P else Q � K]],
meaning that N = N′ (as desired).

• Case N = l[[a∆t?(u) then P else Q � K]]. Since N 0 N′, by using Proposition 1, it
holds that N′ = l[[a∆t−0?(u) then P else Q � K]] = l[[a∆t?(u) then P else Q � K]],
meaning that N = N′ (as desired).

• Case N = l[[got l′ then P � K]]. Since N 0 N′, by using Proposition 1, it holds
that N′ = l[[got−0 l′ then P � K]] = l[[got l′ then P � K]], meaning that N = N′

(as desired).

• Case N = N1 | N2. Since N 0 N′, by using Proposition 1, it holds that there

exist N′1 and N′2 such that N′ = N′1 | N′2, together with N1
0 N′1 and N2

0 N′2.

By induction the reductions N1
0 N′1 and N2

0 N′2 imply that N′1 = N1 and
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N2 = N′2, respectively. Thus N′1 = N′1 | N′2 = N1 | N2, meaning that N = N′

(as desired).

2. We proceed by induction on the structure of N.

• Case N = l[[0]]. Since N t N′ and N t N′′, by using Proposition 1, it holds that
N′ = l[[0]] and N′′ = l[[0]], respectively, meaning that N′ = N′′ (as desired).

• Case N = l[[a∆t′ !〈v〉 then P else Q � K]]. Since N t N′ and

N t N′′, by using Proposition 1, it holds that N′ = l[[a∆t′−t!〈v〉 then P else Q�K]]
and N′′ = l[[a∆t′−t!〈v〉 then P else Q � K]], respectively, meaning that N′ = N′′

(as desired).
• Case N = l[[a∆t′?(u) then P else Q � K]]. Since N t N′ and N t N′′, by using

Proposition 1, it holds that N′ = l[[a∆t′−t?(u) then P else Q � K]]
and N′′ = l[[a∆t′−t?(u) then P else Q � K]], respectively, meaning that N′ = N′′

(as desired).
• Case N = l[[got′ l′ then P�K]]. Since N t N′ and N t N′′, by using Proposition 1,

it holds that N′ = l[[got′−t l′ then P � K]] and N′′ = l[[got′−t l′ then P � K]],
respectively, meaning that N′ = N′′ (as desired).

• Case N = N1 | N2. Since N t N′, by using Proposition 1, it holds that there

exist N′1 and N′2 such that N′ = N′1 | N′2, together with N1
t N′1 and N2

t N′2.

Similarly, since N t N′′, by using Proposition 1, it holds that there exist N′′1
and N′′2 such that N′′ = N′′1 | N′′2 , together with N1

t N′′1 and N2
t N′′2 . By

induction, N1
t N′1 and N1

t N′′1 imply that N′1 = N′′1 , while N2
t N′2 and

N2
t N′′2 imply that N′2 = N′′2 . Thus, N′1 = N′1 | N′2 = N′′1 | N′′2 , meaning that

N = N′ (as desired).

The following theorem claims that whenever only the rules of Table 3 can be applied
for two time steps of lengths t and t′′, then the rules can be applied also for a time step of
length t + t′.

Theorem 2. If N t N′′ t′ N′, then N
t+t′

N′ .

Proof. We proceed by induction on the structure of N.

• Case N = l[[0]]. Since N t N′′ by using Proposition 1, it holds that N′′ = l[[0]].

Similarly, since N′′ t′ N′ by using Proposition 1, it holds that N′ = l[[0]]. Rule

(DSTOP) can be used for network N, namely N
t+t′

l[[0]] = N′ (as desired).

• Case N = l[[a∆t′′ !〈v〉 then P else Q � K]]. Since N t N′′ by using Proposition 1, it holds

that N′′ = l[[a∆t′′−t!〈v〉 then P else Q�K]], where t′′ ≥ t ≥ 0. Similarly, since N′′ t′ N′

by using Proposition 1, it holds that N′ = l[[a∆(t′′−t)−t′ !〈v〉 then P else Q � K]], where
t′′ − t ≥ t′ ≥ 0. Due to the fact that 0 ≤ t+t′ ≤ t′′, rule (DGET) can be used for

network N, namely N
t+t′

l[[a∆t′′−(t+t′)!〈v〉 then P else Q � K]] = N′ (as desired).

• Case N = l[[a∆t′′?(u) then P else Q�K]]. Since N t N′′ by using Proposition 1, it holds

that N′′ = l[[a∆t′′−t?(u) then P else Q � K]], with t′′ ≥ t ≥ 0. Similarly, since N′′ t′ N′

by using Proposition 1, it holds that N′ = l[[a∆(t′′−t)−t′?(u) then P else Q � K]], where
t′′ − t ≥ t′ ≥ 0. Due to the fact that 0 ≤ t+t′ ≤ t′′, rule (DPUT) can be used for

network N, namely N
t+t′

l[[a∆t′′−(t+t′)?(u) then P else Q � K]] = N′ (as desired).
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• Case N = l[[got′′ l′ then P � K]]. Since N t N′′ by using Proposition 1, it holds that

N′′ = l[[got′′−t l′ then P � K]], where t′′ ≥ t ≥ 0. Similarly, since N′′ t′ N′ by using
Proposition 1, it holds that N′ = l[[go(t

′′−t)−t′ l′ then P � K]], where t′′ − t ≥ t′ ≥ 0.
Due to the fact that 0 ≤ t+t′≤ t′′, rule (DMOVE) can be used for network N, namely

N
t+t′

l[[got′′−(t+t′) l′ then P � K]] = N′ (as desired).

• Case N = N1 | N2. Since N t N′′, by using Proposition 1, it holds that N1 | N2 6−→

and there exist N′′1 and N′′2 such that N′′ = N′′1 | N′′2 , together with N1
t N′′1 and

N2
t N′′2 . Similarly, since N′′ t′ N′, by using Proposition 1, it holds that there exist N′1

and N′2 such that N′ = N′1 | N′2, together with N′′1
t′ N′1 and N′′2

t′ N′2. By induction,

N1
t N′′1 and N′′1

t′ N′1 imply that N1
t+t′

N′1, while N2
t N′′2 and N′′2

t′ N′2 imply

that N′2
t+t′

N′2. Since N1
t+t′

N′1, N2
t+t′

N′2 and N1 | N2 6−→, rule (DPAR) can be

used for network N, namely N
t+t′

N′1 | N′2 = N′ (as desired).

Regarding the knowledge of an agent, we have the following result showing that any
given agent can be obtained starting from an agent without any knowledge.

Proposition 2. If N′′= l[[P′′ �K′′]] with K′′ 6= ∅, then
there exists N′= l[[P′ �K′]] with K′ = ∅ such that N′ ==⇒∗ N′′.

Proof. We proceed by induction on the structure of K′′.

• Consider K′′ = 〈 f | v; ∅〉. According to rule (CREATE), this knowledge can be obtain
from a process P′ = create(〈f | v; ∅〉) then P′′. This implies that for N′ = l[[P′ �K′]]

with K′ = ∅, it holds that N′
createf @l
−−−−−→ N′′ (as desired).

• Consider K′′ = 〈 f | v; ∅〉 K, with K 6= ∅. By induction, there exists a process P able to
create the knowledge K. This implies that for N= l[[P �K]] with K 6= ∅, it holds that
N ==⇒∗ N′′. According to rule (CREATE), knowledge K′′ can be obtain starting from
knowledge K by using a process P′ = create(〈f | v; ∅〉) then P. This implies that for

N′= l[[P′ �K′]] with K′ = ∅, it holds that N′
createf @l
−−−−−→ N ==⇒∗ N′′ (as desired).

• Consider K′′ = 〈 f ′ | v′; . . . 〈 f ′′ | v′′; 〈 f | v; ∅〉K1〉 K2〉 K3. By induction, there exists
a process P able to create the knowledge K = 〈 f ′ | v′; . . . 〈 f ′′ | v′′; K1〉 K2〉 K3. This
implies that for N = l[[P �K]] with K 6= ∅, it holds that N ==⇒∗ N′′. According to
rule (EXTEND), knowledge K′′ can be obtain starting from knowledge K by using
a process P′ = update(p/f , v) then P, where p = / f ′ . . . / f ′′. This implies that for

N′= l[[P′ �K′]] with K′ = ∅, it holds that N′
updp@l
−−−−→ N ==⇒∗ N′′ (as desired).

The next result is a consequence of the previous one; it claims that any given network in
knowTIMO can be obtained starting from a network containing only agents without knowledge.

Theorem 3. If N′′= l1[[P′′11 �K′′11 || . . . || P′′1n �K′′1n]] | . . . | lm[[P′′m1 �K′′m1 || . . . || P′′mn �K′′mn]],
then there exists N′= l1[[P′11 �K′11 || . . . || P′1n �K′1n]] | . . . | lm[[P′m1 �K′m1 || . . . || P′mn �K′mn]]
with K′ij = ∅ (1 ≤ i ≤ m, 1 ≤ j ≤ n) such that N′ ==⇒∗ N′′.

The following example illustrates how agents communicate and make use of their knowledge.

Example 1. To illustrate how multi-agent systems can be described in knowTIMO, we adapt the
travel agency example from [3], where all the involved agents have a cyclic behaviour. Consider a
travel agency with seven offices (one central and six locals) and five employees (two executives and
three travel agents). As the agency is understaffed and all local offices need to be used from time
to time, the executives meet with the agents daily at the central office in order to assign them local
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offices where they sell travel packages by interacting with potential customers. We consider two
customers that are willing to visit the local offices closer to their homes. In what follows we show
how each of the involved agents can be described by using the knowTIMO syntax.

Each day, agent A1 executes the action go10 office in order to move after 10 time units from
location homeA1 to the central office. After reaching the central office, in order to find out at
which local office will work for the rest of the day, it executes the action b∆5?(newloc) to try to
communicate with any of the executives in the next 5 time units. The location variable newloc is
needed to model a dynamic evolution based on the local office assigned by an available executive.
After successfully communicating with an executive, the agent A1 moves to location officei after 5
time units in order to communicate with potential customers using channel ai in order to sell a
travel package towards location destA1 at the cost of 100 monetary units. After each working
day, the agent returns home by executing the action go3 homeA1. The agents A2 and A3 behave
similarly to A1, except that they begin and end their days at different locations, work locally at
different offices and the travel packages they advertise are different.

Formally, the travel agents are described by the recursive processes AX(homeAX)� KAX:

AX(homeAX) = go10 office then AX(office)

AX(office) = b∆5?(newloc)
then (go5 newloc then AX(newloc))
else AX(office)

AX(officei) = update(/work, officei)
then a∆9

i !〈KAX(/work/dest), KAX(/work/price)〉
then go3 homeAX then AX(homeAX)
else go3 homeAX then AX(homeAX)

KAX = 〈work | office; 〈dest | destAX〉 〈price | 100 ·X〉〉.
The identifiers AX (1 ≤ X ≤ 3) are uniquely assigned to the three travel agents, and officei

(1 ≤ i ≤ 6) indicate the six local offices.
Given the knowledge KAX defined above, we exemplify how it can be used for some queries:

• KAX(/work/price) is used to retrieve the price value 100 · X by following the path
/work/price in KAX ;

• KAX(/work[KAX(/work/price) < 200]) returns the local office in which the agent is trying
to sell its travel package whenever the price of the package available by following the path
/work/price is below 200 monetary units.

Executives E1 and E2 are placed in the central office, being available for communication on
channel b for 5 time minutes. In this way, they can assign to the travel agents (in a cyclic manner) the
locations office1, office3, office5, and the locations office2, office4, office6, respectively. Formally,
the executives are described by EX(officeY)� KEX:

EX(officeY) = update(/work, officeY)
then b∆5!〈KEX(/work)〉 then EX(officeY+2)

else EX(officeY)
KEX = ∅.

The identifiers EX (with 1 ≤ X ≤ 2) are uniquely assigned to the two executives, while
officeY (with Y ∈ {X, X + 2, X + 4}) indicate the local offices that each executive EX can assign
to travel agents. Defining the index of the local offices in this way ensures that the executives assign
the existing local offices in a cyclic way.

The client C1 initially resides at location homeC1; being interested in a travel package,
client C1 is willing to visit the local offices closer to his location, namely office1, office2, and
office3. For each of these three local offices, the visit has two possible outcomes: if client C1 interacts
with an agent then it will acquire a travel offer, while if the highoffice is closed then client C1 moves
to the next local office from its itinerary. Once its journey through the three local offices ends,
client C1 returns home whenever was unable to collect any travel offer, while goes at the destination
for which he has to pay the lowest amount whenever got at least one offer. After the holiday period
ends, client C1 returns home, where can restart the process of searching for a holiday destination.
Client C2 behaves in a similar manner as client C1 does, except looking for the most expensive
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travel package while visiting the local offices office4, office5 and office6. Formally, the clients are
described by CX(homeCX)� KCX:

CX(homeCX) = go13 officeZ+1 then CX(officeZ+1)

CX(officeZ+1) = a∆4
Z+1?(destCX,1, costCX,1)
then update(/agency[testZ+1]/dest, destCX,1)

then update(/agency[testZ+1]/price, costCX,1)
then go2 officeZ+2 then CX(officeZ+2)

else update(/agency[testZ+1]/dest, ε )
then update(/agency[testZ+1]/price, ε )

then go2 officeZ+2 then CX(officeZ+2) ,
where testZ+1 = (KCX(/agency) = officeZ+1)

CX(officeZ+2) = a∆4
Z+2?(destCX,2, costCX,2)
then update(/agency[testZ+2]/dest, destCX,2)

then update(/agency[testZ+2]/price, costCX,2)
then go3 officeZ+3 then CX(officeZ+3)

else update(/agency[testZ+2]/dest, ε )
then update(/agency[testZ+2]/price, ε )

then go2 officeZ+3 then CX(officeZ+3) ,
where testZ+2 = (KCX(/agency) = officeZ+2)

CX(officeZ+3) = a∆4
Z+3?(destCX,3, costCX,3)
then update(/agency[testZ+3]/dest, destCX,3)

then update(/agency[testZ+3]/price, costCX,3)
then CX(nextCX)

else update(/agency[testZ+3]/dest, ε )
then update(/agency[testZ+3]/price, ε )

then CX(nextCX) ,
where testZ+3 = (KCX(/agency) = officeZ+3)

CX(nextCX) = i f testX then (go5 nextCX then CX(nextCX))
else (go5 homeCX then CX(homeCX))

CX(destCX,i) = go5 destCX then CX(homeCX)

KCX = 〈agency | officeZ+1; 〈dest | ε 〉〈price | ε 〉〉
〈agency | officeZ+2; 〈dest | ε 〉〈price | ε 〉〉
〈agency | officeZ+3; 〈dest | ε 〉〈price | ε 〉〉 .

The identifiers CX (with 1 ≤ X ≤ 2) are uniquely assigned to the two clients, the identifiers
destCX,i uniquely identify the possible destinations the clients CX can visit, while Z = 3 ∗ (X− 1)
(with X ∈ {1, 2}) are used to identify the local offices for each of the clients.
The tests used above are:

testX = ¬(KCX(/agency/price) = ε ),

nextCX =



KCX(/agency[testmin]/destCX,i)

if X = 1 and KCX(/agency/price) = minj∈{1,2,3}costCX,j ∈ N;
KCX(/agency[testmax]/destCX,i)

if X = 2 and KCX(/agency/price) = maxj∈{1,2,3}costCX,j ∈ N;
homeCX otherwise.

The initial state of the system given as the knowTIMO network N is:

homeA1[[A1(homeA1)� KA1]] | homeA2[[A2(homeA2)� KA2]]
| homeA3[[A3(homeA3)� KA3]] | office[[E1(office1)� KE1 || E2(office2)� KE2]]
| homeC1[[C1(homeC1)� KC1] | homeC2[[C2(homeC2)� KC2] | N′,

where N′ stands for:

office1[[0]] | office2[[0]] | office3[[0]] | office4[[0]] | office5[[0]] | office6[[0]]
| dest1[[0]] | dest2[[0]] | dest3[[0]].



Mathematics 2021, 9, 2869 11 of 26

In what follows we show how some of the rules of Tables 2 and 3 are applied such that network N
evolves. Since the network N is defined by means of recursive processes, in order to execute their
actions we need to use the rules (CALL) and (PAR) for unfolding, namely

{call,call,call,call,call,call,call}−−−−−−−−−−−−−−−→ (CALL), (PAR)
homeA1[[(go

10 office then A1(office)� KA1]]
homeA2[[(go

10 office then A2(office)� KA2]]
homeA3[[(go

10 office then A3(office)� KA3]]
| office[[update(/work, office1)

then b∆5!〈KE1(/work)〉 then E1(office3)
else E1(office1)

�KE1
|| update(/work, office2)
then b∆5!〈KE2(/work)〉 then E2(office4)

else E2(office2)
�KE2]]

| homeC1[[go
13 office1 then C1(office1)]]

| homeC2[[go
13 office4 then C2(office4)]]

| N′.

The next step is represented by the two updates performed by the executives; thus, the rules
(EXTEND) and (PAR) are applied several times. Since the existing knowledge of the two executives
is currently ∅, this means that these updates extend in fact their knowledge.

{upd,upd}−−−−−→ (EXTEND), (PAR)
homeA1[[(go

10 office then A1(office)� KA1]]
homeA2[[(go

10 office then A2(office)� KA2]]
homeA3[[(go

10 office then A3(office)� KA3]]
| office[[ b∆5!〈KE1(/work)〉 then E1(office3)

else E1(office1)
�〈work | office1; ∅〉
|| b∆5!〈KE2(/work)〉 then E2(office4)

else E2(office2)
�〈work | office2; ∅〉]]

| homeC1[[go
13 office1 then C1(office1)]]

| homeC2[[go
13 office4 then C2(office4)]]

| N′.

Since the rules of Table 2 are not applicable to the above network, then only time passing can
be applied by using the rules of Table 3. The rules (DMOVE), (DGET) and (DPAR) can be applied
for t = 5, namely the maximum time units that can be performed.

5 (DMOVE), (DGET), (DPAR)
homeA1[[(go

5 office then A1(office)� KA1]]
homeA2[[(go

5 office then A2(office)� KA2]]
homeA3[[(go

5 office then A3(office)� KA3]]
| office[[ b∆0!〈KE1(/work)〉 then E1(office3)

else E1(office1)
�〈work | office1; ∅〉
|| b∆0!〈KE2(/work)〉 then E2(office4)

else E2(office2)
�〈work | office2; ∅〉]]

| homeC1[[go
8 office1 then C1(office1)]]

| homeC2[[go
8 office4 then C2(office4)]]

| N′.
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Since after 5 time units of the evolution there are no agents to communicate with the executives
on channel b, then the rules (PUT0) and (PAR) are applied such that the else branches of the two
executives are chosen to be executed next.

{b!∆0@office, b!∆0@office}−−−−−−−−−−−−−→ (PUT0), (PAR)
homeA1[[(go

5 office then A1(office)� KA1]]
homeA2[[(go

5 office then A2(office)� KA2]]
homeA3[[(go

5 office then A3(office)� KA3]]
| office[[ E1(office1) �〈work | office1; ∅〉

|| E2(office2) �〈work | office2; ∅〉]]
| homeC1[[go

8 office1 then C1(office1)]]
| homeC2[[go

8 office4 then C2(office4)]]
| N′.

Note that the evolution was deterministic during the first 5 time units. However, since there
are two executives and three travel agents into the system, the communication on channel b will
take place in a nondeterministic manner, and thus there exists several possible future evolutions of
the system.

3. Behavioural Equivalences in knowTIMO

In what follows, we define and study bisimulations for multi-agent systems that
consider knowledge dynamics as well as explicit time constraints for communication and
migration. Since a bisimilarity is the union of all bisimulations of the same type, in order
to demonstrate that two knowTIMO networks N1 and N2 are bisimilar it is enough to
discover a bisimulation relation containing the pair (N1, N2). This standard bisimulation
proof method is interesting for the following reasons:
• check-ups are local (only immediate transitions are used);
• No hierarchy exists between the pairs of a bisimulation, and thus we can effectively

use bisimilarity to reason about infinite behaviours; this makes it different from
inductive techniques, where we can reason about finite behaviour due to the required
hierarchy.

3.1. Strong Timed Equivalences

Inspired by the approach taken in [4], we extend the standard notion of strong bisimi-
larity by allowing also timed transitions to be taken into account.

Definition 1 (Strong timed bisimulation).
LetR ⊆ N ×N be a symmetric binary relation over knowTIMO networks.

1. R is a strong timed bisimulation if

• (N1, N2) ∈ R and N1
λ−→ N′1 implies that there exists N′2 ∈ N such that N2

λ−→ N′2
and (N′1, N′2) ∈ R ;

• (N1, N2) ∈ R and N1
t N′1 implies that there exists N′2 ∈ N such that N2

t N′2 and
(N′1, N′2) ∈ R .

2. The strong timed bisimilarity is the union ∼ of all strong timed bisimulationsR.

Definition 1 treats in a similar manner the timed transitions and the labelled transitions,
and so the bisimilarity notion is similar to the bisimilarity notion originally given for
labelled transition systems. We can prove that the relation ∼ is the largest strong timed
bisimulation, and also an equivalence relation.
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Proposition 3.
1. Identity, inverse, composition and union of strong timed bisimulations are strong timed

bisimulations.
2. ∼ is the largest strong timed bisimulation.
3. ∼ is an equivalence.

Proof.

1. We treat each relations separately showing that it respects the conditions from
Definition 1 for being a strong timed bisimulation.

(a) The identity relation IdR is a strong timed bisimulation.

i. Assume (N, N) ∈ IdR. Consider N λ−→ N′; then (N′, N′) ∈ IdR .
ii. Assume (N, N) ∈ IdR. Consider N t N′; then (N′, N′) ∈ IdR .

(b) The inverse of a strong timed bisimulation is a strong timed bisimulation.

i. Assume (N1, N2)∈R−1, namely (N2, N1)∈R. Consider N2
λ−→N′2; then

for some N′1 we have N1
λ−→N′1 and (N′2, N′1)∈R, namely (N′1, N′2)∈R−1.

By similar reasoning, if N1
λ−→ N′1 then we can find N′2 such that N2

λ−→ N′2
and (N′1, N′2) ∈ R−1 .

ii. Assume (N1, N2)∈R−1, namely (N2, N1)∈R. Consider N2
t N′2; then

for some N′1 we have N1
t N′1 and (N′2, N′1)∈R , namely (N′1, N′2)∈R−1.

By similar reasoning, if N1
t N′1 then we can find N′2 such that N2

t N′2
and (N′1, N′2) ∈ R−1 .

(c) The composition of strong timed bisimulations is a strong timed bisimulation.
i. Assume (N1, N2) ∈ R1R2. Then for some N we have (N1, N) ∈ R1 and

(N, N2) ∈ R2. Consider N1
λ−→N′1; then for some N′, since (N1, N)∈R1,

we have N λ−→ N′ and (N′1, N′) ∈ R1. Also, since (N, N2) ∈ R2 we have

for some N′2 that N2
λ−→ N′2 and (N′, N′2) ∈ R2. Thus, (N′1, N′2) ∈ R1R2.

By similar reasoning, if N2
λ−→ N′2 then we can find N′1 such that N1

λ−→ N′1
and (N′, N′2) ∈ R2 .

ii. Assume (N1, N2) ∈ R1R2. Then for some N we have (N1, N) ∈ R1

and (N, N2) ∈ R2. Consider N1
t N′1; then for some N′, since

(N1, N) ∈ R1, we have N t N′ and (N′1, N′) ∈ R1. Also, since

(N, N2) ∈ R2 we have for some N′2 that N2
t N′2 and (N′, N′2) ∈ R2.

Thus, (N′1, N′2) ∈ R1R2. By similar reasoning, if N2
t N′2 then we can

find N′1 such that N1
t N′1 and (N′, N′2) ∈ R2 .

(d) The union of strong timed bisimulations is a strong timed bisimulation.
i. Assume (N1, N2) ∈

⋃
i∈ I Ri. Then for some i ∈ I we have (N1, N2) ∈ Ri.

Consider N1
λ−→ N′1; then for some N′2, since (N1, N2) ∈ Ri, we have

N2
λ−→ N′2 and (N′1, N′2) ∈ Ri. Thus, (N′1, N′2) ∈

⋃
i∈I Ri. By similar

reasoning, if N2
λ−→ N′2 then we can find N′1 such that N1

λ−→ N′1 and
(N′1, N′2) ∈ Ri, namely (N′1, N′2) ∈

⋃
i∈I Ri.

ii. Assume (N1, N2) ∈
⋃

i∈I Ri. Then for some i ∈ I we have (N1, N2) ∈ Ri.

Consider N1
t N′1; then for some N′2, since (N1, N2) ∈ Ri, we have

N2
t N′2 and (N′1, N′2) ∈ Ri. Thus, (N′1, N′2) ∈

⋃
i∈I Ri. By similar

reasoning, if N2
t N′2 then we can find N′1 such that N1

t N′1 and
(N′1, N′2) ∈ Ri, namely (N′1, N′2) ∈

⋃
i∈I Ri.
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2. By the previous case (the union part), ∼ is a strong timed bisimulation and includes
any other strong timed bisimulation.

3. Proving that relation ∼ is an equivalence requires proving that it satisfies reflexivity,
symmetry and transitivity. We consider each of them in the following:

(a) Reflexivity: For any network N, N ∼ N results from the fact that the identity
relation is a strong timed bisimulation.

(b) Symmetry: If N ∼ N′, then (N, N′) ∈ R for some strong timed bisimulationR.
Hence (N′, N) ∈ R−1, and so N′ ∼ N because the inverse relation is a strong
timed bisimulation.

(c) Transitivity: If N ∼ N′ and N′ ∼ N′′ then (N, N′) ∈ R1 and (N′, N′′) ∈ R2
for some strong timed bisimulationsR1 andR2. Thus, (N, N′′) ∈ R1R2, and
so N ∼ N′′ due to the fact that the composition relation is a strong timed
bisimulation.

The next result claims that the strong timed equivalence ∼ among processes is
preserved even if the local knowledge of the agents is expanded. This is consistent
with the fact that the processes affect the same portion of their knowledge. To sim-
plify the presentation, in what follows we assume the notations |ni=1 Ni = N1 | . . . | Nn
and ||ni=1 Ai = A1 || . . . || An.

Proposition 4. If K′ij ⊆ K′′ij for 1 ≤ i ≤ n, 1 ≤ j ≤ m, then
|ni=1 li[[||mj=1 Pij � K′ij]] ∼ |ni=1 li[[||mj=1 Pij � K′′ij]].

Proof. We show that S is a strong timed bisimulation, where:
S={(|ni=1 li[[||mj=1 Pij �K′ij]] , |ni=1 li[[||mj=1 Pij �K′′ij]]) : K′ij⊆K′′ij, 1≤ i≤n, 1≤ j≤m}.

The proof is by induction on the last performed step:

• Let us assume that |ni=1 li[[||mj=1 Pij � K′ij]]
λ−−→ N′. Depending on the value of λ, there

are several cases:

– Consider λ = a!?@l1. Then there exists P11 = a∆t1 !〈v〉 then P′11 else P′′11 and
P12 = a∆t2 ?(u) then P′12 else P′′12 such that l1[[P11 � K′11 || P12 � K′12 ||mj=3 P1j � K′1j]]

|ni=2 li[[||mj=1 Pij � K′ij]]
a!?@l1−−−→ l1[[P′11 � K′11 || P′12 � K′12 ||mj=3 P1j � K′1j]]

|ni=2 li[[||mj=1 Pij � K′ij]] = N′. Then there exists N′′ = [[P′11 � K′′11 || P′12 � K′′12

||mj=3 P1j � K′′1j]] |ni=2 li[[||mj=1 Pij � K′′ij]] such that |ni=1 li[[||mj=1 Pij � K′′ij]]
a!?@l1−−−→ N′′.

Since K′ij ⊆ K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, clearly (N′, N′′) ∈ S .
– Consider λ = a!∆0@l1. Then there exists P11 = a∆0!〈v〉 then P′11 else P′′11 such

that l1[[P11 � K′11 ||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]]
a!∆0@l1−−−−→ l1[[P′11 � K′11

||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]] = N′. Then there exists N′′ = l1[[P′11 � K′′11

||mj=2 P1j �K′′1j]] |ni=2 li[[||mj=1 Pij �K′′ij]] such that |ni=1 li[[||mj=1 Pij �K′′ij]])
a!∆0@l1−−−−→N′′.

Since K′ij ⊆ K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, clearly (N′, N′′) ∈ S .
– Consider λ = a?∆0@l1. Then there exists P11 = a∆0?(u) then P′11 else P′′11 such

that l1[[P11� K′11 ||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]]
a?∆0@l1−−−−→ l1[[P′11 � K′11

||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]] = N′. Then there exists N′′ = l1[[P′11 � K′′11

||mj=2 P1j �K′′1j]] |ni=2 li[[||mj=1 Pij �K′′ij]] such that |ni=1 li[[||mj=1 Pij �K′′ij]])
a?∆0@l1−−−−→N′′.

Since K′ij ⊆ K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, clearly (N′, N′′) ∈ S .
– Consider λ = l1 . l2. Then there exists P11 = go0 l2 then P′11 such that l1[[P11� K′11

||mj=2 P1j� K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]]
l1.l2−−→ l1[[||mj=2 P1j � K′1j]] | l2[[P′11 � K′11

||mj=1 P2j� K′2j]] |ni=3 li[[||mj=1 Pij �K′ij]] = N′. Then there exists N′′ = l1[[||mj=2 P1j �
K′′1j]] | l2[[P′11 � K′′11 ||mj=1 P2j� K′′2j]] |ni=3 li[[||mj=1 Pij � K′′ij]] such that
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|ni=1 li[[||mj=1 Pij� K′′ij]])
l1.l2−−→ N′′. Since K′ij ⊆ K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, clearly

(N′, N′′) ∈ S .
– Consider λ = true@l1. Then there exists P11 = if test then P′11 else P′′11, where

test@K′11 = true, such that l1[[P11� K′11 ||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]]
true@l1−−−−→ l1[[P′11 � K′11 ||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]] = N′. Then there

exists N′′ = l1[[P′11 � K′′11 ||mj=2 P1j � K′′1j]] |ni=2 li[[||mj=1 Pij � K′′ij]] such that

|ni=1 li[[||mj=1 Pij � K′′ij]])
true@l1−−−−→ N′′. Since K′ij ⊆ K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

clearly (N′, N′′) ∈ S .
– Consider λ = false@l1. Then there exists P11 = if test then P′11 else P′′11, where

test@K′11 = false, such that l1[[P11� K′11 ||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]]
false@l1−−−−→ l1[[P′′11 � K′11 ||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]] = N′. Then there ex-

ists N′′ = l1[[P′′11 � K′′11 ||mj=2 P1j � K′′1j]] |ni=2 li[[||mj=1 Pij � K′′ij]] such that

|ni=1 li[[||mj=1 Pij � K′′ij]])
false@l1−−−−→ N′′. Since K′ij ⊆ K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

clearly (N′, N′′) ∈ S .
– Consider λ = createf @l1. Then there exists P11 = create(〈f | v; ∅〉) then P′11 such

that l1[[P11 � K′11 ||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]]
createf @l1−−−−−→ l1[[P′11 � K′11

〈 f | v; ∅〉 ||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]] = N′. Then there exists
N′′ = l1[[P′11 � K′′11 〈 f | v; ∅〉 ||mj=2 P1j � K′′1j]] |ni=2 li[[||mj=1 Pij � K′′ij]] such that

|ni=1 li[[||mj=1 Pij � K′′ij]])
createf @l1−−−−−→ N′′. Since K′ij ⊆ K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, then

also K′11 〈 f | v; ∅〉 ⊆ K′′11 〈 f | v; ∅〉, and clearly (N′, N′′) ∈ S .
– Consider λ = updp@l1. Then there exists P11 = update(p/f , v) then P′11 such

that l1[[P11 � K′11 ||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]]
updp@l1−−−−→ l1[[P′11 � Ku′

11

||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]] = N′. Then there exists N′′ = l1[[P′11 � Ku′′
11

||mj=2 P1j �K′1j]] |ni=2 li[[||mj=1 Pij �K′ij]]] such that |ni=1 li[[||mj=1 Pij �K′′ij]])
updp@l1−−−−→N′′.

Since K′ij⊆K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, then also Ku′
11⊆Ku′′

11 , and clearly (N′, N′′)∈S .

• Let us assume that |ni=1 li[[||mj=1 Pij � K′ij]]
t N′. Then there exists P′ij, 1 ≤ i ≤ n,

1 ≤ j ≤ m, such that |ni=1 li[[||mj=1 Pij � K′ij]]
t |ni=1 li[[||mj=1 P′ij � K′ij]] = N′. Then

there exists N′′ = |ni=1 li[[||mj=1 P′ij � K′′ij]] such that |ni=1 li[[||mj=1 Pij � K′′ij]]
t N′′. Since

K′ij ⊆ K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, clearly (N′, N′′) ∈ S .

The symmetric cases follow by similar arguments.

The following result shows that strong timed bisimulation is preserved even after
complete computational steps of two knowTIMO networks.

Proposition 5. Let N1, N2 be two knowTIMO networks.

If N1 ∼ N2 and N1
Λ,t
==⇒ N′1, then there exists N′2 ∈ N such that N2

Λ,t
==⇒ N′2 and N′1 ∼ N′2.

Proof. Assuming that the finite multiset of actions Λ contains the labels {λ1, . . . , λk}, then

the complete computational step N1
Λ,t
==⇒ N′1 can be detailed as N1

λ1−→ N1
1 . . . Nk−1

1
λk−→

Nk
1

t N′1. Since N1
λ1−→ N1

1 and N1 ∼ N2, then according to Definition 1 there exists N1
2 ∈ N

such that N2
λ1−→ N1

2 and N1
1 ∼ N1

2 . The same reasoning can be applied for another k steps,

meaning that there exist N2
2 , . . . , Nk

2 , N′2 ∈ N such that N2
λ1−→ N1

2 . . . Nk−1
2

λk−→ Nk
2

t N′2
and N′1 ∼ N′2. By the definition of a complete computational step, it holds that N2

λ1−→
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N1
2 . . . Nk−1

2
λk−→ Nk

2
t N′2 can be written as N2

Λ,t
==⇒ N′2. Thus, we obtained that there exists

N′2 ∈ N such that N2
Λ,t
==⇒ N′2 and N′1 ∼ N′2 (as desired).

The next example illustrates that the relation ∼ is able to distinguish between agents
with different knowledge if update operations are performed.

Example 2. Consider that client C2 is at location office4, ready to communicate on channel a4. To
simplify the presentation, we take only a simplified definition of C2 as follows:

C′2(office4) = a∆4
4 ?(destC2,1, costC2,1)

then update(/agency[test4]/dest, destC2,1)
else update(/agency[test4]/dest, ε ).

Consider the following three networks in knowTIMO :
N1 = office4[[C′2(office4)� KC2]],
N′1 = office4[[C′2(office4)� K′C2]],
N′′1 = office4[[C′2(office4)� K′′C2]],

where the knowledge of the agents is defined as:
KC2 = 〈agency | office4; 〈dest | ε 〉 〈price | ε 〉〉,
K′C2 = 〈agency | office5; 〈dest | ε 〉 〈price | ε 〉〉,
K′′C2 = ∅.
According to Definition 1, it holds that N′1 ∼ N′′1 , while N1 6∼ N′1 and N1 6∼ N′′1 . This is due

to the fact that while all three networks are able to perform a time step of length 4 and to choose the
else branch, only network N1 is able to perform the update operation. Formally:

N1
4 N2

false@office4−−−−−−→ N3
upd/agency[test4 ]/dest@office4
−−−−−−−−−−−−−−→ N4

and

N′1
4 N′2

false@office4−−−−−−→ N′3 6
upd/agency[test4 ]/dest@office4
−−−−−−−−−−−−−−→

N′′1
4 N′′2

false@office4−−−−−−→ N′′3 6
upd/agency[test4 ]/dest@office4
−−−−−−−−−−−−−−→ ,

where the networks N2, N3, N4, N′2, N′3, N′′2 and N′′3 in knowTIMO are obtained by using the
rules of Tables 2 and 3.

3.2. Strong Bounded Timed Equivalences

We provide some notations used in the rest of the paper:
• A timed relation over the set N of networks is any relationR ⊆ N ×N×N .
• The identity timed relation is

ι
d f
= {(N, t, N) |N∈N , t ∈ N}.

• The inverse of a timed relationR is

R−1 d f
= {(N2, t, N1) | (N1, t, N2) ∈ R}.

• The composition of timed relationsR1 andR2 is

R1R2
d f
= {(N, t, N′′) | ∃N′∈N : (N, t, N′)∈R1∧(N′, t, N′′)∈R2} .

• IfR is a timed relation and t ∈ N, then

Rt
d f
= {(N1, N2) | (N1, t, N2) ∈ R}

isR’s t-projection. We also denoteR∞
d f
=

⋃
t∈NRt.

• A timed relationR is a timed equivalence ifR∞ is an equivalence relation, and is an
equivalence up-to time t ∈ N if

⋃
0≤t′<tRt′ is an equivalence relation.

The equivalence ∼ requires an exact match of transitions of two networks during
their entire evolutions. Sometimes this requirement is too strong. In many situations this
requirement is relaxed [5], and real-time systems are allowed to behave in an expected way
up to a certain amount t of time units. This impels one to define bounded timed equivalences
up-to a given time t.
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Definition 2 (Strong bounded timed bisimulation).
LetR ⊆ N ×N×N be a symmetric timed relation on N and on networks in knowTIMO .

1. R is a strong bounded timed bisimulation if

• (N1, t, N2) ∈ R and N1
λ−→N′1 implies that there exists N′2 ∈ N such that N2

λ−→ N′2
and (N′1, t, N′2) ∈ R ;

• (N1, t, N2) ∈ R and N1
t′ N′1 implies that there exists N′2 ∈ N such that N2

t′ N′2
and (N′1, t− t′, N′2) ∈ R .

2. The strong bounded timed bisimilarity is the union ' of all strong bounded timed bisimu-
lationsR.

The following results illustrate some properties of the strong bounded timed bisimu-
lations. In particular, we prove that the equivalence relation ' (that is strictly included in
relation ∼) is the largest strong bounded timed bisimulation.

Proposition 6.
1. Identity, inverse, composition and union of strong bounded timed bisimulations are strong

bounded timed bisimulations.
2. ' is the largest strong bounded timed bisimulation.
3. ' is a timed equivalence.
4. ' ∼.

Proof.

1. We treat each relations separately showing that it respects the conditions from Definition 2
for being a strong bounded timed bisimulation.

(a) The identity relation ι is a strong bounded timed bisimulation.

i. Assume (N, t, N) ∈ ι. Consider N λ−→ N′; then (N′, t, N′) ∈ ι .

ii. Assume (N, t, N) ∈ ι. Consider N t′ N′; then (N′, t− t′, N′) ∈ ι .
(b) The inverse of a strong bounded timed bisimulation is a strong bounded

timed bisimulation.
i. Assume (N1, t, N2)∈R−1, namely (N2, t, N1)∈R. Consider N2

λ−→N′2;

then for some N′1 we have N1
λ−→ N′1 and (N′2, t, N′1) ∈ R, namely

(N′1, t, N′2) ∈ R−1. By similar reasoning, if N1
λ−→ N′1 then we can

find N′2 such that N2
λ−→ N′2 and (N′1, t, N′2) ∈ R−1.

ii. Assume (N1, t, N2) ∈ R−1, namely (N2, N1) ∈ R. Consider N2
t′ N′2;

then for some N′1 we have N1
t′ N′1 and (N′2, t− t′, N′1) ∈ R, namely

(N′1, t− t′, N′2) ∈ R−1. By similar reasoning, if N1
t′ N′1 then we can

find N′2 such that N2
t′ N′2 and (N′1, t− t′, N′2) ∈ R−1.

(c) The composition of strong bounded timed bisimulations is a strong bounded
timed bisimulation.
i. Assume (N1, t, N2) ∈ R1R2. Then for some N we have (N1, t, N) ∈ R1

and (N, t, N2) ∈ R2. Consider N1
λ−→ N′1; then for some N′, since

(N1, t, N) ∈ R1, we have N λ−→ N′ and (N′1, t, N′) ∈ R1. Also, since

(N, t, N2) ∈ R2 we have for some N′2 that N2
λ−→N′2 and (N′, t, N′2)∈R2.

Thus, (N′1, t, N′2)∈R1R2. By similar reasoning, if N2
λ−→ N′2 then we can

find N′1 such that N1
λ−→ N′1 and (N′, t, N′2) ∈ R2.
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ii. Assume (N1, t, N2) ∈ R1R2. Then for some N we have (N1, t, N) ∈ R1

and (N, t, N2) ∈ R2. Consider N1
t′ N′1; then for some N′, since

(N1, t, N) ∈ R1, we have N t′ N′ and (N′1, t− t′, N′) ∈ R1 . Also, since

(N, t, N2)∈R2, for some N′2 we have N2
t′ N′2 and (N′, t−t′, N′2)∈R2.

Thus, (N′1, t− t′, N′2) ∈ R1R2. By similar reasoning, if N2
t′ N′2 then

we can find N′1 such that N1
t′ N′1 and (N′, t− t′, N′2) ∈ R2.

(d) The union of strong bounded timed bisimulations is a strong bounded
timed bisimulation.
i. Assume (N1, t, N2) ∈

⋃
i∈IRi. Then for some i ∈ I we have that

(N1, t, N2) ∈ Ri. Consider N1
λ−→ N′1; then for some N′2, since

(N1, t, N2) ∈ Ri, we have N2
λ−→ N′2 and (N′1, t, N′2) ∈ Ri. Thus,

(N′1, t, N′2) ∈
⋃

i∈I Ri. By similar reasoning, if N2
λ−→ N′2 then we

can find N′1 such that N1
λ−→ N′1 and (N′1, t, N′2) ∈ Ri, namely

(N′1, t, N′2) ∈
⋃

i∈I Ri.
ii. Assume (N1, t, N2) ∈

⋃
i∈I Ri. Then for some i ∈ I we have that

(N1, t, N2) ∈ Ri. Consider N1
t′ N′1; then for some N′2, since

(N1, t, N2) ∈ Ri, we have N2
t′ N′2 and (N′1, t − t′, N′2) ∈ Ri. Thus,

(N′1, t− t′, N′2) ∈
⋃

i∈I Ri. By similar reasoning, if N2
t′ N′2 then we

can find N′1 such that N1
t′ N′1 and (N′1, t − t′, N′2) ∈ Ri, namely

(N′1, t− t′, N′2) ∈
⋃

i∈I Ri.

2. By the previous case (the union part), ' is a strong bounded timed bisimulation and
includes any other strong bounded timed bisimulation.

3. Proving that relation ' is a timed equivalence requires proving that it satisfies reflex-
ivity, symmetry and transitivity. We consider each of them in what follows:

(a) Reflexivity: For any network N, N ' N results from the fact that the identity
relation is a strong bounded timed bisimulation.

(b) Symmetry: If N ' N′, then (N, t, N′) ∈ R for some strong bounded timed
bisimulationR. Hence (N′, t, N) ∈ R−1, and so N′ ' N because the inverse
relation is a strong bounded timed bisimulation.

(c) Transitivity: If N ' N′ and N′ ' N′′ then (N, t, N′) ∈ R1 and (N′, t, N′′) ∈ R2
for some strong bounded timed bisimulations R1 and R2. Thus, it holds that
(N, t, N′′) ∈ R1R2, and so N ' N′′ due to the fact that the composition relation
is a strong bounded timed bisimulation.

4. We provide Example 3 below that illustrates the strict inclusion.

The next result claims that strong bounded timed equivalence 't over processes is
preserved even if the local knowledge of the agents is expanded. This is consistent with
the fact that the processes affect the same portion of their knowledge.

Proposition 7. If K′ij ⊆ K′′ij, for 1 ≤ i ≤ n, 1 ≤ j ≤ m, then
|ni=1 li[[||mj=1 Pij � K′ij]] ' |ni=1 li[[||mj=1 Pij � K′′ij]].

Proof. We show that S is a strong bounded timed bisimulation, where:
S={(|ni=1 li[[||mj=1 Pij �K′ij]] , t, |ni=1 li[[||mj=1 Pij �K′′ij]]) : K′ij⊆K′′ij, 1≤ i≤n, 1≤ j≤m}.

The proof is by induction on the last performed step:

• Let us assume that |ni=1 li[[||mj=1 Pij � K′ij]]
λ−−→ N′. Depending on the value of λ, there

are several cases:
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– Consider λ = a!?@l1. Then there exists P11 = a∆t1 !〈v〉 then P′11 else P′′11 and
P11 = a∆t2 ?(u) then P′12 else P′′12 such that l1[[P11 � K′11 || P12 � K′12 ||mj=3 P1j � K′1j]]

|ni=2 li[[||mj=1 Pij � K′ij]]
a!?@l1−−−→ l1[[P′11 � K′11 || P′12 � K′12 ||mj=3 P1j � K′1j]]

|ni=2 li[[||mj=1 Pij � K′ij]] = N′. Then there exists N′′ = [[P′11 � K′′11 || P′12 � K′′12

||mj=3 P1j � K′′1j]] |ni=2 li[[||mj=1 Pij � K′′ij]] such that |ni=1 li[[||mj=1 Pij � K′′ij]]
a!?@l1−−−→ N′′.

Since K′ij ⊆ K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, clearly (N′, t, N′′) ∈ S .
– Consider λ = a!∆0@l1. Then there exists P11 = a∆0!〈v〉 then P′11 else P′′11 such

that l1[[P11 � K′11 ||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]]
a!∆0@l1−−−−→ l1[[P′11 � K′11

||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]] = N′. Then there exists N′′ = l1[[P′11 � K′′11

||mj=2 P1j �K′′1j]] |ni=2 li[[||mj=1 Pij �K′′ij]] such that |ni=1 li[[||mj=1 Pij �K′′ij]])
a!∆0@l1−−−−→N′′.

Since K′ij ⊆ K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, clearly (N′, t, N′′) ∈ S .
– Consider λ = a?∆0@l1. Then there exists P11 = a∆0?(u) then P′11 else P′′11 such

that l1[[P11� K′11 ||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]]
a?∆0@l1−−−−→ l1[[P′11 � K′11

||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]] = N′. Then there exists N′′ = l1[[P′11 � K′′11

||mj=2 P1j �K′′1j]] |ni=2 li[[||mj=1 Pij �K′′ij]] such that |ni=1 li[[||mj=1 Pij �K′′ij]])
a?∆0@l1−−−−→N′′.

Since K′ij ⊆ K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, clearly (N′, t, N′′) ∈ S .
– Consider λ = l1 . l2. Then there exists P11 = go0 l2 then P′11 such that l1[[P11� K′11

||mj=2 P1j� K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]]
l1.l2−−→ l1[[||mj=2 P1j � K′1j]] | l2[[P′11 � K′11

||mj=1 P2j� K′2j]] |ni=3 li[[||mj=1 Pij � K′ij]] = N′. Then there exists N′′ =

l1[[||mj=2 P1j � K′′1j]] | l2[[P′11 � K′′11 ||mj=1 P2j� K′′2j]] |ni=3 li[[||mj=1 Pij � K′′ij]] such

that |ni=1 li[[||mj=1 Pij� K′′ij]])
l1.l2−−→ N′′. Since K′ij ⊆ K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

clearly (N′, t, N′′) ∈ S .
– Consider λ = true@l1. Then there exists P11 = if test then P′11 else P′′11, where

test@K′11 = true, such that l1[[P11� K′11 ||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]]
true@l1−−−−→ l1[[P′11 � K′11 ||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]] = N′. Then there

exists N′′ = l1[[P′11 � K′′11 ||mj=2 P1j � K′′1j]] |ni=2 li[[||mj=1 Pij � K′′ij]] such that

|ni=1 li[[||mj=1 Pij � K′′ij]])
true@l1−−−−→ N′′. Since K′ij ⊆ K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

clearly (N′, t, N′′) ∈ S .
– Consider λ = false@l1. Then there exists P11 = if test then P′11 else P′′11, where

test@K′11 = false, such that l1[[P11� K′11 ||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]]
false@l1−−−−→ l1[[P′′11 � K′11 ||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]] = N′. Then there ex-

ists N′′ = l1[[P′′11 � K′′11 ||mj=2 P1j � K′′1j]] |ni=2 li[[||mj=1 Pij � K′′ij]] such that

|ni=1 li[[||mj=1 Pij � K′′ij]])
false@l1−−−−→ N′′. Since K′ij ⊆ K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

clearly (N′, t, N′′) ∈ S .
– Consider λ = createf @l1. Then there exists P11 = create(〈f | v; ∅〉) then P′11 such

that l1[[P11� K′11 ||mj=2 P1j� K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]]
createf @l1−−−−−→ l1[[P′11 � K′11

〈 f | v; ∅〉 ||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]] = N′. Then there exists
N′′ = l1[[P′11 � K′′11 〈 f | v; ∅〉 ||mj=2 P1j � K′′1j]] |ni=2 li[[||mj=1 Pij � K′′ij]] such that

|ni=1 li[[||mj=1 Pij � K′′ij]])
createf @l1−−−−−→ N′′. Since K′ij ⊆ K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, then

also K′11 〈 f | v; ∅〉 ⊆ K′′11 〈 f | v; ∅〉, and clearly (N′, t, N′′) ∈ S .
– Consider λ = updp@l1. Then there exists P11 = update(p/f , v) then P′11 such

that l1[[P11 � K′11 ||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]]
updp@l1−−−−→ l1[[P′11 � Ku′

11

||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]] = N′. Then there exists N′′ = l1[[P′11 � Ku′′
11
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||mj=2 P1j � K′1j]] |ni=2 li[[||mj=1 Pij � K′ij]]] such that |ni=1 li[[||mj=1 Pij � K′′ij]]
updp@l1−−−−→ N′′. Since K′ij ⊆ K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, then also Ku′

11 ⊆ Ku′′
11 , and

clearly (N′, t, N′′) ∈ S .

• Let us assume that |ni=1 li[[||mj=1 Pij � K′ij]]
t′ N′. Then there exists P′ij, 1 ≤ i ≤ n,

1 ≤ j ≤ m, such that |ni=1 li[[||mj=1 Pij � K′ij]]
t′ |ni=1 li[[||mj=1 P′ij � K′ij]] = N′. Then

there exists N′′ = |ni=1 li[[||mj=1 P′ij � K′′ij]] such that |ni=1 li[[||mj=1 Pij � K′′ij]]
t N′′. Since

K′ij ⊆ K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, clearly (N′, t− t′, N′′) ∈ S .

The symmetric cases follow by similar arguments.

The following result shows that strong bounded timed bisimulation is preserved even
after complete computational steps of two networks in knowTIMO .

Proposition 8. Let N1, N2 be two knowTIMO networks.

If N1't N2 and N1
Λ,t′
==⇒N′1, then there is N′2∈N such that N2

Λ,t′
==⇒N′2 and N′1't−t′ N′2.

Proof. Assuming that the finite multiset of actions Λ contains the labels {λ1, . . . , λk}, then the

complete computational step N1
Λ,t
==⇒ N′1 can be detailed as N1

λ1−→ N1
1 . . . Nk−1

1
λk−→ Nk

1
t′ N′1.

Note that N1 't N2 means that (N1, t, N2) ∈'. Since N1
λ1−→ N1

1 and (N1, t, N2) ∈', then

according to Definition 2 there exists N1
2 ∈ N such that N2

λ1−→ N1
2 and (N1

1 , t, N1
2 ) ∈'. The

same reasoning can be applied for another k steps, meaning that there exist N2
2 , . . . , Nk

2 , N′2 ∈ N

such that N2
λ1−→ N1

2 . . . Nk−1
2

λk−→ Nk
2

t′ N′2 and (N′1, t− t′, N′2) ∈', namely N′1 't−t′ N′2.

The definition of a complete computational step implies that N2
λ1−→ N1

2 . . . Nk−1
2

λk−→ Nk
2

t′

N′2 can be written as N2
Λ,t′
==⇒ N′2. Thus, we obtained that there exists N′2 ∈ N such that

N2
Λ,t′
==⇒ N′2 and N′1 't−t′ N′2 (as desired).

Strong bounded timed bisimulation satisfies the property that if two networks are
equivalent up-to a certain deadline t, they are equivalent up-to any deadline t′ before t,
i.e., t′ ≤ t.

Proposition 9. If N 't N′ and t′ ≤ t, then N 't′ N′.

Proof. Assume N 't N′ and that there exist the networks N1, . . . , Nk ∈ N , the set of

actions Λ1, . . . , Λk and the timers t1, . . . , tk ∈ N such that N
Λ1,t1===⇒ N1 . . .

Λk ,tk===⇒ Nk and
also t = t1 + . . . + tk. According to Proposition 8, there exist the networks N′1, . . . , N′k ∈ N
such that N′

Λ1,t1===⇒ N′1 . . .
Λk ,tk===⇒ N′k, and also N1 't−t1 N′1, . . ., Nk '0 N′k. Since t′ ≤ t, then

there exists an l ≤ k and a t′′ ∈ N such that t1 + . . . + tl + t′′ = t′. By using Theorem 1,

it holds that there exists N1 such that N
Λ1,t1===⇒ N1 . . .

Λl ,tl==⇒ Nl
Λl+1,t′′
====⇒ N1. In a similar

manner, by using Theorem 1, it holds that there exists N2 such that N′
Λ1,t1===⇒ N′1 . . .

Λl ,tl==⇒

N′l
Λl+1,t′′
====⇒ N2. Since N1 and N2 can perform only time passing steps of length at most

tl+1 − t′′, this means that N1 '0 N2, However, according to Definition 2, this means that
we obtain the desired relation N 't′ N′ because the networks N and N′ can match their
behaviour for t′ steps.

The next example illustrates that the relation 't is able to treat as bisimilar some
multi-agent systems that are not bisimilar using the relation ∼ .
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Example 3. Let us consider the networks of Example 2, namely:
N1 = office4[[C′2(office4)� KC2]],
N′1 = office4[[C′2(office4)� K′C2]],
N′′1 = office4[[C′2(office4)� K′′C2]],

where the knowledge of the agents is defined as:
KC2 = 〈agency | office4; 〈dest | ε 〉 〈price | ε 〉〉,
K′C2 = 〈agency | office5; 〈dest | ε 〉 〈price | ε 〉〉,
K′′C2 = ∅.
Even if it holds that N′1 ∼ N′′1 while N1 6∼ N′1 and N1 6∼ N′′1 , by applying Definition 2, it

results that N1, N′1 and N′′1 are strong bounded timed bisimilar before the 4th time unit since they
have the same evolutions during this deadline, namely N′1 '4 N′′1 , N1 '4 N′1 and N1 '4 N′′1 .
If t > 4, we have that N′1 't N′′1 , while N1 6't N′1 and N1 6't N′′1 . Thus, both Definitions 1 and 2
return the same relations among N1, N′1 and N′′1 for t > 4.

This example illustrates also the strict inclusion relation from item 4 of Proposition 6.

3.3. Weak Knowledge Equivalences

Both equivalence relations ∼ and ' require an exact match of transitions and time
steps of two networks in knowTIMO ; this makes them too restrictive. We can introduce
a weaker version of network equivalence by looking only at the steps that affect the
knowledge data, namely the create and update steps. Thus, we introduce a knowledge
equivalence in order to distinguish between networks based on the interaction of the agents
with their local knowledge: the networks are equivalent if we observe only create and update
actions along same paths, regardless of the values added to the knowledge.

Definition 3 (Weak knowledge bisimulation). LetR ⊆ N ×N be a symmetric binary relation
over networks in knowTIMO .
1. R is a weak knowledge bisimulation if

• (N1, N2) ∈ R and N1
createf @l
=====⇒∗N′1 implies that there exists N′2 ∈ N such that

N2
createf @l
=====⇒∗N′2 and (N′1, N′2) ∈ R ;

• (N1, N2) ∈ R and N1
updp@l
====⇒∗N′1 implies that there exists N′2 ∈ N such that

N2
updp@l
====⇒∗N′2 and (N′1, N′2) ∈ R ;

2. The weak knowledge bisimilarity is the union ∼= of all weak knowledge bisimulationsR.

The following results present some properties of the weak knowledge bisimulations.
In particular, we prove that the equivalence relation∼= (that is strictly included in relation∼)
is the largest weak knowledge bisimulation.

Proposition 10.
1. Identity, inverse, composition and union of weak knowledge bisimulations are weak knowl-

edge bisimulations.
2. ∼= is the largest weak knowledge bisimulation.
3. ∼= is an equivalence.
4. ∼= ∼.

Proof.

1. We treat each relation separately showing that it respects the conditions from Definition 3
for being a weak knowledge bisimulation.

(a) The identity relation IdR is a weak knowledge bisimulation.

i. Assume (N, N) ∈ IdR. Consider N
createf @l
=====⇒∗N′; then (N′, N′) ∈ IdR .
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ii. Assume (N, N) ∈ IdR. Consider N
updp@l
====⇒∗N′; then (N′, N′) ∈ IdR .

(b) The inverse of a weak knowledge bisimulation is a weak knowledge bisimulation.

i. Assume (N1, N2)∈R−1, namely (N2, N1)∈R. Consider N2
createf @l
=====⇒∗N′2;

then for some N′1 we have N1
createf @l
=====⇒∗N′1 and (N′2, N′1) ∈ R, namely

(N′1, N′2) ∈ R−1. By similar reasoning, if N1
createf @l
=====⇒∗N′1 then we can

find N′2 such that N2
createf @l
=====⇒∗N′2 and (N′1, N′2) ∈ R−1.

ii. Assume (N1, N2)∈R−1, namely (N2, N1)∈R. Consider N2
updf @l
====⇒∗N′2;

then for some N′1 we have N1
updf @l
====⇒∗N′1 and (N′2, N′1) ∈ R, namely

(N′1, N′2) ∈ R−1. By similar reasoning, if N1
updf @l
====⇒∗N′1 then we can

find N′2 such that N2
updf @l
====⇒∗N′2 and (N′1, N′2) ∈ R−1.

(c) The composition of weak knowledge bisimulations is a weak knowledge bisimulation.
i. Assume (N1, N2) ∈ R1R2. Then for some N we have (N1, N) ∈ R1

and (N, N2) ∈ R2. Consider N1
createf @l
=====⇒∗N′1; then for some N′, since

(N1, N) ∈ R1, we have N
createf @l
=====⇒∗N′ and (N′1, N′) ∈ R1. Also, since

(N, N2)∈R2 we have for some N′2 that N2
createf @l
====⇒∗N′2 and (N′, N′2)∈R2.

Thus, (N′1, N′2) ∈ R1R2. By similar reasoning, if N2
createf @l
=====⇒∗N′2 then

we can find N′1 such that N1
createf @l
=====⇒∗N′1 and (N′, N′2) ∈ R2.

ii. Assume (N1, N2) ∈ R1R2. Then for some N we have (N1, N) ∈ R1

and (N, N2) ∈ R2. Consider N1
updf @l
====⇒∗N′1; then for some N′, since

(N1, N) ∈ R1, we have N
updf @l
====⇒∗N′ and (N′1, N′) ∈ R1. Also, since

(N, N2 ∈R2 we have for some N′2 that N2
updf @l
===⇒∗N′2 and (N′, N′2)∈R2.

Thus, (N′1, N′2) ∈ R1R2. By similar reasoning, if N2
updf @l
====⇒∗N′2 then we

can find N′1 such that N1
updf @l
====⇒∗N′1 and (N′, N′2) ∈ R2.

(d) The union of weak knowledge bisimulations is a weak knowledge bisimulation.
i. Assume (N1, N2) ∈

⋃
i∈I Ri. Then for some i ∈ I we have (N1, N2) ∈ Ri.

Consider N1
createf @l
=====⇒∗N′1; then for some N′2, since (N1, N2) ∈ Ri, we

have N2
createf @l
=====⇒∗N′2 and (N′1, N′2) ∈ Ri . Thus, (N′1, N′2) ∈

⋃
i∈I Ri.

By similar reasoning, if N2
createf @l
=====⇒∗N′2 then we can find N′1 such that

N1
createf @l
=====⇒∗ N′1 and (N′1, N′2) ∈ Ri , namely (N′1, N′2) ∈

⋃
i∈I Ri.

ii. Assume (N1, N2) ∈
⋃

i∈I Ri. Then for some i ∈ I we have (N1, N2) ∈ Ri.

Consider N1
updf @l
====⇒∗N′1; then for some N′2, since (N1, N2) ∈ Ri, we

have N2
updf @l
====⇒∗N′2 and (N′1, N′2) ∈ Ri . Thus, (N′1, N′2) ∈

⋃
i∈I Ri.

By similar reasoning, if N2
updf @l
====⇒∗N′2 then we can find N′1 such that

N1
updf @l
====⇒∗ N′1 and (N′1, N′2) ∈ Ri , namely (N′1, N′2) ∈

⋃
i∈I Ri.

2. By the previous case (the union part), ∼= is a weak knowledge bisimulation and
includes any other weak knowledge bisimulation.

3. Proving that relation ∼= is an equivalence requires proving that it satisfies reflexivity,
symmetry and transitivity. We consider each of them in what follows:

(a) Reflexivity: For any network N, N ∼= N results from the fact that the identity
relation is a weak knowledge bisimulation.
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(b) Symmetry: If N ∼= N′, then (N, N′) ∈ R for some weak knowledge bisimula-
tionR. Hence (N′, N) ∈ R−1, and so N′ ∼= N because the inverse relation is a
weak knowledge bisimulation.

(c) Transitivity: If N ∼= N′ and N′ ∼= N′′ then (N, N′) ∈ R1 and (N′, N′′) ∈
R2 for some weak knowledge bisimulations R1 and R2. Thus, (N, N′′) ∈
R1R2, and so N ∼= N′′ due to the fact that the composition relation is a weak
knowledge bisimulation.

4. We provide Example 4 below illustrating the strict inclusion.

The next result claims that weak knowledge equivalence ∼= among processes is pre-
served even if the local knowledge of the agents is expanded. This is consistent with the
fact that the processes affect the same portion of their knowledge.

Proposition 11. If K′ij ⊆ K′′ij, for 1 ≤ i ≤ n, 1 ≤ j ≤ m, then
|ni=1 li[[||mj=1 Pij � K′ij]] ∼= |ni=1 li[[||mj=1 Pij � K′′ij]].

Proof. We show that S is a weak knowledge bisimulation, where:
S = {(|ni=1 li[[||mj=1 Pij �K′ij]] , |ni=1 li[[||mj=1 Pij �K′′ij]]) : K′ij⊆K′′ij, 1≤ i≤n, 1≤ j≤m}.

The proof is by induction on the last performed step. Let us assume that

|ni=1 li[[||mj=1 Pij � K′ij]]
λ

==⇒∗N′. Depending on the value of λ, there are several cases:

• Consider λ = createf @l1. Then there exists P11 such that l1[[P11 � K′11 ||mj=2 P1j � K′1j]]

|ni=2 li[[||mj=1 Pij � K′ij]]
createf @l
=====⇒∗l1[[P′11 � K′11 〈 f | v; ∅〉 ||mj=2 P′1j � K′1j]] |ni=2 li[[||mj=1

P′ij � K′ij]] =N′. Then there exists N′′ = l1[[P′11 � K′′11 〈 f | v; ∅〉 ||mj=2 P′1j � K′′1j]] |ni=2

li[[||mj=1 P′ij � K′′ij]] such that |ni=1 li[[||mj=1 Pij � K′′ij]])
createf @l
=====⇒∗N′′. Since K′ij ⊆ K′′ij,

1 ≤ i ≤ n, 1 ≤ j ≤ m, then also K′11 〈 f | v; ∅〉 ⊆ K′′11 〈 f | v; ∅〉, and clearly
(N′, N′′) ∈ S .

• Consider λ = updp@l1. Then there exists P11 such that l1[[P11 � K′11 ||mj=2 P1j � K′1j]]

|ni=2 li[[||mj=1 Pij �K′ij]]
updf @l
====⇒∗l1[[P′11 �Ku′

11 ||mj=2 P′1j �K′1j]] |ni=2 li[[||mj=1 P′ij � K′ij]] = N′.

Then there exists N′′ = l1[[P′11 � Ku′′
11 ||mj=2 P′1j � K′1j]] |ni=2 li[[||mj=1 P′ij � K′ij]]] such that

|ni=1 li[[||mj=1 Pij � K′′ij]])
updf @l
====⇒∗N′′. Since K′ij ⊆ K′′ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, then also

Ku′
11 ⊆ Ku′′

11 , and clearly (N′, N′′) ∈ S .

The symmetric cases follow by similar arguments.

The following result shows that weak knowledge bisimulation is preserved after
complete computational steps of two networks in knowTIMO only if the knowledge is
modified at least once during such a step.

Proposition 12. Let N1, N2 be two knowTIMO networks and ∃createf @l ∈ Λ or ∃updf @l∈Λ.

If N1
∼=N2 and N1

Λ,t
==⇒N′1, then there exists N2

′ ∈N such that N2
Λ,t
==⇒ ′2 and N1

′ ∼=N′2.

Proof. Assuming that the finite multiset of actions Λ contains the labels {λ1, . . . , λk} that

denote modifications to the knowledge, then the complete computational step N1
Λ,t
==⇒ N′1

can be detailed as N1
λ1==⇒∗N1

1 . . . Nk−1
1

λk==⇒∗N′1. Since N1
λ1==⇒∗N1

1 and N1
∼= N2, then

according to Definition 3 there exists N1
2 ∈ N such that N2

λ1==⇒∗N1
2 and N1

1
∼= N1

2 . The same
reasoning can be applied for another k times, meaning that there exist N2

2 , . . . , N′2 ∈ N such

that N2
λ1==⇒∗N1

2 . . . Nk−1
2

λk==⇒∗N′2 and N′1 ∼= N′2. By the definition of a complete computational

step, it holds that N2
λ1==⇒∗N1

2 . . . Nk−1
2

λk==⇒∗N′2 can be written as N2
Λ,t
==⇒ N′2. Thus, we obtained

that there exists N′2 ∈ N such that N2
Λ,t
==⇒ N′2 and N′1 ∼= N′2 (as desired).
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The next example illustrates that the relation ∼= is able to treat bisimilar systems that
are not bisimilar using the relation ∼.

Example 4. Consider the network N1 of Example 2, and a network

N′′′1 = office4[[C′′2 (office4)� KC2]],

in which the client can perform only an update action:

C′′2 (office4) = update(/agency[test4]/dest, destC2,1).

According to Definition 1, it holds that N1 6∼ N′′′1 . This is due to the fact that the network N1
can perform a time step of length 4 and choose the else branch, while the network N′′′1 can perform
only the update operation. Formally:

N1
4 N2

false@office4−−−−−−→ N3
upd/agency[test4 ]/dest@office4
−−−−−−−−−−−−−−→ N4

and

N′′′1

upd/agency[test4 ]/dest@office4
−−−−−−−−−−−−−−→ N′′′2

The above reductions can also be written as

N1 ==⇒∗ N3
upd/agency[test4 ]/dest@office4
−−−−−−−−−−−−−−→ N4,

and

N′′′1 ==⇒∗ N′′′1

upd/agency[test4 ]/dest@office4
−−−−−−−−−−−−−−→ N′′′2 .

By applying Definition 3, it results that N1 and N′′′1 are weak knowledge bisimilar because
they are able to perform an update on the same path at the same location, i.e., N1

∼= N′′′1 .
This example is also an illustration of the strict inclusion relation from item 4 of Proposition 10.

4. Conclusions and Related Work

In multi-agent systems, knowledge is usually treated by using epistemic logics [6]; in
particular, the multi-agent epistemic logic [7,8]. These epistemic logics are modal logics
describing different types of knowledge, being different not only syntactically, but also
in expressiveness and complexity. Essentially, they are based on two concepts: Kripke
structures (to model their semantics) and logic formulas (to represent the knowledge of
the agents).

The initial version of TIMO presented in [1] leads to some extensions: with access
permissions in perTIMO [9], with real-time in rTIMO [10], combining TIMO and the bi-
graphs [11] to obtain the BigTiMo calculus [12]. However, in all these approaches an
implicit knowledge is used inside the processes. In this article we defined knowTIMO to
describe multi-agent systems operating according to their accumulated knowledge. Essen-
tially, the agents get an explicit representation of the knowledge about the other agents of a
distributed network in order to decide their next interactions. The knowledge is defined
as sets of trees whose nodes contain pairs of labels and values; this tree representation is
similar to the data representation in Petri nets with structured data [13] and Xdπ process
calculus [14]. The network dynamics involving exchanges of knowledge between agents
is presented by the operational semantics of this process calculus; its labelled transition
system is able to capture the concurrent execution by using a multiset of actions. We proved
that time passing in such a multi-agent system does not introduce any nondeterminism in
the evolution of a network, and that the progression of the network is smooth (there are
no time gaps). Several results are devoted to the relationship between the evolution of the
agents and their knowledge.

According to [15], the notion of bisimulation was independently discovered in com-
puter science [16,17], modal logic [18] and set theory [19,20]. Bisimulation is currently used
in several domains: to test the behavioural equality of processes in concurrency [21]; to
solve the state-explosion problem in model checking [22]; to index and compress semi-
structured data in databases [23,24]; to solve Markov decision processes efficiently in
stochastic planning [25]; to understand for some languages their expressiveness in descrip-
tion logics [26]; and to study the observational indistinguishability and computational
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complexity on data graphs in XPath (a language extending modal logic with equality tests
for data) [27]. It is worth noting that the notion of bisimulation is related to the modal
equivalence in various logics of knowledge and structures presented in [28]. In some of
these logics it is proved that certain forms of bisimulation correspond to modal equivalence
of knowledge, and this is used to compare the logics expressivity [29,30].

Inspired by the bisimulation notion defined in computer science, in this paper we
defined and studied some specific behavioural equivalences involving the network knowl-
edge and timing constraints on communication and migration; the defined behavioural
equivalences are preserved during complete computational steps of two multi-agent sys-
tems. Strong timed bisimulation takes also into account timed transitions, being able to
distinguish between different systems regardless of the evolution time; strong bounded
timed bisimulation imposes limits for the evolution time, including the equivalences up to
any bound below that deadline. A knowledge equivalence is able to distinguish between
systems based on the interaction of the agents with their local knowledge. In the literature,
a related but weaker/simpler approach of knowledge bisimulation appeared in [14], where
the authors used only barbs (not equivalences), looking only at the update steps.
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