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Abstract: The problem of multicriteria optimization of a dynamic model is solved using the methods
of the similarity theory and the criteria importance theory. The authors propose the original model
of a positional system with two hydraulic actuators, synchronously moving a heavy object with a
given accuracy. In order to reduce the number of optimizing parameters, the mathematical model
of the system is presented in a dimensionless form. Three dimensionless optimization criteria that
characterize the accuracy, size, and quality of the dynamic positioning process are considered. It is
shown that the application of the criteria importance method significantly reduces the Pareto set (the
set of the best solutions). This opens up the possibility of reducing many optimal solutions to one
solution, which greatly facilitates the choice of parameters when designing a mechanical object.

Keywords: dynamics; hydraulic drive; similarity; multicriteria optimization

1. Introduction

Artificial intelligence is now widely used in industry, applied to transporting mech-
anisms, such as robots and manipulators, which move and deliver various objects to
specified positions. In simple loading systems, the accuracy of moving and positioning
of goods can be relatively low, which makes it possible to use relatively simple devices in
these cases. However, feeding a tool in processing machines requires a sufficiently high
accuracy. The movement of robots can be carried out by various actuators: pneumatic,
hydraulic, electric, etc.

Positioning control problems in transporting mechanisms (robots) are solved mainly in
two ways: using special type regulators, such as based on fuzzy logic, neural networks, and
so on or the ordinary regulators with feedback control of various type. The mathematical
models of actuators, as a rule, have a rather complex structure, consisting of higher-order
differential and algebraic equations.

Developing new devices requires the solving of a number of technical problems
associated with the choice of their type, structure, and control system, satisfied to many
requirements. In mechanical systems, hydraulic actuators are widely used. Their main
advantage in relation to pneumatic and electric actuators is their high carrying capacity
and low sensitivity to the load variation [1].

Mathematical models of hydraulic actuators and their control systems are well studied
and fully presented in works, such as [2–5]. However, the problem of finding the best
constructive solution in most cases is based of the original models not reduced to a dimen-
sionless form. Due to the abundance of differently sized variables, the general patterns of
the results obtained are often not visible, it is difficult to single out the groups of criteria
to be optimized. Additionally, it is not advisable to optimize un-grouped parameters
(variables) at the same time. This was noted by example in [6].
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In [7], the authors turn to dimensionless models, but do not use them systematically
in the search for the best solution. In this case, the dimensionless model serves only to
partially simplify the general formulation of the problem and to study the properties of the
original model. The transition to dimensionless parameters was used to select a special
object positioning control system, which should provide an approach to a given position
simultaneously with zero speed and zero acceleration in order to avoid damage to the
contact point when stopping.

The principle and process of transition to dimensionless forms have been developed
for a long time. Here we can note the fundamental works in this area [8,9]. The importance
of the theory of similarity and analogy in understanding the essence of things was noted
back in the days of Plato. In a number of philosophical works, attempts have been made
to generalize approaches to equivalence in different fields of knowledge, which gives this
direction additional significance. In [10], a general metric of transition to dimensionless
variables was considered and introduced, but it was noted that there is no uniquely best
measure of dynamic similarity, since the feasibility of any given measure depends on its
intended use.

In [11], it is shown that, due to the complexity of the mathematical description of
technical dynamic systems, when choosing their structure and parameters, they usually
turn to very laborious interactive (dialogue) procedures. A number of tools help to avoid
direct enumeration of options when using such procedures, among which the methods
of dimension and similarity theory take a significant place. These methods are based
on the use of dimensionless complexes of physical parameters of the system (criteria
of similarity and the relationship between them) together with the translation of the
mathematical description of the system into a dimensionless form [12,13]. As a result,
additional opportunities open up for identifying general patterns of dynamic processes,
which greatly facilitates making the final decision.

Experience shows that each specific problem of the dynamics of a mechanical system
requires a special approach to the formation of a dimensionless model and similarity
criteria. The structure and form of the dimensionless model depends on the accepted
units of measurement of the variables included in the equations of the model, and on the
expressions attached to its coefficients. These factors are initially unknown and are usually
formed according to the intuition and experience of the researcher, which introduces
uncertainty in the process of transition to a dimensionless model and does not guarantee
high efficiency of its use. The approach proposed below to the formation of dimensionless
models of a dynamic system of a hydraulic actuator is a development of the procedure
started in [11].

This paper illustrates an example of finding the optimal solution for a positional
system with two hydraulic actuators. This type of actuator was chosen based on the task of
controlled movement of a heavy and bulky object (load). The hydraulic actuator has the
highest power density. However, the presence of two actuators creates special problems in
control, since the drives must operate in coordination in both position and speed. Based on
this, the authors proposed an original control scheme that solves this problem based on the
use of only two valves (Figure 1): one of them regulates the average speed of the moving
object, and the other controls the distribution of fluid flows directed into the cavities of the
hydraulic cylinders [14,15].

The study of the mathematical model is carried out in dimensionless parameters, the
transition to which hydraulic actuator systems are presented in [6]. Parametric synthesis is
carried out according to the principle of multicriteria optimization. During the transition of
the system to a dimensionless form, three optimization criteria are identified with further
application of the criteria importance method. The criteria importance method significantly
reduces the optimal solutions of the system, which facilitates the selection of the best
solution when designing a mechanical object.
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Figure 1. The model of the manipulator with two hydraulic actuators: pM—actuator supply pressure;
pa—atmospheric pressure; P1, P2, P—pressure in the cavities 1, 2, 4, respectively; β, β1, β2—relative
opening areas of the respective channels.

The parametric synthesis of a mechanical system consists in choosing the values of
the parameters that make up the vector X = (x1, x2, ..., xn) that provide the best values
of the characteristics (performance indicators) of the system that make up the vector
K = (k1, k2, ..., km). Thus, the problem of multicriteria (multi-objective) optimization is
posed, in which X is a vector of variables, and K(X) is a vector of criteria (objective
functions).

To solve this problem, it is necessary to develop an adequate mathematical model of
the system under consideration, using the vector X as input parameters and calculating
the values of the characteristics K(X) at the output. Further, it is necessary to implement
a method for solving the optimization problem. In addition, in the presence of several
characteristics (m > 1), it is required to take into account the dependencies and preferences
between them.

Complex mechanical systems usually contain up to several tens of parameters n and
several characteristics m. At the same time, mathematical models of dynamic systems
contain complex connections and differential equations, and for calculations they require
the use of numerical methods. Therefore, when solving the problem of optimizing such
complex systems, the computational model usually represents a “black box”, which makes
it practically impossible to use local, gradient optimization methods [16,17]. Among the
global optimization methods working with such complex models, genetic algorithms [18],
and other variations of evolutionary algorithms, particle swarm optimization [19], and sim-
ulated annealing methods [20]. In this paper, for the global search for optimal solutions, the
parameter space investigation method [21] is used, based on the construction of sequences
of points uniformly distributed in the feasible area of the parameters X space [22].

In multicriteria optimization problems, as a rule, it is not possible to obtain a feasible
solution that is best at once according to all criteria. Using formal mathematical and
numerical methods, a set of Pareto optimal solutions can be obtained (approximated). To
select the one best solution among them, it is necessary to involve additional information
about the preferences regarding these criteria.

There are a priori and a posteriori methods for solving multicriteria optimization
problems. In a priori methods, the question of preferences is resolved before the search
for solutions is carried out. These methods include the method of identifying the “main”
criterion, as well as various methods of convolution of the criteria into one aggregated



Mathematics 2021, 9, 2854 4 of 19

performance indicator. For example, the weighted sum F∑(X) = ∑m
i=1 wi ki(X), the product

F∏(X) = ∏m
i=1 kw1

i (X), or the Germeier convolution FG(X) = mini ki(X)/wi. Before
convoluting, the criteria ki are normalized in a special way. This approach allows one to
go straight to solving the optimization problem with one objective function. However,
there are a number of disadvantages behind the simplicity of this approach. First of all,
it is difficult for a person, no matter how expert he or she is, to set the exact values of the
weights reflecting the relative importance of the criteria. In addition, there are a number of
theoretical problems associated with the justification of this approach [23].

On the contrary, in a posteriori methods, optimization is performed first taking into
account all the criteria, and then preferences are analyzed. Analysis of the set of obtained
solutions is itself useful in solving such problems. First of all, a person, an expert working
with such data of optimization results, understands the possibilities available to him or
her: evaluates the areas of feasible solutions, the ranges of change in the values of the
criteria. In such an analysis, visualization tools [24], and interactive interaction of an expert
with a computer analytical system [25] play an important role. The more adequately the
expert’s real preferences are revealed, the better the solution obtained on their basis will
be. The preferences are most accurately established in the process of dialogue with the
analytical system, during which a person sees intermediate solutions, obtains a clearer idea
of the real conditions of the problem, resource opportunities, and goals. One of the most
important properties of such systems is the ability to provide explanations (justifications)
of the results and conclusions obtained, interpreting them in terms of the subject area, in a
language understandable for an expert [26].

It is known that the best solution should be chosen among the set of Pareto optimal
ones. However, this set of solutions is usually quite large. To narrow the scope of choice,
additional assumptions should be made about the preferences of experts regarding the
importance and values of the criteria. For formal modeling of these preferences and
obtaining conclusions on the basis of this information, the approach of the mathematical
theory of criteria importance was used in this work [27,28]. This method assumes a
consistent refinement of information about preferences. First, the simplest information
about ordering criteria by importance is found out. Such qualitative information is easier
to obtain than quantitative estimates of importance, and, therefore, more reliably describes
the expert’s real preferences. Next, the formal methods of the theory come into play,
which make it possible to reasonably discard from consideration some of the solutions
from the Pareto set, thereby narrowing the set of choices for the best solution. Then, if
necessary, quantitative estimates of importance are also used, but not accurate, just in the
form of intervals. Additionally, additional information about changing preferences along
the criteria scale can be used.

2. Statement of the Problem and Mathematical Model of the System

The object of research in this work is a rather complex manipulator designed to lift a
heavy, bulky load using two parallel and synchronously operating hydraulic actuators 1
and 2 (Figure 1). Let us describe the mathematical model of the object. The moving object
has a mass m = m1 + m2, where m1,2 are the mass loads applied to the actuators. The main
working cavities are the lower cavities of the actuators; however, if necessary, the upper
cavities can also be used (for example, when lowering an object). The law of motion is
mainly determined by the pressures in the lower cavities, which are connected through
the control valve 3, the intermediate cavity 4 (volume V) and the control valve 5 when the
object is lifted to the power source (with pressure pM), and when the object is lowered,
to the drain line (with pressure pA, usually equal to atmospheric). The ratios between
the effective flow area of the valve 5 and the effective flow areas of the valve channels 3
leading to the cavities of the actuators are established depending on the formulation of
the problem.

The equations of movement are:

mi ẍi = pi F + mi gki ẋi + PLi, i = 1, 2; (1)
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where x is the piston displacement; pi are pressures in the lower cavities; F is the effective
piston area; mi g, PLi are weight and force load on the rod, respectively; ki are coefficients
of fluid friction in the actuator.

The changes of the pressure pi in the lower cavities of the actuators and the pressure p
in the intermediate cavity are related by dependencies:

ṗ = W
(

β sign(∆p)
√
|∆p| − β1 α1 sign(∆p1)

√
|∆p1| − β2 α2 sign(∆p2)

√
|∆p2|

)
,

ṗi = Wi

(
βi αi sign(∆pi)

√
|∆pi| − ẋi

)
,

(2)

where W =
(

E f
F xv

)√
2pM

ρ , Wi =
(

E f
F (x0i+xi)

)√
2pM

ρ ; ∆p = pM − p (when lifting) or ∆p =

pA − p (when lowering) of the object, ∆pi = p − pi; β, β1 and β2 are channel opening
degrees f , f1 and f2; E is the bulk modulus of the working fluid; xv is the length of the
intermediate cavity; ρ is working fluid density.

3. Transformation of the Model into a Dimensionless Form

According to the method of the similarity theory [8] Equations (1) and (2) are trans-
formed into a dimensionless form by replacing variables with their dimensionless analogs
λ, τ, σ, according to the relations x = q1λ, t = q2τ, p = q3σ. As a result of this replacement,
as well as mi = ci m (where i = 1, 2), ε = E/q3 and simple transformations, we obtain a
transformed system (3) and a system of Equation (4) of relations between the coefficients
Ai of the system (3) and qj.

ci A1 λ̈i = σi − ci A3 − A4 λ̇i − A6,

σ̇ = A5

(
β sign(∆σ)

√
|∆σ| − β1 α1 sign(∆σ1)

√
|∆σ1| − β2 α2 sign(∆σ2)

√
|∆σ2|

)
,

σ̇i =
ε

λ0i + λ

(
βi αi sign(∆σi)

√
|∆σi| − A2λ̇i

)
,

(3)

A1 =
m q1

q2
2 q3 F

; A2 =
q1

q2 U
; A3 =

m g
q3 F

; A4 =
ki q1

q1 q2 F
; A5 =

ε

λV
; A6 =

PLi
q3 F

. (4)

where λ, τ, σ are dimensionless analogs of displacement, time and pressure in cavity 4,
respectively; σ1, σ2 are dimensionless analogs of pressure in cavities 1 and 2.

The system (4) includes six so far unknown coefficients Ai and three, also so far
unknown, scale factors qj. This allows us to set three arbitrary values Ai, put, for example,
A1 = A2 = 1 and A3 = mg/pMF. From these conditions it is possible to determine qj, as
well as three unknown coefficients A4, A5, A6:

q1 =
m U2

pM F
; q2 =

m U
pM F

; q3 = pM; A4 =
ki U
pM F

; A5 =
ε

λV
; A6 =

PLi
pM F

, (5)

where U = ( f /F)
√

2pM
ρ is the maximum achievable piston speed in the actuator with

parameters f , F, pM; ε = E/pM is the dimensionless analogue of the bulk modulus
of liquid.

The final transformed model of the drive system presented below is obtained by
optimizing the conversion factors:

ci λ̈i = σi + ci χL − κi λ̇i + χLi,

σ̇ = KV

(
β sign(∆σ)

√
|∆σ| − β1 α1 sign(∆σ1)

√
|∆σ1| − β2 α2 sign(∆σ2)

√
|∆σ2|

)
,

σ̇i =
ε

λ0i + λ

(
βi αi sign(∆σi)

√
|∆σi| − λ̇i

)
,

(6)
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where χL = m g/pM F; χLi = PLi/pM F; KV = A5 and λ0i = x0i/qi are the reduced initial
volumes of working cavities of actuators.

The system (6) includes dimensionless parameters that are convenient to use in the
optimization process by choosing them as parameters:
KV—intermediate cavity stiffness;
λ0i—stiffness of the actuators at the initial moment of movement;
χL—manipulator total mass load;
ci—distributions of the total load between the actuators, additional resistance forces χLi,
which can be present in the system both continuously and acting discretely;
κi =

ki U
pM F —liquid friction forces;

αi = fi/ f —the ratios between the dimensions of the flow areas of the channels of valves 3
and 5.

Note that λe = 0.5(1− cos(ωτ)) is assumed to be a given basic law of motion of the
manipulator from the initial position λ0 = 0 to the final position λe = 1; ω = π/τS is the
conditional frequency characterizes the dimensionless time of the process τS. The opening
of the valve channel 3 is characterized by the expression:

β = ϑ1

(
λe − λ1

)
+ ϑ2

(
λ̇e − λ̇1

)
. (7)

When the manipulator is operating at very low speeds, the law (7) can be replaced by
the law of uniform motion, i.e., β = 1 is accepted. We will take into account the effect of the
control system delay by replacing β in expression (7) by γ, where γ is the signal coming
from the control system. The quantity β is determined from the first-order equation:

β̇ =
1

τA
(γ− β),

where τA is the control system time constant.
If the flow areas of all channels are equal f1 = f2 = f , the mean position of the valve

shutter 3 corresponds to the coordinates β1 = β2 = 0.5 that can be taken as the initial ones.
As the control law for valve 3, we take the simplest linear law, written, for example,

relative to the first actuator β1 = 0.5− ϑ11(λ1 − λ2); then β2 = 0.5 + β1.
We will take into account the effect of the delay of the valve control system (3) by

replacing in the law β1 with γ1, where γ1 is the signal coming from the control system,
with the definition β1 from the equation β1, where β̇1 = (1/τB)(γ− β), where τB is the
time constant of the valve control system (3).

4. The Optimization Problem

As mentioned earlier, after the transition to dimensionless parameters, three indicators
(K1, K2 and K3) were taken as the main criteria for optimality (objective functions) of the
system, which characterize the values, respectively, of the imbalance of mass loads on
actuators, power (size) of actuators and the maximum divergence of displacements of their
rods (deviation from synchronicity) in the process of movement.

K1 = |0.5− c1|,

K2 =
m g

pM F
= χL,

K3 = ∆λmax, where ∆λ = |λ1 − λ2|.

The first criterion shows that the greater its value, the greater the difference in the
loads on the actuators the manipulator allows, the second characterizes the dimensions
of the actuator (the higher the value of K2, the smaller the dimensions of the actuator), an
important criterion for volumetric and mass indicators. The third criterion is responsible
for the synchronization of the movement of the two actuators, i.e., the smaller it is, the
more uniformly (synchronously) the actuators move.
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These criteria are contradictory, i.e., in the process of searching for feasible solutions in
this problem, it is not possible to obtain one solution, the best one by all three criteria at the
same time, and it is possible to single out a set of Pareto optimal solutions. For calculations
and visualization of many solutions, a unique software MOVI was used, developed with
the participation of the authors of this publication. Table 1 shows the optimized parameters
of the system and the ranges of their values.

Table 1. The optimized parameters of the system and the ranges of their values.

Parameter Range of
Change Comments

c1 0.3÷ 0.7 weight load imbalance

χL −2.0÷−0.4 relative total operating load on actuators, simultaneously serving
as a measure of their dimensions

λV 0.2÷ 1.0 the measure of the volume of the intermediate chamber

β0 0.3÷ 0.7 the share of the opening of the common channel in the line leading
to the actuators that relates to the first actuator

α1 0.25÷ 1.0 the ratio between the flow sections of the common supply channel
and the channel leading to the first actuator

α2 0.25÷ 1.0 the same for the channel leading to the second actuator

κ1 0.05÷ 0.1 coefficient of friction of the first actuator

κ2 0.05÷ 0.1 coefficient of friction of the second actuator

ϑ1 25÷ 50 position feedback ratio

ϑ2 0÷ 50 speed feedback ratio

ϑD 25÷ 50 position feedback ratio

ϑV 0÷ 5 speed feedback ratio

tA 0.02÷ 0.04 The time constant of the control system

tB 0.02÷ 0.04 The time constant of the valve 3 control system

λ01 0.05÷ 1.0 the measure of the initial (harmful) volume of the first actuator

λ02 0.05÷ 1.0 the measure of the initial (harmful) volume of the second actuator

χL1 0÷ 0.1 additional short-term intermittent drag force acting on the first
actuator

χL2 0÷ 0.1 additional short-term intermittent drag force acting on the second
actuator

τS 10÷ 50 the mass m movement time

The load parameter c1 is special and needs to be explained. The fact is that the
imbalance of the loads c1 and c2 = 1− c1 characterizes a specific load, and not the design of
the optimized manipulator. When designing a manipulator, we do not know in advance the
load parameters and cannot optimize them. However, the maximum permissible imbalance
of the loads c1 and c2 can already be considered a characteristic of the manipulator, which
can be optimized.

Let us consider in more detail how the criteria depend on the parameter c1. The
criterion K1 depends on c1 explicitly: the greater the load imbalance, the better. However,
K1 values greater than 0.2 are not required in practice. Therefore, in this problem, the
values of c1 vary from 0.3 to 0.7.

The criterion K2 does not depend on c1 at all. A typical example of the dependence of
the criterion K3 on c1 is shown in Figure 2.

With an increase in the load imbalance, the synchronization of the actuators monoton-
ically deteriorates, and asymmetrically when c1 deviates from 0.5 to the lower or higher
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side. However, starting from certain values of c1, this dependence is violated, and the
graph begins to behave unpredictably. In Figure 2 these points are circled in red. Solutions
outside these c1 values will be considered unacceptable. To detect such cases, for each
checked value of c1, we will perform several additional calculations with the load c1 up
to 0.5.

Additionally, it is necessary to take into account the asymmetry of the dependence of
K3 on c1. For every feasible solution we obtain, the ultimate allowable load will be either
less or greater than 0.5. For a symmetric case of unbalanced loads, the values of the criteria
K1 and K2 will be the same, but the value of the criterion K3 may be worse. However, we
can switch this manipulator to a more advantageous (from the point of view of K3) mode
(c1 > c2 or c1 < c2), depending on how the load lies. Therefore, this asymmetry is not
a problem.

Figure 2. An example of the dependence of the criterion K3 on the load parameter c1. The rest of the
parameters are fixed.

5. Generation of Alternative Solutions and Initial Analysis

In the software MOVI, 4000 alternative solutions were generated, the coordinates
of which are uniformly distributed in the space of variable parameters [20,21]. Of these
solutions, 2198 were found to be feasible in relation to the constraints of the model. Among
the feasible solutions, there were 96 Pareto optimal solutions. Each solution x can be

associated with a three-dimensional vector K(x) =
(

K1(x), K2(x), K3(x)
)

, the components
of which are estimates by three criteria. If the solutions are depicted as points in the
three-dimensional space of criteria, then they form a cloud in a certain area, and the points
of Pareto optimal solutions will be located on a part of the boundary of this cloud. In
Figure 3 is shown how the projections of the cloud from the points of feasible solutions to
the two-dimensional spaces of criteria are distributed. Blue rhombuses denote admissible
solutions, green circles-Pareto optimal ones.

The depiction of the set of solutions in Figure 3 represent the initial, primary infor-
mation for subsequent analysis and selection of the best solution. At the first stage, such
images make it possible to assess in what ranges of criteria values are feasible solutions.
That is, in fact, the decision maker (expert) receives primary information about the available
opportunities in terms of achieving the best values of the criteria.

The first practical conclusion based on the analysis of Figure 3 is the following: a
lot of feasible solutions are obtained with an acceptable value of the load imbalance K1.
Therefore, we can safely discard some of the solutions with weakly acceptable values of K1,
imposing an additional constraint on the feasibility of the solution K1 > 0.1, and this leaves
quite a lot of feasible solutions—821. Of these, 45 are Pareto optimal solutions. The values
of the criteria for these 45 options are shown below in Table 2. The result of imposing this
restriction in the criteria space is shown in Figure 4.
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Figure 3. The set of solutions in the space of criteria: K1 and K2. Blue dots denote admissible
solutions, green circles-Pareto optimal solutions.

Figure 4. The set of solutions in the space of criteria: (a) K1 and K2; (b) K1 and K2 on a larger scale.
Blue dots denote feasible solutions, crimson dots—infeasible ones due to the constraint K1 > 0.1,
green circles—Pareto optimal solutions.

We see that in the projections onto K1 and K2 (Figure 4a,b), the set of solutions is
expectedly divided into feasible (to the right of the line K1 = 0.1) and infeasible (to the left
of the line K1 = 0.1). Its analysis helps to verify, to make sure that the imposed constraint
on the criterion K1 led to acceptable impairments in the remaining criteria.
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Further, you can also impose constraints on the remaining criteria, and then grad-
ually increase these constraints, thereby narrowing the set of choices. This is one of
the approaches, it can be classified as intuitive, informal. Its application becomes much
more complicated with a larger number of criteria. To solve the problem of choosing the
best solution in this work, we will apply the formal approach developed in the criteria
importance theory.

6. Solving the Choice Problem by the Method of the Criteria Importance Theory

It is required to choose the best solution among the selected 45 solutions obtained at
the previous stage, taking into account the constraint K1 > 0.1.

To apply the methods of the criteria importance theory, the individual criteria K1,
K2, K3 must be brought to a homogeneous form with a common scale Z, which can be
just ordinal [26]. In this problem, we will use a 10-point scale: the higher the score, the
better, the higher the value (usefulness, preference) for the decision maker of such values
according to the criterion. To bring the criteria to the 10-point scale Z, we use linear
normalization of the criteria values and rounding. As a result, each of the 45 alternative
solutions is associated with its vector score from the set Z3 = Z× Z× Z. The values of the
initial criteria and the obtained vector scores y = (y1, y2, y3) for all 45 options are given in
Table 2. It should be noted that the requirements for minimization and maximization for
the initial criteria can be different (K1 → max, K2 → max, K3 → min), while the scores on
the scale Z are always the same (y1 → max, y2 → max, y3 → max).

Table 2. The values of the initial criteria and the obtained vector scores y = (y1, y2, y3) for 45 options.

No. K1,
10−3 K2

K3,
10−3 y1 y2 y3 No. K1,

10−3 K2
K3,

10−3 y1 y2 y3 No. K1,
10−3 K2

K3,
10−3 y1 y2 y3

159 1.30 1.52 12.4 3 10 3 1267 1.76 1.32 3.7 8 8 10 2660 1.98 1.15 4.6 10 6 9
239 1.14 1.58 11.1 2 10 4 1382 1.64 1.46 7.4 7 9 7 2834 1.51 1.51 5.1 6 9 9
247 1.98 0.73 4.5 10 2 9 1615 1.69 1.44 5.2 7 9 9 2841 1.76 1.41 16.2 8 9 1
257 1.43 1.35 3.0 5 8 10 1691 1.37 1.51 4.9 4 9 9 3005 1.28 1.55 7.7 3 10 7
307 1.88 1.38 6.5 9 8 8 1734 1.90 1.32 6.3 9 8 8 3093 1.97 1.34 7.5 10 8 7
442 1.71 1.46 6.8 8 9 7 1760 1.46 1.50 5.0 5 9 9 3254 1.99 0.68 4.7 10 2 9
464 1.99 1.10 5.8 10 6 8 1847 1.96 1.40 13.8 10 8 2 3298 1.98 0.99 4.4 10 5 9
635 2.00 0.84 7.8 10 3 7 1849 1.79 1.10 3.5 8 6 10 3423 1.20 1.45 3.2 2 9 10
652 1.99 1.29 6.4 10 7 8 2010 1.84 1.38 10.0 9 8 5 3442 1.88 1.23 3.5 9 7 10
840 1.89 0.64 3.1 9 1 10 2057 1.10 1.56 8.6 1 10 6 3473 1.99 1.14 8.2 10 6 6
895 1.07 1.61 8.7 1 10 6 2112 1.75 1.40 12.2 8 8 4 3642 2.00 0.99 8.1 10 5 7
911 1.57 1.46 4.5 6 9 9 2226 1.76 1.27 6.3 8 7 8 3768 1.92 1.16 3.6 10 6 10
997 1.85 1.10 3.2 9 6 10 2236 1.99 1.17 6.5 10 6 8 3862 1.74 0.54 2.7 8 1 10
1080 1.44 1.48 3.5 5 9 10 2276 1.23 1.56 10.3 3 10 5 3900 1.93 1.37 11.8 10 8 4
1246 1.07 1.59 4.0 1 10 10 2478 1.94 1.23 3.7 10 7 10 3952 1.21 1.00 3.0 3 5 10

In fact, due to rounding, each vector score describes a certain small region in the
original 3D space of the criteria. At the same time, some solutions may be in the same
region, and then they will have the same vector score. For example, alternatives 307
and 1734 have the same vector score (9, 8, 8). Further, using the method of the criteria
importance theory, we will solve the problem of choosing the best vector score. Choosing
this vector score, we will obtain a corresponding small region in the original space of
criteria, which includes one or more solutions from the 45 considered.

In the criteria importance theory, the preferences of decision makers are modeled
using binary relations [26]. The non-strict preference relation R of the decision maker is
introduced on the set of vector scores Z3: the notation yRz means that the vector score y is
no less preferable than z. The relation R is reflexive and transitive, it generates the relations
of indifference (equivalence) I and strict preference (dominance) P:

yIz⇔ yRz and zRy,

yPz⇔ yRz, but zRy is not true.
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It is known that if the relation R is complete, then on a finite set of vector scores there
is at least one optimal vector score y, such that yRz holds for all other vector scores z. There
can be several optimal vector scores equivalent by the relation I. In this case, the choice of
the best vector score should be carried out among the optimal vector scores.

If the relation R is incomplete, then the best vector score should be chosen among the
non-dominated vector scores. A vector score y is called non-dominated with respect to P if
there is no other vector score z, such that zPy holds.

Since the decision maker’s preferences increase along the scale of criteria Z, the Pareto
relation is defined on the set of vector scores Z3:

yR�z⇔ yi ≥ zi, i = 1, 2, 3;

yP�z⇔ yR�z and y 6= z.

Among the 45 vector scores under consideration, there are 10 non-dominated with
respect to the Pareto relation P�. In fact, 9 vector scores remain, since variants with
numbers 307 and 1734 have the same vector score (9, 8, 8). These vector scores and the
corresponding alternatives are shown in Table 3.

Table 3. 10 vector scores and their the corresponding alternatives.

No. K1 K2 K3 y1 y2 y3

307 0.188 1.38 0.0065 9 8 8
442 0.171 1.46 0.0068 8 9 7
1080 0.144 1.48 0.0035 5 9 10
1246 0.107 1.59 0.0040 1 10 10
1267 0.176 1.32 0.0037 8 8 10
1615 0.169 1.44 0.0052 7 9 9
1734 0.190 1.32 0.0063 9 8 8
2478 0.194 1.23 0.0037 10 7 10
3005 0.128 1.55 0.0077 3 10 7
3093 0.197 1.34 0.0075 10 8 7

At the next step of solving the choice problem by the criteria importance method,
we enter information Ω about the ordering of criteria by importance into the software
DASS, as shown in Figure 5 [27,29]. The criterion K1 is more important than the criterion
K2(1 � 2), and the criterion K2, in turn, is more important than the criterion K3(2 � 3).

Figure 5. Non-dominated vector scores based on information about ordering criteria by importance.

As a result, there are only 4 non-dominated vector scores and the corresponding 5
alternative solutions shown in Table 4. For each of the 5 vector scores that turned out to be
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dominated with respect to PΩ, it is possible to formally explain why it should be excluded
from consideration. Namely, what other vector score dominates it and on the basis of what
information about preferences this conclusion is made:

y(307) = (9, 8, 8)P1�2(8, 9, 8)P�(8, 9, 7) = y(442),

y(2478) = (10, 7, 10)P1�2(7, 10, 10)P�(5, 9, 10) = y(1080),

y(2478) = (10, 7, 10)P1�2(7, 10, 10)P�(1, 10, 10) = y(1246),

y(2478) = (10, 7, 10)P1�2(7, 10, 10)P�(7, 9, 9) = y(1615),

y(2478) = (10, 7, 10)P1�2(7, 10, 10)P�(3, 10, 7) = y(3005),

For example, the notation (10, 7, 10)P1�2 (7, 10, 10) means that the vector score (10, 7,
10) is preferable to the vector score (7, 10, 10), since the first criterion is more important
than the second. As we can see from the constructed chains of vector scores, in this case,
in order to discard the vector scores dominated by PΩ from the information Ω about the
ordering of criteria by importance, it turned out to be enough to use only the fact that the
first criterion is more important than the second.

Table 4. The 4 non-dominated vector scores and the corresponding 5 alternative solutions.

No. y1 y2 y3 Value Function Estimation

307; 1734 9 8 8 0.846
1267 8 8 10 0.802
2478 10 7 10 0.907
3093 10 8 7 0.901

The resulting 4 vector scores remain incomparable with the introduced information
about the DM’s preferences. Next, we will analyze them from different angles. At this
stage, the value functions of these vector scores can be estimated by calculating the centroid
values of the decision maker’s preference parameters [28]. Figure 6 shows how to do this
in the software DASS, Table 4 shows the resulting values of the value functions.

Figure 6. Estimation of value functions based on the centroid values of the decision maker’s prefer-
ence parameters.

Let us continue the formal solution of the choice problem by the criteria importance
method. At the next step, we input in the software DASS (see Figure 7) interval information
about the relative importance of the criteria: the first criterion is at least 2 times more
important than the second, and no more than 4 times; the second criterion is no more than
2 times more important than the third.
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Figure 7. Non-dominated vector scores based on interval information about the importance of
criteria.

With such information about the preferences of the decision maker, the vector score
y(1267) = (8, 8, 10) turns out to be dominated. Table 5 shows the remaining non-dominated
vector scores. Their value functions have changed slightly, as the set of possible values of
preference parameters has changed (narrowed) and the corresponding centroid values of
these parameters have shifted.

Table 5. The remaining non-dominated vector scores.

No. y1 y2 y3 Value Function Estimation

307; 1734 9 8 8 0.978
2478 10 7 10 0.983
3093 10 8 7 0.980

At the next step in solving the choice problem, let us clarify the information on how
the decision maker’s preferences grow along the criterion scale Z (see Figure 8).

Figure 8. Non-dominated vector scores based on information on the scale of criteria.

As a result, there is only one non-dominated vector score (10, 7, 10), which corresponds
to the solution 2478. Additionally, in favor of this vector score, we can note the fact that the
estimation of its value function was higher than others at each step of solving the problem.

The only solution was selected using imprecise information about the preferences of
experts, given in the form of interval estimates. In the previous steps, the choice set was
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significantly narrowed down based only on qualitative assessments of preferences. The
use of partial and imprecise information about the preferences, an iterative procedure for
clarifying this information, as well as the ability to formally substantiate the conclusions
made are significant advantages of the considered method of the criteria importance theory
in comparison with other methods of multicriteria analysis.

7. Additional Visual Analysis of Alternative Solutions

After the formal analysis of the problem by the criteria importance methods, it is useful
to return to the graphical representations of the solutions. Consider 4 non-dominated vector
estimates and the corresponding 5 solutions listed in Table 4. Recall that they are selected
after a simple ordering of the criteria by importance.

Let us see where these solutions are in the space of the initial criteria K1, K2, K3. To do
this, we introduce additional constraints on the values of criteria in the software MOVI.
Note that the considered vector scores have the minimum values of the components y1, y2,
y3 equal to 8, 7, 7, respectively. In order for only solutions with estimates y1 ≥ 8, y2 ≥ 7,
and y3 ≥ 7 to remain feasible, the following constraints should be imposed on the values
of the criteria: K1 > 0.17, K2 > 1.188, and K3 < 0.0081. The result is shown in Figure 9.

Figure 9. The set of solutions in the space of criteria: K1 and K2. Selected solutions are numbered at
the top.

Figure 9 gives a general idea in which region of the original point cloud of all solutions
the solutions we have selected turned out to be. Now, let us zoom in on the display area.
In addition, we will slightly weaken the constraints on the criteria in order to exclude the
rounding effect in the process of bringing the criteria to the 10-point scale: K1 > 0.165,
K2 > 1.134 and K3 < 0.0088. This extended sample contains 39 solutions, including 14
Pareto optimal solutions. The result is shown in Figure 10.

In Figure 10, the numbers of other solutions, in addition to the selected 5 solutions
from Table 4, are marked. In these scaled figures, it is possible to compare different solutions
in pairs. In particular, to make sure that the solution 2478, chosen by the formal method, is
preferable. It is also interesting to compare the solutions 307 and 1734, which are located
side by side on all three projections and have the same vector score.
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Figure 10. An extended set of solutions in the scaled space of criteria: K1 and K2.

8. Result and Discussion

After carrying out a numerical experiment, out of the generated 4000 solutions, only
2198 were found to be feasible in relation to the constraints of the model. Among such
an abundance of solutions, it is impossible to choose the best one by examining the three-
dimensional space of optimization criteria. Obtaining the set of Pareto optimal solutions
allowed us to select 96 solutions. Further, the analysis of the criteria space was carried out
in order to reduce the area of suitable solutions, and preferences were introduced regarding
the importance and values of the criteria. Thus, we reduced the number of best solutions to
10 (Table 3), and subsequently chose one best solution. Further, the analysis of the obtained
solutions is advisable to carry out using a visual analysis of solutions as shown in [11].
Here is a description of the selected solutions.

Table 6 shows the values of the optimized parameters for the selected solutions, as
well as in Figures 11 and 12 are a visual representation of the dynamic characteristics. A
more detailed description of the visualization principles is presented in [11].

Table 6. The optimized parameters of the system and the ranges of their values.

Parameter Range 307 1267 1734 2478 3093

c1 0.3÷ 0.7 0.688 0.676 0.690 0.694 0.697
χL −2.0÷−0.4 −1.378 −1.320 −1.321 −1.230 −1.336
λV 0.2÷ 1.0 0.839 0.847 0.511 0.567 0.726
β0 0.3÷ 0.7 0.507 0.678 0.433 0.630 0.688
α1 0.25÷ 1.0 0.779 0.964 0.800 0.801 0.676
α2 0.25÷ 1.0 0.295 0.625 0.598 0.746 0.435
κ1 0.05÷ 0.1 0.059 0.057 0.052 0.087 0.052
κ2 0.05÷ 0.1 0.063 0.095 0.060 0.055 0.074
ϑ1 25÷ 50 46.729 44.714 37.561 38.153 43.732
ϑ2 0÷ 50 30.566 17.407 1.831 33.533 13.293
ϑD 25÷ 50 72.314 83.777 87.366 95.880 38.715
ϑV 0÷ 5 4.990 0.881 2.986 2.882 3.578
tA 0.02÷ 0.04 0.034 0.024 0.020 0.027 0.027
tB 0.02÷ 0.04 0.031 0.023 0.028 0.040 0.035

χL1 0÷ 0.1 0.001 0.056 0.005 0.048 0.096
χL2 0÷ 0.1 0.036 0.038 0.078 0.088 0.039
λ01 0.05÷ 1.0 0.05 0.05 0.05 0.05 0.05
λ02 0.05÷ 1.0 0.05 0.05 0.05 0.05 0.05
τS 10÷ 50 44.453 28.574 26.738 20.576 30.596

Figure 11 shows the characteristics of the movement of the system of the solution 307
with unequal mass loads on the first and second actuators (c1 = 0.688, c2 = 0.312):
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(a) indicators of the first actuator: curves of displacement and speed (λ1, λ̇1); in the upper
part of this column I—pressure in its working cavity (σ1);

(b) indicators of the second actuator: curves of displacement and speed (λ2, λ̇2); in the
upper part of this column II—pressure in its working cavity (σ2);

(c) channel opening curves (β0, β1, β2): changes in the mismatch criterion ∆λ in the
movement of actuators, III—pressure in the intermediate cavity (σ).

The designations for these quantities were explained in the previous section. The
curves in Figure 12 are arranged in the same order.

The values of all parameters for each solution can be viewed in Table 6. The scale for
displacement λ is doubled relative to the pressure σ. The scale in speed λ̇ is ten times the
pressure. The β scale (flow area value) is increased five times relative to the pressure.

It follows from the graphs that under the conditions of the optimized solution 307
(Figure 11), despite the high load level of the actuators (|χL| = 1.378), and the imbalance in
loading the right and left cargo (c1 = 0.688, c2 = 0.312), the given laws of motion actuators
are implemented with good accuracy, and the pressures in all cavities after a short-term
initial disturbance quickly stabilize and are practically invisible.

Figure 11. Estimated dynamic characteristics of the solution 307.

A short-term disturbance in the system is modeled by a variable χL1,2, in Table 6
these are the variables χL1 and χL2. The first actuator is supplied with an additional
load χL1 = 0.001, and practically does not affect the positioning process, the second
actuator is supplied with χL2 = 0.036, and we see a small jump in pressure σ2, which
also insignificantly affects the positioning process. The operation of the system under the
conditions of the solution 307 is distinguished by a very low sensitivity to variations in
position and speed (λ1, λ̇1) parameters within the entire selected range.

The solution 2478 shows in Figure 12, in which unequal mass loads on the first
and second actuators (c1 = 0.694, c2 = 0.306), short-term disturbances in the system
(χL1 = 0.048 and χL2 = 0.088) are set. Despite the more significant short-term disturbances,
we see pressure surges in both actuators (σ1 and σ2 graph), which practically does not
affect the positioning process. This is primarily due to the correct choice of the remaining
parameters of the optimized system. In [11], variants are presented when, for other
parameters, but weaker perturbations, the system does not behave stably.

From a computational point of view, the process of generating 4000 alternative solu-
tions in the MOVI software took the longest time—about 3 h on a personal computer. Each
of these solutions had to be checked for feasibility, and, for this, the system of Equation (6)
had to be solved by the Runge–Kutta method several times for different values of the
parameter c1. On average, it took 15 such launches and 2.7 s to check one solution. All
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other calculations took almost no time and were invisible for experts working with the
systems. The operation of decision rules in the DASS system in problems with up to
10 criteria takes less than a second [27]. Such problems of designing new mechanisms
are one-off, individual, so it is permissible and even advisable to spend a lot of time on
solutions search and careful analysis.

Figure 12. Estimated dynamic characteristics of the solution 2478.

9. Conclusions

The procedure used in this work is based on two important factors: a rational math-
ematical model and a rational optimizing method. The effectiveness of the proposed
procedure is shown by the example of solving a complex dynamic problem-choosing the
best option for a technical project. The first factor made possible to simplify to the limit a
real computational model by reducing the number of both parameters and criteria, which
are considered as a purely physical value. The second factor allowed us to enter the area of
best solutions with a significant reduction in options variation. In conclusion, we note the
following main stages of work:

– Developing a mathematical model of the investigated physical object;
– Transition to dimensionless parameters;
– On the basis of a dimensionless mathematical model of a physical object, multi-

parameter and multicriteria optimization is carried out with the selection of the
Pareto set;

– Analysis of the criteria space in order to reduce the area of suitable solutions;
– Preferences are introduced regarding the importance and values of criteria in the form

of qualitative or imprecise quantitative (interval) estimates;
– Visual analysis of the received solutions.

As an additional stage, the proposed procedure can also include an optimization
stage in the transition from dimensionless to dimensional values. The technical design
of a robotic system with two actuators operating in accordance mode, considered as an
example, shows the effectiveness of the approach proposed.
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