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Abstract: In multi/many-objective evolutionary algorithms (MOEAs), to alleviate the degraded
convergence pressure of Pareto dominance with the increase in the number of objectives, numerous
modified dominance relationships were proposed. Recently, the strengthened dominance relation
(SDR) has been proposed, where the dominance area of a solution is determined by convergence
degree and niche size (θ). Later, in controlled SDR (CSDR), θ and an additional parameter (k)
associated with the convergence degree are dynamically adjusted depending on the iteration count.
Depending on the problem characteristics and the distribution of the current population, different
situations require different values of k, rendering the linear reduction of k based on the generation
count ineffective. This is because a particular value of k is expected to bias the dominance relationship
towards a particular region on the Pareto front (PF). In addition, due to the same reason, using SDR
or CSDR in the environmental selection cannot preserve the diversity of solutions required to cover
the entire PF. Therefore, we propose an MOEA, referred to as NSGA-III*, where (1) a modified
SDR (MSDR)-based mating selection with an adaptive ensemble of parameter k would prioritize
parents from specific sections of the PF depending on k, and (2) the traditional weight vector and
non-dominated sorting-based environmental selection of NSGA-III would protect the solutions
corresponding to the entire PF. The performance of NSGA-III* is favourably compared with state-of-
the-art MOEAs on DTLZ and WFG test suites with up to 10 objectives.

Keywords: convergence; decomposition; diversity; dominance; ensemble

1. Introduction

In literature [1], evolutionary algorithms (EAs) have demonstrated their ability to
tackle a variety of optimization problems efficiently. Many real-world optimization prob-
lems involve several conflicting objectives that must be optimized simultaneously. Without
prior preference information, the existence of conflicting objectives inevitably results in
the impossibility of finding a single solution that is globally optimal concerning all of the
objectives. In such a situation, instead of total order between various solutions, only partial
orders between different solutions may be anticipated, resulting in a solution set consisting
of a suite of alternative solutions that have been differently compromised. However, one of
the difficulties in multi-objective optimization, compared to the single objective optimiza-
tion, is that there does not exist a unique or straightforward quality assessment method to
classify all the solutions obtained and to guide the search process towards better regions.
Multi-objective evolutionary algorithms (MOEAs) are particularly suitable for this task
because they simultaneously evolve a population of potential solutions to the problem at
hand, which facilitates the search for a set of Pareto non-dominated solutions in a single
run of the algorithm. Classically, a multi-objective problem (MOP) can be briefly stated as

min f (x) = ( f1(x), f2(x), . . . , fM(x)) s.t.x = (x1, x2, . . . , xn) ∈ X, X ⊆ Rn (1)
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However, as the number of objectives incorporated in a problem is more than three,
typically known as many-objective optimization problems (MaOPs), many-objective evo-
lutionary algorithms (MaOEAs) have undergone a lot of difficulties. First and foremost,
most of the solutions in a population become non-dominated with each other with the
increase in the number of objectives. Due to this tendency, the selection pressure toward
the Pareto front (PF) deteriorates significantly, making the convergence process of MaOEAs
very difficult, especially for the MaOEAs that use the Pareto dominance relation as a key
selection criterion. In many-objective optimization, the phenomenon where most of the
candidate solutions become incomparable in the sense of Pareto dominance is referred to
as dominance resistance [2]. Because of dominance resistance, the ranking of the solutions
would depend on the secondary selection criterion, which is diversity measure. Therefore,
in the mating selection, the selection of the effective solutions to generate offspring depends
on the crowding distance [3]. A variety of approaches have been suggested to address
the issues raised by MaOPs in the context of the challenges discussed above. The utmost
criterion in any MaOEA is the selection criterion, specifically the environmental selection
criterion, which is used to reduce the overabundance of population members. Generally,
MOEAs/MaOEAs can be roughly divided into three categories according to their envi-
ronmental selection strategies: dominance-based [3–5], decomposition-based [6–8] and
indicator-based [9–11]. Dominance-based methods mainly use the concept of Pareto domi-
nance along with some diversity measurement criteria. NSGA-II [3] and PDMOEAs [12] are
well-known in this category. Decomposition-based methods decompose an MOP/MaOP
into a set of sub-problems and optimize them simultaneously. MOEA/D [6], NSGA-
III [13], MOEA/DD [8] and RVEA [14] are some popular approaches under this category
where a set of pre-defined, uniformly distributed reference vectors [15] are utilized to
manage population convergence and diversity. Some of these approaches also incorporate
Pareto dominance as a primary criterion to enhance the convergence of the population.
Indicator-based approaches quantify the quality of candidate solutions by the indicator
value which is a singular value obtained by combining information present in M-objective
values. Indicator-based EA (IBEA) [9], HypE [10] and ISDE

+ [11] are some representative
algorithms in this category.

To enhance the performance of dominance-based MOEAs, the first and most intuitive
idea is to establish a new dominance relation or modify the traditional Pareto dominance to
increase the selection pressure toward the PF. In literature, many dominance relationships
have been proposed in the last couple of years [16–20]. The controlling dominance area
of solutions (CDAS) [16] and its adaptive version, referred to as self-CDAS (S-CDAS) [18],
improve the convergence pressure by expanding the dominance area. In the generalized
Pareto optimality (GPO) [20] and α-dominance [2], the dominance area is expanded by mod-
ifying the definition of dominance relation. Dominance relations such as ε–dominance [21]
and grid dominance [22] are based on the gridding of the objective space. θ-dominance [19]
and RP-dominance [23] are proposed to suit decomposition-based MaOEAs. Recently,
in [24], a new dominance relation referred to as the strengthened dominance relation (SDR)
was proposed where a tailored niching technique considering the angles between the
candidate solutions was developed. In the proposed niching technique, the niche size (θ)
is adaptively determined by the distribution of the candidate solutions. In each niche of
size θ, the solution with the best convergence degree defined by the sum of the objectives
is selected. However, in SDR there is a possibility that some dominated solutions may
be considered as non-dominated. To overcome this, a modification to SDR referred to
as the controlled strengthened dominance relation (CSDR) was proposed in [25], where
SDR is combined with traditional Pareto dominance. In addition, CSDR introduces two
parameters k and a into convergence degree and niche size, to control the dominance area
and to be adapted based on the generation count. In other words, CSDR degenerates into
SDR when the traditional Pareto dominance condition is removed and the parameters k
and a are set to 1 and 50, respectively.
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However, the use of SDR or CSDR in the niching process of the oversized population
during the environmental selection results in the loss of some promising solutions as k
value stresses on some sections of the PF. In other words, the usage of SDR or CSDR
in environmental selection may not be suitable. In addition, in the mating selection, a
particular value of k concentrates on a particular region of the PF. Therefore, the setting
of the parameter k should depend on the distribution of the current population. In other
words, the linear reduction in k would not be appropriate for the efficient parent selection
for offspring generation.

Motivated by the observations that (1) by controlling the parameter k, different sections
of the PF can be emphasized, and (2) different stages of the evolutions require different
parameter values of k depending on the status of the population, we propose a mating
selection that employs modified SDR with an adaptive ensemble of parameters where the
probability of applying the parameter values in the ensemble depends on the success rate
of the parameter values. However, the environmental selection is similar to the traditional
NSGA-III because it is able to preserve solutions from the different parts of the PF, thus
resulting in the selection of solutions that are diverse and represent the entire PF.

The remainder of this article is organized as follows. Section 2 covers the literature
on different dominance relationships and the motivation for the current study. Section 3
describes the modified SDR and NSGA-III* framework with a modified SDR-based mating
selection. Section 4 presents the experimental setup and comparison results of NSGA-III*
with a number of state-of-the-art MOEAs/MaOEAs. Section 5 concludes the paper.

2. Related Study and Motivation

Given an MOP with M-objectives that are conflicting, as shown in Equation (1),
the goal of MOEAs/MaOEAs is to find an optimal set of Pareto-optimal solutions (PS)
whose objective values are usually referred to as a Pareto front (PF) that covers the entire
decision-making range. In addition, since MOEAs employ a fixed population to cover
the entire range, the solutions are expected to be diverse. Therefore, the goal of MOEAs
is to start with the random initialization of N solutions, referred to as population size,
and drive the population close to the PF while maintaining the spread of solutions to
cover the entire PF. MOEAs employ two main selection steps referred to as the mating
selection and environmental selection to accomplish the task. The aim of the mating
selection is to select better population members so that better offspring members can
be produced through variation operators. On the contrary, the goal of environmental
selection is to select a set of N solutions from the 2N solutions, which is the combined
set of population and offspring members. In other words, the aim of mating selection is
to prioritize better population members in the generation of offspring members, while
the aim of environmental selection is to preserve better solutions for further generations.
Therefore, for better convergence and diversity in MOEAs, both the selection operators
play a crucial role. To promote convergence, both the selection operators employ different
mechanisms. The most popular among them is Pareto dominance which can be enforced
through non-dominated sorting [3,26].

In an MOP, when the goal is to minimize all the objective fis simultaneously, a
candidate solution x Pareto dominates another solution y (i.e., x ≺ y), if and only if{

∀ i ∈ 1, 2, . . . , M : fi(x) ≤ fi(y)
∃ j ∈ 1, 2, . . . , M : fi(x) < fi(y)

(2)

If neither x dominates y nor y dominates x, then x and y are said to be “incomparable”.
Alternatively, both solutions are “non-dominated” to each other. As the M increases, i.e., the
number of objectives increases, the probability of a solution being dominated by the other
solutions decreases. In other words, in a given set of solutions, most of the solutions are
labeled as “non-dominated”. Therefore, during the mating and environmental selections,
the primary selection that is Pareto dominance fails to distinguish solutions; therefore, the
selection entirely depends on the secondary selection criterion, e.g., crowding distance [3],
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density estimation [27], etc. In other words, the Pareto dominance, which is expected to
promote convergence, does not play any role in both the selection steps. Therefore, the
selection of solutions based on diversity is not expected to promote convergence, thus
leading to the failure of the MOEAs.

To address the convergence issue, various approaches have been proposed to increase
the probability that two candidate solutions are distinguishable and thus improve the
selection pressure. The different approaches can be categorized as:

1. Approaches that expand the dominance are by modifying the objective values such
as CDAS [16], S-CDAS [18].

2. Approaches that expand the dominance area by modifying the dominance relationship
such as α-dominance, generalized Pareto dominance (GPO) [20].

3. Approaches that employ gridding in the objective space such as ε-dominance [21],
paε-dominance [28], cone ε-dominance [29], grid-dominance [22] and angle domi-
nance [30].

4. Fuzzy logic to define new dominance relationships such as (1-k) dominance [31],
L-dominance [32] and fuzzy dominance [33].

As illustrated in [24]:

(a) Pareto dominance, (1-k) dominance and L-dominance are good at achieving diversity
but poor at promoting convergence.

(b) CDAS, GPO and Grid-based methods are good at achieving convergence but poor at
maintaining diversity.

(c) S-CDAS is poor at promoting both diversity and convergence.

To overcome the issues, the strengthened dominance relation (SDR) and controlled
strengthened dominance relation (CSDR) were proposed. According to CSDR, a solution x
is said to CSDR-dominate a solution y (denoted as x ≺CSDR y) if and only if

i x Pareto dominates y or ii

{
Con(x) < Con(y), θxy ≤ θ

Con(x)· θxy

θ

〈
Con(y), θxy > θ

(3)

where Con(x) =
M
∑

i=1
fi(x)k is a metric measuring the convergence degree of x [11], θxy is the

acute angle between the objective values of two candidate solutions x and y in a population
P and is expressed as

θxy = arccos
(

f (x)· f (y)
| f (x)|| f (y)|

)
and θ is the niche size which is set to the a· |P|100

th (a ∈ [1,100]) minimum element of{
minqεP\{p} θpq

∣∣∣pεP
}

(4)

Before calculating Con(x) and θxy, the solutions in P are normalized with respect to
the ideal and nadir points. The ideal point in the objective space is a vector composed of
the optimum of each objective function. On the other hand, the nadir point is a vector
made up of the worst of each objective function in the objective space.

In CSDR, by removing the first condition (Equation (3)i) related to Pareto dominance
and setting the parameters k and a to 1 and 50, respectively, it degenerates into SDR.
According to the definition of SDR, some of the Pareto-dominated solutions might be
classified as non-dominated, which is not desired. However, in [24], it is claimed that
since only a few candidate solutions in the population are Pareto-dominated on MaOPs,
the classification of dominated solutions as non-dominated solutions has little influence
on the performance of MOEA that employs SDR. However, this contradicts the claim
regarding dominance resistance, and classifying dominated solutions as non-dominated
further aggravates the issue. Therefore, CSDR combines SDR with traditional Pareto
dominance and demonstrates a significant improvement in the performance in certain
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problem instances. However, the use of Pareto dominance in combination with SDR
increases the computational complexity of the process.

According to (Equation (3)ii), which is applicable to both CSDR and SDR, the dom-
inance relationship of solutions in the population is mainly controlled by the niche size
θ. According to the first condition in (Equation (3)ii), if the acute angle between solution
x and solution y is smaller than θ then the convergence degree determines if x ≺CSDR y
or x ≺SDR y. Hence, in each niche, in addition to preserving the diversity, the required
convergence pressure is enforced. In the second expression in (Equation (3)ii), even if the
acute angle between x and y is greater than θ, x ≺CSDR y or x ≺SDR y is possible if the
convergence degree of x is much smaller than that of y. However, as θxy increases the
probability that x ≺CSDR y or x ≺SDR y is decreased.

The number of niches or diversity of the solutions or the dominance area of the
solutions depend on the niche size (θ). According to Equation (4), the niche size θ can be
controlled by adjusting the parameter a. In other words, the proportion of the dominance
area is increased with the increase of a strengthening the convergence pressure towards
PF due to a lesser number of niches. On the other hand, a small value of a is expected
to improve the diversity due to a large number of niches. However, the lower and the
upper bounds of a niche have to be restricted. In [25], it is justified that the values around
50 would be better, mostly a range from 40 to 60. This is based on the intuition that the
environmental selection consistently chooses half of the combined population acquired at
each generation in the majority of current MOEAs, the target of adapting θ is to guarantee
that the ratio of the non-dominated solutions in a given candidate set is around 0.5.

To demonstrate the effect of k, keeping the niche size θ constant, three solutions (A,
B and C) are considered in a bi-objective space corresponding to a convex MOP and the
convergence degree of the solutions when k varies from 0 to 2 is plotted in Figure 1. From
Figure 1, it is evident that A always has a better convergence degree compared to C because
A ≺ B. For k > 1, the candidate solutions (A and C) from the center region of the objective
space have a better convergence degree. On the other hand, for 0 < k < 1, corner solutions
(B) away from the centre of objective space have a better convergence degree. Based on the
observation in [25], it can be concluded that (1) larger values of k enhance the convergence
pressure, and (2) small values of k enhance diversity.
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Based on the above intuition, in CSDR, the parameters k and a can be adjusted as follows:

k = kmax − ∆k·
(

t
tmax

)
(5)
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a = amax − ∆a·
(

t
tmax

)
(6)

where kmax and amax are predefined initial values, ∆k and ∆a are the variations of k and a,
respectively, and tmax is the maximum number of generations. The parameter settings are
detailed in [25]. The decrease of parameters k and a with respect to the generation count is
based on the notion that dynamic dominance relations would improve the performance
of MOEAs. In other words, high convergent pressure is exerted to push the population
towards the PF in the early phase of evolution and as the search progresses, population
diversity is enforced in the selection to generate well-distributed solutions. The value of
a starts with a value of 60 in the initial generations, and the value of a is reduced to 40 in
the final generation. In other words, with a large value of a, niche size (θ) would be large
resulting in a smaller number of niches. This would help the better segregation of solutions
and thus promote convergence. On the other hand, a smaller value of niche size (θ) in
the later stages would increase the number of niches to accommodate enough numbers of
well-spread solutions. Therefore, with respect to parameter a, the observation that starting
with a large value and reducing to a smaller value over the generations would shift the
focus from convergence to diversity as the number of generations increases.

However, as mentioned earlier, the observation that larger values of k promote con-
vergence and smaller values of k promote diversity is not correct. Actually, depending on
the nature of the problem, different values of k prioritize the different regions of the PF. In
other words, in a convex problem (ZDT1 [34]), as the value of k is decreased the focus shifts
from the center of the PF to the edges of the PF as shown in Figure 2a with five different
solutions taken from the true PF. However, while in a concave problem (ZDT2 [34]), the
contrary happens as shown in Figure 2b. Therefore, the actual observation is that as k
changes with respect to the dominance relationship, the focus shifts to different regions on
the PF.
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Figure 2. (a) Convergence degree of solutions A1 (0.1, 0.9), B1 (0.3, 0.5), C1 (0.4, 0.6), D1 (0.7, 0.2) and
E1 (0.9, 0.1) for convex problem and (b) convergence degree of solutions A2 (0.1, 0.9), B2 (0.3, 0.9), C2
(0.5, 0.7), D2 (0.7, 0.4) and E2 (0.9, 0.1) for concave problem whenever k ∈ [0, 2].

In addition, the use of CSDR in the environmental selection might result in issues such
as: (1) as the adaptation of k is based on the number of generations, in a convex problem,
by the time the k comes down to a value k < 1, if the convergence of the population reaches
the center part of the optimal PF, then the decrease of k further will allow the algorithm
to slowly shift the focus to the edges. The reduction in k combined with the decrease in
a would help CSDR perform well. However, if the k value comes down to a value <1
before the population converges to the optimal PF in the central region, then decreasing
k further will only concentrate on the edges. Therefore, the centre part of PF will be left
unexplored, resulting in degraded performance. In other words, some sections of the PF
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would not be adequately explored. (2) As the niche size is reduced with generation count,
the number of niches increases resulting in some sparse regions during the search process.
Therefore, different values of parameter k would be helpful at different stages depending
on the distribution of the current population.

Therefore, reduction of k with respect to the generations heavily depends on the
maximum generation count and is not appropriate to obtain a well converged diverse
set of solutions. Therefore, motivated by the observation, we propose a modified SDR
that employs an ensemble of parameter k. The probability of employing each parameter
value in the ensemble pool is adapted over the generations depending on the performance.
The modified SDR is only employed in the mating selection to select better parents for
offspring generation. In contrast, the environmental selection is based on traditional Pareto
dominance because of its unbiased nature and ability to preserve solutions corresponding
to the entire PF.

3. Controlled Strengthened Dominance-Based Mating Selection with Adaptive
Ensemble of Parameters for NSGA-III (NSGA-III*)

In this section, the concept of modified SDR is initially described and is followed
by the framework of NSGA-III*. Based on the observations mentioned in the previous
section, a modified SDR (MSDR) is proposed accordingly which a solution x is said to
MSDR dominates to another solution y (i.e., x ≺MSDR y) if and only if{

Con(x) < Con(y), θxy ≤ θ

Con(x)· θxy

θ

〈
Con(y), θxy > θ

where the definitions of Con(x), θxy and θ are the same as in Equation (3). The adaptation
of θ is the same as in CSDR. However, k value is selected from a fixed pool of values
sampled from the range (0, 2). In the current study, the size of the pool is set to be five.
The selection of the parameters from the pool is probabilistic, where the probabilities
are adapted depending on the number of successful offspring members produced by the
parameter values in the pool.

The basic framework of the proposed NSGA-III* is as follows:

(1) Mating selection that employs modified SDR.
(2) Environmental selection is similar to standard NSGA-III with weight vectors and

traditional Pareto dominance.

NSGA-III* starts with a parent population which is P0 of size N (Algorithm 1, Line
1). In each generation (t), the mating selection is performed by probabilistically selecting
a k value from the pool and a mating pool Mt is created (Algorithm 1, Line 4). After
mating selection, the offspring population (Qt) of size N is created (Algorithm 1, Line 5).
The offspring population (Qt) and population (Pt) are combined to form Rt (Algorithm 1,
Line 6) and normalized (Algorithm 1, Line 7). Through environmental selection, best N
solutions are selected from Rt to form the population members for the next generation Pt+1
(Algorithm 1, Line 8).
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Algorithm 1: NSGA-III* pseudo-code

Input: P0 (Initial Population), N (Size of Population), W (Set of weight vectors), set the k =(
k1, k2, . . . , kp

)
values, prt =

(
pr1,t, pr2,t, . . . , prp,t

)
(Probability of select each k ),

tmax (Maximumgeneration)
Output: PMaxgen (Final population)

01: P0 ← Generate initial population (N)
02: t = 1;
03: While (t < tmax) do
04: Mt ← Mating_selection (Pt, N, k, prt)
05: Qt =Variation (Mt, N)
06: Rt ←Pt∪ Qt
07: R′t ← Normalization (Rt)
08: Pt+1 ← Environmental_selection (W, R′t, N)
09: t = t + 1

10: prt+1= Adapt_ pr(Pt+1, prt)
11: End While

3.1. Initialization

A set of uniform weight vectors (W) are generated using the NBI method [15], then
subsequently, a population P0 of size N (|W|) is initialized within the permissible bound-
aries. The pool of values and their initial probabilities of selection corresponding to the
parameter k is set as k =

(
k1, k2, . . . , kp

)
and pr0 =

(
pr1,0, pr2,0, . . . , prp,0

)
, respectively.

The size of the pool (p) is set to five in the current study. The effect of the parameter values
in the ensemble on the performance of the algorithm is demonstrated in Section 4.

3.2. Mating Selection with Modified SDR and Offspring Generation

At each generation (t), the parameter value corresponding to a is obtained from
Equation (6). In addition, considering each value k =

(
k1, k2, . . . , kp

)
in the pool, the

population Pt is sorted based on the modified SDR (Algorithm 2, Line 02). After sorting,
through binary tournament selection (pri,t × N) solutions are selected into the mating
pool, where the probabilities corresponding to each parameter value of k at generation t is
given by prt =

(
pr1,t, pr2,t, . . . , prp,t

)
(Algorithm 2, Line 03). After repeating the process

for each value of ki, the mating pool Mt = ∑
i=1,2,...,p

Mi,t is formed (Algorithm 2, Line 05).

Since the mating pool is formed considering different values of k, the distribution of the
parents selected for offspring generation would be sampled from different regions of the
PF. In addition, as the probabilities of the parameter values are being adapted based on
the performance, the k values that perform better are given a chance to produce more
offspring members (Algorithm 4). In other words, the region on the PF that corresponds
to the k values with high probabilities is given priority, and more offspring members
would be generated in that region. In conclusion, depending on the nature of the problem,
and distribution of the population members, different stages of the evolution require
different k values. Moreover, the selection probabilities of each parameter value in the
pool reflect the state of the current population. The details regarding the adaptation of
the probabilities corresponding to the k parameter values in the pool are presented in
Section 3.5 (Algorithm 4). After forming the mating pool, the variation operators, namely
crossover and mutation, are employed to produce the offspring members (Algorithm 1,
Line 05). In the current study, simulated binary crossover (SBX) and polynomial mutation
(PM) are employed.
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Algorithm 2: Mating_selection (Pt, N, k, prt)

Input: Pt (Population at generation t), N (Population Size), k =
(
k1, k2, . . . , kp

)
, prt =(

pr1,t, pr2,t, . . . , prp,t
)
(probability of select each k at generationt),

Output: Mt (Mating pool)
01: For i = 1 : p Generate initial population (N)
02:

Perform the MSDR sorting with ki on Pt and calculate the crowding degree of solutions.
03: Mi,t = Select

(
pri,t × N) number of solutions.

04: End For
05: Mt = ∑

i=1,2,...,p
Mi,t

3.3. Normalization

Normalization is an essential tool to map the unscaled search space to a scaled one so
as to characterize the badly scaled objectives. In NSGA-III*, the normalization of the jth

population member is given in Equation (7).

Fj
i =

f j
i − z∗i

znad
i − z∗i

, ∀ i = 1, 2, . . . , M (7)

where z∗i and znad
i are considered as the lowest and highest values of ith objective function.

3.4. Environmental Selection

To perform the environmental selection (Algorithm 3), where the goal is to select N
solutions for (t + 1)th generation (Pt+1) from the combined population Rt of size 2N from
generation (t), a set of pre-defined weight vectors W is set [15]. First, the non-dominated
sorting based on traditional Pareto dominance is performed on R′t which is the result of
normalization of Rt (Algorithm 3, Line 01). Based on the number of individuals on the

sub-fronts, if the condition
l

∑
i=1
|Front_Noi| == N satisfies then Pt+1 =

l
∑

i=1
|Fronti| == N

is considered as the parent population of the next generation (Algorithm 3, Lines 2~4).
Otherwise, the association is performed between the set of weight vectors W and the
combined population R′t (Algorithm 3, Line 5). Each solution tries to associate with each
weight vector based on angle. If multiple solutions are associated with the same weight
vector then a solution will be selected from the associated solutions which has a minimum
perpendicular distance to that particular weight vector (Algorithm 3, Line 6). After the
association process, the best associated solutions will be added to Pt+1 and if |Pt+1|< N ,
then the weight vectors without any associated solutions are identified as ineffective
weight vectors (IWV) (Algorithm 3, Line 7). These ineffective weight vectors again try to
associate with the members of the last front (Algorithm 3, Line 8). The |IWV| number of
associated solutions selected is represented by U (Algorithm 3, Lines 9). Finally, combined
the population Pt+1 = Pt+1 ∪ U represents the parent population for the next generation
(Algorithm 3, Lines 10).

In [24,25], the modified dominance relationships, namely SDR and CSDR, are em-
ployed in the environmental selection, in addition to the mating selection. However, in the
current work, the environmental selection is based on traditional Pareto dominance so that
the environmental selection process is not biased to any section of the PF.
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Algorithm 3: Environmental_selection (W, R′t, N)

Input: R′t (Merged Population at generation), W (Reference Point Set), N (Size of Population)
Output: Pt+1 (Population/Parent for next generation)

01: [Front , Max_Front] = Non−Dominated Sort (R′t)

02: If
l

∑
i=1
|Fronti| == Nwhere l = 1, 2, . . . , Max_Front

03: Pt+1 = R′t(Front ≤ Max_Front)
04: Else
05: association = Associate(R′t, W)

//Associating solutions of R′t (except last front solutions) to W
06: Pt+1 = Selecting best associated solutions if there exist more than one solution

associated with a weight vector based on perpendicular distance
07: Wine f f ective = Finding weight vectors which have no solutions associated with it
08: ine f f ectivesolution = Associate(R′t(Max_Front), W)
09: U = Select best associated solution from ine f f ectivesolution
10: Pt+1 = Pt+1 ∪ U
11: End If

3.5. Adaptation of the Probability of Parameters in the Ensemble Pool

As mentioned in Section 3.2, the probabilities prt =
(

pr1,t, pr2,t, . . . , prp,t
)

of applying
the parameter values in the pool k need to be adapted over the generations (Algorithm 4).
At the end of each generation (t), the number of solutions produced by ki that entered
the parent population are counted to modify the probabilities. In other words, count
the number of solutions for each ki as C =

(
C1, C2, . . . , Cp

)
after getting the parent set

Pt+1 from the environmental selection (Algorithm 4, Line 1). Normalize each of the Ci′s
as Ci = (Ci/ ∑

j=1,2,...,p
Cj) ∀ i = 1, 2, . . . p (Algorithm 4, Line 2). The probabilities of the

parameters in the ensemble pool are thus updated using a weighted function where the
performance of the current generation is given a weight of 0.3. In addition, a probability of
applying any parameter value in the pool cannot go below a min threshold value of 0.05.
Finally, the normalization of probabilities is performed (Algorithm 4, Lines 3~5).

Algorithm 4: Adapt_ pr(Pt, prt)

Input: Pt (Population at a generation t), prt (probability of each generation)
Output: prt+1 (Probability after adaptation)

01: C =
(
C1, C2, . . . , Cp

)
← count the number of occurrences of solutions for each k.

02: Ci = (Ci/ ∑
j=1,2,...,p

Cj) ∀ i = 1, 2, . . . p

03: temp = 0.7prt + 0.3Ci
04: temp = max(0.05, temp)
05: pri,t+1 = (tempi/ ∑

j=1,2,...,p
tempj) ∀ i = 1, 2, . . . p

4. Experimental Setup, Results and Discussion

Experiments were conducted on 16 scalable test problems from DTLZ and WFG, test
suites comprising of seven and nine problems, respectively. For each test problem, 2-,
4-, 6-, 8- and 10-objectives were considered. The parameter values employed are present
in [11]. In order to compare the efficiency of NSGA-III* with the state-of-the-art algorithms
a quantitative indicator, namely HyperVolume (HV), was employed. The larger value of
HV implies the superiority of the algorithm. In this experiment, we first performed the
normalization of the objective vectors before calculating the HV. The reference point was
set as (1, . . . , 1) ∈ RM. To evaluate the HV, we considered the Monte Carlo sampling, where
the number of the sampling point was 106. In each instance, 30 independent runs were
performed for each algorithm on a PC with a 3.30 GHz Intel (R) Core (TM) i7- 8700 CPU
and Windows 10 Pro 64-bit operating system with 16 GB RAM. As a stopping criterion, the
maximum number of generations for DTLZ1 and WFG2 was set to 700 and for DTLZ3 and
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WFG1 it was set as 1000. For the other problems (DTL2, DTLZ4–7 and WFG3–9) it was set
to 250. All algorithms considered employing a population size (N) of 100, 165, 182, 240 and
275 for 2-, 4-, 6-, 8-, 10-objectives, respectively. Simulated binary crossover and polynomial
mutation with distribution indices and probabilities set to nm = 20, nc = 20, pc = 1.0 and
pm = 1/D, respectively, were employed.

The only additional component introduced into the NSGA-III* was the pool of param-
eter values k. To investigate the robustness of the NSGA-III* algorithm with respect to the
selection of the pool, we performed simulations with different sets of values. In all the
sets, it was made sure that the pool of k values were diverse, representative and covered
the entire range. In addition, the size of the pool could not be large. Therefore, the size
of pool was set to five. The experiments were conducted by incorporating five different
sets of diverse and well representative pools corresponding to parameter k into NSGA-
III* named as NSGA-III1* = (1.2, 0.7, 0.5, 0.3, 0.1), NSGA-III2* = (1.5, 1.2, 1, 0.5, 0.3),
NSGA-III3* = (1.5, 1, 0.7, 0.5, 0.1), NSGA-III4* = (1.3, 1.1, 0.9, 0.5, 0.3) and NSGA-III5*
= (1.2, 1, 0.8, 0.4, 0.1).

The experimental analysis was also performed in 16 scalable test problems from DTLZ
and WFG test suites. The results are presented in the supplementary file and the pair-wise
comparisons are summarized in Table 1 with respect to the number of wins (W), number
of losses (L) and number of ties (T). From the results, it is evident the performance of
the NSGA-III* with respect to the selection of the pool is quite robust which is apparent
from the performance similarity (represented with T) between the different versions of the
ensemble of over 80%. However, NSGA-III2* with the pool of k = (1.5, 1.2, 1, 0.5, 0.3) is
the best suited value among them and with a slightly better performance. Therefore, the
simulation results corresponding to k = (1.5, 1.2, 1, 0.5, 0.3) referred to as NSGA-III* are
employed to compare with the state-of-the-art algorithms in Table 2.

Table 1. Summary of the experimental results demonstrating the robustness of the NSGA-III* to the
parameter values in the ensemble pool.

W/L/T NSGA-III1* NSGA-III2* NSGA-III3* NSGA-III4* NSGA-III5*

NSGA-III1* X 7-9-64 4-3-73 4-4-72 8-7-65
NSGA-III2* 10-7-63 X 11-9-60 9-5-66 9-4-67
NSGA-III3* 3-4-73 10-7-63 X 2-4-74 3-4-73
NSGA-III4* 5-4-71 6-7-67 4-2-74 X 4-2-74
NSGA-III5* 7-5-68 4-7-69 4-3-73 3-3-74 X

To demonstrate the effect of the different instances of NSGA-II/CSDR [25] where (1)
the k values are linearly reduced based on generations as in Equation 5, and (2) both the
mating and environmental selections employ CSDR, all the instances of NSGA-II/CSDR
considered start with kmax = 1.6. However, the rate of reductions ·k employed are 0.6,
0.5, 0.4 and 0.2 and the instances are referred to as NSGA-II/CSDR1, NSGA-II/CSDR2,
NSGA-II/CSDR3 and NSGA-II/CSDR4, respectively. The simulations are performed on
3-objective instances of DTLZ1 and DTLZ3. The plots corresponding to the final population
are depicted in Figures 3 and 4. From the figures, it is evident that all the four instances
corresponding to NSGA-II/CSDR cannot produce well distributed solutions in all the three
problems. In other words, even though all the instances of NSGA-II/CSDR start with the
same kmax due to the different k values, the value of parameter k in the final generation
would be different. As mentioned earlier, as different values of k emphasize the different
regions of the PF, the use of CSDR in the environmental selection would result in bias
resulting in non-uniform distribution of solutions. This is evident from the simulation
results depicted in Figures 3 and 4.
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Table 2. Comparison of HV and statistical results on DTLZ and WFG test problems (“+”–WIN, “≈”–TIE, “−”–LOSS).

# M NSGA-III* NSGA-II NSGA-II/SDR NSGA-II/CSDR MOEA/D MOEA/D-DE NSGA-III TDEA ISDE
+

D
T

LZ
1

2 5.83 × 10−1

(5.40 × 10−5)
5.81 × 10−1

(4.25 × 10−4) +
3.00 × 10−1

(8.25 × 10−2) +
5.82 × 10−1

(2.63 × 10−4) +
5.82 × 10−1

(3.16 × 10−4) +
5.83 × 10−1

(1.78 × 10−6) −
5.82 × 10−1

(1.74 × 10−4) +
5.82 × 10−1

(1.86 × 10−4) +
5.82 × 10−1

(2.45 × 10−4) +

4 9.45 × 10−1

(2.41 × 10−4)
9.29 × 10−1

(2.02 × 10−3) +
9.03 × 10−1

(1.35 × 10−2) +
9.16 × 10−1

(1.05 × 10−1) ≈
9.45 × 10−1

(3.35 × 10−4) ≈
7.90 × 10−1

(1.36 × 10−1) +
9.45 × 10−1

(2.22 × 10−4) ≈
9.45 × 10−1

(2.31 × 10−4) ≈
9.36 × 10−1

(2.45 × 10−3) +

6 9.90 × 10−1

(1.13 × 10−4)
2.96 × 10−1

(3.85 × 10−1) +
9.38 × 10−1

(1.80 × 10−2) +
9.40 × 10−1

(1.39 × 10−1) +
9.90 × 10−1

(2.00 × 10−4) +
9.59 × 10−1

(1.16 × 10−2) +
9.90 × 10−1

(1.31 × 10−4) ≈
9.90 × 10−1

(1.40 × 10−4) +
9.83 × 10−1

(1.70 × 10−3) +

8 9.97 × 10−1

(1.14 × 10−3)
8.71 × 10−3

(4.77 × 10−2) +
9.53 × 10−1

(1.40 × 10−2) +
9.88 × 10−1

(2.31 × 10−3) +
9.93 × 10−1

(1.43 × 10−3) +
9.67 × 10−1

(2.02 × 10−3) +
9.97 × 10−1

(1.11 × 10−3) ≈
9.98 × 10−1

(3.99 × 10−4) ≈
9.95 × 10−1

(8.43 × 10−4) +

10 9.97 × 10−1

(1.49 × 10−2)
0 × 100

(0 × 100) +
9.35 × 10−1

(2.11 × 10−2) +
9.99 × 10−1

(5.24 × 10−4) ≈
9.99 × 10−1

(6.33 × 10−5) ≈
9.72 × 10−1

(1.72 × 10−3) +
9.97 × 10−1

(1.39 × 10−2) ≈
9.82 × 10−1

(6.61 × 10−2) ≈
9.98 × 10−1

(4.31 × 10−4) ≈

D
T

LZ
2

2 3.47 × 10−1

(1.33 × 10−7)
3.47 × 10−1

(1.64 × 10−4) +
1.80 × 10−1

(1.09 × 10−2) +
3.47 × 10−1

(1.85 × 10−4) +
3.47 × 10−1

(1.11 × 10−5) +
3.47 × 10−1

(3.19 × 10−5) +
3.47 × 10−1

(6.72 × 10−6) +
3.47 × 10−1

(9.83 × 10−6) +
3.47 × 10−1

(1.46 × 10−4) +

4 7.15 × 10−1

(4.62 × 10−4)
6.40 × 10−1

(7.59 × 10−3) +
6.16 × 10−1

(1.50 × 10−1) +
6.64 × 10−1

(5.85 × 10−3) +
7.14 × 10−1

(5.36 × 10−4) +
6.20 × 10−1

(3.30 × 10−3) +
7.14 × 10−1

(5.32 × 10−4) +
7.15 × 10−1

(4.34 × 10−4) +
7.12 × 10−1

(1.68 × 10−3) +

6 8.61 × 10−1

(4.42 × 10−4)
8.38 × 10−3

(3.19 × 10−2) +
8.45 × 10−1

(3.80 × 10−3) +
7.81 × 10−1

(1.12 × 10−2) +
8.58 × 10−1

(5.49 × 10−4) +
6.49 × 10−1

(1.98 × 10−2) +
8.57 × 10−1

(7.28 × 10−4) +
8.59 × 10−1

(4.61 × 10−4) +
8.65 × 10−1

(1.71 × 10−3) −

8 9.17 × 10−1

(2.53 × 10−2)
3.29 × 10−4

(1.38 × 10−3) +
9.26 × 10−1

(4.04 × 10−3) −
9.05 × 10−1

(3.46 × 10−3) +
9.17 × 10−1

(1.50 × 10−3) ≈
5.88 × 10−1

(1.26 × 10−2) +
9.11 × 10−1

(2.03 × 10−2) ≈
9.23 × 10−1

(7.14 × 10−4) ≈
9.38 × 10−1

(1.63 × 10−3) −

10 9.66 × 10−1

(1.17 × 10−2)
2.84 × 10−3

(6.45 × 10−3) +
9.63 × 10−1

(2.99 × 10−3) ≈
9.57 × 10−1

(1.45 × 10−3) +
9.70 × 10−1

(3.57 × 10−4) −
5.49 × 10−1

(1.60 × 10−2) +
9.58 × 10−1

(1.71 × 10−2) +
9.68 × 10−1

(2.54 × 10−4) ≈
9.70 × 10−1

(1.36 × 10−3) −

D
T

LZ
3

2 3.46 × 10−1

(1.08 × 10−3)
3.46 × 10−1

(9.23 × 10−4) ≈
1.94 × 10−1

(2.42 × 10−2) +
3.46 × 10−1

(9.28 × 10−4) ≈
3.46 × 10−1

(8.47 × 10−4) ≈
3.45 × 10−1

(1.41 × 10−3) ≈
3.46 × 10−1

(1.15 × 10−3) ≈
3.46 × 10−1

(7.66 × 10−4) −
3.45 × 10−1

(1.61 × 10−3) ≈

4 7.14 × 10−1

(1.32 × 10−3)
6.53 × 10−1

(9.16 × 10−3) +
6.85 × 10−1

(6.78 × 10−2) +
6.75 × 10−1

(4.53 × 10−3) +
7.13 × 10−1

(2.53 × 10−3) +
5.96 × 10−1

(3.10 × 10−2) +
7.13 × 10−1

(1.57 × 10−3) ≈
7.14 × 10−1

(1.89 × 10−3) ≈
7.11 × 10−1

(2.98 × 10−3) +

6 8.56 × 10−1

(3.34 × 10−3)
0 × 100

(0 × 100) +
8.48 × 10−1

(3.19 × 10−3) +
8.09 × 10−1

(8.03 × 10−3) +
8.57 × 10−1

(4.06 × 10−3) ≈
6.32 × 10−1

(4.56 × 10−2) +
8.55 × 10−1

(3.74 × 10−3) ≈
8.59 × 10−1

(1.15 × 10−3) −
8.60 × 10−1

(4.00 × 10−3) −

8 9.17 × 10−1

(3.14 × 10−2)
0 × 100

(0 × 100) +
9.27 × 10−1

(4.02 × 10−3) ≈
9.10 × 10−1

(1.28 × 10−2) ≈
9.21 × 10−1

(3.85 × 10−3) ≈
5.81 × 10−1

(1.57 × 10−2) +
9.12 × 10−1

(5.14 × 10−2) ≈
9.15 × 10−1

(5.61 × 10−2) ≈
9.32 × 10−1

(3.42 × 10−3) −

10 8.85 × 10−1

(2.30 × 10−1)
0 × 100

(0 × 100) +
9.63 × 10−1

(2.27 × 10−3) −
9.60 × 10−1

(2.65 × 10−3) −
9.44 × 10−1

(1.36 × 10−1) ≈
5.42 × 10−1

(3.11 × 10−2) +
8.86 × 10−1

(2.42 × 10−1) ≈
9.46 × 10−1

(4.77 × 10−2) ≈
9.62 × 10−1

(2.68 × 10−3) −

D
T

LZ
4 2 3.47 × 10−1

(1.20 × 10−4)
2.70 × 10−1

(1.19 × 10−1) +
2.57 × 10−1

(7.13 × 10−2) +
3.38 × 10−1

(4.67 × 10−2) ≈
2.51 × 10−1

(1.24 × 10−1) +
3.47 × 10−1

(8.80 × 10−5) +
3.13 × 10−1

(8.86 × 10−2) +
3.04 × 10−1

(9.71 × 10−2) +
3.47 × 10−1

(1.56 × 10−4) +

4 6.89 × 10−1

(6.09 × 10−2)
6.47 × 10−1

(7.08 × 10−3) +
3.37 × 10−1

(5.62 × 10−2) +
6.64 × 10−1

(4.82 × 10−3) +
5.34 × 10−1

(1.89 × 10−1) +
6.07 × 10−1

(1.47 × 10−2) +
7.09 × 10−1

(2.96 × 10−2) ≈
7.09 × 10−1

(3.12 × 10−2) ≈
7.12 × 10−1

(1.59 × 10−3) −
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Table 2. Cont.

# M NSGA-III* NSGA-II NSGA-II/SDR NSGA-II/CSDR MOEA/D MOEA/D-DE NSGA-III TDEA ISDE
+

6 8.51 × 10−1

(3.20 × 10−2)
8.29 × 10−2

(1.52 × 10−1) +
3.95 × 10−1

(9.04 × 10−2) +
7.97 × 10−1

(7.67 × 10−3) +
7.25 × 10−1

(9.07 × 10−2) +
6.95 × 10−1

(2.35 × 10−2) +
8.52 × 10−1

(2.64 × 10−2) ≈
8.60 × 10−1

(5.25 × 10−4) ≈
8.58 × 10−1

(1.58 × 10−2) ≈

8 9.12 × 10−1

(3.05 × 10−2)
4.54 × 10−4

(2.37 × 10−3) +
4.75 × 10−1

(6.14 × 10−2) +
9.14 × 10−1

(3.61 × 10−3) ≈
7.79 × 10−1

(1.19 × 10−1) +
6.50 × 10−1

(2.23 × 10−2) +
9.06 × 10−1

(2.98 × 10−2) ≈
9.25 × 10−1

(4.00 × 10−4) −
9.33 × 10−1

(4.44 × 10−3) −

10 9.66 × 10−1

(1.08 × 10−2)
1.89 × 10−4

(7.26 × 10−4) +
5.69 × 10−1

(8.52 × 10−2) +
9.62 × 10−1

(1.21 × 10−3) +
8.68 × 10−1

(9.44 × 10−2) +
6.31 × 10−1

(2.54 × 10−2) +
9.66 × 10−1

(1.13 × 10−2) ≈
9.70 × 10−1

(2.42 × 10−4) −
9.66 × 10−1

(1.26 × 10−3) ≈

D
T

LZ
5

2 3.47 × 10−1

(7.05 × 10−7)
3.47 × 10−1

(1.82 × 10−4) +
1.79 × 10−1

(7.76 × 10−3) +
3.47 × 10−1

(2.15 × 10−4) +
3.47 × 10−1

(1.04 × 10−5) +
3.47 × 10−1

(3.63 × 10−5) +
3.47 × 10−1

(5.63 × 10−6) +
3.47 × 10−1

(5.76 × 10−6) +
3.47 × 10−1

(1.73 × 10−4) +

4 1.40 × 10−1

(2.10 × 10−3)
1.42 × 10−1

(2.19 × 10−3) −
1.30 × 10−1

(4.39 × 10−3) +
1.40 × 10−1

(2.22 × 10−3) ≈
1.47 × 10−1

(3.06 × 10−4) −
1.45 × 10−1

(4.30 × 10−4) −
1.41 × 10−1

(2.31 × 10−3) −
1.20 × 10−1

(9.23 × 10−3) +
1.33 × 10−1

(2.94 × 10−3) +

6 9.75 × 10−2

(4.12 × 10−3)
9.63 × 10−2

(7.95 × 10−3) ≈
9.66 × 10−2

(2.68 × 10−3) ≈
9.14 × 10−2

(3.37 × 10−3) +
1.15 × 10−1

(2.59 × 10−4) −
1.11 × 10−1

(3.89 × 10−4) −
9.06 × 10−2

(6.21 × 10−3) ≈
1.00 × 10−1

(2.45 × 10−3) −
9.20 × 10−2

(1.98 × 10−3) +

8 9.21 × 10−2

(2.27 × 10−3)
6.82 × 10−2

(2.39 × 10−2) +
8.85 × 10−2

(2.04 × 10−3) +
8.06 × 10−2

(6.63 × 10−3) +
1.04 × 10−1

(2.98 × 10−4) −
1.02 × 10−1

(3.17 × 10−4) −
7.82 × 10−2

(1.15 × 10−2) ≈
9.25 × 10−2

(2.65 × 10−3) ≈
8.29 × 10−2

(4.70 × 10−3) +

10 8.62 × 10−2

(5.54 × 10−3)
4.73 × 10−2

(2.31 × 10−2) +
8.41 × 10−2

(4.54 × 10−3) ≈
7.45 × 10−2

(9.08 × 10−3) +
1.00 × 10−1

(2.75 × 10−4) −
9.81 × 10−2

(2.66 × 10−4) −
7.72 × 10−2

(1.21 × 10−2) ≈
9.28 × 10−2

(1.36 × 10−3) −
7.55 × 10−2

(6.32 × 10−3) +

D
T

LZ
6

2 3.47 × 10−1

(4.08 × 10−8)
3.46 × 10−1

(1.61 × 10−4) +
3.18 × 10−1

(3.58 × 10−2) +
3.47 × 10−1

(1.03 × 10−4) −
3.47 × 10−1

(4.71 × 10−5) ≈
3.47 × 10−1

(9.23 × 10−8) +
3.47 × 10−1

(3.30 × 10−7) ≈
3.47 × 10−1

(2.26 × 10−7) +
3.47 × 10−1

(1.27 × 10−4) ≈

4 1.33 × 10−1

(1.03 × 10−2)
1.14 × 10−1

(2.35 × 10−2) +
1.33 × 10−1

(3.60 × 10−3) ≈
1.33 × 10−1

(4.83 × 10−3) ≈
1.47 × 10−1

(6.94 × 10−4) −
1.45 × 10−1

(4.78 × 10−4) −
1.37 × 10−1

(4.57 × 10−3) −
1.13 × 10−1

(9.61 × 10−3) +
1.27 × 10−1

(5.53 × 10−3) +

6 9.21 × 10−2

(2.91 × 10−3)
0 × 100

(0 × 100) +
9.92 × 10−2

(4.32 × 10−3) −
8.38 × 10−2

(1.50 × 10−2) +
1.14 × 10−1

(3.19 × 10−3) −
1.12 × 10−1

(3.07 × 10−4) −
6.05 × 10−2

(4.13 × 10−2) +
9.12 × 10−2

(5.20 × 10−4) +
9.63 × 10−2

(2.85 × 10−3) −

8 9.11 × 10−2

(5.32 × 10−4)
0 × 100

(0 × 100) +
8.87 × 10−2

(1.57 × 10−2) ≈
6.17 × 10−2

(3.56 × 10−2) +
1.04 × 10−1

(3.10 × 10−4) −
1.02 × 10−1

(2.27 × 10−4) −
2.70 × 10−2

(3.89 × 10−2) +
9.11 × 10−2

(2.88 × 10−4) ≈
9.11 × 10−2

(1.49 × 10−3) ≈

10 8.18 × 10−2

(2.77 × 10−2)
0 × 100

(0 × 100) +
8.75 × 10−2

(9.37 × 10−3) ≈
5.66 × 10−2

(3.71 × 10−2) +
9.97 × 10−2

(1.42 × 10−3) −
9.82 × 10−2

(2.33 × 10−4) −
5.83 × 10−3

(2.08 × 10−2) +
9.11 × 10−2

(3.68 × 10−4) −
8.38 × 10−2

(1.98 × 10−2) ≈

D
T

LZ
7

2 2.43 × 10−1

(1.87 × 10−5)
2.43 × 10−1

(4.22 × 10−5) +
2.42 × 10−1

(3.55 × 10−4) +
2.43 × 10−1

(3.61 × 10−5) +
2.16 × 10−1

(3.12 × 10−2) +
2.08 × 10−1

(3.34 × 10−2) +
2.43 × 10−1

(3.30 × 10−5) +
2.43 × 10−1

(3.05 × 10−5) +
2.42 × 10−1

(2.84 × 10−4) +

4 2.58 × 10−1

(5.50 × 10−3)
2.42 × 10−1

(2.97 × 10−3) +
2.69 × 10−1

(2.33 × 10−3) −
2.61 × 10−1

(2.17 × 10−3) −
1.88 × 10−1

(4.91 × 10−3) +
3.01 × 10−2

(1.72 × 10−2) +
2.54 × 10−1

(6.27 × 10−3) +
2.68 × 10−1

(5.30 × 10−3) −
2.73 × 10−1

(6.21 × 10−3) −

6 2.31 × 10−1

(2.74 × 10−3)
5.10 × 10−2

(1.56 × 10−2) +
2.37 × 10−1

(3.43 × 10−3) −
1.74 × 10−1

(5.64 × 10−3) +
9.88 × 10−3

(2.47 × 10−2) +
1.35 × 10−3

(2.01 × 10−3) +
2.19 × 10−1

(3.85 × 10−3) +
1.73 × 10−1

(2.43 × 10−2) +
2.40 × 10−1

(7.17 × 10−3) −

8 2.12 × 10−1

(2.94 × 10−3)
2.36 × 10−4

(4.00 × 10−4) +
2.00 × 10−1

(3.27 × 10−3) +
1.12 × 10−1

(1.28 × 10−2) +
5.61 × 10−5

(2.46 × 10−5) +
1.25 × 10−4

(3.90 × 10−4) +
1.80 × 10−1

(5.63 × 10−3) +
1.76 × 10−1

(1.63 × 10−2) +
2.12 × 10−1

(8.96 × 10−3) ≈
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Table 2. Cont.

# M NSGA-III* NSGA-II NSGA-II/SDR NSGA-II/CSDR MOEA/D MOEA/D-DE NSGA-III TDEA ISDE
+

10 1.81 × 10−1

(7.78 × 10−3)
1.97 × 10−6

(5.32 × 10−6) +
1.54 × 10−1

(4.08 × 10−2) +
1.00 × 10−1

(1.68 × 10−2) +
1.20 × 10−4

(2.53 × 10−4) +
2.07 × 10−4

(5.66 × 10−4) +
1.60 × 10−1

(5.69 × 10−3) +
1.71 × 10−1

(1.49 × 10−2) +
1.81 × 10−1

(1.76 × 10−2) ≈

W
FG

1

2 6.77 × 10−1

(5.95 × 10−3)
6.92 × 10−1

(1.70 × 10−3) −
6.88 × 10−1

(2.33 × 10−3) −
6.80 × 10−1

(1.62 × 10−2) ≈
6.58 × 10−1

(8.94 × 10−3) +
5.46 × 10−1

(8.38 × 10−2) +
6.74 × 10−1

(1.03 × 10−2) ≈
6.73 × 10−1

(8.24 × 10−3) +
6.67 × 10−1

(2.26 × 10−2) +

4 9.84 × 10−1

(8.16 × 10−3)
9.65 × 10−1

(4.63 × 10−3) +
9.68 × 10−1

(5.70 × 10−3) +
9.80 × 10−1

(2.25 × 10−3) +
9.50 × 10−1

(1.37 × 10−2) +
6.16 × 10−1

(7.07 × 10−2) +
9.88 × 10−1

(4.80 × 10−3) −
9.89 × 10−1

(1.54 × 10−3) −
9.80 × 10−1

(2.77 × 10−3) +

6 8.70 × 10−1

(2.21 × 10−2)
9.67 × 10−1

(1.45 × 10−2) −
9.66 × 10−1

(1.98 × 10−2) −
9.49 × 10−1

(1.85 × 10−2) −
9.36 × 10−1

(9.53 × 10−3) −
5.86 × 10−1

(6.87 × 10−2) +
8.93 × 10−1

(2.52 × 10−2) −
9.34 × 10−1

(1.87 × 10−2) −
9.91 × 10−1

(1.48 × 10−3) −

8 9.83 × 10−1

(2.32 × 10−2)
9.94 × 10−1

(1.82 × 10−3) −
9.84 × 10−1

(1.60 × 10−2) ≈
9.98 × 10−1

(6.47 × 10−4) −
9.16 × 10−1

(4.01 × 10−2) +
5.22 × 10−1

(7.13 × 10−2) +
9.98 × 10−1

(8.33 × 10−4) −
9.96 × 10−1

(1.03 × 10−3) −
9.94 × 10−1

(1.25 × 10−3) −

10 9.99 × 10−1

(6.37 × 10−4)
9.97 × 10−1

(1.10 × 10−3) +
9.88 × 10−1

(1.13 × 10−2) +
9.99 × 10−1

(2.30 × 10−4) −
7.24 × 10−1

(1.04 × 10−1) +
9.81 × 10−1

(1.74 × 10−2) +
9.99 × 10−1

(2.49 × 10−4) −
9.96 × 10−1

(8.08 × 10−4) +
9.95 × 10−1

(1.33 × 10−3) +

W
FG

2

2 6.32 × 10−1

(3.82 × 10−4)
6.32 × 10−1

(4.76 × 10−4) −
6.29 × 10−1

(1.09 × 10−3) +
6.32 × 10−1

(6.03 × 10−4) ≈
6.20 × 10−1

(3.14 × 10−3) +
6.29 × 10−1

(8.18 × 10−4) +
6.32 × 10−1

(4.99 × 10−4) ≈
6.32 × 10−1

(4.49 × 10−4) +
6.32 × 10−1

(4.57 × 10−4) ≈

4 9.88 × 10−1

(4.99 × 10−4)
9.74 × 10−1

(1.88 × 10−3) +
9.60 × 10−1

(5.88 × 10−3) +
9.79 × 10−1

(1.75 × 10−3) +
9.58 × 10−1

(1.03 × 10−2) +
9.05 × 10−1

(1.07 × 10−2) +
9.86 × 10−1

(7.99 × 10−4) +
9.87 × 10−1

(6.80 × 10−4) +
9.77 × 10−1

(3.25 × 10−3) +

6 9.95 × 10−1

(9.24 × 10−4)
9.90 × 10−1

(1.88 × 10−3) +
9.68 × 10−1

(5.14 × 10−3) +
9.92 × 10−1

(9.60 × 10−4) +
9.25 × 10−1

(1.76 × 10−2) +
9.62 × 10−1

(1.04 × 10−2) +
9.92 × 10−1

(1.58 × 10−3) +
9.87 × 10−1

(1.55 × 10−3) +
9.83 × 10−1

(3.98 × 10−3) +

8 9.96 × 10−1

(1.11 × 10−3)
9.97 × 10−1

(9.71 × 10−4) ≈
9.81 × 10−1

(5.41 × 10−3) +
9.98 × 10−1

(3.77 × 10−4) −
9.25 × 10−1

(9.32 × 10−3) +
9.92 × 10−1

(2.93 × 10−3) +
9.95 × 10−1

(1.92 × 10−3) +
9.90 × 10−1

(5.65 × 10−3) +
9.92 × 10−1

(1.83 × 10−3) +

10 9.97 × 10−1

(1.09 × 10−3)
9.98 × 10−1

(7.40 × 10−4) −
9.85 × 10−1

(6.00 × 10−3) +
9.99 × 10−1

(2.11 × 10−4) −
9.37 × 10−1

(3.93 × 10−3) +
9.97 × 10−1

(1.83 × 10−3) −
9.97 × 10−1

(1.37 × 10−3) ≈
9.92 × 10−1

(2.11 × 10−3) +
9.94 × 10−1

(1.16 × 10−3) +

W
FG

3

2 5.82 × 10−1

(2.75 × 10−4)
5.77 × 10−1

(1.19 × 10−3) +
5.79 × 10−1

(7.36 × 10−4) +
5.78 × 10−1

(8.48 × 10−4) +
5.63 × 10−1

(7.68 × 10−3) +
5.73 × 10−1

(1.78 × 10−3) +
5.78 × 10−1

(1.10 × 10−3) +
5.79 × 10−1

(1.03 × 10−3) +
5.80 × 10−1

(4.45 × 10−4) +

4 2.56 × 10−1

(9.22 × 10−3)
2.82 × 10−1

(9.46 × 10−3) −
2.67 × 10−1

(9.85 × 10−3) −
2.58 × 10−1

(1.34 × 10−2) ≈
1.05 × 10−1

(4.51 × 10−2) +
1.43 × 10−1

(3.70 × 10−2) +
2.37 × 10−1

(1.05 × 10−2) +
2.43 × 10−1

(1.70 × 10−2) +
2.75 × 10−1

(1.03 × 10−2) −

6 5.37 × 10−2

(1.83 × 10−2)
8.83 × 10−2

(2.71 × 10−2) −
1.02 × 10−1

(1.88 × 10−2) −
5.02 × 10−2

(1.90 × 10−2) ≈
0 × 100

(0 × 100) +
6.63 × 10−2

(1.33 × 10−2) −
9.86 × 10−3

(8.14 × 10−3) +
2.57 × 10−2

(1.26 × 10−2) +
8.83 × 10−2

(2.12 × 10−2) −

8 1.99 × 10−2

(1.76 × 10−2)
5.11 × 10−2

(1.77 × 10−2) −
6.65 × 10−3

(9.64 × 10−3) +
6.87 × 10−4

(1.61 × 10−3) +
0 × 100

(0 × 100) +
6.18 × 10−2

(1.52 × 10−2) −
6.60 × 10−4

(1.64 × 10−3) +
8.27 × 10−3

(1.16 × 10−2) +
4.73 × 10−3

(8.71 × 10−3) +

10 2.06 × 10−3

(5.58 × 10−3)
1.43 × 10−3

(4.83 × 10−3) ≈
0 × 100

(0 × 100) +
0 × 100

(0 × 100) +
0 × 100

(0 × 100) +
8.80 × 10−2

(1.87 × 10−3) −
0 × 100

(0 × 100) +
1.26 × 10−4

(6.92 × 10−4) +
0 × 100

(0 × 100) +
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Table 2. Cont.

# M NSGA-III* NSGA-II NSGA-II/SDR NSGA-II/CSDR MOEA/D MOEA/D-DE NSGA-III TDEA ISDE
+

W
FG

4

2 3.47 × 10−1

(4.10 × 10−5)
3.45 × 10−1

(3.95 × 10−4) +
3.45 × 10−1

(4.32 × 10−4) +
3.45 × 10−1

(3.98 × 10−4) +
3.30 × 10−1

(2.24 × 10−3) +
3.14 × 10−1

(2.85 × 10−3) +
3.45 × 10−1

(5.10 × 10−4) +
3.45 × 10−1

(5.75 × 10−4) +
3.46 × 10−1

(2.58 × 10−4) +

4 7.12 × 10−1

(6.59 × 10−4)
6.19 × 10−1

(7.37 × 10−3) +
6.84 × 10−1

(3.35 × 10−3) +
6.36 × 10−1

(6.36 × 10−3) +
6.63 × 10−1

(5.78 × 10−3) +
4.79 × 10−1

(1.92 × 10−2) +
6.87 × 10−1

(2.05 × 10−3) +
6.89 × 10−1

(2.42 × 10−3) +
7.02 × 10−1

(2.17 × 10−3) +

6 8.48 × 10−1

(1.21 × 10−3)
6.60 × 10−1

(1.61 × 10−2) +
8.20 × 10−1

(3.78 × 10−3) +
7.54 × 10−1

(7.40 × 10−3) +
5.19 × 10−1

(3.68 × 10−2) +
5.71 × 10−1

(2.99 × 10−2) +
7.98 × 10−1

(4.93 × 10−3) +
8.04 × 10−1

(4.18 × 10−3) +
8.40 × 10−1

(4.02 × 10−3) +

8 9.07 × 10−1

(2.21 × 10−2)
6.68 × 10−1

(2.12 × 10−2) +
9.05 × 10−1

(3.76 × 10−3) ≈
8.63 × 10−1

(8.02 × 10−3) +
3.70 × 10−1

(3.47 × 10−2) +
6.58 × 10−1

(3.48 × 10−2) +
8.59 × 10−1

(6.53 × 10−3) +
8.64 × 10−1

(4.93 × 10−3) +
9.11 × 10−1

(4.40 × 10−3) ≈

10 9.60 × 10−1

(2.80 × 10−3)
6.68 × 10−1

(2.43 × 10−2) +
9.41 × 10−1

(3.66 × 10−3) +
9.23 × 10−1

(6.08 × 10−3) +
3.97 × 10−1

(4.99 × 10−2) +
6.67 × 10−1

(4.80 × 10−2) +
9.13 × 10−1

(6.28 × 10−3) +
9.20 × 10−1

(5.79 × 10−3) +
9.30 × 10−1

(4.38 × 10−3) +

W
FG

5

2 3.13 × 10−1

(2.95 × 10−5)
3.13 × 10−1

(5.11 × 10−4) +
3.12 × 10−1

(1.47 × 10−3) +
3.13 × 10−1

(1.01 × 10−3) +
3.05 × 10−1

(1.09 × 10−3) +
3.07 × 10−1

(6.08 × 10−4) +
3.12 × 10−1

(1.77 × 10−3) +
3.12 × 10−1

(1.27 × 10−3) +
3.12 × 10−1

(1.62 × 10−3) +

4 6.69 × 10−1

(4.72 × 10−4)
5.95 × 10−1

(7.96 × 10−3) +
6.54 × 10−1

(2.54 × 10−3) +
6.11 × 10−1

(4.81 × 10−3) +
6.36 × 10−1

(4.83 × 10−3) +
4.64 × 10−1

(9.20 × 10−3) +
6.62 × 10−1

(1.31 × 10−3) +
6.63 × 10−1

(1.26 × 10−3) +
6.64 × 10−1

(1.79 × 10−3) +

6 8.05 × 10−1

(4.21 × 10−4)
6.25 × 10−1

(1.51 × 10−2) +
7.88 × 10−1

(4.19 × 10−3) +
7.32 × 10−1

(6.85 × 10−3) +
5.66 × 10−1

(1.97 × 10−2) +
5.35 × 10−1

(3.35 × 10−2) +
7.81 × 10−1

(3.08 × 10−3) +
7.85 × 10−1

(2.04 × 10−3) +
8.05 × 10−1

(2.40 × 10−3) ≈

8 8.63 × 10−1

(4.66 × 10−4)
5.87 × 10−1

(2.06 × 10−2) +
8.60 × 10−1

(2.50 × 10−3) +
8.21 × 10−1

(7.41 × 10−3) +
4.92 × 10−1

(2.17 × 10−2) +
5.70 × 10−1

(2.33 × 10−2) +
8.32 × 10−1

(3.30 × 10−3) +
8.33 × 10−1

(2.82 × 10−3) +
8.68 × 10−1

(2.56 × 10−3) −

10 9.04 × 10−1

(2.35 × 10−4)
5.98 × 10−1

(2.20 × 10−2) +
8.91 × 10−1

(2.32 × 10−3) +
8.71 × 10−1

(4.63 × 10−3) +
4.63 × 10−1

(2.54 × 10−2) +
5.34 × 10−1

(4.71 × 10−2) +
8.82 × 10−1

(2.00 × 10−3) +
8.84 × 10−1

(1.60 × 10−3) +
8.91 × 10−1

(2.23 × 10−3) +

W
FG

6

2 3.07 × 10−1

(5.28 × 10−3)
3.04 × 10−1

(8.24 × 10−3) +
3.06 × 10−1

(7.35 × 10−3) ≈
3.09 × 10−1

(7.63 × 10−3) ≈
2.95 × 10−1

(1.22 × 10−2) +
2.80 × 10−1

(3.61 × 10−2) +
3.06 × 10−1

(9.24 × 10−3) ≈
3.06 × 10−1

(8.13 × 10−3) ≈
3.09 × 10−1

(8.40 × 10−3) ≈

4 6.61 × 10−1

(8.38 × 10−3)
5.66 × 10−1

(1.34 × 10−2) +
6.39 × 10−1

(8.67 × 10−3) +
5.79 × 10−1

(1.28 × 10−2) +
6.14 × 10−1

(1.72 × 10−2) +
4.46 × 10−1

(2.05 × 10−2) +
6.35 × 10−1

(8.92 × 10−3) +
6.41 × 10−1

(8.44 × 10−3) +
6.57 × 10−1

(9.53 × 10−3) ≈

6 7.98 × 10−1

(9.34 × 10−3)
6.13 × 10−1

(2.72 × 10−2) +
7.82 × 10−1

(1.02 × 10−2) +
6.75 × 10−1

(1.30 × 10−2) +
3.89 × 10−1

(3.62 × 10−2) +
5.49 × 10−1

(1.89 × 10−2) +
7.55 × 10−1

(1.03 × 10−2) +
7.63 × 10−1

(1.03 × 10−2) +
8.01 × 10−1

(8.94 × 10−3) ≈

8 8.39 × 10−1

(1.86 × 10−2)
6.39 × 10−1

(3.48 × 10−2) +
8.45 × 10−1

(1.78 × 10−2) ≈
7.82 × 10−1

(1.83 × 10−2) +
2.65 × 10−1

(2.53 × 10−2) +
4.74 × 10−1

(7.38 × 10−2) +
8.00 × 10−1

(2.43 × 10−2) +
8.01 × 10−1

(1.49 × 10−2) +
8.49 × 10−1

(1.72 × 10−2) −

10 8.75 × 10−1

(2.12 × 10−2)
6.45 × 10−1

(3.52 × 10−2) +
8.77 × 10−1

(1.80 × 10−2) ≈
8.48 × 10−1

(2.63 × 10−2) +
2.22 × 10−1

(5.35 × 10−2) +
4.67 × 10−1

(8.26 × 10−2) +
8.44 × 10−1

(1.46 × 10−2) +
8.50 × 10−1

(1.21 × 10−2) +
8.80 × 10−1

(1.62 × 10−2) ≈
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Table 2. Cont.

# M NSGA-III* NSGA-II NSGA-II/SDR NSGA-II/CSDR MOEA/D MOEA/D-DE NSGA-III TDEA ISDE
+

W
FG

7

2 3.47 × 10−1

(1.98 × 10−5)
3.45 × 10−1

(3.99 × 10−4) +
3.46 × 10−1

(2.21 × 10−4) +
3.46 × 10−1

(2.64 × 10−4) +
3.29 × 10−1

(4.96 × 10−3) +
3.43 × 10−1

(5.82 × 10−4) +
3.46 × 10−1

(2.34 × 10−4) +
3.46 × 10−1

(2.45 × 10−4) +
3.47 × 10−1

(1.98 × 10−4) +

4 7.12 × 10−1

(6.03 × 10−4)
6.25 × 10−1

(7.05 × 10−3) +
6.99 × 10−1

(1.87 × 10−3) +
6.52 × 10−1

(5.47 × 10−3) +
6.47 × 10−1

(1.74 × 10−2) +
4.94 × 10−1

(1.74 × 10−2) +
6.94 × 10−1

(2.29 × 10−3) +
6.99 × 10−1

(1.44 × 10−3) +
7.10 × 10−1

(1.93 × 10−3) +

6 8.55 × 10−1

(9.75 × 10−4)
6.18 × 10−1

(2.67 × 10−2) +
8.44 × 10−1

(3.37 × 10−3) +
7.73 × 10−1

(6.24 × 10−3) +
4.90 × 10−1

(3.20 × 10−2) +
5.05 × 10−1

(3.54 × 10−2) +
8.05 × 10−1

(8.03 × 10−3) +
8.23 × 10−1

(4.82 × 10−3) +
8.61 × 10−1

(1.81 × 10−3) −

8 9.17 × 10−1

(1.20 × 10−3)
6.52 × 10−1

(3.30 × 10−2) +
9.20 × 10−1

(2.83 × 10−3) −
8.87 × 10−1

(5.92 × 10−3) +
3.63 × 10−1

(2.24 × 10−2) +
5.47 × 10−1

(3.30 × 10−2) +
8.65 × 10−1

(8.44 × 10−3) +
8.80 × 10−1

(5.09 × 10−3) +
9.29 × 10−1

(1.91 × 10−3) −

10 9.62 × 10−1

(1.16 × 10−2)
6.65 × 10−1

(2.67 × 10−2) +
9.58 × 10−1

(2.22 × 10−3) +
9.44 × 10−1

(3.54 × 10−3) +
3.20 × 10−1

(4.77 × 10−2) +
5.33 × 10−1

(5.95 × 10−2) +
9.33 × 10−1

(8.63 × 10−3) +
9.39 × 10−1

(3.60 × 10−3) +
9.56 × 10−1

(2.56 × 10−3) +

W
FG

8

2 3.02 × 10−1

(4.46 × 10−4)
2.98 × 10−1

(1.18 × 10−3) +
2.97 × 10−1

(1.45 × 10−3) +
2.99 × 10−1

(1.38 × 10−3) +
2.83 × 10−1

(6.67 × 10−3) +
2.94 × 10−1

(2.34 × 10−3) +
2.98 × 10−1

(1.40 × 10−3) +
2.96 × 10−1

(3.10 × 10−3) +
3.00 × 10−1

(1.21 × 10−3) +

4 6.35 × 10−1

(9.54 × 10−4)
5.29 × 10−1

(6.87 × 10−3) +
6.08 × 10−1

(3.07 × 10−3) +
5.49 × 10−1

(5.59 × 10−3) +
5.90 × 10−1

(5.84 × 10−3) +
3.59 × 10−1

(1.51 × 10−2) +
6.10 × 10−1

(4.16 × 10−3) +
6.11 × 10−1

(3.20 × 10−3) +
6.28 × 10−1

(2.21 × 10−3) +

6 7.68 × 10−1

(1.54 × 10−3)
5.70 × 10−1

(9.22 × 10−3) +
7.29 × 10−1

(4.50 × 10−3) +
6.24 × 10−1

(9.39 × 10−3) +
2.19 × 10−1

(7.96 × 10−2) +
3.49 × 10−1

(3.97 × 10−2) +
7.14 × 10−1

(1.12 × 10−2) +
7.12 × 10−1

(6.46 × 10−3) +
7.60 × 10−1

(4.14 × 10−3) +

8 7.84 × 10−1

(2.39 × 10−2)
6.09 × 10−1

(1.36 × 10−2) +
8.12 × 10−1

(1.62 × 10−2) −
6.56 × 10−1

(1.09 × 10−2) +
6.10 × 10−2

(2.63 × 10−2) +
3.97 × 10−1

(5.91 × 10−2) +
7.25 × 10−1

(1.28 × 10−2) +
7.06 × 10−1

(1.73 × 10−2) +
8.11 × 10−1

(1.52 × 10−2) −

10 8.62 × 10−1

(1.41 × 10−2)
6.36 × 10−1

(1.82 × 10−2) +
8.91 × 10−1

(2.22 × 10−2) −
7.35 × 10−1

(1.88 × 10−2) +
5.49 × 10−2

(4.26 × 10−2) +
3.88 × 10−1

(5.97 × 10−2) +
8.33 × 10−1

(1.18 × 10−2) +
8.11 × 10−1

(1.25 × 10−2) +
9.02 × 10−1

(2.54 × 10−2) −

W
FG

9

2 3.40 × 10−1

(1.67 × 10−2)
3.29 × 10−1

(2.69 × 10−2) +
3.26 × 10−1

(3.10 × 10−2) +
3.33 × 10−1

(2.22 × 10−2) ≈
3.02 × 10−1

(2.37 × 10−2) +
3.21 × 10−1

(2.47 × 10−2) +
3.27 × 10−1

(2.31 × 10−2) +
3.31 × 10−1

(2.19 × 10−2) ≈
3.34 × 10−1

(2.32 × 10−2) ≈

4 6.77 × 10−1

(3.05 × 10−3)
5.78 × 10−1

(1.26 × 10−2) +
6.68 × 10−1

(3.76 × 10−3) +
6.27 × 10−1

(6.21 × 10−3) +
5.75 × 10−1

(3.97 × 10−2) +
4.81 × 10−1

(3.70 × 10−2) +
6.37 × 10−1

(1.94 × 10−2) +
6.53 × 10−1

(7.16 × 10−3) +
6.84 × 10−1

(3.58 × 10−3) −

6 7.90 × 10−1

(1.70 × 10−2)
5.13 × 10−1

(2.09 × 10−2) +
7.90 × 10−1

(2.36 × 10−2) ≈
7.26 × 10−1

(9.88 × 10−3) +
4.89 × 10−1

(6.91 × 10−2) +
5.53 × 10−1

(4.41 × 10−2) +
7.14 × 10−1

(2.75 × 10−2) +
7.49 × 10−1

(1.37 × 10−2) +
8.12 × 10−1

(4.04 × 10−3) −

8 8.40 × 10−1

(3.89 × 10−2)
5.79 × 10−1

(2.57 × 10−2) +
8.67 × 10−1

(3.91 × 10−3) −
8.07 × 10−1

(8.73 × 10−3) +
3.21 × 10−1

(1.32 × 10−1) +
6.19 × 10−1

(3.92 × 10−2) +
7.49 × 10−1

(5.26 × 10−2) +
7.98 × 10−1

(3.06 × 10−2) +
8.72 × 10−1

(4.57 × 10−3) −

10 8.74 × 10−1

(5.65 × 10−2)
5.72 × 10−1

(3.08 × 10−2) +
8.99 × 10−1

(5.22 × 10−3) −
8.51 × 10−1

(6.37 × 10−3) +
3.06 × 10−1

(1.18 × 10−1) +
5.35 × 10−1

(6.45 × 10−2) +
8.17 × 10−1

(5.67 × 10−2) +
8.51 × 10−1

(1.07 × 10−2) +
8.88 × 10−1

(4.59 × 10−3) ≈

W/T/L 67/4/9 53/13/14 58/14/8 62/8/10 66/1/13 52/22/6 55/14/11 38/18/24
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(d) NSGA-II/CSDR4.
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To demonstrate that different values of k are going to be effective at different stages of
the evolutions, the plots corresponding to the changes in the probabilities of the parameter
values in the ensemble pool are plotted in Figure 5. To plot, the 4- and 8-objective instances
of DTLZ3 and WFG1 were considered. From the figure, it is evident that depending on the
characteristics of the problem and distribution of the current population, different values of
k in the pool are considered to be effective at different stages of the evolution. In addition,
there is no standard pattern of reducing k that is suitable for all the problems. Therefore,
continuously reducing the parameter k, as done is NSGA-II/CSDR, is not suitable.
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Figure 5. Probability of parameters during evolution on 4- and 8-objective DTLZ3 and WFG1.
(a) 4-objective DTLZ3, (b) 4-objective WFG1, (c) 8-objective DTLZ3 and (d) 8-objective WFG1.

First, we would like to compare the performance of NSGA-II, NSGA-III, NSGA-
II/SDR and NSGA-II/CSDR to demonstrate the effect of not using Pareto dominance
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in environmental selection. In 2-objective instances of DTLZ1, DTLZ2 and DTLZ3, it is
evident that NSGA-II, NSGA-III and NSGA-II/CSDR employ Pareto dominance in the
environmental selection and perform better than NSGA-II/SDR which does not employ
Pareto dominance. However, the performance of the proposed NSGA-III* is comparable to
the best result as it employs Pareto dominance in the environmental selection.

In higher objectives (> 4) in WFG4 to WFG9, the performance of NSGA-II/SDR is
better than NSGA-II/CSDR, according to the simulation results. This might be due to
the linear reduction of k with respect to generations in NSGA-II/CSDR compared to the
constant setting (k = 1) in NSGA-II/SDR. In other words, the linear reduction of k with
generations is not suitable for all the problems with diverse characteristics. However, the
performance of NSGA-II* is comparable or better to the best of NSGA-II/SDR or NSGA-
II/CSDR and indicates the effectiveness of the adaptive ensemble in finding the suitable k
depending on the characteristics of the problem and the distribution of the population.

The performance of the proposed NSGA-III* was compared with state-of-the-art
MOEAs such as NSGA-II, NSGA-II/SDR, NSGA-II/CSDR, MOEA/D, MOEAD-DE, NS-
GAIII, TDEA and ISDE

+. The experimental results (mean and standard deviation values of
normalized HV) on benchmark suites are presented in Table 2. In addition, the statistical
tests (t-test) at a 5% significance level were conducted to compare the significance of the
difference between the mean metric values yielded by NSGA-III* and state-of-the-art al-
gorithms. The signs “+”, “−” and “≈” against the HV values indicate that the NSGA-III*
is statistically “better”, “worse” and “comparable” with the corresponding algorithm,
respectively. The last row of Table 2 represents the overall performance of NSGA-III* in
terms of the number of instances where it is better (Win-W), comparable (Tie-T) and worse
(Loss-L) with respect to the corresponding algorithm.

For better visualization, the performance of state-of-the-art algorithms in terms of
wins, ties and losses are summarized in Figure 6.
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As shown in Figure 6 and Table 2, NSGA-III* significantly outperforms or is compa-
rable to NSGA-II, NSGA-II/SDR, NSGA-II/CSDR, MOEA/D, MOEA/D-DE, NSGA-III,
TDEA and ISDE

+ in 71⁄80 ≈ 88.75%, 66⁄80 ≈ 82.5%, 72⁄80 ≈ 90%, 70⁄80 ≈ 87.5%, 67⁄80
≈ 83.75%, 74⁄80 ≈ 92.5%, 69⁄80 ≈ 86.25% and 56⁄80 ≈ 70% of cases, respectively. In
other words, NSGA-III* consistently performs better than the state-of-the-art algorithms.
This can be attributed to the modified SDR-based mating selection with an ensemble
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of parameter values k that ensures that solutions are uniformly sampled over the entire
range of the PF by prioritizing respective k values. In addition, the weight vector-based
environmental selection based on Pareto dominance was able to provide the required
diversity on the PF without any bias to specific regions. Furthermore, the NSGA-III* is
implemented in MatLab using the PlatEmo [35] framework. The source code is accessible
at https://github.com/Saykat1993/Mating-Selection-based-on-Modified-Strengthened-
Dominance-Relation-for-NSGA-III.git (accessed on 2 November 2021).

5. Conclusions

In this manuscript, a modified strengthened dominance relation (MSDR) with an
adaptive ensemble of parameter values that can enforce convergence is proposed. A
multi/many-objective evolutionary algorithm (MOEA) that employs mating selection
based on MSDR and environmental selection using weight vectors and Pareto dominance is
proposed, referred to as NSGA-III*. In the proposed NSGA-III*, the probability of applying
different parameter values in the ensemble is adapted based on the performance of the
parameters. In other words, the probability of the parameters changes depending on the
nature of the problem and the distribution of the population. The environmental selection
with Pareto dominance enables the diversity of the solutions over the entire Pareto front due
to its unbiased nature. The performance of the proposed NSGA-III* framework is compared
with various state-of-the-art MOEA algorithms on standard benchmark test suites.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/math9222837/s1, In the supplementary materials the HyperVolume comparisons of NSGA-III* for differ-
ent values of k, named as NSGA-III1*= (1.2, 0.7, 0.5, 0.3, 0.1), NSGA-III2*= (1.5, 1.2, 1, 0.5, 0.3), NSGA-
III3*= (1.5, 1, 0.7, 0.5, 0.1), NSGA-III4*= (1.3, 1.1, 0.9, 0.5, 0.3) and NSGA-III5*= (1.2, 1, 0.8, 0.4, 0.1)
are presented. In Table S1, the performance of NSGA-III1* with the rest of the others is compared. In a
similar fashion, the performance of NSGA-III2*, NSGA-III3*, NSGA-III4* and NSGA-III5* are presented in
Tables S2–S5, respectively.
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