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1. Introduction

Let I = (0, ∞) and 1 < p, q < ∞. Let r, υ, and u be positive functions, such that r is
continuously differentiable, u and υ are locally summable on the interval I. In addition, let
r−1 ≡ 1

r ∈ Lloc
1 (I), υ−p′ ∈ Lloc

1 (I), and p′ = p
p−1 .

We consider the inequality

( ∞∫
0

∣∣u(t) f (t)
∣∣qdt

) 1
q

≤ C

( ∞∫
0

∣∣υ(t)D2
r f (t)

∣∣pdt

) 1
p

, f ∈ C∞
0 (I), (1)

where D2
r f (t) = d

dt r(t) d f (t)
dt and C∞

0 (I) is the set of compactly supported functions infinitely

time continuously differentiable on I. Assume that D1
r f (t) = r(t) d f (t)

dt .
Let W2

p,υ(r) ≡ W2
p,υ(r, I) ≡ W2

p,υ(I) be a set of functions f : I → R, which together
with functions D1

r f (t) have generalized derivatives on the interval I, with the finite norm

‖ f ‖W2
p,υ(r)

= ‖υD2
r f ‖p + |D1

r f (1)|+ | f (1)|, (2)

where ‖ · ‖p is the standard norm of the space Lp(I).
By the assumptions on the functions r and υ, we have that C∞

0 (I) ⊂W2
p,υ(r). Denote

by W̊2
p,υ(r) ≡ W̊2

p,υ(r, I) the closure of the set C∞
0 (I) with respect to norm (2). Then,

inequality (1) is equivalent to inequality

( ∞∫
0

∣∣u(t) f (t)
∣∣qdt

) 1
q

≤ C

( ∞∫
0

∣∣υ(t)D2
r f (t)

∣∣pdt

) 1
p

, f ∈ W̊2
p,υ(r), (3)

In addition, the least constants in (1) and (3) coincide.
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Let us note that inequality (3) is equivalent to the inequality in the form

( ∞∫
0

∣∣u(t) f (t)
∣∣qdt

) 1
q

≤ C

( ∞∫
0

∣∣ρ(t) f ′′(t) + w(t) f ′(t)
∣∣pdt

) 1
p

.

First, we investigate inequality (3). Then, we apply the obtained results to study the
oscillatory properties of the fourth-order differential equation

D2
r
(
υ(t)D2

r y(t)
)
− u(t)y(t) = 0, t > 0, (4)

and the spectral properties of the differential operator L generated by the differential
expression

Ly(t) =
1

u(t)
D2

r
(
υ(t)D2y(t)

)
. (5)

Relations (3)–(5) for r = 1 have the forms

( ∞∫
0

∣∣u(t) f (t)
∣∣qdt

) 1
q

≤ C

( ∞∫
0

∣∣υ(t) f ′′(t)
∣∣pdt

) 1
p

, (6)

(υ(t)y′′(t))′′ − u(t)y(t) = 0, (7)

Ly(t) =
1

u(t)
(υ(t)y′′(t))′′, (8)

respectively. Criteria for the validity of inequality (6) under various boundary conditions
on the function f are given in [1,2]. Following the ideas and research methods of [2],
we find characterizations of inequality (3) in terms different from those in [2], which
are convenient for studying the oscillatory properties of Equation (4) and the spectral
properties of operator (5).

There is a series of works that investigate equations in form (7) and operators in
form (8) associated with these equations. In these works, the oscillatory properties of the
fourth and higher-order equations are studied by three methods. The first method considers
the equations as perturbations of Euler-type equations with known solutions. The second
method is based on the reduction of the equations to Hamiltonian systems. The third
method, applied to the symmetric equations only, studies their oscillatory properties by the
variational principle, which requires establishing inequality (6). In the first method, at least
one of the coefficients of the equations must be a power function. In the second method,
oscillation conditions are found in an implicit form containing the principle solutions of the
Hamiltonian systems, the finding of which is a difficult problem. To avoid this difficulty,
one or both coefficients of the equation have been taken as power functions. In the third
method, due to the lack of characterizations of inequality (6) in general form, one of the
coefficients of the equations has also been taken as a power function. In the papers [3–6],
published in recent years, the oscillatory properties of the equations in form (7) have
been established by the above three methods under the restriction that at least one of the
coefficients is a power function. In the paper [7], the restrictions on the coefficients have
been removed. However, the results in [7], being cumbersome, do not reveal how the
behavior of each of the coefficients affects the oscillatory properties of the equations at zero
and at infinity. The presented paper focuses on overcoming these problems.

Property BD (see [8]), i.e., boundedness from below and discreteness of the operator L
generated by differential expression (5), is connected with the non-oscillation of differential
Equation (4), and the estimate of the first eigenvalue of the operator L follows from the
estimate of the least constant in inequality (3). In turn, since differential Equation (4) is
symmetric, by the variational principle (see [9]), the oscillatory properties of differential
Equation (4) are connected with inequality (3). Thus, in the paper, we discuss three
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interconnected problems, which we investigate depending on the degree of singularity
of the functions υ−p′ and r−1 at zero and at infinity. We say that the functions υ−p′ and
r−1 are strongly singular if they satisfy the conditions of statement (i), weakly singular if
they satisfy the conditions of statement (ii) or (iii), and regular if they satisfy the conditions
of statement (iv) of Theorems 4 and 5 from Section 2 at infinity (at zero). Usually, the
problem is studied in the case when one endpoint of the interval is regular and the other
endpoint is singular. For example, if the functions υ−p′ and r−1 are strongly singular at
infinity and regular at zero, then, in general, the functions f ∈ W̊2

p,υ(r) have no boundary
values at infinity, and have two boundary values at zero f (0) = D1

r f (0) = 0. In this
case, inequality (3) is the same as inequality (12) from Theorem 3 of Section 2 for a = 0
and b = ∞. Therefore, from Theorem 3, we have characterizations of inequality (3) and
an estimate of its least constant. Thus, the oscillatory properties of Equation (4) and the
spectral properties of the operator L can be easily derived. When r ≡ 1 and the function
υ−p′ is strongly singular at infinity, the oscillatory properties of the equation in form (7)
are studied in [10], and the spectral properties of the operator in form (8) are investigated
in [9,11] (Chapters 29 and 34), [12–14]. When the functions υ−p′ and r−1 are weakly singular
at infinity, then there exists one of the limits lim

t→∞
f (t) = f (∞) or lim

t→∞
D1

r f (t) = D1
r f (∞)

for all f ∈W2
p,υ(r). Suppose, for example, D1

r f (∞) exists. Then, for f ∈ W̊2
p,υ(r), we have

f (0) = D1
r f (0) = D1

r f (∞) = 0. Thus, differential inequality (3) is of second-order, but
there exist three boundary conditions. This case is called the overdetermined case, which
causes difficulties in establishing inequality (3), and such cases have not been studied well
enough. The aim of the paper is to establish inequality (3) in the case when the functions
υ−p′ and r−1 are weakly singular at infinity and regular at zero, so that there exists the
values f (0) = D1

r f (0) = D1
r f (∞) = 0, and in the symmetric case when the functions

υ−p′ and r−1 are weakly singular at zero and regular at infinity, so that there exist the
values D1

r f (0) = f (∞) = D1
r f (∞) = 0, then on the basis of the obtained results in terms

of the coefficients to derive necessary and sufficient conditions for strong non-oscillation
and oscillation of Equation (4), and to find conditions for boundedness from below and
discreteness of the spectrum of the operator L. In addition, the paper aims to obtain
two-sided estimates for the first eigenvalue of the operator L and criteria for its nuclearity.

The paper is organized as follows. Section 2 contains all the auxiliary statements and
definitions necessary to prove the main results. In Section 3, we establish criteria for the
validity of inequality (3) depending on the degree of singularity of the functions υ−p′ and
r−1 at zero and infinity. In Section 4, the obtained results on inequality (3) are applied to
study the oscillatory properties of differential Equation (4). Section 3 discusses the spectral
properties of the operator L generated by differential expression (5).

2. Preliminaries

Suppose that χ(α,β)(·) stands for the characteristic function of the interval (α, β) ⊂ I.
Let J = (a, b) and −∞ ≤ a < b ≤ ∞. Let ω be a non-negative function, ρ be a positive

function locally integrable on the interval J. From the work [15], we have the following
theorem.

Theorem 1. Let 1 < p ≤ q < ∞.
(i) Inequality

( b∫
a

∣∣∣∣∣ω(t)
t∫

a

f (s)ds

∣∣∣∣∣
q

dt

) 1
q

≤ C

( b∫
a

∣∣ρ(t) f (t)
∣∣pdt

) 1
p

(9)
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holds if, and only if,

A+ = sup
z∈J

( b∫
z

ωq(t)dt

) 1
q
( z∫

a

ρ−p′(s)ds

) 1
p′

< ∞,

in addition,

A+ ≤ C ≤ p
1
q (p′)

1
p′ A+,

where C is the least constant in (9).
(ii) Inequality

( b∫
a

∣∣∣∣∣ω(t)
b∫

t

f (s)ds

∣∣∣∣∣
q

dt

) 1
q

≤ C

( b∫
c

∣∣ρ(t) f (t)
∣∣pdt

) 1
p

(10)

holds if, and only if,

A− = sup
z∈J

( z∫
a

ωq(t)dt

) 1
q
( b∫

z

ρ−p′(s)ds

) 1
p′

< ∞,

In addition,
A− ≤ C ≤ p

1
q (p′)

1
p A−,

where C is the least constant in (10).

Let

B−1 (a, b) = sup
z∈J

( b∫
z

uq(t)

( t∫
z

r−1(x)dx

)q

dt

) 1
q
( z∫

a

υ−p′(s)ds

) 1
p′

,

B−2 (a, b) = sup
z∈J

( b∫
z

uq(t)dt

) 1
q
( z∫

a

( z∫
s

r−1(x)dx

)p′

υ−p′(s)ds

) 1
p′

,

B−(a, b) = max{B−1 (a, b), B−2 (a, b)}.

The following two statements follow from the results of the work [16].

Theorem 2. Let 1 < p ≤ q < ∞. The inequality

( b∫
a

∣∣∣∣∣u(t)
t∫

a

( t∫
s

r−1(x)dx

)
f (s)ds

∣∣∣∣∣
q

dt

) 1
q

≤ C

( b∫
a

∣∣∣υ(t) f (t)
∣∣∣pdt

) 1
p

(11)

holds if, and only if, B−(a, b) < ∞. In addition, B−(a, b) ≤ C ≤ 8p
1
p (p′)

1
p′ B−(a, b), where C is

the least constant in (11).

Let

B+
1 (a, b) = sup

z∈J

( z∫
a

( z∫
t

r−1(x)dx

)q

uq(t)dt

) 1
q
( b∫

z

υ−p′(s)ds

) 1
p′

,

B+
2 (a, b) = sup

z∈J

( z∫
a

uq(t)dt

) 1
q
( b∫

z

( s∫
z

r−1(x)dx

)p′

υ−p′(s)ds

) 1
p′

,
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B+(a, b) = max{B+
1 (a, b), B+

2 (a, b)}.

Theorem 3. Let 1 < p ≤ q < ∞. Inequality

( b∫
a

∣∣∣∣∣u(t)
b∫

t

( s∫
t

r−1(x)dx

)
f (s)ds

∣∣∣∣∣
q

dt

) 1
q

≤ C

( b∫
a

∣∣∣υ(t) f (t)
∣∣∣pdt

) 1
p

(12)

holds if, and only if, B+(a, b) < ∞. In addition, B+(a, b) ≤ C ≤ 8p
1
q (p)

1
p′ B+(a, b), where C is

the least constant in (12).

Depending on the degree of singularity of the functions υ−p′ and r−1 at zero and at in-
finity, the function f ∈W2

p,υ(I) has the finite limits lim
t→0+

f (t) = f (0), lim
t→0+

D1
r f (t) = D1

r f (0),

lim
t→∞

f (t) = f (∞) and lim
t→∞

D1
r f (t) = D1

r f (∞) or does not have them.

Let W2
p,υ(r, I0) and W2

p,υ(r, I∞) be the contraction sets of functions from W2
p,υ(r, I) on

(0, 1] and [1, ∞), respectively. From the results of the work [17], we have the following
statements.

Theorem 4. Let 1 < p < ∞.
(i) If υ−1 /∈ Lp′(I∞) and r−1 /∈ L1(I∞) or r−1 ∈ L1(I∞) and

∞∫
1

υ−p′(t)

( ∞∫
t

r−1(x)dx

)p′

dx = ∞,

then W̊2
p,υ(r, I∞) = W2

p,υ(r, I∞). (In this case, for all f ∈ W2
p,υ(I), there do not exist f (∞) and

D1
r f (∞).)

(ii) If υ−1 /∈ Lp′(I∞), r−1 ∈ L1(I∞) and
∞∫
1

υ−p′(t)

(
∞∫
t

r−1(x)dx

)p′

dt < ∞, then

W̊2
p,υ(r, I∞) = { f ∈W2

p,υ(r, I∞) : f (∞) = 0}.

(In this case, for all f ∈W2
p,υ(I) there exists only f (∞).)

(iii) If υ−1 ∈ Lp(I∞), r−1 /∈ L1(I∞) and
∞∫
1

υ−p′(t)

(
t∫

1
r−1(x)dx

)p′

dt = ∞, then

W̊2
p,υ(r, I∞) = { f ∈W2

p,υ(r, I∞) : D1
r f (∞) = 0}.

(In this case, for all f ∈W2
p,υ(I), there exists only D1

r f (∞).)
(iv) If υ−1 ∈ L1(I∞) and r−1 ∈ L1(I∞), then

W̊2
p,υ(r, I∞) = { f ∈W2

p,υ(r, I∞) : f (∞) = D1
r f (∞) = 0}.

(In this case, for all f ∈W2
p,υ(I), there exist both f (∞) and D1

r f (∞).)

We have one more similar theorem.
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Theorem 5. Let 1 < p < ∞.
(i) If υ−1 /∈ Lp′(I0) and r−1 /∈ L1(I0) or r−1 ∈ L1(I0) and

t∫
0

υ−p′(t)

( t∫
0

r−1(x)dx

)p′

dx = ∞,

then W̊2
p,υ(r, I0) = W2

p,υ(r, I0).

(ii) If υ−1 /∈ Lp′(I0), r−1 ∈ L1(I0) and
1∫

0
υ−p′(t)

(
t∫

0
r−1(x)dx

)p′

dt < ∞, then

W̊2
p,υ(r, I0) = { f ∈W2

p,υ(r, I0) : f (0) = 0}.

(iii) If υ−1 ∈ Lp′(I0), r−1 /∈ L1(I0) and
1∫

0
υ−p′(t)

(
1∫
t

r−1(x)dx

)p′

dt = ∞, then

W̊2
p,υ(r, I0) = { f ∈W2

p,υ(r, I0) : D1
r f (0) = 0}.

(iv) If υ−1 ∈ L1(I0) and r−1 ∈ L1(I0), then

W̊2
p,υ(r, I0) = { f ∈W2

p,υ(r, I0) : f (0) = D1
r f (0) = 0}.

3. Inequality (3)

For convenience, we accept the following notations: item (i) of Theorem 5 is denoted
by (i)−, item (i) of Theorem 4 is denoted by (i)+, and so on. The following theorem lists
all possible pairs of items of Theorems 4 and 5, for which the function f ∈ W̊2

p,υ(I) has at
most one boundary value at the endpoints of the interval I.

Theorem 6. If the conditions of one of the following pairs of items of Theorems 4 and 5

[(i)+, (i)−], [(ii)+, (i)−], [(iii)+, (i)−], [(i)+, (ii)−], [(i)+, (iii)−] and [(iii)+, (iii)−]

hold, then inequality (3) does not hold.

The proof of Theorem 6 follows from the fact that it is possible to find a solution
f ∈ W̊2

p,υ(I) of the homogeneous equation D2
r f = 0, such that the boundary conditions of

these pairs are satisfied and the right-hand side of inequality (3) becomes zero, while its
left-hand side differs from zero.

Under the conditions of the following pairs [(i)+, (iv)−], [(iv)+, (i)−], [(iii)+, (ii)−],
[(ii)+, (iii)−] and [(ii)+, (ii)−], the function f ∈ W̊2

p,υ(I) has two boundary values at the
endpoints of the interval I and inequality (3) is equivalent to the well-known integral in-
equalities (see [2]). In the cases [(iv)+, (ii)−], [(ii)+, (iv)−], [(iv)+, (iii)−] and [(iii)+, (iv)−],
the function f ∈ W̊2

p,υ(I) has three boundary conditions at the endpoints of the interval I;
i.e., we get the overdetermined cases. In this paper, we investigate inequality (3) under
the following pairs of conditions [(iv)+, (iii)−] and [(iii)+, (iv)−], then the obtained results
that we apply to study the oscillatory and spectral properties of fourth-order differential
operators. The rest of the cases [(iv)+, (ii)−] and [(ii)+, (iv)−] will be the subject of another
paper.

Here, slightly changing the methods of investigation of the work [2], we obtain results
that are convenient to apply to the above-mentioned problems of fourth-order differential
operators.
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Let τ ∈ I. Assume that B+
1 (τ, ∞) ≡ B+

1 (τ), B+
2 (τ, ∞) ≡ B+

2 (τ),

B+
3 (τ) =

 τ∫
0

uq(t)dt

 1
q
 ∞∫

τ

 s∫
τ

r−1(x)dx

p′

υ−p′(s)ds


1
p′

,

F−1 (τ) = sup
0<z<τ

 z∫
0

uq(t)dt

 1
q
 τ∫

z

 τ∫
s

r−1(x)dx

p′

υ−p′(s)ds


1
p′

,

F−2 (τ) = sup
0<z<τ

 τ∫
z

 τ∫
t

r−1(x)dx

q

uq(t)dt


1
q
 z∫

0

υ−p′(s)ds

 1
p′

,

B+(τ) = max{B+
1 (τ), B+

2 (τ)}, B+(τ) = max{B+(τ), B+
3 (τ)},

F−(τ) = max{F−1 (τ), F−2 (τ)}, B+F− = inf
τ∈I

max{B+(τ), F−(τ)}.

Let υ−1 ∈ Lp′(I). Then, for any τ ∈ I, there exists, kτ such that

τ∫
0

υ−p′(t)dt = kτ

∞∫
τ

υ−p′(t)dt. (13)

In addition, kτ increases in τ and lim
τ→0+

kτ = 0, lim
τ→∞

kτ = ∞. Moreover, there exists

τ1 ∈ I such that Kτ1 = 1 and
τ1∫
0

υ−p′(t)dt =
∞∫

τ1

υ−p′(t)dt.

To prove the following theorem, we use the methods of the proof of Theorem 2.1 of
the work [2].

Theorem 7. Let 1 < p ≤ q < ∞. Let υ−1 ∈ Lp′(I), r−1 ∈ L1(I∞), r−1 /∈ L1(I0) and

1∫
0

υ−p′(t)

 1∫
t

r−1(x)dx

p′

dt = ∞.

Then for the least constant C in (3) the estimates

4−
1
pB+F− ≤ C ≤ 11p

1
q (p′)

1
p′ B+F− (14)

and
sup
τ∈I

(1 + kp−1
τ )

− 1
p F−(τ) ≤ C ≤ 11p

1
q (p′)

1
p′ F−(τ−) (15)

hold, where
τ− = inf{τ > 0 : B+(τ) ≤ F−(τ)}. (16)

Proof of Theorem 7. Sufficiency. From the conditions of Theorem 7, on the basis of (iv) of
Theorem 4 and (iii) of Theorem 5, we get

W̊2
p,υ(I) = { f ∈W2

p,υ(I) : D1
r f (0) = f (∞) = D1

r f (∞) = 0}. (17)
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For τ ∈ I, we assume that D1
r f (x) =

x∫
0

D2
r f (s)ds for 0 < x < τ, D1

r f (x) =

−
∞∫
x

D2
r f (s)ds for x > τ, and f (t) = −

∞∫
t

r−1(x)D1
r f (x)dx for t ∈ I. Then, for f ∈ W̊2

p,υ(I),

we have

f (t) = χ(0,τ)(t)

 ∞∫
τ

 s∫
τ

r−1(x)dx

D2
r f (s)ds−

τ∫
t

 τ∫
s

r−1(x)dx

D2
r f (s)ds

−
τ∫

t

r−1(x)dx
t∫

0

D2
r f (s)ds

+ χ(τ,∞)(t)
∞∫

t

 s∫
t

r−1(x)dx

D2
r f (s)ds.

(18)

Replacing (18) into the left-hand side of (3) and using Minkowski’s inequality for
sums, then the Hölder’s inequality, Theorems 1 and 3, we obtain

 ∞∫
0

|u(t) f (t)|qdt

 1
q

≤ p
1
q (p′)

1
p′
(

F−1 (τ) + F−2 (τ)
) τ∫

0

|υ(s)D2
r f (s)|pds

 1
p

+

(
8p

1
q (p′)

1
p′ B+(τ) + B+

3 (τ)

) ∞∫
τ

|υ(s)D2
r f (s)|pds

 1
p

≤
[
(2p

1
q (p′)

1
p′ F−(τ))p′ + (9p

1
q (p′)

1
p′ B+(τ))p′

] 1
p′
 ∞∫

0

|υ(s)D2
r f (s)|pds

 1
p

≤ 11p
1
q (p′)

1
p′ max{B+(τ), F−(τ)}

 ∞∫
0

|υ(s)D2
r f (s)|pds

 1
p

.

(19)

Since the left-hand side of (19) does not depend on τ ∈ I, it follows that the right
estimate in (14) holds.

The function B+(τ) does not increase and the function F−(τ) does not decrease. Let
us show that for a sufficiently large τ, we have that F−(τ) > B+(τ). Let lim

τ→0+
F−(τ) = ∞.

Since lim
τ→∞

B+
3 (τ) < ∞ follows from the finiteness of B+

2 (τ), it is obvious that F−(τ) >

B+(τ) for a sufficiently large τ. If lim
τ→∞

F−(τ) < ∞, then from lim
τ→∞

F−2 (τ) < ∞, it follows

that
∞∫
1

(
∞∫
t

r−1(x)dx

)q

uq(t)dt < ∞. Then, from the estimates

B+(τ) ≤

 ∞∫
τ

 ∞∫
t

r−1(x)dx

q

uq(t)dt


1
q
 ∞∫

τ

υ−p′(s)ds

 1
p′

and

B+
3 (τ) ≤

 ∞∫
N

 ∞∫
t

r−1(x)dx

q

uq(t)dt


1
q
 ∞∫

τ

υ−p′(s)ds

 1
p′

+

 N∫
0

uq(t)dt


1
q
 ∞∫

τ

 s∫
τ

r−1(x)dx

p′

υ−p′(s)ds


1
p′
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for some N < τ, we have lim
τ→∞

B+(τ) = 0. Therefore, for this case, we also have that

F−(τ) > B+(τ) in some neighborhood of infinity. Hence, in (16), there exist τ− > 0 and
F−(τ−) ≥ B+(τ−). Thus, F−(τ−) ≥ B+F− and the right estimate in (15) holds.

Necessity. The idea of the proof of the necessary part is as follows. If, for f ∈ W̊2
p,υ(I),

we have that D2
r f (s) ≤ 0 for 0 < s < τ and D2

r f (s) ≥ 0 for s > τ, then in (18), all
terms will be nonnegative, and when we substitute (18) into the left-hand side of (3),
then each term on the left-hand side will be smaller than the right-hand side. This fact
will prove to be the necessary part of Theorem 7. For this purpose, below we produce
some function constructions. From the conditions of Theorem 7, we have υ−1 ∈ Lp′(I).
Therefore, (13) holds. For f ∈ W̊2

p,υ(I), we assume that g = D2
r f . Then, from (17), we

obtain g ∈ Lp,υ(I) and
∞∫
0

g(t)dt = 0. Let L̃p,υ(I) = {g ∈ Lp,υ :
∞∫
0

g(t)dt = 0}. Hence, the

condition f ∈ W̊2
p,υ(r, I) in (18) is equivalent to the condition D2

r f = g ∈ L̃p,υ(I).
For τ ∈ I, we consider two sets £1 = {g ∈ Lp,υ(0, τ) : g ≤ 0} and £2 = {g ∈

Lp,υ(τ, ∞) : g ≥ 0}.
For each g1 ∈ £1 and g2 ∈ £2, we construct functions g2 ∈ £2 and g1 ∈ £1, such that

g(t) = g1(t) for 0 < t ≤ τ and g(t) = g2(t) for t > τ belongs to the set L̃p,υ(I).
We define a strictly decreasing function ρ : (0, τ)→ (τ, ∞) from the relations

s∫
0

υ−p′(t)dt = kτ

∞∫
ρ(s)

υ−p′(t)dt, s ∈ (0, τ),

ρ−1(s)∫
0

υ−p′(t)dt = kτ

∞∫
s

υ−p′(t)dt, s ∈ (τ, ∞), (20)

where ρ−1 is the inverse function to the function ρ. From (20), it easily follows that the
functions ρ and ρ−1 are locally absolutely continuous and ρ(τ) = τ, lim

s→0+
ρ(s) = ∞.

Differentiating the relations in (20), we have

1
kτ

=
υ−p′(ρ(s))

υ−p′(s)
|ρ′(s)|, s ∈ (0, τ), kτ =

υ−p′(ρ−1(s))
υ−p′(s)

|(ρ−1(s))′|, s ∈ (τ, ∞). (21)

For g1 ∈ £1, we assume that

g2(t) = −kτ g1(ρ
−1(t))

υ−p′(t)
υ−p′(ρ−1(t))

, t > τ. (22)

Changing the variables ρ−1(t) = s and using the first relation in (21), the latter gives

∞∫
τ

|υ(t)g2(t)|pdt = kp−1
τ

τ∫
0

|υ(s)g1(s)|pds < ∞, (23)

i.e., g2 ∈ £2. Similarly, for g2 ∈ £2, we assume that

g1(t) = −
1
kτ

g2(ρ(t))
υ−p′(t)

υ−p′(ρ(t))
, 0 < t < τ, (24)

and obtain that g1 ∈ £1 and (23) holds.
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In both cases, assuming that g(t) = g1(t) for 0 < t < τ and g(t) = g2(t) for t > τ,
we have

∞∫
0

|υ(t)g(t)|pdt = (1 + kp−1
τ )

τ∫
0

|υ(t)g1(t)|pdt

= (1 + k1−p
τ )

∞∫
τ

|υ(t)g2(t)|pdt < ∞,

(25)

i.e., g ∈ Lp,υ(I). For any τ ∈ I, integrating both sides of (22) from τ to ∞ and (24) from 0 to
τ, we obtain

∞∫
τ

g(t)dt = −
τ∫

0

g(t)dt,

i.e.,
∞∫
0

g(t)dt = 0. Hence, g ∈ L̃p,υ(I) is generated by the functions g1 ∈ £1 and g2 ∈ £2.

Replacing the generated function g ∈ L̃p,υ(I) in (3), and using (18), we obtain that inequality
(3) has the form

τ∫
0

u(t)
∞∫

τ

 s∫
τ

r−1(x)dx

g2(s)ds + u(t)
τ∫

t

 τ∫
s

r−1(x)dx

|g1(s)|ds

+u(t)
τ∫

t

r−1(x)dx
t∫

0

|g1(s)|ds

q

dt+
∞∫

τ

u(t)
∞∫

t

 s∫
t

r−1(x)dx

g2(s)ds

q

dt


1
q

≤ C

 ∞∫
0

|υ(t)g(t)|pdt

 1
p

, (26)

where all terms in the left-hand side are non-negative.
Let the function g ∈ L̃p,υ(I) be generated by g2 ∈ £2. Then, from (25) and (26), we have

 τ∫
0

uq(t)dt

 1
q ∞∫

τ

 s∫
τ

r−1(x)dx

g2(s)ds ≤ C(1 + k1−p
τ )

1
p

 ∞∫
τ

|υ(t)g2(t)|pdt

 1
p

,

 ∞∫
τ

u(t)
∞∫

t

 s∫
t

r−1(x)dx

g2(s)ds

q

dt


1
q

≤ C(1 + k1−p
τ )

1
p

 ∞∫
τ

|υ(t)g2(t)|pdt

 1
p

.

Due to the arbitrariness of g2 ∈ £2, on the basis of the reverse Hölder’s inequality and
Theorem 3, we obtain

B+(τ) ≤ C(1 + k1−p
τ )

1
p , B+

3 (τ) ≤ C(1 + k1−p
τ )

1
p ,

i.e.,
B+(τ) ≤ C(1 + k1−p

τ )
1
p . (27)

Similarly, for the function g ∈ L̃p,υ(I) generated by g1 ∈ £1, from (25) and (26),
we have

F−(τ) ≤ C(1 + kp−1
τ )

1
p . (28)
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From (27) and (28), we obtain

B+F− = inf
τ∈I

max{B+(τ), F−(τ)} ≤ C inf
τ∈I

[
max{(1 + kp−1

τ )(1 + k1−p
τ )}

] 1
p ≤ 4

1
p C,

which gives the left estimate in (14). Moreover, from (28), we get the left estimate in (15).
The proof of Theorem 7 is complete.

Let 0 < τ < ∞. Let B−1 (0, τ) ≡ B−1 (τ), B−2 (0, τ) ≡ B−2 (τ),

B−3 (τ) =

 ∞∫
τ

uq(t)dt

 1
q
 τ∫

0

 τ∫
s

r−1(x)dx

p′

υ−p′(s)ds


1
p′

,

F+
1 (τ) = sup

z>τ

 ∞∫
z

uq(t)dt

 1
q
 z∫

τ

 s∫
τ

r−1(x)dx

p′

υ−p′(s)ds


1
p′

,

F+
2 (τ) = sup

z>τ

 z∫
τ

 t∫
τ

r−1(x)dx

q

uq(t)dt


1
q
 ∞∫

z

υ−p′(s)ds

 1
p′

,

B−(τ) = max{B−1 (τ), B−2 (τ)}, B−(τ) = max{B−(τ), B−3 (τ)},

F+(τ) = max{F+
1 (τ), F+

2 (τ)}, B−F+ = inf
τ∈I

max{B−(τ), F+(τ)}.

Theorem 8. Let 1 < p ≤ q < ∞. Let υ−1 ∈ Lp′(I), r−1 ∈ L1(I0), r−1 /∈ L1(I∞) and

∞∫
1

υ−p′(t)

 t∫
1

r−1(x)dx

p′

dt = ∞.

Then, for the least constant C in (3), the estimates

4−
1
pB−F+ ≤ C ≤ 11p

1
q (p′)

1
p′ B−F+ (29)

and
sup
τ∈I

(1 + k1−p
τ )

− 1
p F+(τ) ≤ C ≤ 11p

1
q (p′)

1
p′ F+(τ+) (30)

hold, where
τ+ = sup{τ > 0 : B−(τ) ≤ F+(τ)}. (31)

Proof of Theorem 8. The conditions of Theorem 8 are symmetric to the conditions of
Theorem 7. Therefore, the statement of Theorem 8 follows from the statement of Theorem
7. In inequality (3), under the conditions of Theorem 8, we change the variables t = 1

x ,
then we obtain inequality (3) and the conditions of Theorem 7, where u(x) is replaced

by ũ(x) = u( 1
x )x−

2
q , υ(x) is replaced by υ̃(x) = υ

(
1
x

)
x

2
p′ and r(x) is replaced by r̃(x) =

r
(

1
x

)
x2. Thus, the conditions of Theorem 8 turn to the conditions of Theorem 7 for the

functions υ̃ and r̃. Now, we use Theorem 7 and get the results with respect to the functions
ũ, υ̃ and r̃. Then, changing the variable to t, we obtain Theorem 8. The proof of Theorem 8
is complete.
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4. Oscillation Properties of Equation (4)

Two points t1 and t2, such that t1 6= t2 of the interval I, are called conjugate with
respect to Equation (4), if there exists a solution y of equation (4), such that y(t1) = y2(t2) =
0 and D1

r y(t1) = D1
r y(t2) = 0. Equation (4) is called oscillatory at infinity (at zero), if for

any T ∈ I, there exist conjugate points with respect to Equation (4) to the right (left) of T.
Otherwise, Equation (4) is called non-oscillatory at infinity (at zero).

On the basis of Theorems 28 and 31 of [9], (see, e.g., Lemma 2.1 in [5]), we have the
following variational lemmas.

Lemma 1. Equation (4) is non-oscillatory at infinity if, and only if, there exists T > 0 and the
inequality

∞∫
T

[
υ(t)

∣∣D2
r f (t)

∣∣2 − u(t)
∣∣ f (t)∣∣2]dt ≥ 0, f ∈ C∞

0 (T, ∞), (32)

holds.

Lemma 2. Equation (4) is non-oscillatory at zero if, and only if, there exists T > 0 and the
inequality

T∫
0

[
υ(t)

∣∣D2
r f (t)

∣∣2 − u(t)
∣∣ f (t)∣∣2]dt ≥ 0, f ∈ C∞

0 (0, T), (33)

holds.

Equation (4) is the Euler–Lagrange equation of energy functional
∞∫
0

[
υ(t)

∣∣D2
r f (t)

∣∣2 −
u(t)

∣∣ f (t)∣∣2]dt.

Due to the compactness of supp f for f ∈ C∞
0 (T, ∞), from (32), we have

∞∫
T

u(t)
∣∣ f (t)∣∣2dt ≤

∞∫
T

υ(t)
∣∣D2

r f (t)
∣∣2dt, f ∈ C∞

0 (T, ∞). (34)

Let T ≥ 0. We consider the inequality

∞∫
T

u(t)
∣∣ f (t)∣∣2dt ≤ CT

∞∫
T

υ(t)
∣∣D2

r f (t)
∣∣2dt, f ∈ W̊2

p,υ(T, ∞). (35)

From condition (34), we have the following lemma.

Lemma 3. Let CT be the least constant in (35).
(i) Equation (4) is non-oscillatory at infinity if, and only if, there exists a constant T > 0, such

that 0 < CT ≤ 1 holds.
(ii) Equation (4) is oscillatory at infinity if, and only if, CT > 1 for all T ≥ 0.

Proof of Lemma 3. Statements (i) and (ii) of Lemma 3 are equivalent. Let us prove state-
ment (i). Let Equation (4) be non-oscillatory at infinity. Then, by Lemma 1, there exists
T > 0, and (34) holds. This means that, for T > 0 inequality (35), holds with the least
constant CT : 0 < CT ≤ 1. Inversely, let T > 0 exist and inequality (35) hold with the
least constant CT : 0 < CT ≤ 1. Then, for T > 0, condition (34) is all the more correct.
Therefore, by Lemma 1, Equation (35) is non-oscillatory at infinity. The proof of Lemma 3
is complete.
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We consider the inequality

T∫
0

u(t)
∣∣ f (t)∣∣2dt ≤ CT

T∫
0

υ(t)
∣∣D2

r f (t)
∣∣2dt, f ∈ W̊2

p,υ(0, T). (36)

Similarly, we get one more lemma.

Lemma 4. Let CT be the least constant in (36).
(i) Equation (4) is non-oscillatory at zero if, and only if, there exists a constant T > 0, such

that 0 < CT ≤ 1 holds.
(ii) Equation (4) is oscillatory at zero if, and only if, CT > 1 for all T ≥ 0.

On the basis of Lemmas 3, 4 and Theorems 7, 8, it is easy to establish different
conditions of oscillation and non-oscillation of Equation (4) at zero and at infinity. Without
dwelling on them, let us present problems, which are applied in the next Section 5.

We consider Equation (4) with the parameter λ > 0:

D2
r

(
v(t)D2

r y(t)
)
− λu(t)y(t) = 0, t ∈ I. (37)

Equation (37) is called strong oscillatory (non-oscillatory) at zero and at infinity, if it is
oscillatory (non-oscillatory) for all λ > 0 at zero and at infinity, respectively.

From inequalities (35) and (36) for Equation (37), we respectively have

λ
∫ ∞

T
u(t)| f (t)|2dt ≤ λCT

∫ ∞

T
v(t)|D2

r f (t)|2dt, f ∈ W̊2
p,v(T, ∞), (38)

λ
∫ T

0
u(t)| f (t)|2dt ≤ λCT

∫ T

0
v(t)|D2

r f (t)|2dt, f ∈ W̊2
p,v(0, T). (39)

Lemma 5. Let CT be the least constant in (35) ((36)).
(i) Equation (37) is strong non-oscillatory at infinity (at zero) if and only if lim

T→∞
CT = 0

( lim
T→0+

CT = 0).

(ii) Equation (37) is strong oscillatory at infinity (at zero) if, and only if, CT = ∞ (CT = ∞) for
any T > 0.

Proof of Lemma 5. Let us prove Lemma 5 at zero; the proof at infinity is similar.
(i) Let Equation (37) be non-oscillatory at zero. Then, by Lemma 4 for λ > 0, there

exists T1, such that 0 < λCT1 ≤ 1. Therefore, on the interval (0, T1), there do not exist
conjugate points with respect to Equation (37). Then, for any T : 0 < T < T1, on the
interval (0, T), there do not also exist conjugate points and 0 < λCT ≤ 1. Assume that
Tλ = sup{T > 0 : λCT ≤ 1}. Then, λCTλ

≤ 1. Now, let equation be strong non-oscillatory
at zero, then by Lemma 4 for any λ, there exists Tλ and λCTλ

≤ 1 or CTλ
≤ 1

λ . This
gives that lim

λ→∞
CTλ

= 0. Let 0 < λ1 < λ2 and λ2CTλ2
≤ 1. Then, λ1CTλ2

≤ 1. Hence,

Tλ1 ≥ Tλ2 and Tλ do not increase in λ. Therefore, there exists lim
λ→0

Tλ = T0. If T0 > 0, then

lim
λ→0

CTλ
= CT0 = 0. Then, from (36), it follows that u(t) ≡ 0 for t ∈ (0, T0). The obtained

contradiction proves that T0 = 0. Thus, lim
λ→0+

CTλ
= lim

T→0+
CT = 0.

Inversely, let lim
T→0+

CT = 0. Then, for any λ, there exists T(λ) > 0 such that λCT(λ) ≤ 1.

Therefore, by Lemma 4, Equation (37) is non-oscillatory at zero for any λ > 0, which means
that it is strong non-oscillatory at zero. The proof of Lemma 5 is complete.

Now, on the basis of Lemma 5, we establish criteria of strong oscillation and non-
oscillation of Equation (37) at zero and at infinity.
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According to inequalities (35) and (36), in the expressions B−(τ), F+(τ), B+(τ), and
F−(τ), we assume that p = q = 2; then, we replace u2 by u and υ−2 by υ−1. In addition, we
assume that B̄−(T, τ) = (B−(τ))2, F̄+(τ) = (F+(τ))2, B̄+(τ) = (B+(τ))2, and F̄−(τ) =
(F−(τ))2. Moreover, we take

B̄−3 (τ) =

∞∫
τ

u(t)dt
τ∫

t

( τ∫
s

r−1(x)dx

)2

υ−1(s)ds

and

B̄+
3 (τ) =

τ∫
0

u(t)dt
∞∫

τ

( s∫
τ

r−1(x)dx

)2

υ−1(s)ds

instead of B−3 (τ) and B+
3 (τ), respectively.

Theorem 9. Let υ−1 ∈ L1(I), r−1 /∈ L1(I0), r−1 ∈ L1(I∞) and

1∫
0

υ−1(t)

 1∫
t

r−1(x)dx

2

dt = ∞. (40)

(i) Equation (37) is strong non-oscillatory at zero if, and only if,

lim
z→0+

∫ z

0
u(t)dt

∫ ∞

z

(∫ ∞

s
r−1(x)dx

)2
υ−1(s)ds = 0, (41)

lim
z→0+

∫ ∞

z

(∫ ∞

t
r−1(x)dx

)2
u(t)dt

∫ z

0
υ−1(s)ds = 0. (42)

(ii) Equation (37) is strong oscillatory at zero if, and only if,

lim
z→0+

∫ z

0
u(t)dt

∫ ∞

z

(∫ ∞

s
r−1(x)dx

)2
υ−1(s)ds = ∞ (43)

or

lim
z→0+

∫ ∞

z

(∫ ∞

t
r−1(x)dx

)2
u(t)dt

∫ z

0
υ−1(s)ds = ∞. (44)

Proof of Theorem 9. (i) Suppose that Equation (37) is strong non-oscillatory at zero. Then,
by Lemma 5, we have that lim

T→0+
CT = 0 for the least constant CT in inequality (36). From

the left estimate in (15) for inequality (36), we have

sup
0<τ<T

(1 + kτ)
−1 F̄−(τ) ≤ CT (45)

for T > 0 and τ ∈ (0, T).
From the definition of kτ on the interval (0, T) it follows that lim

τ→0+
kτ = 0. Therefore,

0 = lim
T→0+

CT ≥ lim
τ→0+

(1 + kτ)−1 F̄−(τ) = lim
τ→0+

F̄−(τ). The latter gives that

lim
τ→0+

F̄i
−(τ) = 0, i = 1, 2, ... (46)

Denote the left-hand side of (42) by J. Then, there exists a sequence {zn}∞
n=1 ⊂ I, such that

lim
n→∞

zn = 0 and

J = lim
n→∞

∞∫
zn

( ∞∫
t

r−1(x)dx

)2

u(t)dt
zn∫

0

υ−1(s)ds.
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From the condition r−1 /∈ L1(I0) and (40) for any τ > 0, we have

J = lim
n→∞

sup
0<zn<τ

τ∫
zn

( τ∫
t

r−1(x)dx

)2

u(t)dt
zn∫

0

υ−1(s)ds

≤ lim
τ→0+

sup
0<z<τ

τ∫
z

( τ∫
t

r−1(x)dx

)2

u(t)dt
z∫

0

υ−1(s)ds = lim
τ→0+

F̄−2 (τ). (47)

Similarly, we obtain

lim
z→0+

∫ ∞

z

(∫ ∞

s
r−1(x)dx

)2
υ−1(s)ds

∫ z

0
u(t)dt ≤ lim

τ→0+
F̄1
−(τ). (48)

From (46)–(48), we have (41) and (42).
Inversely, let (41) and (42) hold. Then,

lim
z→0+

∫ z

0
u(t)dt

∫ ∞

z

(∫ ∞

s
r−1(x)dx

)2
υ−1(s)ds

= lim
τ→0+

sup
0<z<τ

∫ z

0
u(t)dt

∫ ∞

z

(∫ ∞

s
r−1(x)dx

)2
υ−1(s)ds ≥ lim

τ→0+
F̄1
−(τ), (49)

lim
z→0+

∫ ∞

z

(∫ ∞

t
r−1(x)dx

)2
u(t)dt

∫ z

0
υ−1(s)ds ≥ lim

τ→0+
F̄2
−(τ). (50)

From (49) and (50), we obtain

lim
τ→0+

F̄(τ) = 0. (51)

From the right side of (15) for inequality (36), we have

CT ≤ 222 F̄−(τ−), (52)

where τ− ∈ (0, T). Since lim
T→0+

τ− = 0, then from (51), we get

lim
T→0+

CT ≤ 222 lim
T→0+

F̄−(τ−) = 222 lim
τ→0+

F̄−(τ) = 0.

Thus, lim
T→0+

CT = 0 and by Lemma 5 Equation (37) is strong non-oscillatory at zero.

(ii) Let Equation (37) be strong oscillatory at zero. Then, by Lemma 5, for any T > 0,
we have that CT = ∞, where CT is the least constant in (36). Therefore, from (52), we
get F̄−(τ−) = ∞ for any T > 0. Since τ− ∈ (0, T), then lim

τ→0+
F̄−(τ) = ∞. Hence, if

lim
τ→0+

F̄1
−(τ) = ∞, then from (49), we get (43), and if lim

τ→0+
F̄2
−(τ) = ∞, then from (50) we

get (44).
Inversely, let (43) hold. Then, from (48), it follows that lim

τ→0+
F̄1
−(τ) = ∞. Since F̄−(τ)

does not decrease, then F̄−(τ) = ∞ for any τ ∈ (0, T), and for any T > 0. Then, from (45),
we get that CT = ∞ for any T > 0. Hence, by Lemma 5, Equation (37) is strong oscillatory
at zero. Similarly, if (44) holds, then from (47), we get that Equation (37) is strong oscillatory
at zero. The proof of Theorem 9 is complete.

Now, we assume that the function u together with the function v be positive, and
sufficiently times continuously differentiable on the interval I. In the theory of oscillatory
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properties of differential equations, there is the reciprocity principle (see [18]), from which
it follows that Equation (37) and its reciprocal equation

D2
r

(
u−1(t)D2

r y(t)
)
− λυ−1(t)y(t) = 0, t ∈ I, (53)

are simultaneously oscillatory or non-oscillatory.
On the basis of this reciprocity principle, from Theorem 9, we have the following

statement.

Theorem 10. Let u ∈ L1(I), r−1 ∈ L1(I0), r−1 /∈ L1(I∞) and

∞∫
1

u(t)

 t∫
1

r−1(x)dx

2

dt = ∞.

(i) Equation (37) is strong non-oscillatory at zero if, and only if, (41) and (42).
(ii) Equation (37) is strong oscillatory at zero if, and only if, (43) and (44).

Proof of Theorem 10. The statement of Theorem 10 follows from the fact that the condi-
tions of Theorem 10 are the conditions of Theorem 9 for Equation (53). Therefore, applying
Theorem 9 to Equation (53), we obtain necessary and sufficient conditions for the non-
oscillation and oscillation of Equation (53) at zero, while non-oscillation conditions (41) and
(42) of Equation (37) are reduced to non-oscillation conditions (42) and (41) of Equation (53).
Since, according to the reciprocity principle, the non-oscillation of Equation (53) at zero is
equivalent to non-oscillation of Equation (37); i.e., we have that statement (i) of Theorem
10 is correct. Statement (ii) of Theorem 10 can be proven in the same way. The proof of
Theorem 10 is complete.

Similarly, on the basis of inequality (38), we have the following theorem.

Theorem 11. Let υ−1 ∈ L1(I), r−1 ∈ L1(I0), r−1 /∈ L1(I∞) and

∫ ∞

1
υ−1(t)

(∫ t

1
r−1(x)dx

)2
dt = ∞.

(i) Equation (37) is strong non-oscillatory at infinity if, and only if,

lim
z→∞

∫ ∞

z
u(t)dt

∫ z

0

(∫ s

0
r−1(x)dx

)2
υ−1(s)ds = 0, (54)

lim
z→∞

∫ z

0

(∫ t

0
r−1(x)dx

)2
u(t)dt

∫ ∞

z
υ−1(s)ds = 0. (55)

(ii) Equation (37) is strong oscillatory at infinity if, and only if,

lim
z→∞

∫ ∞

z
u(t)dt

∫ z

0

(∫ s

0
r−1(x)dx

)2
υ−1(s)ds = ∞ (56)

or

lim
z→∞

∫ z

0

(∫ t

0
r−1(x)dx

)2
u(t)dt

∫ ∞

z
υ−1(s)ds = ∞. (57)

Proof of Theorem 11. The conditions and the statement of Theorem 11 are symmetric to
the conditions and the statement of Theorem 9, respectively. Therefore, arguing similarly
as in Theorem 8, we obtain the validity of Theorem 11. The proof of Theorem 11 is
complete.
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The next statement follows from the application of Theorem 11 to Equation (53), using
the reciprocity principle, as in Theorem 10.

Theorem 12. Let u ∈ L1(I), r−1 ∈ L1(I0), r−1 /∈ L1(I∞) and

∫ ∞

1
u(t)

(∫ t

1
r−1(x)dx

)2
dt = ∞.

(i) Equation (37) is strong non-oscillatory at infinity if, and only if, (54) and (55) hold.
(ii) Equation (37) is strong oscillatory at infinity if, and only if, (56) and (57) hold.

5. Spectral Characteristics of Differential Operator L

The spectral properties of fourth and higher-order operators in form (8) have been
studied in many works (see, e.g., [9,19] (Chapters 29 and 34), [12–14]), when the function
υ−1 is strong singular at zero and at infinity. Here, operator (5) is investigated in the case
of weak singularity of the functions υ−p′ and r−1 at zero and at infinity.

Let the minimal differential operator Lmin be generated by differential expression

ly(t) =
1

u(t)
D2

r

(
v(t)D2

r y
)

in the space L2,u ≡ L2(u; I) with inner product ( f , g)2,u =
∞∫
0

f (t)g(t)u(t)dt, i.e., Lminy = ly

is an operator with the domain D(Lmin) = C∞
0 (I).

It is known that all self-adjoint extensions of the minimal differential operator L have
the same spectrums (see [9]).

Let us consider the problem of boundedness from below, and the discreteness of the
operator L.

One of the most important problems in the theory of singular differential operators
is to find conditions which guarantee that any self-adjoint extension L of the operator
Lmin has a spectrum, which is discrete and bounded below; the so-called property BD [8].
Property BD means, roughly speaking, that the singular operator behaves like a regular
one, since it is known that the spectrum of regular operators consists only of eigenvalues
of finite multiplicities, with the only possible cluster point at infinity.

The relationship between the oscillatory properties of Equation (37) and spectral
properties of the operator L is explained in the following statement.

Lemma 6 ([9]). The operator L is bounded below and has a discrete spectrum if, and only if,
Equation (37) is strong non-oscillatory.

On the basis of Lemma 6, from Theorems 9–12 as corollaries, we obtain the following
propositions.

Proposition 1. Let the conditions of Theorem 9 or 10 hold. Then, the operator L is bounded below
and has a discrete spectrum if, and only if, (41) and (42) hold.

Proposition 2. Let the conditions of Theorem 11 or 12 hold. Then, the operator L is bounded below
and has a discrete spectrum if, and only if, (54) and (55) hold.

The operator Lmin is non-negative. Therefore, it has the Friedrich’s extension LF. By
Propositions 1 and 2, the operator LF has a discrete spectrum if, and only if, (41) and (42)
hold under the conditions of Proposition 1, and (54) and (55) hold under the conditions of
Proposition 2.

Since for p = q = 2, inequality (3) can be rewritten as ( f , f )2C−1 ≤ (LF f , f )2,u, then
from Theorems 7 and 8, we have the following propositions.



Mathematics 2021, 9, 2830 18 of 22

Proposition 3. Let the conditions of Theorem 9 hold. Then, the operator LF is positive-definite
if, and only if, B̄+ F̄− = inf

τ∈I
max{B̄+(τ), F̄−(τ)} < ∞. Moreover, there exist constants α, β :

0 < α < β and the estimate αB̄+ F̄− ≤ λ−1
1 ≤ βB̄+ F̄− holds for the smallest eigenvalue λ1 of the

operator LF.

Proposition 4. Let the conditions of Theorem 11 hold. Then, the operator LF is positive-definite
if, and only if, B̄− F̄+ = inf

τ∈I
max{B̄−(τ), F̄+(τ)} < ∞. Moreover, there exist constants α, β :

0 < α < β and the estimate αB̄− F̄+ ≤ λ−1
1 ≤ βB̄− F̄+ holds for the smallest eigenvalue λ1 of the

operator LF.

Let us note that for the operator LF, from Theorem 7 under the conditions of Theorem
9, we have the following spectral problemD2

r

(
v(t)D2

r y(t)
)
= λu(t)y(t),

D′ry(0) = D′ry(∞) = y(∞) = 0,

while from Theorem 8 under the conditions of Theorem 11, we have the following spec-
tral problem D2

r

(
v(t)D2

r y(t)
)
= λu(t)y(t),

y(0) = D′ry(0) = D′ry(∞) = 0.

Since according to Rellih’s lemma (see [20], p. 183), the operator L−1
F has a discrete

spectrum bounded below in L2,u if, and only if, the space with the norm (LF f , f )
1
2
2,u is

compactly embedded into the space L2,u, then from Propositions 1 and 2, we have one
more statement.

Proposition 5. Let the conditions of Theorem 9 (Theorem 11) hold. Then, the embedding W̊2
2,v(I) ↪→

L2,u is compact and the operator L−1
F is completely continuous on L2,u if, and only if, (41) and (42)

((54) and (55)) hold.

The following statement is from the work [7].

Lemma 7. Let H = H(I) be a certain Hilbert function space and C[0, ∞)
⋂

H be dense in it. For
any point x0 ∈ I, we introduce the operator Ex0 f = f (x0) defined on C[0, ∞)

⋂
H, which acts

in the space of complex numbers. Let us assume that Ex0 is a closure operator. Then, the norm of

this operator is equal to the value
( ∞

∑
n=1
|ϕn(x0)|2

) 1
2

(finite or infinite), where {ϕn(·)}∞
n=1 is any

complete orthonormal system of continuous functions in H.

Lemma 8. Let the conditions of Theorem 9 hold. Then, for t ∈ I

sup
τ∈I

D+(t, τ) ≤ sup
f∈W̊2

2,v

| f (t)|
‖D2

r f ‖2,v
≤
√

2 inf
τ∈I

D+(t, τ), (58)

where

D+(t, τ) =
[
χ(0,τ)(t)

∫ ∞

τ

(∫ s

τ
r−1(x)dx

)2
υ−1(s)ds + χ(0,τ)(t)

∫ τ

t

(∫ τ

s
r−1(x)dx

)2
υ−1(s)ds

+χ(0,τ)(t)
(∫ τ

t
r−1(x)dx

)2 ∫ t

0
υ−1(s)ds + χ(τ,∞)(t)

∫ ∞

t

(∫ s

t
r−1(x)dx

)2
υ−1(s)ds

] 1
2
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and

‖D2
r f ‖2,v =

 ∞∫
0

v(t)|D2
r f (t)|2dt

 1
2

.

Proof of Lemma 8. Let τ ∈ I. In (18), for the function f ∈ W̊2
2,v we have

f (t) = χ(0,τ)(t)

 ∞∫
τ

 s∫
τ

r−1(x)dx

D2
r f (s)ds

−
τ∫

t

 τ∫
s

r−1(x)dx

D2
r f (s)ds−

τ∫
t

r−1(x)dx
t∫

0

D2
r f (s)ds


+χ(τ,∞)(t)

∞∫
t

 s∫
t

r−1(x)dx

D2
r f (s)ds.

(59)

In (59), we take the modulus in both parts and first applying the Hölder’s inequality in the
integrals of each term, then in the sum, we obtain

| f (t)| ≤
√

2 inf
τ∈I

D+(t, τ)‖D2
r f ‖2,v, ∀ f ∈ W̊2

2,v.

Therefore, the right estimate in (58) is valid.
Now, let us show the left estimate in (58). We fix t ∈ I in (59) and select a function

D2
r f depending on t as follows

(D2
r f )t(s) =


χ(0,t)(s)

(∫ τ
t r−1(x)dx

)
υ−1(s) if 0 < t < τ,

−χ(t,τ)(s)
(∫ τ

s r−1(x)dx
)
υ−1(s) if 0 < t < τ,

−χ(τ,∞)(s)
∫ s

τ r−1(x)dxυ−1(s) if 0 < t < τ,
χ(t,∞)(s)

(∫ s
t r−1(x)dx

)
υ−1(s) if t > τ.

Replacing this function in (59), we get the value of the function f (D2
r f )t(z) at the point

z = t:

ft(t) = χ(0,τ)(t)
∫ ∞

τ

(∫ s

τ
r−1(x)dx

)2
υ−1(s)ds + χ(0,τ)(t)

∫ τ

t

(∫ τ

s
r−1(x)dx

)2
υ−1(s)ds

+χ(0,τ)(t)
(∫ τ

t
r−1(x)dx

)2 ∫ t

0
υ−1(s)ds

+ χ(τ,∞)(t)
∫ ∞

t

(∫ s

t
r−1(x)dx

)2
υ−1(s)ds = (D+(t, τ))2. (60)

Let us calculate the norm L2,u of the function (D2
r f )t:(∫ ∞

0
v(s)|(D2

r f )t(s)|2ds
) 1

2
=

(∫ τ

0
v(s)|(D2

r f )t(s)|2ds +
∫ ∞

τ
v(s)|(D2

r f )t(s)|2ds
) 1

2

=
[
χ(0,τ)(t)

∫ ∞

τ

(∫ s

τ
r−1(x)dx

)2
υ−1(s)ds + χ(0,τ)(t)

∫ τ

t

(∫ τ

s
r−1(x)dx

)2
υ−1(s)ds

+χ(0,τ)(t)
(∫ τ

t
r−1(x)dx

)2 ∫ t

0
υ−1(s)ds

+ χ(τ,∞)(t)
∫ ∞

t

(∫ s

t
r−1(x)dx

)2
υ−1(s)ds

] 1
2
= D+(t, τ). (61)
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From (60) and (61), we get

sup
f∈W̊2

2,v

| f (t)|
‖D2

r f ‖2,v
≥ | ft(t)|
‖(D2

r f )t‖2,v
= D+(t, τ)

for any τ ∈ I. This relation proves the correctness of the left estimate in (58). The proof of
Lemma 8 is complete.

Let the operator L−1
F be completely continuous on L2,u. Let {λk}∞

k=1 be eigenvalues
and {ϕk}∞

k=1 be a corresponding complete orthonormal system of eigenfunctions of the
operator L−1

F .
Let

D+(t) =
∫ ∞

t

(∫ ∞

s
r−1(x)dx

)2
υ−1(s)ds +

∫ ∞

t
r−1(x)dx

∫ t

0
υ−1(s)ds, t ∈ I.

Theorem 13. Let the conditions of Theorem 9 hold. Let (41) and (42) hold. Then,

(i) (D+(t))2 ≤
∞

∑
k=1

|ϕk(t)|2
λk

≤ 2(D+(t))2, t ∈ I. (62)

(ii) The operator L−1
F is nuclear if, and only if,

∞∫
0

u(t)
(

D+(t)
)2

dt < ∞ and for the nuclear norm

‖L−1
F ‖σ1 of the operator L−1

F , the relation

∫ ∞

0
u(t)

(
D+(t)

)2
dt ≤ ‖L−1

F ‖σ1 =
∞

∑
k=1

1
λk
≤ 2

∫ ∞

0
u(t)

(
D+(t)

)2
dt (63)

holds.

Proof of Theorem 13. By the condition of Theorem 13, we have that the operator L−1
F is

completely continuous on L2,u (see Proposition 5). In Lemma 7, we take W̊2
2,v(I) with the

norm ‖D2
r f ‖2,v as the space H(I). Since the system of functions {λ−

1
2

k ϕk}∞
k=1 is a complete

orthonormal system in the space W̊2
2,v(I), then by Lemma 7, we have

‖Ex‖2 =

 sup
f∈W̊2

2,v(I)

| f (t)|
‖D2

r f ‖2,v

2

=
∞

∑
k=1

|ϕk(t)|2
λk

,

where Et f = f (t). The latter and (58) give

sup
τ∈I

(
D+(t, τ)

)2
≤

∞

∑
k=1

|ϕk(t)|2
λk

≤ 2 inf
τ∈I

(
D+(t, τ)

)2
. (64)

Since

inf
τ∈I

D+(t, τ) ≤ lim
τ→∞

D+(t, τ) = D+(t), sup
τ∈I

D+(t, τ) ≥ lim
τ→∞

D+(t, τ) = D+(t),

then, from (64), we have (62). Multiplying both sides of (62) by u integrating them from
zero to infinity, we get (63). The proof of Theorem 13 is complete.

Let

D−(t) =
∫ t

0

(∫ s

0
r−1(x)dx

)2
υ−1(s)ds +

∫ t

0
r−1(x)dx

∫ ∞

t
υ−1(s)ds, t ∈ I.



Mathematics 2021, 9, 2830 21 of 22

Similarly, we have the following statement.

Theorem 14. Let the conditions of Theorem 11 hold. Let (54) and (55) hold. Then,

(i)
(

D−(t)
)2
≤

∞

∑
k=1

|ϕk(t)|2
λk

≤ 2
(

D−(t)
)2

.

(ii) The operator L−1
F is nuclear if, and only if,

∞∫
0

u(t)
(

D−(t)
)2

dt < ∞ and for the nuclear norm

‖L−1
F ‖σ1 of the operator L−1

F the relation

∫ ∞

0
u(t)

(
D−(t)

)2
dt ≤ ‖L−1

F ‖σ1 =
∞

∑
k=1

1
λk
≤ 2

∫ ∞

0
u(t)

(
D−(t)

)2
dt

holds.

6. Conclusions

In the paper, we establish inequality (3) and find two-sided estimate of its least
constant, so that the finiteness of the values B+

1 , B+
2 , B+

3 , F−1 , and F−2 are necessary and
sufficient for the validity of inequality (3). We extend the classical variational principle
by proving Lemma 3, which gives the connection between inequality (3) and oscillatory
properties of Equation (4). On the basis of the results on inequality (3) and Lemma 3,
we obtain necessary and sufficient conditions for strong non-oscillation and oscillation of
Equation (4). Let us note that, among the five values B+

1 , B+
2 , B+

3 , F−1 , and F−2 participating
in the conditions for the validity of inequality (3), the non-oscillation and oscillation of
Equation (4) depend only on the values F−1 and F−2 . On the basis of the connection between
non-oscillation of Equation (4) and spectral properties of the operator L, we get its property
BD, two-sided estimates for its first eigenvalue, and criteria for its nuclearity.
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