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Abstract: Considering two agents responding to two (binary) questions each, we define sensitivity to
context as a state of affairs such that responses to a question depend on the other agent’s questions,
with the implication that it is not possible to represent the corresponding probabilities with a four-way
probability distribution. We report two experiments with a variant of a prisoner’s dilemma task (but
without a Nash equilibrium), which examine the sensitivity of participants to context. The empirical
results indicate sensitivity to context and add to the body of evidence that prisoner’s dilemma
tasks can be constructed so that behavior appears inconsistent with baseline classical probability
theory (and the assumption that decisions are described by random variables revealing pre-existing
values). We fitted two closely matched models to the results, a classical one and a quantum one, and
observed superior fits for the latter. Thus, in this case, sensitivity to context goes hand in hand with
(epiphenomenal) entanglement, the key characteristic of the quantum model.

Keywords: bell inequalities; decision making; agent interaction; quantum theory

1. Introduction and Basic Definitions

Prisoner’s dilemma (PD) games involve two players with a binary action each, typi-
cally denoted as cooperate (C) vs. defect (D). A usually symmetrical payoff matrix deter-
mines the reward of each player, depending on their combined action. Typically, payoffs
are set so that it is most advantageous to D, if the other player Cs, but the mutual gain
is highest if they both C (defection is then the Nash equilibrium). PD games have been
extensively studied in psychology, partly because they can lead to apparent discrepancies
with classical probability theory [1–4]. In the pioneering study by [4], participants were
put in the shoes of one of the players in a PD game and were presented with three kinds of
trials: first, trials for which participants were told the other player would defect; second,
trials for which participants were told the other player would cooperate; third, trials for
which participants were not given information about the other player. Results indicated
that Prob(DParticipant, unknown) was outside the bounds of Prob(DParticipant|known C) and
Prob(DParticipant|known D), thus violating the law of total probability. Such results are not
insurmountably inconsistent with classical probability theory, but they do challenge the
ubiquitousness of classical probability theory in cognitive theory [5–8].

In standard PD paradigms, there is a Nash equilibrium for each participant to D, that
is, neither participant can improve her position by unilaterally changing a D action. In this
work, we do not consider such PD paradigms, but rather just the two-player interactions,
based on a payoff matrix without a Nash equilibrium. We refer to such paradigms as PD
variants. The surprising hypothesis we are interested in is whether there are PD variants
for which choice statistics cannot be modelled with a four-way probability distribution
(this statement will be qualified shortly). So, our paradigm reflects a minimal set up of
interaction between two agents. While there is a vast literature on game theory, we avoid
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engaging with this literature so as to focus on our specific objective: are there simple
situations for the interaction between two agents, as just described, which might confound
the straightforward expectation that behavior can be modelled with a four-way probability
distribution?

Consider a PD variant, such that each of two players, Alice and Bob, has two binary
questions; Alice’s questions are a1, a2 and Bob′s b1, b2, all having two possible outcomes±1.
A baseline classical expectation is that it is always possible to represent probabilities from
such tasks as marginals from a four-way joint probability distribution. More conventionally,
we expect that corresponding choice frequencies can be organized in a four-way table. So,
our question is, are there PD variants for which participant behavior might be inconsistent
with this expectation?

Noting that expectation values are computed as ∑
all possible outcomes

Prob(outcomei)

·Value(outcomei), for a pair of binary questions, x, y, with Prob(outcomei) being the prob-
ability of outcomei and Value(outcomei) the value assigned to outcomei, the expectation
value is

〈x&y〉 = Prob(++|x, y)·1·1 + Prob(−−|x, y)·(−1)·(−1)
+Prob(+−|x, y)·1·(−1) + Prob(−+|x, y)·(−1)·1 (1)

Define the quantity

S = |〈a1&b1〉+ 〈a1&b2〉+ 〈a2&b1〉 − 〈a2&b2〉| (2)

Consider three conditions when computing these expectations. First, locality means
that Alice answers her questions without any information about what Bob is doing, and
vice versa. Locality means that Alice and Bob are separated in space and no communication
between them is possible [9]. Second, free choice means that the question asked to Alice
is determined independently from the one asked to Bob. Third, realism means that the
outcomes to Alice and Bob′s questions exist, whether Alice and Bob state them or not. One
of the most significant results in theoretical physics is that, with locality, free choice, and
realism, the maximum value of S is 2; this upper limit of S is called Bell’s bound [10–12].
Let us take realism for granted, so henceforth we will focus on locality and free choice.

Note, locality and free choice are properties of the two systems producing the relevant
statistics. So, in the example with Alice and Bob, locality means that the two agents are
local relative to each other—there is no communication—so that Alice has no information
about Bob when making her choices and vice versa. Likewise, free choice means that
Alice’s choices are not influenced by Bob′s.

How can Bell’s bound be broken? Consider Alice and Bob perfectly tuned to each
other, so that 〈a1&b1〉 = 1, 〈a1&b2〉 = 1, and 〈a2&b1〉 = 1. Given this, if locality and free
choice apply, then questions a2, b2 must correlate as well. This is because if a1, b1 perfectly
correlate and a1, b2 perfectly correlate, then b1, b2 must perfectly correlate too. This,
together with the fact that a2, b1 perfectly correlate with each other, leads to the conclusion
that a2, b2 must perfectly correlate as well. But, if 〈a2&b2〉 = 1, then the S = 2, which is the
maximum value that S can take, with realism, locality, and free choice. Therefore, the only
way we can break Bell’s bound is via some kind of sensitivity to context. For example, Bob′s
answers are sensitive to the context created by Alice’s questions.

To explain sensitivity to context, suppose that the b2 question depends on whether
Alice considers a1 or a2. If Alice considers a1, then Bob responds to b2 in a way that the
two questions correlate with each other, 〈a1&b2〉 = 1. However, if Alice considers the a2
question, then Bob responds to b2 in a way that the outcomes of the two questions anticor-
relate, 〈a2&b2〉 = −1. That is, there is no answer to the b2 question, independently of what
Alice does. If we accept the possibility of sensitivity to context, then we can easily see that
the Bell bound can be exceeded, in that S = |〈a1&b1〉+ 〈a1&b2〉+ 〈a2&b1〉 − 〈a2&b2〉| =
1 + 1 + 1−−1 = 4. In this simple situation, sensitivity to context means that the original
set of questions {a1, a2, b1, b2} is better understood as {a1, a2, b1, b2a1, b2a2}, where b2 has
two different versions, depending on which question Alice responds to.
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Cases when S > 2 reveal a case of correlation ‘stronger’ than classical correlation. For
S > 2, it is not sufficient for pairs of questions to be responded perfectly in tune with each
other (this would be a case of perfect, classical correlation). It is also required that responses
are sensitive to the questions asked by the other agent. Thus, cases of S > 2 can be said
to reflect supercorrelation (noting of course that correlation is a binary relation, whereas
supercorrelation is a relation between answers amongst two sets of questions). As noted in
the physics literature, the kind of correlation producing S = 4 is called a PR-box and refers
to the strongest type of non-local correlation that is non-signaling, in the two-question,
two-outcome scenario [13].

Especially in physics, this discussion is complicated by various inter-related notions,
such as signaling, disturbance, and communication. Signaling is a statistical notion inform-
ing us of whether the choice of measurement on one side affects the statistics on the other
side. The idea is that Alice and Bob have some device generating statistics Prob(ab|xy),
where a, b indicate outcomes and x, y = 1, 2 are the measurement settings for Alice and
Bob respectively. Signaling is if Alice is able to send a meaningful signal to Bob concerning
what her setting is, x = 1, 2. If signaling occurs, then Bob can infer Alice’s measurement
setting by looking at the statistics on his side, i.e., depending on whether his statistics
are different for different measurement settings for Alice: Prob(b|1y) 6= Prob(b|2y) . Let
us note that, if Bob does not know the outcome of Alice’s measurement, then we have
to marginalise across different possibilities for this outcome, writing, e.g., when we are
interested in x = 1, Prob(b|1y) = ∑ a=+1,−1Prob(ab|1y). So, the signaling condition is that
Prob(b|1y) = ∑a Prob(ab|1y) 6= ∑a Prob(ab|2y) = Prob(b|2y), that is, as noted, that Bob
can tell whether Alice measures x = 1 or x = 2, by looking at the statistics on his side (later
on, in the Signaling section we offer an equivalent way to compute signaling quantifiers).

When there is no signaling, another seminal result, Fine’s theorem [14], shows that
one condition for the existence of a (four-way) joint probability distribution for four
binary random variables is S ≤ 2, which is called the Clauser, Horne, Shimony, and
Holt (CSHS) inequality [12]. Note, there are four versions to the inequality, depending on
which expectation is given a minus sign in Equation (2) and Fine’s result states that the
bound 2 for all those four expressions is the sufficient condition for the existence of a joint
probability distribution. When there is signaling, there is a corresponding generalized test
of contextuality due to [15]; but see also [9]. Above we referred to sensitivity to context
rather than contextuality. We will define sensitivity to context more precisely shorty and
offer our rationale for why sensitivity to context is the more appropriate notion for the
present work, as opposed to contextuality. Readers should note, however, that there is
intense, ongoing debate on these issues.

Presently, what we are interested in is whether there is sensitivity to context, which
can be defined as the non-existence of a joint probability distribution—informally, we can
say that Alice changes her answer to her question, depending on the question that Bob
has. When there is signaling, we can immediately conclude that there is sensitivity to
context, regardless of whether S > 2 or S ≤ 2. However, sometimes we may want to
test for sensitivity to context without considering signaling. For example, this might be
because signaling is low and hence our estimate of signaling is not necessarily reliable (for
an example in physics, see [16]). In such cases, when S > 2, we can conclude that there is
sensitivity to context (this follows from the usual proof of the Bell inequalities based only
on the factorization property for conditional probabilities).

Here is the tricky point: Dzhafarov et al. [15] generalized test examines sensitivity
to context when there is signaling (their expression can be seen as subtracting away the
influence from signaling). But in the present case, the only interest is whether Alice employs
the available information of what Bob does to demonstrate sensitivity to context (here
and throughout as defined in the paragraph above), regardless of whether this is due to
signaling or not. So Dzhafarov et al. [15] generalized test is not relevant here.
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These distinctions are particularly relevant in psychology, since the only systems
known to break Bell’s bound are physical systems of microscopic particles, obeying the laws
of quantum mechanics. By contrast, for macroscopic systems, it is generally (see shortly)
accepted that violations of Bell’s bound can be accounted for only by communication,
disturbance or some other equivalent mechanism, between the two systems [9]. For
example, demonstrably classical systems, such as containers with fluids at different levels,
connected by tubes, allow the construction of variables which violate Bell’s bound. But
of course there is nothing peculiar going on and this is just a result of communication or
influence between the systems (such examples have been known for a while, e.g., [17,18]).
We can say that such systems demonstrate sensitivity to context. Note, there are subtleties
to this discussion, for example see [17,19], who described possible systems for which
a measurement (decision) itself can bring about the dependence to context needed for
S > 2. An additional subtlety is whether communication is assumed to lead to signaling or
not. In [18,19] there is no signaling, but in [17] there is signaling (as [18] note, in general,
communication can be taken to be some influence of some sort, but it does not always have
to lead to signaling). These ideas are interesting, though we think they do not apply to the
present results (this issue is briefly considered in the General Discussion).

2. Psychological Implications and Outline

Bell’s bound has an almost magical quality. Sensitivity to context means impossibility
of describing the system in the usual way via a four-way probability distribution, with the
marginal distributions representing the observed (conditional) statistics. But what exactly
does this mean? Consider Table 1, wherein we assume that all marginal probabilities are
0.5. For the right-hand side, S = 4 and it can be shown that the corresponding probability
information is not self-consistent (the same conjunction can be ‘shown’ to be both zero and
non-zero, Appendix A). We think that, amongst experimental psychologists at least, it is a
baseline expectation that probabilities can be organized in a table of this kind.

Table 1. Proportions of +, − responses for a PD variant.

b1 = + b1 = − b2 = + b2 = − b1 = + b1 = − b2 = + b2 = −
a1 = + 0.5 0.5 a1 = + 0.5 0.5
a1 = − 0.5 0.5 a1 = − 0.5 0.5
a2 = + 0.5 0.5 a2 = + 0.5 0.5
a2 = − 0.5 0.5 a2 = − 0.5 0.5

NB. Each table is four separate probability subtables, corresponding to different measurements for the two systems. For the left table, S = 2,
and for the right, S = 4 > 2. It can be shown that the right table is inconsistent (Appendix A). The right table is a famous one, corresponding
to the Popescu-Rohlich box (PR-box; [13]).

We are interested in how these ideas translate to two individuals playing a game,
corresponding to a Bell scenario (i.e., each individual has two binary questions). Of
course, an interaction between two individuals is an extremely common decision situation.
With the locality and free choice assumptions, in general it is impossible to break Bell’s
bound [19–21]. For two agents, the only way Bell’s bound can be exceeded is if at least one
of the free choice or locality assumptions is violated. For example, suppose we retain free
choice and allow violations of locality. Then, Bob needs to adjust his answers depending
on knowledge of which question Alice receives. So, the decision to stay local or not is
‘outsourced’ to Bob—in the experimental paradigm we employ, it is up to the participants
(on a trial by trial basis) to decide whether to stay local or not. This is the essence of the
paradigm we will shortly present.

So far, while there have been several studies concerning Bell’s bound in psychology,
these studies have focused on the thought processes of individual participants. Specifically,
there have been several examinations of sensitivity to context, for the same participant
answering all four questions, a1, a2, b1, b2 (for an early example see [22]. The issue of
compositionality in conceptual combination concerns whether the constituent concepts
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combine in a way that their meaning independently determines the meaning of the compos-
ite concept. For example, in considering the novel conceptual combination ‘spring plant’,
under a compositionality assumption we would look for some meaning from ‘spring’ and
some from ‘plant’, independently combined together. A contrasting hypothesis is that a
constituent in a conceptual combination acquires meaning contextually, depending on the
other constituent. For example, in the case of boxer-bat, whether we consider a sporting
or animal sense for ‘bat’, will impact on the how we interpret ‘boxer’ [23]. A number of
theorists have employed the CHSH inequality or variants to conclude in favor of non-
compositionality in conceptual combination [23,24], an issue of considerable significance
concerning conceptual representation [25–27]. Similar ideas have been pursued in memory
associations [28,29] and in decision making [24,30].

There has been no research exploring Bell’s ideas for interacting agents. Our purpose
is to develop a paradigm based on a PD variant involving the interaction of a participant
with a hypothetical counterpart. The payoff matrices can be set up in a way that optimal
performance (relative to overall payoff) requires sensitivity to the counterpart’s choices
in some cases, but not others. Allowing participants to choose whether to communicate
or not with their counterpart on every trial, we can examine participant’s sensitivity to
context and the capacity of different modeling approaches to capture behavior.

We propose two models for modeling choice behavior, based on the models widely
employed in physics for Bell paradigms. The classical model (specifically, a local hidden
variables one) is based on an assumption of perfect coordination between the interacting
agents, but without communication of the questions each agent receives on any trial. It
allows for no sensitivity to context. The quantum model is also based on an assumption of
perfect coordination between the agents, but, additionally, it allows sensitivity to context
up to a certain degree (quantified by Tsirelson’s bound [31]). In physics, such quantum
models are interesting, because they allow sensitivity to context, even though there is no
obvious physical mechanism violating locality and free choice (and there is no signaling).
In psychology, such a quantum model offers a particular hypothesis of the extent to which
any communication between participants can translate to sensitivity to context.

Note that we could construct more elaborate classical models, in which the causal
role of communication on the observed statistics is included, and such models could (in
principle) be reconciled with the sort of paradigm we have outlined above. However, we
think it is more interesting to explore a baseline classical model (perfect coordination, but
no sensitivity to context) vs. the standard quantum model (perfect coordination and some
sensitivity to context), to inform our understanding of the extent to which participants
could employ their information resource. We think it is surprising and interesting that,
when S > 2, as we shall see, a superficially reasonable classical model cannot offer a good
description of behavior. Examining violations of Bell’s bound while allowing for interacting
participants to break locality mimics attempts in physics to describe experimental statistics
in Bell paradigms, by allowing violations of free choice and locality [32].

More generally, the use of quantum probability theory in cognitive modeling follows
an assumption that, in some cases, quantum principles offer better descriptions to human
behavior [33–35]. Quantum cognitive models have been explored for many kinds of
cognitive processes, including decision making, categorization, similarity, perception, and
memory. What is common amongst such diverse applications is a handful of characteristics
which researchers have taken to be indicative of quantum-like processes. For example,
sometimes behavior appears to be subject to interference effects, so that the law of total
probability is violated—the PD games and analogous situations in [4] are good examples. In
other cases, when participants are asked to make a decision, it appears that the underlying
mental state changes. Social psychologists have been aware of such processes for a long
time [36]. The added value from quantum models is that in quantum theory there is a
specific requirement for how the state ought to change as a result of measurements (in
behavior, decisions) and various researchers have taken advantage of these processes
to build cognitive models (e.g., [37,38]). Of course, as outlined above, there have also
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been behavioral results indicative of sensitivity to context, for which the Bell framework
and corresponding quantum models have been invoked to construct relevant theory
(e.g., [23,24]). Quantum cognitive models have had good generative value, for example, in
terms of anticipating biases from prior decisions [38] or a surprising constraint for question
order effects [39].

As per our comments for Bell inequality violations above, in quantum cognitive
models any quantum processes are epiphenomenal and are underwritten by an assumption
of classical neurophysiology [40]. Moreover, there have been some compelling proposals
of heuristic models mimicking quantum models [41]. So, why invoke the (unfamiliar)
concepts of quantum theory at all? There are two reasons. First, it appears that in some
behavioural cases quantum models can offer particularly simple explanations. Such cases
tend to be ones for which behaviour is sensitive to context (as in the present case) or there are
conflicting biases for behaviour, which appear to interfere with each other. Second, different
quantum models generally employ the same set of principles and so have been used to
identify commonalities between findings which, up to that point, had been considered
separate [42]. So, even assuming that there is no ‘real’ quantum structure in the brain, and
even if there are compelling mimicries between a specific quantum model and models
based on other principles (as in [41]), we think there is explanatory value in considering
such models.

3. Experiment 1
3.1. Participants

Participants were recruited using Prolific Academic and we restricted sampling to
UK nationals. They were paid £2.25 for their involvement. Sample size was set a priori
to 100 participants (50 males, 49 females and 1 participant who self-identified as ‘other’).
Participants were between 18 and 62 years old (MAge = 31.08 years old, SD = 11.70).
Participants also reported their English fluency on a scale from 1 (extremely uncomfortable)
to 5 (extremely comfortable), with the majority of participants reporting 5 (n = 97) and only
a few others (n = 3) reporting 4 or lower.

3.2. Materials and Procedure

We employed a one-shot, PD variant, such that there were two possible questions
for each player. Participants were told to imagine they were arrested with an associate
and were both under suspicion for a minor crime in the Old Wild West. The sheriff of
the town would interrogate them and their associate separately, asking one question to
each. The sheriff would ask either: (1) “Did you know the victim?”, or (2) “Were you
at the scene of the crime?” The first question corresponds to a1 or b1 and the second
to a2 or b2 (the participant and his/her associate questions are denoted by ‘a′ and ‘b′

respectively). Participants had two possible actions: to confess (equivalent to ‘D in the
standard PD paradigm; coded with a minus sign) or deny (equivalent to C; coded with
a plus sign). Depending on the combination of questions, a different sentencing policy
would apply. Participants were told that their sentencing policy would depend on their
question and their response, as well as their associate’s question and response. Participants
were expected to favor decisions leading to lower sentences (fewer days spent in prison)
for just themselves or for both themselves and their associate [2,43]. We created ‘Good’ and
‘Bad’ payoff matrices, such that the sentencing would bias participants to deny or confess
respectively. Note, participants were shown the payoff matrix just for themselves, but were
told that their associate would receive the same payoff matrix.

There were eight unique trials which can be denoted as a1b1 good, a1b1 bad, etc. Each
participant received all eight trials and was told to respond independently (e.g., each trial
contained a different payoff matrix and each associate had a different name across the
trials). Table 2 shows an example of a good and bad matrix in a2b1. For a2b1 bad, the
payoff bias has been created with a bias towards confessing the crime. For a2b1 good
matrix, this bias is towards denying the crime. Note, the assumption that participants are
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responding independently may appear unrealistic. However, it is only marginally relevant
to the present purpose, which was to collect data on choice behavior ostensibly inconsistent
with a simple classical model.

Table 2. The good and bad matrices for a2b1 and a2b2 trials in Experiment 1. The payoff matrices for a1b1 and a1b2 trials
had a format closely analogous to that for a2b1, and variations were employed to create the requisite number of trials.

a2b1 (Bad) a2b1 (Good)

Participant Does Not Check Participant Does Not Check

You did not check on Isabel. You did not check on Rick.

Isabel will be asked whether she knew the victim of the crime or
whether she was at the scene of the crime. Since you don’t know
what Isabel’s question will be, the following sentencing policy
will apply. Please note, the numbers in the sentencing policies
refer to the number of days you will serve in prison.

Rick will be asked whether he knew the victim of the crime or
whether he was at the scene of the crime. Since you don’t know
what Rick’s question will be, the following sentencing policy
will apply. Please note, the numbers in the sentencing policies
refer to the number of days you will serve in prison

Were you at the scene of the crime? Were you at the scene of the crime?

Participant Checks Participant Checks

You checked on Isabel and found that she will be asked about
whether she was at the scene of the crime. So, you know that
the following policy for sentencing will apply. Please note, the
numbers in the sentencing policies refer to the number of days
you will serve in prison.

You checked on Rick and found that he will be asked about
whether he knew the victim. So, you know that the following
policy for sentencing will apply. Please note, the numbers in the
sentencing policies refer to the number of days you will serve in
prison

Were you at the scene of the crime? Were you at the scene of the crime?

a2b2 (Bad) a2b2 (Good)

Participant Does Not Check Participant Does Not Check

Were you at the scene of the crime? Were you at the scene of the crime?

Participant Checks Participant Checks

The participant’s associate was hypothetical and he/she was always assumed to
behave as expected, e.g., in the case of trial a1b1 good, the associate would deny the
crime in the b1 question. How would a participant know what the associate is likely to
be doing? In most cases, there would be a choice associated with a lower sentence and
so the participant would/ should guess that her associate would be selecting this option.
This would be applicable for a1b1, a1b2, and a2b1 trials. For a2b2 trials, the payoffs would
not uniquely identify an action as optimal. For these trials, the participant would receive
a hint of what the associate is likely to be doing: participants were told that the sheriff
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does not know much about the crime, but he does know that exactly one between the
participant and his/her associate, was at the scene of the crime. Participants therefore were
cautioned that if the participant and his/her associate were to both confess or both deny for
these trials, the sheriff would punish them with a high penalty. For example, for the a2b2
good trial, the sentencing matrix would be biasing towards anticorrelation between the
participant and his/her associate, and the participant would receive an additional hint that
the associate is ‘likely’ to deny the crime. So, sensitivity to context is built into the structure
of the problem, in the simple sense that the participant’s action needs to be informed by
the associate’s action when his/her question is a2, but not when it is a1.

To clarify, given each payoff matrix, there is an ‘obvious’ response for what the
hypothetical participant should be doing: we just assume that the hypothetical participant
follows this action. The exception is the a2b2 case, where we offered an additional hint of
what the hypothetical participant is doing.

On each trial, participants were allowed to choose whether to communicate (i.e.,
violate locality) or not. They had the option to try to check, so as to discover the question
that their counterpart was going to be asked. We discouraged participants from checking
frequently by telling them that a check involved a risk of being caught and automatically
receiving a high sentence. The first four trials in the experiment always attracted a penalty
if a participant checked on his/her counterpart (these trials were fixed and different from
the main experimental trials). Following these first four trials, without a noticeable break
in the procedure, participants went through the eight trials corresponding to each of the
four combinations of questions in each of their Good/Bad instantiation. The recorded
data concerned only these eight trials and participants never experienced the penalty for
checking during these trials.

On each trial, a participant was shown a 2 × 1 matrix for just their payoffs. If he/she
decided to check, then he/she would be told which question was assigned to the associate
(b1 or b2) and the matrix would expand to show the payoffs for all combination of answers
for the participant and associate (Table 2). If the participant did not decide to check, then
he/she would just be shown again the initial 2 × 1 matrix for just their payoffs. Either way,
on each trial they had to decide whether to deny or to confess.

In this experiment, for a particular trial (e.g., a1b2) the payoffs in the 2 × 1 matrices
were the approximate average of the payoffs in the 2 × 2 one. For example, looking at the
top left of Table 2, (29 + 21) ÷ 2 = 25. Note, averaged decimal payoffs were rounded up to
the nearest whole number. But we did not create true averages across different trials. That
is, for trial a1b2, there would be a 2 × 1 matrix which would be the average of payoffs in a
corresponding 2 × 2 one. However, the a1 payoff would not be an average from the a1b1
and a1b2 payoff matrices. These considerations are somewhat unimportant (in any case,
they are addressed in Experiment 2, what matters is the bias for action, which was to Deny
in all good matrices and Confess in the bad ones.

Initial instructions explained the format of the PD game. Participants then responded
to a few practice trials, but with detailed additional instructions for each step of a trial.
After these trials, participants were told that the main experiment would start. They first
received the four consequence-checking rounds, and then the eight PD trials, after which
the experiment concluded.

3.3. Results

We observed a significant difference in the overall proportion of trials when par-
ticipants checked vs. not checked, χ2 (1, n = 800) = 121.69, p = < 0.001 (Tables 3 and 4).
Additionally, participants were more likely to check with a2b2 trials than for other ones.
Note, we carried out these comparisons so that Good question combinations were com-
pared only with other Good question combinations and analogously for the Bad ones.
Minimally, these results show that participants were sensitive to the context of their asso-
ciate’s questions, necessary to achieve higher performance.
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We further show the choice probabilities to deny for all question combinations and sep-
arately for checking vs. non-checking trials (Table 5). Consider the Deny/Good/Checking
column. In this case, because the matrices are good, by design the participant’s associate
is meant to be denying; the participant should also recognize that it is better to deny. As
expected, choice proportions reveal high probability for the participant to deny in pairs
a1b1, a1b2, a2b1. For the last pair, a2b2, however, the participant and his/her associate
are biased to anticorrelate and, given the associate will be denying, we observe a low
proportion for deny choices, again as expected (0.07). We observe the reverse pattern in the
Deny/Bad/Checking column.

Table 3. Frequencies of checking for each question combination.

Deny (Good) Confess (Bad)
a1b1 a1b2 a2b1 a2b2 a1b1 a1b2 a2b1 a2b2

Check 26 13 23 69 25 30 33 63
No Check 74 87 77 31 75 70 67 37

Exp. 1

Check 27 27 67 64 20 23 63 73 Exp. 2
No Check 74 74 34 37 81 78 38 28

Table 4. Chi square tests for comparisons of rates of checking for all Good and Bad question
combinations.

Good Matrices Exp. 1 Exp. 2

a1b1, a1b2 5.38 * 0
a1b1, a2b1 0.24 31.84 ***
a1b1, a2b2 37.07 *** 27.38 ***
a1b2, a2b1 3.39 31.84 ***
a1b2, a2b2 64.82 *** 27.38 ***
a2b1, a2b2 42.59 *** 0.2

Bad Matrices

a1b1, a1b2 0.63 0.27
a1b1, a2b1 1.55 37.81 ***
a1b1, a2b2 29.3 *** 55.97 ***
a1b2, a2b1 0.21 32.40 ***
a1b2, a2b2 21.89 *** 49.63 ***
a2b1, a2b2 18.03 *** 2.25

Note. * p < 0.05, *** p < 0.001. The n for the tests are 100 for Experiment 1 and 101 for Experiment 2.

Table 5. Observed probabilities for all question combinations in Experiment 1 (n = 100 for each cell),
split by decision to deny or confess and whether participants checked or not.

Checking No Checking

Deny Confess Deny Confess

Good

a1b1 0.92 0.08 0.95 0.05
a1b2 0.92 0.08 0.98 0.02
a2b1 0.83 0.17 0.97 0.03
a2b2 0.07 0.93 0.74 0.26

Bad

a1b1 0.04 0.96 0.15 0.85
a1b2 0.07 0.93 0.11 0.89
a2b1 0.12 0.88 0.1 0.9
a2b2 0.83 0.17 0.65 0.35

Note, when the participant is not checking, he/she ostensibly does not know which
question the associate will be asked, and therefore there is no basis for the participant to
distinguish between cases when he/she should correlate with the associate (a1b1, a1b2, a2b1)
vs. anticorrelate (a2b2). If this assumption were entirely correct, we should be observing
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identical deny proportions across all four question combinations, when not checking, but
this is not the case (e.g., for the bad matrices, 0.65 is higher than the choice proportions for
the other question combinations). As noted, the issue is that the reduced payoff matrix
when not checking should be identical for a1b1 and a1b2 (and likewise for a2b1 and a2b2),
but this was not the case (because reduced payoff matrices were constructed separately for
each question combination). We address this issue in Experiment 2.

Despite this point, the results of Experiment 1 are still useful for modeling and for
exploring the question of whether the particular classical vs. quantum models we will
propose are adequate. Relatedly, the empirical result is perhaps unsurprising: participants
seek more information when existing information is inadequate for a decision. On one
level, this is certainly true, since the task was designed to incorporate sensitivity to context
in a particular way. On another level, our objective is less so to offer a surprising empirical
finding, but to show that choice probabilities from this seemingly innocuous situation
cannot be modeled by a classical model incorporating the (assumed) perfect coordination
between the participant and her associate.

4. Experiment 2

Experiment 1 showed that participants recognized that there would be different biases
for action depending on whether their associate’s question was b1 or b2. In this experiment,
we constructed payoff matrices so that the reduced matrix for e.g., a1 would be the collapsed
matrix across the a1b1 and a1b2 possibilities (Table 6).

Whereas previously there were only eight main trials (four question combinations in
good and bad versions), for which participants were free to decide whether to check or
not check, in this experiment we added eight trials when participants were forced to check
and another eight trials in which participants were forced to not check (e.g., on some trials
they were told that they had to check on their associate). Recall that to use Equation (1),
we need probabilities for e.g., Prob(++|a1b1), which is computed by considering the
number of times the participant denies when given question a1 together with his/her
counterpart denying when given question b1. Trivially, Prob(+ + good |a1b1 checking) =
counts o f deny a1b1 good checking

all counts o f a1b1 good checking . With this approach, we can compute S values for the en-
tire sample, but it is difficult to do so for individual participants, because e.g., a partici-
pant may have not checked in the case of the a1b1 good trial. With the additional trials
in this experiment, all relevant probabilities can be computed within participants, e.g.,
Prob(+ + good |a1b1 checking) = counts o f deny a1b1 good checking f or the participant

all counts o f a1b1 good checking f or the participant , and so S val-
ues can be computed within participants (which enables us to conduct some statistical
tests). For the example of this probability, Prob(+ + good |a1b1 checking), for a particular
participant there would be a max of two relevant trials and a min of one trial, depending
on whether the participant decided to check when he/she had the option to do so.

We also included three questionnaires. First, we included the Toronto Empathy
Questionnaire (TEQ, [44]), since the present task is one of guessing what a (hypothetical)
associate is planning to do. The questionnaire asks participants to rate 16 questions on a
five-point scale, ranging from Never (1), Rarely (2), Sometimes (3), Often (4), to Always
(5). Items include, “Other people’s misfortunes do not disturb me a great deal” and “It
upsets me to see someone being treated disrespectfully”. Second, we include the 17-item
Cognitive Uncertainty (CU) subscale from the Uncertainty Response Scale [45]. The CU
asks participants to state how well a series of statements describe them, including, “I like
to plan ahead in detail rather than leaving things to chance” and “I like to know exactly
what I’m going to do next” on a four-point scale of Never (1), Sometimes (2), Often (3) and
Always (4). This questionnaire assesses the possibility that checking behavior is driven
by uncertainty aversion. Finally, we employed the Cognitive Reflection Task (CRT) to test
for engagement and reflection with our PD tasks. However, the original CRT has been
massively overused [46,47]. To reduce the likelihood that participants had encountered the
original CRT in the past, we used three of the word problems presented in the appendices
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of [47]. Participants read each of the questions and were asked to provide an answer in the
text box.

Table 6. The good and bad matrices for the a2b1 and a2b2 trials in Experiment 2.

a2b1 (Bad) a2b1 (Good)

Participant Does Not Check Participant Does Not Check

You did not check on Isabel. You did not check on Rick.

Isabel will be asked whether she knew the victim of the crime or
whether she was at the scene of the crime. Since you don’t know
what Isabel’s question will be, the following sentencing policy
will apply. Please note, the numbers in the sentencing policies
refer to the number of days you will serve in prison.

Rick will be asked whether he knew the victim of the crime or
whether he was at the scene of the crime. Since you don’t know
what Rick’s question will be, the following sentencing policy
will apply. Please note, the numbers in the sentencing policies
refer to the number of days you will serve in prison.

Were you at the scene of the crime? Were you at the scene of the crime?

Participant Checks Participant Checks

You checked on Isabel and found that she will be asked about
whether she was at the scene of the crime. So, you know that
the following policy for sentencing will apply. Please note, the
numbers in the sentencing policies refer to the number of days
you will serve in prison.

You checked on Rick and found that he will be asked about
whether he knew the victim. So, you know that the following
policy for sentencing will apply. Please note, the numbers in the
sentencing policies refer to the number of days you will serve in
prison.

Were you at the scene of the crime? Were you at the scene of the crime?

a2b2 (Bad) a2b2 (Good)

Participant Does Not Check Participant Does Not Check

Participant Checks Participant Checks

4.1. Participants

Participants were recruited using Prolific Academic and we restricted sampling to
UK nationals only. They were paid £4.50 for their involvement. Sample size was set a
priori to 100 participants, and we recruited 101 participants, 50 males, 50 females and
1 participant who self-identified as ‘other’. Participants were between 18 and 78 years old
(MAge = 32.13 years old, SD = 12.54). Participants also reported their English fluency on a
scale from 1 (extremely uncomfortable) to 5 (extremely comfortable), with the majority of
participants reporting 5 (n = 95) and only a few others (n = 6) reporting 4 or lower. None of
the participants for this experiment had taken part in Experiment 1.
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4.2. Materials and Procedure

In Experiment 2, the payoff matrices were set up so that if the participant did not
check, the reduced 2 × 1 payoff matrix would be identical across the two possible question
combinations, e.g., a1b1, a1b2 (Table 6). Additionally, there were 24 trials in total: eight
choice trials, where the participant can choose or not to check on their counterpart (as in
Experiments 1), eight trials for which the participant is forced to check, and eight trials for
which the participant is forced to not check.

4.3. Results

As expected, when participants did not check, choice proportions were nearly identi-
cal across matched pairs of question combinations (e.g., a1b1 good and a1b2 good, Table 7).
Once again, we were interested in the extent to which participants check on their coun-
terpart when they were meant to, notably in the case of a2b1 and a2b2 trials. For this
experiment, this analysis will only examine the trials when participants could decide
whether to check or not. We first confirmed that there was a difference in the overall
proportion of trials when participants checked vs. did not check, χ2 (1, n = 808) = 148.31,
p = < 0.001 (Table 3). Moreover, participants were more likely to check with a2b1 and a2b2
trials than for other ones (Table 4).

Table 7. Observed probabilities for all forced question combinations in Experiment 2 (n = 101 for
each cell), split by decision to deny or confess.

Checking No Checking

Deny Confess Deny Confess

Good

a1b1 0.94 0.06 0.93 0.07
a1b2 0.95 0.05 0.94 0.06
a2b1 0.66 0.34 0.69 0.31
a2b2 0.10 0.90 0.67 0.33

Bad

a1b1 0.05 0.95 0.04 0.96
a1b2 0.05 0.95 0.06 0.94
a2b1 0.39 0.61 0.67 0.33
a2b2 0.78 0.22 0.68 0.32

We next consider the individual differences measures. We computed d’, empathy
(TEQ), aversion (CU), engagement/reflection (CRT) scores and S for each participant, using
Equation (1) (focused on the trials when participants could choose whether to check or not).
The d’ coefficient was calculated as d′ = Φ−1(H)−Φ−1(F), where H and F are hits and
false alarms, respectively, and the Φ−1 function converts raw scores to z scores by fitting
a normal distribution (0, 1 mean and standard deviation) to scores from each participant
and then inverting [48]. Hits are considered instances of checking when the participants
are meant to be checking (on a2b1 and a2b2 trials) and false alarms instances of checking
when there would be no need for participants to check (on a1b1 and a1b2 trials). Note, due
to the small number of trials per participants, we had a large number of probabilities of
0 or 1, which we corrected by adding 1 to the number of trials and 0.5 to the counts of
hits and false alarms ([48], p. 144). Indeed, participants checked more so on a2b1 and a2b2
trials (hits) than they did in the other trials (false alarms). This is evident from the mean
d’ (M = 0.995, SD = 1.25) being above zero. All measures were then correlated with each
other, without a multiple comparisons correction, as the intention is exploratory. There
are two notable results. First, there was no relationship between individual participant S
scores and d’, r = −0.135, p = 0.18. Second, there was a negative relationship between S
and empathy, r = −0.23, p < 0.05. Higher values of S imply higher sensitivity to context,
which in this case means that a participant is better at recognizing when he/she should
reverse decisions, based on what his/her counterpart is doing. One possible explanation
for this result is that participants higher in empathy try to over-guess their counterpart’s
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action, at the expense of considering the statistical properties of the game. There were no
other significant results.

5. Modeling

It appears that participants are sensitive to the context of their associate’s decisions
in the PD variants we employed, but does this sensitivity to context push choice statistics
beyond the descriptive adequacy of classical models (of a certain kind) and, if yes, in what
way? This is the key research question in the present work. The aim of the two models
we will shortly present is to describe as closely as possible average choice statistics across
trials.

The data produced by the experiments has the form of eight probabilities, correspond-
ing to the decision of the participants to deny (plus) or confess (minus), when encountering
the different PD payoff matrices (sentencing policies). The recorded probabilities always
correspond to the participant deciding to plus. Therefore, for the a1b1 good matrix, the
observed probability is recorded as Prob(++) and in the case of the a1b1 bad matrix, the
observed probability is recorded as Prob(+−). Of course, we further inferred Prob(−+),
Prob(−−), etc.

We will present two models for the observed data, referred to as the classical hid-
den variables model (or just classical model) and the quantum model. It is more stan-
dard to formulate these models assuming a stochastic, rather than deterministic, asso-
ciate. Accordingly, we combined choice statistics from the good and bad trials using
e.g., Prob(++|a1b1) = Prob(++|a1b1 Good) · Prob(Good|a1b1) + Prob(++|a1b1 Bad) ·
Prob(Bad|a1b1) = Prob(++|a1b1 Good) · Prob(Good|a1b1), where Prob(Good|a1b1),
Prob(Bad|a1b1) refer to the probability of a good, bad game for a given choice of ques-
tions, respectively, and Prob(++|a1b1 Bad) = 0. Since in all cases we employed equal
proportions of good, bad trials, for each choice of questions, then Prob(Good|a1b1) =
Prob(Bad|a1b1) = 0.5.

6. Hidden Variables Classical Model

According to this model, for each of the two agents, there is a hidden variable λ
describing each sub-system, such that λA = −λB, with λA uniformly distributed over a
3D sphere. Note, this is an expression of perfect anti-correlation of the hidden variables
corresponding to the agents, as opposed to perfect correlation, but this difference is imma-
terial (this is illustrated for the quantum model in Appendix B, but the case is analogous
for the classical model). So, the main assumptions of the model are as follows. First, if
the same questions are asked, the participant will always perfectly coordinate in the same
way with the counterpart, that is, either always correlate or always anticorrelate; assuming
always-correlation, if the participant denies, it is assumed the counterpart will deny as well,
etc. Second, there is a specific value for all question outcomes at all times. The implication
of this more subtle assumption is that the participant should produce an outcome to her
question, independently of which question is asked to her counterpart. In physics, this
is the key realism assumption. Third, this model assumes locality and free choice. In
the present experiments, we endow participants with a means of violating locality, so
if they do this in a certain way, we expect the model to perform poorly. A final, minor
assumption is that the participant will generally recognize the optimal action in each trial
(corresponding to a lower sentence), and that she will always assume that her associate
will also take the optimal action. This assumption is minor because of the way the payoff
matrices were constructed, but if it is wrong, the model will just fail (both models will fail).
In what follows, instead of a participant and her counterpart, we sometimes talk about two
interacting agents, Alice and Bob.

The first agent is measured in two directions, a1, a2 and the second agent is measured
in two different directions, b1, b2. In the present psychological context, ‘directions’ just
correspond to the steer for action from each question, which is a function of the information
in the payoff matrix and the agent’s interpretation of this information (which will depend
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on his/her personality etc.). Non-trivial algebra shows that (e.g., [10]; note, the assumption
concerning the existence of the hidden variable λ impacts on how these probabilities
are derived):

Prob(++|a, b) =
θ

2π
= Prob(−−|a, b), Prob(+−|a, b) =

1
2
− θ

2π
= Prob(−+|a, b) (3)

The key parameter in Equation (3) is the angle θ, in radians, corresponding to the
correlation between a measurement direction a for Alice and b for Bob. So, the joint
probability for Alice and Bob to deny for question combination ab depends on the relation
between how Alice perceives question a and Bob question b. Note that when θ = 0, there
is an equal chance for Alice and Bob to anticorrelate in one way (plus, minus) vs. the
opposite way (minus, plus), which is just an expression of the assumption λA = −λB, in
the considered hidden variable model.

Since we have four pairs of measurement directions, a1b1, a1b2, a2b1, a2b2, then
there are four angles as the parameters of this model. But these parameters are not
independent. In the original physics set up they are actual measurement directions—
psychologically, there is a corresponding assumption regarding the extent to which the
two agents align or not in their consideration of questions. Suppose we have co-planar
measurement directions, without much loss of generality. Then, the Figure 1 arrangement
is a plausible representation of the four directions. Without loss of generality, we set θa = 0
and θb1, θb2 and θa2 as shown in Figure 1. Then, the four angles needed for the classical
model are given as a1b1 = θb1 mod π, a1b2 = θb2 mod π, a2b1 = (θa2 − θb1) mod π, and
a2b2 = (θa2 − θb2) mod π. The mod π function simply ensures that the angles for the four
question pairs stay within the 0 < angle < π limit. It is defined as:

mod π(x) =


i f x > 0,

{
i f x− π < 0, x

i f x− π > 0, 2π − x

i f x < 0,
{

i f x + π > 0,−x
i f x + π < 0, 2π + x

(4)

Figure 1. The arrangement of the four measurement directions.

We next consider the S value given this classical model. Prob(++|a1, b1) is the proba-
bility for both agents to +, when the questions are a1, b1, Prob(+−|a1, b1) the probability
for Alice to + and Bob to—etc. Each expectation value is given by 〈a&b〉 = 2θ

π − 1, where θ
is the angle between the measurement directions a, b. The overall result for the classical
model is then:

S =

∣∣∣∣−2 +
2
π
[θa1b1 + θa1b2 + θa2b1 − θa2b2]

∣∣∣∣ (5)
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Note, we have mentioned that for this classical model S is bounded by 2. It can be
shown that for θa1b1 + θa1b2 the max is 2π− θ and the min is θ, where θ is the angle between
b1, b2, and for θa2b1 − θa2b2 the max, min are θ and − θ. Together these results deliver the
classical limits for S.

7. Quantum Model

One of the most significant discoveries in the history of quantum theory has been
the capacity of the theory to break the classical S ≤ 2 bound, seemingly without violating
either locality or free choice. In the present paradigm, the situation is less philosophically
challenging, since we endow the two agents with a communication capacity to break
locality. Since the statistics produced by the quantum model are equivalent to classical
ones, but with a degree of violation of locality (or free choice; [32]), the quantum model
is a reasonable option for the present paradigm. The assumptions of the quantum model
are equivalent to those of the classical one, but for two differences. First, instead of the
Bayesian probability rules, we employ the probability rules from quantum theory. Second,
instead of a hidden variable capturing perfect coordination between the two agents, we
have the quantum property of entanglement (see just below). However, this is not true
(physical) quantum entanglement, but rather one of a more epiphenomenal flavor [40].

A column vector is denoted as |x〉, its conjugate transpose as 〈x|, and an inner product
between two vectors as 〈x|y〉. Since we are concerned with two systems (agents), we need to
employ tensor products to construct the joint state from the individual states, for example,
|x〉⊗|y〉 which can be written for brevity as |xy〉. We employ a qubit representation such
that 0 means an intention for a ‘−’ (minus) action (Confess) and 1 a ‘+’ action (Deny).
States are represented as |ψ〉 = a|x〉+b|y〉. Measurements can change the state, so if on
measuring ψ we obtain x the new state becomes |ψ〉=|x〉.

We start with state,
∣∣∣ψ+〉 = |00〉−|11〉√

2
, where the tensor structure is so that the first

index corresponds to Alice and the second to Bob (the subscript ‘+’ in |ψ+〉 simply indicates
a ‘correlation’ state). So, |00〉means that Alice is intending to minus and Bob to minus etc.
Note, in physics, the state used is typically the singlet state, which is an anticorrelation
state,

∣∣∣ψ−〉 = |01〉−|01〉√
2

. However, the predictions from |ψ+〉 are essentially identical but
for a fixed rotation of the measurement directions; so, for the purposes of model fitting,
this issue is irrelevant (in a way analogous to that for the classical model). The state |ψ+〉
is called entangled and is one of perfect coordination between the two agents, but now
using the rules of quantum theory. The predictions from the quantum model are then
(Appendix C).

Prob(++|a, b; ψ−) =
1
2

sin2
(

θ

2

)
= Prob(−−|a, b; ψ−), Prob(+−|a, b; ψ−) =

1
2

cos2
(

θ

2

)
= Prob(−+|a, b; ψ−) (6)

As before, the crucial parameter is the angle θ for each measurement direction. The
four angles are constrained as for the classical model (Figure 1), so that the quantum model
also has three parameters.

We can consider the computation for the Bell bound from the quantum model. We
have that the expectation values are given by 〈a&b〉 = − cos θ, where θ is the angle between
the two measurement directions. Then,

S = [− cos θa1b1 − cos θa1b2 − cos θa2b1 − (− cos θa2b2)] (7)

It can be immediately seen that if we set the angle for a1b1, a2b1, a1b2 to π
4 , with the

arrangement as in Figure 1, a2b2 is 3π
4 . Then S =

∣∣− cos π
4 − cos π

4 − cos π
4 − (− cos 3π

4 )
∣∣

= 2
√

2 > 2. In fact, though not obvious from the present discussion, a quantum model
cannot produce S values greater than 2

√
2 and 2

√
2 is called Tsirelson’s bound [31].
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8. Overview of the Two Models

The question we are interested in is whether a model satisfying realism, locality,
and free choice can model this data—this is the hidden variables classical model. The
answer is not automatically no because, even though locality is violated, it is an empirical
question whether participants recognize the need to employ non-local resources and use the
available information efficiently. If participants do not employ the non-local information,
then the results could still be described by a local model and S < 2. That is, in this situation,
the possibility of communication (checking) is clearly a necessary condition for participant
data to violate Bell’s bound, but it is not a sufficient one.

A related question is whether any use of local information can be modelled by a
quantum model (which is constrained by Tsirelson’s bound) or not. If not, then participants’
checking behavior and use of the corresponding information would be greater than what
is allowed by quantum theory.

Because there is communication in this case, it is likely that there is signaling as well.
If there is signaling, the bound of S = 2 is clearly not a fundamental limitation on how a
system behaves. However, there is still an empirical question on how people behave, and
we can ask the question (as above) of whether human behavior can be characterized by
a local model (S < 2), a nonlocal model constrained by Tsirelson’s bound (the quantum
model), or something else.

Table 8 shows the predictions from both models, where probabilities correspond to
averaged data across multiple trials. This is easier to show by retaining the reference to the
good, bad matrices, bearing in mind that in the fitted data we average probabilities across
these two experimental situations to better match the actual models.

Table 8. Correspondence between observed probabilities and predictions from the classical and quantum models.

Term Observed Probability Classical Prediction Quantum Prediction

a1b1 good Prob(++) Prob(++) = θ
2π Prob(++) = 1

2 sin2
(

θ
2

)
a1b1 bad

Prob(+−)
Bob will—in this case, but the probability

we measure is for the participant to +.
Prob(+−) = 1

2 −
θ

2π Prob(+−) = 1
2 cos2

(
θ
2

)
a1b2 good Prob(++) Prob(++) = θ

2π Prob(++) = 1
2 sin2

(
θ
2

)
a1b1 bad Prob(+−) Prob(+−) = 1

2 −
θ

2π Prob(+−) = 1
2 cos2

(
θ
2

)
a2b1 good Prob(++) Prob(++) = θ

2π Prob(++) = 1
2 sin2

(
θ
2

)
a2b1 bad Prob(+−) Prob(+−) = 1

2 −
θ

2π Prob(+−) = 1
2 cos2

(
θ
2

)
a2b2 good (Bob ‘+’s) Prob(++)

But recall this should now be low. Prob(++) = θ
2π Prob(++) = 1

2 sin2
(

θ
2

)
a2b2 bad (Bob ‘−’s) Prob(+−)

This should be high. Prob(+−) = 1
2 −

θ
2π Prob(+−) = 1

2 cos2
(

θ
2

)

9. Model Fitting

Fits were assessed with Maximum Likelihood Estimation (MLE), using the G2 expres-
sion for summary statistics in an experiment, G2 = 2N ∑

trial types

(
oi ln oi

ei
+ (1− oi) ln 1−oi

1−ei

)
=

2N ∑
i,j={+,−}

(
Prob(ij, observed) ln Prob(ij,observed)

Prob(ij,model)

)
, where N is the number of observations

and oi, ei observed and expected probabilities for each trial type. Best fit for the models
was identified through directed grid search with a step size for angle differences of 0.1; all
parameters were taken to be uniformly distributed in a [0, 2π] range. For simplicity, since
N was nearly identical for the two experiments, we ignored it in computing G2.
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10. Fit Results

Table 9 shows observed, classical predicted, and quantum predicted probabilities.
Observe that for the a1b1, a1b2, and a2b1 pairs we recorded higher probabilities along the
diagonals of the corresponding cells, but for the a2b2 pair, the opposite is true. This is the
essential impression of supercorrelation and sensitivity to context: participants respond
differently to question a2 depending on whether his/her counterpart received question b1
(correlation) vs. b2 (anticorrelation).

Table 9. The observed and fitted results for Experiments 1 (left) and 2 (right).

b1+ b1− b2+ b2− b1+ b1− b2+ b2−
a1+ 0.47 0.06 0.485 0.05 a1+ 0.47 0.035 0.46 0.025
a1− 0.03 0.44 0.015 0.45 a1− 0.03 0.465 0.04 0.475
a2+ 0.47 0.055 0.14 0.38 a2+ 0.34 0.25 0.155 0.425
a2− 0.03 0.445 0.36 0.12 a2− 0.16 0.25 0.345 0.075

Empirical probabilities Empirical probabilities
b1+ b1− b2+ b2− b1+ b1− b2+ b2−

a1+ 0.398 0.102 0.427 0.073 a1+ 0.446 0.054 0.459 0.041
a1− 0.102 0.398 0.073 0.427 a1− 0.054 0.446 0.041 0.459
a2+ 0.398 0.102 0.223 0.277 a2+ 0.255 0.245 0.159 0.341
a2− 0.102 0.398 0.277 0.223 a2− 0.245 0.255 0.341 0.159

Probabilities predicted by the classical model Probabilities predicted by the classical model
b1+ b1− b2+ b2− b1+ b1− b2+ b2−

a1+ 0.448 0.052 0.45 0.05 a1+ 0.474 0.026 0.476 0.024
a1− 0.052 0.448 0.05 0.45 a1− 0.026 0.474 0.024 0.476
a2+ 0.45 0.05 0.159 0.341 a2+ 0.307 0.193 0.095 0.405
a2− 0.05 0.45 0.341 0.159 a2− 0.193 0.307 0.405 0.095

Probabilities predicted by the quantum model Probabilities predicted by the quantum model

We computed three S values, one for the observed choice probabilities, one for the
predicted probabilities based on the classical model, and one for the predicted probabilities
based on the quantum model. Note that, for Experiment 2, empirical S was computed
on the basis of the trials for which participants could freely choose whether to check on
their associate or not. For Experiment 1, the empirical S, best fit classical S, and best fit
quantum S were, respectively, 3, 2 (G2 = 0.46), and 2.76 (G2 = 0.08). For Experiment 2,
the corresponding values were 2.46, 2 (G2 = 0.17), and 2.65 (G2 = 0.09). Bootstrapped
95% confidence intervals for the empirical S values were [2.73, 3.23] for Experiment 1 and
[2.23, 2.71] for Experiment 2. The confidence intervals were computed by first calculating
individual S values for each participant (only choice trials were used in this computa-
tion). Means were then calculated from each of the 1000 bootstrap samples created (each
bootstrapped sample was a random choice of N values from the original sample, with
replacement, where N = number of values in the sample, i.e., the number of participants).
Finally, the bootstrapped means were sorted and quantiles of 0.025 and 0.975 were utilized
to indicate the 95% confidence intervals for each participant. In all cases, the empirical data
show S > 2, which demonstrates sensitivity to context and the impossibility of a four-way
classical probability distribution to explain the data. The classical model resulted in worse
fits than the quantum one, with the latter producing S values closer to the observed ones.
Note that while the quantum model is able to capture a certain kind of sensitivity to context,
of course it cannot describe any behavior [31].

Using the forced checking and non-checking trials in Experiment 2, we computed
S values for checking and non-checking trials for each participant. Note, in this case, it
is only checking trials that should allow a violation of the S ≤ 2 bound—therefore, for
non-checking trials, it must be the case that S ≤ 2. When participants were not checking
on their associate, S for the good and bad trials respectively were 1.78 and 1.82; when
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checking, we observed 2.91 and 2.59, respectively. The difference in S between checking
(averaged across good, bad matrices 2.75) and non-checking trials (averaged across good,
bad matrices 1.80) was reliable, Z = −6.44, p < 0.001 (using the Wilcoxon Signed Rank Test,
as the normality assumption would be suspect here).

11. Signaling

We finally, briefly consider the issue of signaling, for completeness. We can define a
signaling quantity as:

IS = ∑
i=1,2
|〈ai〉b1 − 〈ai〉b2|+ ∑

j=1,2
|〈bi〉a1 − 〈bi〉a2|

= |〈a1〉b1 − 〈a1〉b2|+ |〈a2〉b1 − 〈a2〉b2|+ |〈b1〉a1 − 〈b1〉a2|+ |〈b2〉a1 − 〈b2〉a2|
(8)

where the expectation values are defined as expected, for example, 〈a1〉b1 = (+1)
·(Prob(++|a1b1) + Prob(+−|a1b1)) + (−1)·(Prob(−+|a1b1) + Prob(|a1b1)). Note, the
max value for IS is 8, when communication in both directions is considered (this is rel-
evant in evaluating the size of the observed IS values). We review a point which may
lead to confusion: the probabilities in Tables 5 and 7 are not exactly the ones appearing
in these expectation values. This is because, in Tables 5 and 7, we counted probabilities
separately for the Good and Bad matrices, i.e., the probabilities in Tables 5 and 7 are e.g.,
Prob(++|a1b1, Good). Therefore, as seen above too, we need to compute Prob(++|a1b1) =
Prob(+ + Good|a1b1) + Prob(+ + Bad|a1b1), but recall Prob(+ + Bad|a1b1) = 0. So,
Prob(++|a1b1) = Prob(+ + Good|a1b1) = Prob(++|a1b1, Good)·Prob(Good|a1b1) =
Prob(++|a1b1, Good) 1

2 , because in the present design Prob(Good|a1b1) = Prob(Bad|a1b1) =
1/2 (meaning the probability of having a ‘good’ payoff matrix etc.; the same applies for
all question combinations). The probabilities Prob(++|a1b1, Good) etc. are the ones in
Tables 5 and 7 and so in computing the expectation values for IS, all probabilities from
Tables 5 and 7 need to be multiplied by a factor of 1

2 (the same applies to the calculations
for the S values presented in Table 10).

Table 10. Contextuality tests for Experiments 1 and 2.

S IS |S|−IS

Exp1 checking 3.2 0.08 3.12
Exp1 no-checking 2.45 0.33 2.12

Exp2 checking 2.74 0.18 2.56
Exp2 no-checking 1.8 0.04 1.76

We computed IS separately for each experiment and for the checking vs. no checking
trials. For Experiment 1, for the checking and no checking trials we observed, respectively,
that IS = 0.08 and IS = 0.33. The corresponding values in Experiment 2 were IS = 0.08
and IS = 0.04. In Experiment 2, the results are as expected, since there is more signaling
in the checking trials (ostensibly as a result of communication). In Experiment 1, even
though for the no checking trials there was no communication, we still observed sizeable
signaling. Signaling in Experiment 1 would be the result of the lack of balancing between
the payoff matrices (as discussed in detail above). A consideration of signaling is clearly
useful as a way to establish whether there might be unintended causal influences in the
experimental statistics (as in Experiment 1). However, the non-zero IS in Experiment
2 in the no checking trials indicates that signaling may be apparent even when there
is no plausible corresponding mechanism, perhaps as a result of noise [16]. This does
recommend caution when employing signaling in such experiments, especially when the
N is small (as would be the case in behavioral experiments).

The calculation of the signaling quantifiers IS allows us to test for contextuality in the
sense of [15], which we do here for completeness. According to this work, contextuality is
present whenever |S| − IS > 2 (the S here refers to the maximum one between the four pos-
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sible ways to compute it; here, we focused only on S = |〈a1&b1〉+ 〈a1&b2〉+ 〈a2&b1〉 −
〈a2&b2〉|, which is most relevant to our experimental design). In Table 10, we offer a
complete record of relevant S values for the checking/ no checking quantifiers separately,
for both experiments, as well as the quantities |S| − IS, which are, as it happens, indicative
of contextuality.

12. General Discussion

Sensitivity to context is an important insight concerning the representation of informa-
tion, whether in physics, data science, or psychology. Outside the physics of microscopic
particles, it is assumed that there are no true quantum processes, and the study of sen-
sitivity to context leads one to question the mechanism that supports it. In psychology,
some pioneering work has been carried out so that both sets of questions, {a1, a2} and {b1,
b2}, would be answered by the same participant, or in any case concern mental processes
focused on the individual (e.g., [24,28]). Such approaches cannot be adapted to the inter-
action between separate agents because, in general, without communication there is no
possibility of breaking Bell’s bound (or without rigging the choice of the questions asked
to each agent).

For the first time, in this study we developed an approach enabling the application of
the Bell framework in the interaction of two cognitive (and so macroscopic) agents. We
considered putative locality violations as an information resource, that two interacting
agents can employ at will (cf. [32]). We developed a simple empirical paradigm which
embodied sensitivity to context in its structure, as a variant of a PD task [2] Empirical results
showed that participants were sensitive to this context and the empirical S values exceeded
Bell’s bound. As noted, this is not surprising, given the structure of the payoff matrices
we employed. The more surprising implication is that this sensitivity prevented fits by a
simple classical model and therefore shows another way in which PD tasks and variants
can produce results problematic for baseline expectation from classical probability theory.
‘Baseline’ is a key qualification here since, as noted above, a classical model incorporating
communication could be developed to account for the present results. Therefore, the
present situation is not unlike most so-called paradoxes in probabilistic inference, for which
a baseline classical probability approach appears erroneous, but it is always possible to
offer accommodating elaborations (e.g., faced with a result such as Prob(X&Y) > Prob(X),
one could write Prob(X&Y|A) > Prob(X|B)).

Theoretically, we fitted two closely matched models, a classical and a quantum one.
The latter produced superior fits. This conclusion adds to the body of evidence that
quantum theory sometimes offers a good descriptive framework for behavior [33,34].
Elsewhere, we have suggested that this is because quantum theory looks like Bayesian
inference, but in a local way [49]. That is, a set of questions for which it is impossible
to have a complete joint probability distribution (e.g., because of resource limitations) is
divided into subsets, such that within each subset—locally—we have Bayesian inference,
but across subsets apparent classical errors arise. The idea that behavior is ‘locally rational’
has a precedent in psychology [50,51].

Note that the immediate availability of locality violations to the participants makes
it unlikely that any results showing S > 2 would be due to ‘correlations of the second
kind’, as discussed by S. Aerts and D. Aerts [19,21,52]. In Experiment 2, when participants
would check on the hypothetical counterpart we observed S > 2 and when they would not,
S < 2, showing that any apparent sensitivity to context was not brought about just by the
measurements (decisions) themselves.

From the point of view of a physicist, the present results are interpreted as sensitivity
to context, due to communication, regardless of whether this sensitivity to context is due to
signaling or not. As noted, rather than considering signaling a nuisance influence, in this
case we are interested in it, as a possible way in which Alice makes use of the information
she has about Bob′s questions.
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There have been several challenges in realizing this project. First, the notion of
applying the Bell framework to the interaction of cognitive agents superficially goes against
the grain of Bell’s work in physics. To address this problem, we had to formalize a notion of
violations of locality or free choice, as information resources, which can be adopted vs. not
at will (our formal work on this topic is reported in [32], as well as consider the distinction
between context sensitivity and contextuality (for the latter see [15]). Second, adapting the
classical and quantum models developed for systems of microscopic particles in physics to
behavioral data required careful consideration of the underlying assumptions of the models
and how they could be matched to behavioral situations. Third, the difference between
contextuality and sensitivity to context and the restrictive (or not) role of signaling in Bell-
type paradigms are highly contentious issues. We think the approach we chose is justified,
but equally we have offered additional analyses which we hope will allow researchers
of differing opinions to still appreciate the results. Finally, reporting the research was
challenging: the primary audience for this work is cognitive scientists, but we also hope
to interest physicists and mathematicians familiar with Bell who might be intrigued by
applications outside physics. But the mathematics is likely to be unfamiliar and challenging
to cognitive scientists, while the details of the behavioral paradigm unfamiliar to physicists
and mathematicians. Overall, interdisciplinary work of this kind, while conceptually
exciting and potentially rewarding, is fraught with challenges—we can only hope that we
have been at least partly successful in overcoming them.

The present analysis has practical potential. Consider two agents, Alice and Bob, for
whom it is in their interest to supercorrelate, but such that they are not meant to break
locality and free choice, e.g., they are not meant to communicate. Alice and Bob might be
an employee in a tech firm and a stockbroker considering investment opportunities in that
firm, respectively. The present framework could be employed to determine whether Alice
and Bob benefit from supercorrelation, either on the basis of violations of locality (which
may reveal illegal insider trading) or free choice (which could correspond to Alice and
Bob independently being sensitive to market conditions which determine the ‘questions’
each one of them has to respond to, at a given time). Clearly, the applicability of such an
analysis depends largely on how the questions for each agent are specified and whether
there is advantage in supercorrelation, which may not be very often.

In closing, we hope that the present work will further encourage researchers to
employ the notion of contextuality and the corresponding technical tools in the study of
the interaction between multiple agents.
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Appendix A

An example of how S > 2 means that the counts or proportions for four binary
questions are inconsistent, that is, they do not obey the expected sum rules (if a 4 × 4 table
is employed for representation).

Below we show a table of probabilities, which could be computed from frequencies in a
behavioral experiment (Table A1). We try to fill it in assuming maximum correlation for the
three first pairs and then maximum anticorrelation for the last pair. For a pair of questions,
e.g., a and b, there are four cells, and the sum of the corresponding probabilities must be
one. That is, Prob(a + ∧b+)+ Prob(a + ∧b−) + Prob(a−∧b+)+ Prob(a−∧b−) = 1 (the
notation a+ means a plus outcome for question a). This constraint is a simple implication
of the fact that these probabilities span all the space of possibilities for the outcomes of any
pair of two questions. Let us first consider the highlighted cells, corresponding to the a, b
pair of questions.

Table A1. A sequence of tables to illustrate the implications of S > 2: a and b.

b = + b = − b′ = + b′ = −
a = +
a = −
a′ = +
a′ = −

Because we are assuming maximum correlation, we can set Prob(a + ∧b+) = p and
Prob(a−∧b−) = 1 − p = q, with the other probabilities equal to 0 (we leave blank the cells
corresponding to 0 probabilities). Table A1 then becomes:

Table A2. A sequence of tables to illustrate the implications of S > 2: computating a and b.

b = + b = − b′ = + b′ = −
a = + p
a = − q
a′ = +
a′ = −

We then consider the cells corresponding to the a, b′ pair of questions, and the cells
corresponding to the a′, b pair of questions.

Table A3. A sequence of tables to illustrate the implications of S > 2: a, b′ and a′, b.

b = + b = − b′ = + b′ = −
a = + p
a = − q
a′ = +
a′ = −

Note the highlighted parts below are constrained from the white part. For example,
consider the highlighted a+ row. If we set one of the cells, e.g., Prob(a + ∧b′+), then the
other probability follows, from the law of total probability:

Prob(a+) = Prob
(
a + ∧b′+

)
+ Prob

(
a + ∧b′−

)
= Prob(a + ∧b+) + Prob(a + ∧b−)

The second part of the equation is known (from the white part of the table),
Prob(a + ∧b+)+ Prob(a + ∧b−) = p. In physics this condition is called non-signaling, i.e.,
the marginal probability Prob(a+) does not depend on the other question b or b′. So, in
filling in the highlighted parts of the table we only need to worry about one probability in
each row. This one probability can be set on the basis of the logic above, p and q = 1 − p for
the terms which are meant to be correlating, so ending up with:



Mathematics 2021, 9, 2784 22 of 29

Table A4. A sequence of tables to illustrate the implications of S > 2: computing a, b′ and a′, b.

b = + b = − b′ = + b′ = −
a = + p p
a = − q q
a′ = + p
a′ = − q

We note that the locality and free choice assumptions are equivalent to an assumption
of lack of contextuality for all questions. That is, lack of contextuality must mean that e.g.,
Prob(a′) is the same regardless of context, that is, regardless of whether it is measured with
b or b′. Therefore, we would have that

Prob
(
a′+

)
= Prob

(
a′ + ∧b+

)
+ Prob

(
a′ + ∧b−

)
= Prob

(
a′ + ∧b′+

)
+ Prob

(
a′ + ∧b′−

)
= p

Prob
(
a′−

)
= 1− Prob

(
a′+

)
= 1− p = q

Prob
(
b′+

)
= Prob

(
a + ∧b′+

)
+ Prob

(
a−∧b′+

)
= Prob

(
a′ + ∧b′+

)
+ Prob

(
a′ −∧b′+

)
= p

Prob
(
b′−

)
= 1− Prob

(
b′+

)
= 1− p = q

We highlight the cells relevant to the first constraint, for Prob(a′+), in Table A5 below.

Table A5. A sequence of tables to illustrate the implications of S > 2: illustrating constraints.

b = + b = − b′ = + b′ = −
a = + p p
a = − q q
a′ = + p
a′ = − q

Note that the above marginal conditions lead to:

Prob
(
a′+

)
= Prob

(
b′+

)
= p

And likewise
Prob

(
a′−

)
= Prob

(
b′−

)
= q

What remains is to fill the bottom right part of the table in a way that reflects the
anticorrelation pattern for a′b′, i.e., so that the diagonal elements vanish

Prob
(
a′ + ∧b′+

)
= Prob

(
a′ + ∧b′−

)
= 0

Now, by the same logic as above, we arrive at

Prob
(
a′+

)
= Prob

(
a′ + ∧b′−

)
= Prob

(
b′−

)
,

Prob
(
a′−

)
= Prob

(
a′ + ∧b′+

)
= Prob

(
b′+

)
,

which entails that p = q = 0.5. Thus, we obtain Table A6b. The reader may compare this
table with the case when all questions maximally correlate. The derivation follows the
same pattern except the last step, which in this case does not fix probabilities p and q. See
Table A6a for comparison.

Note that in Table A6a, with p = q = 0.5, individually each answer is a coin toss, but
looking at Alice and Bob together they perfectly coordinate for questions ab, ab′ and a′b
and perfectly anticorrelate for questions a′b′. This is an instance of the famous PR-box
(Popescu-Rohrlich box) considered in the physics literature [13]. In the present work, we
aim to provide an analogue for the interaction of two agents.
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However, contextuality, or its lack of it, does not help us see how violation of the Bell
bound is inconsistent with the existence of a four-way probability distribution. This can be
readily seen by comparing the two tables below, Table A6a,b.

Table A6. A sequence of tables to illustrate the implications of S > 2. Note, (a) is ‘classical’, while (b)
is ‘contextual’ (the response to a′ depends on whether Bob answers b or b′).

b = + b = − b′ = + b′ = − b = + b = − b′ = + b′ = −
a = + p p a = + 0.5 0.5

a = − q q a = − 0.5 0.5

a′ = + p p a′ = + 0.5 0.5

a′ = − q q a′ = − 0.5 0.5

(a) (b)

In order to show that the right table is contextual and therefore inconsistent with
classical probability theory, we need to make use of the overarching assumption that there
exists a complete (four-way in this case) classical probability distribution.

Prob(a′ + ∧b′−)
= Prob(a′ + ∧b′ −∧a + ∧b+) + Prob(a′ + ∧b′ −∧a + ∧b−)
+Prob(a′ + ∧b′ −∧a−∧b+) + Prob(a′ + ∧b′ −∧a−∧b−)

If we know a part of a conjunction to be 0 then a more restrictive conjunction will be 0
too:

Prob(a′ + ∧b′ −∧a + ∧b+) is 0 because Prob(b′ −∧a+) = 0
Prob(a′ + ∧b′ −∧a + ∧b−) is 0 because Prob(b′ −∧a+) = 0
Prob(a′ + ∧b′ −∧a−∧b+) is 0 because Prob(a−∧b+) = 0
Prob(a′ + ∧b′ −∧a−∧b−) is 0 because Prob(a′ + ∧b−) = 0
So, Prob(a′ + ∧b′−) = 0 and analogously Prob(a′ −∧b′+) = 0
But then:

Prob
(
a′ + ∧b′+

)
+ Prob

(
a′ + ∧b′−

)
= Prob

(
a′ + ∧b+

)
+ Prob

(
a′ + ∧b−

)
⇔ Prob

(
a′ + ∧b′+

)
= 0.5

Prob
(
a′ −∧b′−

)
+ Prob

(
a′ −∧b′+

)
= Prob

(
a′ −∧b+

)
+ Prob

(
a′ −∧b−

)
⇔ Prob

(
a′ −∧b′−

)
= 0.5

This is in contradiction with Table A6b where Prob(a′ + ∧b′+) = Prob(a′ + ∧b′+) = 0.
The above shows that (baseline classically) the probabilities are constrained to be set in a
certain way. The contextuality needed to break the Bell bound is not allowed.

Appendix B

We show that quantum predictions are equivalent for all maximally entangled states
(note that for the classical model it is straightforward to see that the model can easily adjust
itself depending on whether perfect correlation or anti-correlation between the agents
is assumed). This equivalence is up to a simple transformation of the angles employed.
Therefore, it has little impact in model fits whether we employ a perfect correlation state
(which fits our empirical situation well) or a perfect anticorrelation one (which is the
standard state for this kind of analysis).

We know that for the Bell singlet state

|ψ−〉 =
|01〉−|10〉√

2

the statistics of measurement outcomes in directions a for Alice and b for Bob is given by
the formula

〈ab〉ψ− = 〈ψ−|a·σA ⊗ b·σB|ψ−〉 = −a·b = − cos θab



Mathematics 2021, 9, 2784 24 of 29

Suppose we want to get statistics for the same measurement on a different maximally
entangled state, such as

|ψ〉 = |φ0〉 |ξ0〉+|φ1〉 |ξ1〉√
2

with some orthogonal basis states |φ0〉, |φ1〉 for Alice and |ξ0〉, |ξ1〉 for Bob. The trick is to
observe that there exist two unitaries U and V such that

|0〉A
U→ |φ0〉A, |1〉A

U→ |φ1〉A

|1〉B
V→ |ξ0〉B, |0〉B

V→ |ξ1〉B
Note that these unitaries are realized as rotations of the Bloch sphere for the respective

Alice and Bob′s qubit, i.e., we have (cf. [53], Chapter 4.2)

U = Rn̂A(θA), V = Rn̂B(θB)

Clearly, we have
|ψ〉 = U ⊗V|ψ−〉

Now, we compute

〈abψ〉 = 〈ψ
∣∣a⊗ σA ⊗ b⊗ σB

∣∣ψ〉 = 〈ψ−∣∣(U† ⊗V†)a·σA ⊗ b·σB(U ⊗V)
∣∣ψ−〉

= 〈ψ−
∣∣(U†a·σAU

)
⊗
(
V†b·σBV

)∣∣ψ−〉 = 〈ψ−∣∣a′·σA ⊗ b′·σB
∣∣ψ−〉 = 〈a′b′〉ψ− = −a′·b′

= − cos θa′b′

where a′ = Rn̂A(−θA)a and b′ = Rn̂B(−θB)b. The bottom line is that we treat 〈ab〉ψ as if it
was 〈a′b′〉ψ− (i.e., just measuring in different measurement basis).

That is, we are able to conclude that 〈ab〉ψ = 〈a′b′〉ψ− . We either look for angles which
produce best fit to our data, assuming ψ or different angles which produce best fit to our
data, assuming ψ−. The two pictures are equivalent and the two sets of angles are linearly
related to each other.

Appendix C

We review the derivation of choice probabilities for the quantum model (which is
fairly standard in physics).

In text, we employed |ψ+〉 = |00〉−|11〉√
2

, but recall that for a maximally entangled
state, such as |ψ+〉, joint probabilities are unaffected, but for a fixed rotation on the angles,
regardless of which maximally entangled state we employ, whether it is an anti-correlation
one, such as |ψ−〉 = |01〉−|10〉√

2
or a correlation one, such as |ψ+〉 = |00〉−|11〉√

2
(this can be

shown fairly easily). Specifically, below we proceed with |ψ−〉, as is standard in physics
discussions, but if a reader wishes to know the exact predictions for |ψ+〉 all that is needed
is to transform the angles as θ′ = θ + π.

First, we need to show that a state |ψ−〉 = |01〉−|10〉√
2

can be written in any alternative,
equivalent basis.

Starting with the Bell state

|ψ−〉 =
|01〉−|10〉√

2

We seek to express it in the alternative basis

|±〉 = 1√
2
(|0〉±|1〉)
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where |0〉 =
(

1
0

)
= | ↑〉 , |1〉 =

(
0
1

)
= | ↓〉 . We have

|+〉 = 1√
2
(|0〉+|1〉 )

|−〉 = 1√
2
(|0〉−|1〉 )

Which means

|+〉+ |−〉 = 2√
2
|0〉 ⇔ |0〉 =

√
2

2
(|+〉+ |−〉 )

|+〉 − |−〉 = 2√
2
|1〉 ⇔ |1〉 =

√
2

2
(|+〉 − | − x〉 )

So,

|ψ−〉 = |01〉−|10〉√
2

= 1
2
√

2
((|+〉+|−〉)⊗ (|+〉−|−〉)− (|+〉−|−〉)↔ (|+〉+|−〉))

= 1
2
√

2
(|++〉−|+−〉+|−+〉−|−−〉−|++〉−|+−〉+|−+〉+|−−〉)

= 1
2
√

2
(−|+−〉+|−+〉−|+−〉+|−+〉) = 1√

2
(|−+〉−|+−〉)

Therefore, as long we can write

| ± n〉 = 1√
2
(|0〉±|1〉 )

then we can have
|ψ−〉 =

1√
2
(|n−n+〉−|n+n−〉 )

Second, we derive the expression for the joint probabilities for two measurement
directions, e.g., a · σA on particle A, a · σA = axσx + ayσy + azσz. To find Prob(+|a; ψ−), to
mean + outcome for the a · σA observable, we rewrite ψ− in the |±a〉 basis,

|ψ−〉 =
1√
2
(|a−a+〉−|a+a−〉)

Therefore,

Prob(+|a; ψ−) = |Pa+ ⊗ I
1√
2
(|a−a+〉−|a+a−〉) |

2
=

1
2
|a+a−〉|2 =

1
2

And clearly Prob(−|a; ψ−) =
1
2 too.

By analogy, we have Prob(+|b; ψ−) = Prob(−|b; ψ−) = 1
2 . In order to compute

probabilities for simultaneous measurements on both particles for a · σA on the first particle
and b · σB on the second particle, we must express |ψ−〉 in the basis for a · σA and then
compute the dot product between Pb+ and |a+〉, |a−〉.

Prob(++|a, b; ψ−) = |Pa+ ⊗ Pb+
1√
2
(|a−a+〉−|a+a−〉) |

2
=

1
2
||a+〉⊗Pb+|a−〉|2 =

1
2
|Pb+|a−〉|2 =

1
2
| b+|a−〉|2

Prob(+−|a, b; ψ−) = |Pa+ ⊗ Pb−
1√
2
(|a−a+〉−|a+a−〉) |

2
= 1

2 ||a+〉⊗Pb−|a−〉|2 = 1
2 |Pb−|a−〉|2 = 1

2 |〈b−|a−〉|
2

= 1
2 |〈b+|a+〉|

2
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In order to compute |〈b+|a+〉|2 we need to identify the eigenvectors of the operator

a · σA =

(
az ax − iay

ax + iay −az

)
=

(
cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
, where θ is the polar and ϕ

is the azimuthal angle. Given this, the eigenvectors of a · σA are |+ a〉 =
(

cos θ
2

sin θ
2 eiϕ

)
,

| − a〉 =
(

sin θ
2

− cos θ
2 eiϕ

)
.

Then,

|〈b+|a+〉|2 =
∣∣∣cos θa

2 cos θb
2 + sin θa

2 sin θb
2 ei(ϕa−ϕb)

∣∣∣2
=
∣∣∣cos θa

2 cos θb
2 + sin θa

2 sin θb
2 cos(ϕa − ϕb) + i sin θa

2 sin θb
2 sin(ϕa − ϕb)

∣∣∣2
where we use eix = cos x + i sin x. Then,

|〈b+|a+〉|2 =
(

cos θa
2 cos θb

2 + sin θa
2 sin θb

2 cos(ϕa − ϕb)
)2

+
(

sin θa
2 sin θb

2 sin(ϕa − ϕb)
)2

=
(

cos θa
2 cos θb

2

)2
+
(

sin θa
2 sin θb

2 cos(ϕa − ϕb)
)2

+2 cos θa
2 cos θb

2 sin θa
2 sin θb

2 cos(ϕa − ϕb) +
(

sin θa
2 sin θb

2 sin(ϕa − ϕb)
)2

=
(

cos θa
2 cos θb

2

)2
+
(

sin θa
2 sin θb

2

)2(
cos2(ϕa − ϕb) + sin2(ϕa − ϕb)

)
+2 cos θa

2 cos θb
2 sin θa

2 sin θb
2 cos(ϕa − ϕb)

=
(

cos θa
2 cos θb

2

)2
+
(

sin θa
2 sin θb

2

)2
+ 2 cos θa

2 cos θb
2 sin θa

2 sin θb
2 cos(ϕa − ϕb)

We now need to employ some trigonometric identities:
(

cos θ
2

)2
= 1+cos θ

2 ,
(

sin θ
2

)2
=

1−cos θ
2 , sin θ = 2 sin θ

2 cos θ
2 , cos(ϕa − ϕb) = cos(ϕa) cos(ϕb) + sin(ϕa) sin(ϕb), sin θ =

2 sin θ
2 cos θ

2

|〈b+|a+〉|2 = 1+cos θa
2

1+cos θb
2 + 1−cos θa

2
1−cos θb

2

+ 1
2 sin θa sin θb(cos(ϕa) cos(ϕb) + sin(ϕa) sin(ϕb))

= 1
4 (1 + cos θa + cos θb + cos θa cos θb) +

1
4 (1− cos θa − cos θb + cos θa cos θb)

+ 1
2 sin θa sin θb(cos(ϕa) cos(ϕb) + sin(ϕa) sin(ϕb))

1
2 (1 + cos θa cos θb + sin θa sin θb cos(ϕa) cos(ϕb) + sin θa sin θb sin(ϕa) sin(ϕb))

We next have to use next the identities ax = sin θ cos ϕ, ay = sin θ sin ϕ, az = cos θ

|〈b+|a+〉|2 =
1
2
(
1 + azbz + axbx + ayby

)
=

1
2
(1 + cos θab) = cos2 θab

2

where θab is the angle between directions a, b.
So, as required, we have

Prob(+−|a, b; ψ−) =
1
2

cos2
(

θ

2

)
= Prob(−+|a, b; ψ−)

In order to compute |〈b+|a−〉|2 we note again | + a〉 =

(
cos θ

2
sin θ

2 eiϕ

)
, | − a〉 =(

sin θ
2

− cos θ
2 eiϕ

)
, so that

|〈b+|a−〉|2 = |cos
θa

2
sin

θb
2
− sin

θa

2
cos

θb
2

ei(ϕa−ϕb)|2
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Which then gives us

Prob(−−|a, b; ψ−) =
1
2

sin2
(

θ

2

)
= Prob(++|a, b; ψ−)

With a quick ‘sanity’ check on the above calculations, namely if θ = 0 then we have
the same direction of measurement for both particles. However, such an angle gives us
Prob(++|a, b; ψ−) = 0, consistent with the assumption, since the two sub-systems are
meant to be anti-correlated.

Finally, we can use the above to compute the correlator for the S quantity for the
quantum model. Note, first of all, the definition of the expected value of an observable
in quantum theory, if a physical quantity A and a state of the system are represented
respectively by the self-adjoint operator A and the normalized vector ψ ∈ H, then the
expected value

〈
Aψ

〉
of A is 〈A〉ψ = 〈ψ, Aψ〉.

The observable a · σA ⊗ b · σB has a spectral decomposition

a · σA ⊗ b · σB = ∑
i

λiPi = P+ ⊗ P+ − P+ ⊗ P− − P− ⊗ P+ + P− ⊗ P−

The expectation value of observable a · σA ⊗ b · σB is then given by,

ψ−|a · σA ⊗ b · σB|ψ− = ψ−|P+ ⊗ P+ − P+ ⊗ P− − P− ⊗ P+ + P− ⊗ P−|ψ−
= Prob(++|a, b; ψ−)− Prob(+−|a, b; ψ−)− Prob(−+|a, b; ψ−) + Prob(−−|a, b; ψ−)

= 1
2 sin2

(
θ
2

)
− 1

2 cos2
(

θ
2

)
− 1

2 cos2
(

θ
2

)
+ 1

2 sin2
(

θ
2

)
= sin2

(
θ
2

)
− cos2

(
θ
2

)
= 1−cos θ

2 − 1+cos θ
2 = − cos θ = −a·b

The interpretation of this expectation value is that it is the average value of the product
of outcome value for the first sub-system times outcome value for the second sub-system,
where outcome for the first sub-system is measured along a and outcome for the second
sub-system is measured along b.
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