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Abstract: Chaos systems have been widely used in image encryption algorithms. In this article, we
introduce an LB (Logistic-Baker) compound chaotic map that can greatly improve the complexity of
original Logistic map and Baker map, as well as the generated sequences have pseudo-randomness.
Furthermore, based on the LB compound chaotic map, an image encryption algorithm is proposed.
To resist the differential attack, and enhance the sensitivity of plain-text, the parameters of this
algorithm are plain-text related. In this algorithm, the compound chaotic function is influenced by
the plain-text image; thus, the specific form of this chaotic map, and its dynamics will be different
when encrypting different images. Numerical experiment results indicate that the effect of this novel
plain-text related image encryption scheme is excellent, as well as can be competitive with other
corresponding algorithms.

Keywords: chaos; image encryption; compound chaotic map; plain-text related

1. Introduction
1.1. Background

The security of digital image has achieved wide attention from both scholars and
industries [1–4]. At first, scholars used traditional text encryption algorithms, such as DES,
AES, RSA, and so on, to encrypt the images. However, such image encryption algorithms
have some inherent weaknesses, including uneven energy distribution, strong correlation
between adjacent pixels, and high data redundancy [5–8]. All these defects make the
traditional encryption algorithms not suitable to encrypt digital images.

Today, a kind of novel image encryption algorithm has been introduced, which is
called chaos-based image encryption. Chaos is a complex physical phenomena, which
can be represented in many dynamical systems. Chaotic systems have many advantage
characteristics, such as sensitivity for initial conditions, rapid decay of the correlations and
pseudo-randomness, etc. All these characteristics make chaotic systems quite suitable for
image encryption.

Among the chaotic image encryption algorithms, the low-dimensional chaotic maps
are often used in many studies [9–12]. However, the security of these chaotic maps are
quite low due to their simple structures; furthermore, they will suffer the threaten from
phase space reconstruction technology. Ref. [13] proves that the phase space reconstruction
technology is effective for most of the low-dimensional chaotic maps. To improve the
complexity of image encryption algorithms, some studies use high-dimensional chaotic
systems as the random sources, and even hyper-chaotic systems with very high dimensions
are used [14–20]. Using high-dimensional chaotic systems can certainly improve the
complexity of encryption algorithms. However, different from the low-dimensional chaotic
system, the high-dimensional chaotic system has more parameters and initial values [21],
which means that the high-dimensional chaotic system needs more calculations when
calculating the sequence of the same dimension [22]. In other words, these systems always
require high cost to implement, which is not suitable for practical uses. Based on the

Mathematics 2021, 9, 2778. https://doi.org/10.3390/math9212778 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math9212778
https://doi.org/10.3390/math9212778
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9212778
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9212778?type=check_update&version=1


Mathematics 2021, 9, 2778 2 of 25

above two conditions, a more appropriate thinking is to use improved low-dimensional
chaotic maps in image encryption. On one side, the low-dimensional chaotic maps can
ensure the speed of encryption and are much easy to implement. On the other side, some
improvement methods can effectively improve the complexity of low-dimensional chaotic
maps and then enhance the security of the encryption algorithms [21,23–27].

Motivated by this, in this paper, we first propose a new chaotic map by compounding
1-D Logistic map and 2-D Baker map. Numerical experiments show that the compound
chaotic map greatly improve the complexity of original maps. The results of NIST statistical
test evaluate the randomness of the generated sequences by this compound chaotic map.
Furthermore, after constructing this compound chaotic map, we propose a novel image
encryption algorithm based on this map. It is acknowledged that, if the image encryption
algorithm is independent to plain-text image, then, it will easily suffer the differential attack
(chosen-plain-text attack), which leads to a high security risk. Therefore, some encryption
algorithms try to put some of the plain-text information into the encryption process to make
it plain-text related, such as refs. [21,24]. However, the parameters of chaotic maps used in
these studies are independent of the image information of plain-text images, which means
that the parameters of these chaotic maps may be invariant when encrypting different
images. In other words, the specific form of these maps does not change; only the initial
values do. Thus, in this paper, a novel plain-text related image encryption algorithm is
proposed. In this encryption scheme, the value of parameters of this chaotic map are related
to the plain-text image. It means that the specific form of this chaotic map will change as
the encrypted image changes, and this change is image-related. In the numerical tests, we
use four standard common images (“Lena”, “Cameraman”, “Horse”, and “Granules”) to
prove that the proposed algorithm is practical for different images.

In addition, we use numerical tests and analysis to evaluate the security performance
of this encryption algorithm. The key space analysis is used to estimate the secret key space
of this algorithm; the histogram analysis is used to test the distribution of pixel values; the
key sensitivity analysis is used to test the sensitivity of secret key; the correlation analysis
is used to test the correlation between two neighboring pixels; the information entropy
analysis is used to estimate the uncertainty and randomness of images. To measure the
ability to resist differential attack of this encryption algorithm, two statistical indicators are
used, named number of pixels change rate (NPCR) and unified average changing intensity
(UACI). When the bit stream is transmitting on the internet, the occurrence of data loss
and data interference by noise is inevitable [28]; in fact, the methods in which noise signals
were applied are known from the time of WWII, when they were applied to encrypt the
correspondence of intelligence services. Thus, the robustness analysis of this encryption
algorithm is necessary. Finally, the computational complexity analysis is used to measure
the speed of encryption algorithm.

1.2. Related Works
1.2.1. Low Dimensional Chaotic Maps-Based Image Encryption Algorithms

A novel piecewise linear chaotic map (PWLCM)-based chaotic image encryption
algorithm provided in ref. [9]. In this scheme, the hash function is used as an initial
conditions generator for PWLCM. Ref. [10] provides a new 1-D chaotic map, and bifurcation
analysis and Lyapunov exponent analysis are used to demonstrate its chaos performance.
In addition, to declare its practicability, a simple but efficient image encryption scheme
is utilized. In ref. [11], to strengthen the connection between the encryption algorithm
and the plain-text image, a Chebyshev function is introduced. The key stream used to
encrypt the images is generated by this function. In ref. [12], the 1-D chaotic tent map is
used to design a novel image encryption scheme, with efficient and secure performances,
etc. Generally speaking, low-dimensional chaotic maps have many great features, such as
easy to be realized and having a rapid computing speed.
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1.2.2. High Dimensional Chaotic Maps-Based Image Encryption Algorithms

In ref. [14], to improve the security of traditional image encryption algorithms, a
rewriting scheme is added. Moreover, a two-dimensional modulation chaotic map basic of
Sine map and Logistic map is introduced. Ref. [15] proposed an improved chaotic system
based on 3-D Lorenz chaotic map and 4-D Rossler chaotic map. In addition, a novel DNA
coding-based color image encryption algorithm is utilized. In ref. [16], an image encryption
based on hash function and cat map is provided. In this scheme, the hash function is
used to generate the set of keys used as initial values of this encryption algorithm. In
addition, a new matrix magic transformation (MMT) algorithm is also proposed. Ref. [17]
proposed a multidimensional chaotic image encryption algorithm based on improved 3-D
Lorenz system. The improved system become a four-dimensional hyperchaotic system.
Ref. [18] introduced an image encryption scheme, in which a 6-D hyperchaotic system and
a Logistic-Sine compound chaotic map are utilized. In ref. [19], a 4-D hyperchaotic system
and a 1-D Logistic-Tent map are applied to generate chaotic sequence. In addition, a color
image encryption based on compressive sensing is proposed. Moreover, a DNA coding
and three chaotic maps-based image encryption algorithm is investigated in ref. [20]. The
simulation results shows that this scheme has high security, etc.

1.2.3. Improved Low Dimensional Chaotic Maps-Based Image Encryption Algorithms

Ref. [21] proposed a novel image encryption algorithm based on coupled Baker map
and Logistic map. The Baker map is used to control the initial values of the Logistic map,
which makes the generated Logistic sequence become non-stationary. Ref. [23] described a
modification of the Logistic map which helps it to achieve greater robustness against phase
space reconstruction attacks. Furthermore, an image encryption algorithm based on this
modified map is proposed. Ref. [24] proposed a varying parameters Logistic map-based
image encryption scheme. Ref. [25] proposed a two-dimensional modular chaotic system
that can improve the performance of chaos, and various tests proved that this model can
improve thedynamical complexity. Ref. [26] proposed a novel pseudorandom generator
based on improved one-dimensional chaotic map amplifier (1-DCMA) to encrypt the plain-
text images, etc. Compounding multiple chaotic maps is another kind of effective method
to improving the complexity of chaotic maps [29–32]. Ref. [29] proposed a compound
chaotic map based on even-symmetric chaotic maps and a skew Tent map, which is applied
to image encryption. Ref. [30] proposed an image encryption algorithm based on Lu
and Logistic compound system. In ref. [31], a compound Tent-Logistic chaotic system is
presented. This compound system has good randomness and large key space. In ref. [32], a
two-dimensional Logistic-Tent modular map was proposed. Based on this chaotic map, a
cross-plain image encryption scheme is used to encrypted the color image, etc.

The rest of this paper is shown as follows. In Section 2, a novel compound chaotic map
is proposed, and several complexity and randomness analysis are presented. In Section 3,
a novel plain-text related image encryption algorithm is provided. Numerical experiments
of the security analysis of this encryption algorithm are presented in Section 4. Finally,
Section 5 sums up this whole paper.

2. The Proposed Compound Chaotic Map and Its Performance
2.1. A Novel LB Compound Chaotic Map

Among all chaotic maps, Logistic map can be said as the most simple and popular
map in data encryption [21,33,34]. The mathematical model of the Logistic map can be
written as:

xi+1 = f (xi) = axi (1− xi). (1)

Here, f is the chaotic iteration function, xi is the state variable, and a is the bifur-
cation coefficient. The function f become chaotic once the coefficient a locates in the
interval (3.5699, 4]. The variable xi is bounded in the interval (0, 1). Once giving an initial
condition x0, under the control of iterative function f, a sequence {xi} will be generated.
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For an ideal chaotic map, the generated sequence should have a high complexity, with
good randomness.

The complexity analysis of logistic sequences is depicted in Figure 1a,b. Figure 1a
shows the approximate entropy (ApEn) of logistic sequence with different parameters.
ApEn was firstly proposed by Pincus in ref. [35], which measures the probability of the new
pattern generated in the sequences with the embedding dimension grows. The larger the
probability means more complex of sequence. For a series {v(i), i = 1, 2, . . . , N}, recombining
this sequence: Ui = {v(i), v(i + 1), . . . , v(i + m − 1)}, i = 1, 2, . . . , n, n = N − m + 1, we can
get a m-dimensional vector Ui. Next, calculate the distance between Ui and Uj as:

Lij = max|v(i + j)− v(j + k)|, k = 0, 1, . . . , m− 1 . (2)

Set a threshold b = 0.2~0.3, and give a number X that satisfies the standard Lij ≤ b × SD,
in which SD is a standard value of sequence. Then, we have Ci

m (b) = X/(N − m), and

ωm(b) =
1

N −m + 1 ∑N−m+1
i = 1 lnCm

i (b) . (3)

Finally, the approximate entropy can be calculated as ωm − ωm+1. From Figure 1a,
we can find that, with the growth of parameters, the ApEn will gradually increase on the
whole. However, in some intervals, the ApEn will have a quick decline, which reflects
to the period windows of control coefficient of Logistic map (period windows means the
non-chaotic region in the chaotic parameter interval). The Logistic map has the largest
ApEn when a = 4, which is about 0.656483.

Figure 1. (a) ApEn analysis of the logistic sequence; (b) PE analysis of the logistic sequence.

Another sequence complexity measure is called permutation entropy (PE), which was
introduced by Bandt and Pompe in ref. [36]. PE uses Shannon’s entropy to measure the
probabilities of different order types of consecutive values in the sequences. In this test, we
choose the ordinal pattern length L = 6, and the embedding delay D = 2 as suggested in
ref. [36]. For a series {v(i), i = 1, 2, . . . , N}, we need to know as possible order types of n
different numbers (i.e., n! permutations µ of order n). For each number µ, we calculate the
relative frequency (# means number):

F(µ) =
#{t|t ≤ N − n, (vt+1, . . . , vt+n) hastype µ}

N − n + 1
. (4)

To make the F(µ) more exact, assume the N→ ∞, and {v(i), i = 1, 2, . . . }. This limit
exists with probability 1 when the underlying stochastic process satisfies the condition: for
k ≤ n, the probability for v(t) < v(t + k) should not be related to t. Thus, the permutation
entropy of order n ≥ 2 can be calculated as:

H(n) = −∑ F(µ)logF(µ) , (5)
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where the sum runs over all n! permutations p of order n.
The test results are shown in Figure 1b. As Figure 1b shows, with the growth of

parameters, the PE will increase gradually on the whole, which is similar to the results
of ApEn analysis. When the coefficient a fall into the period window, the PE will quickly
decline, as well. PE gets its maximum value 0.947877 when a = 4.

Besides Logistic map, Baker map has good ergodicity and distribution characteristics,
which is also widely used in image encryption today [37–39]. Its mathematical model can
be described as follows.

(xi+1, yi+1) =

{
(xi/p, pyi) 0 ≤ xi ≤ p
((xi − p)/(1− p), (1− p)yi + p) p ≤ xi ≤ 1

, (6)

where p ∈ (0, 1) is the control parameter, and (xi, yi) is the 2D state variable. The output
sequence (xi, yi) has good ergodicity in the phase space [0, 1] × [0, 1]. When p = 0.5, it will
become the standard Baker map. It should be noted that, when p = 0.5, the standard Baker
map will be seriously affected by computer precision, and the output sequence will quickly
fall into a cycle. Therefore, we will not choose p = 0.5 in our test.

The ApEn and PE analysis of Baker sequences are depicted in Figure 2. In this test, the
x-dimensional variable is used as the test data. For y-dimensional variable, the results are
similar, which we omitted here to avoid redundancy. From Figure 2a,b, we can conclude
that the complexity (both ApEn and PE) will monotonically increase with the growth of
parameter p. The complexity of the Baker map is symmetrical when p > 0.5 and p < 0.5.
The Baker map get its largest complexity when p is close to 0.5, which is about 0.691743 for
ApEn, and 0.933645 for PE.

Figure 2. Complexity analysis of Baker sequence; (a) ApEn; (b) PE.

As the test results show above, the complexity of these two chaotic maps are quite
low, and their output sequences cannot be regarded to have high security level. Encryption
algorithms directly based on these two chaotic maps will suffer security risks. Therefore,
in order to improve its complexity, a novel compound LB chaotic map is provided here,
whose mathematical formula can be directly written as follows.

(xi+1, yi+1) =

{
(axi(1− xi)/p, pyi) 0 ≤ axi(1− xi) ≤ p
((axi(1− xi)− p)/(1− p), (1− p)yi + p) p ≤ axi(1− xi) ≤ 1

.

(7)
As Equation (7) shows, the LB compound chaotic map has two control parameters, a

and p. In this compound chaotic map, we use Logistic map to compound the x-dimensional
variable of Baker map. Similarity, the y-dimensional variable can also be compounded,
whose mathematical model can be described as

(xi+1, yi+1) =

{
(xi/p, paxi(1− xi)i) 0 ≤ xi ≤ p
((xi − p)/(1− p), (1− p)axi(1− xi) + p) p ≤ xi ≤ 1

. (8)
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These two compound chaotic maps have no essential differences. Equation (7) im-
proves the complexity of x-dimensional variable, while Equation (8) improves the complex-
ity of y-dimensional variable. In the above tests, we use x-dimensional variable as the test
data. Thus, we use the compound map in Equation (7) throughout the whole paper.

2.2. The Performances of the LB Compound Chaotic Map

Next, we will take some numerical experiments to analyze the characteristics of the
LB compound chaotic map, including trajectories, bifurcation diagram, auto-correlation
function, complexity and NIST statistical tests. In these tests, the initial value and pa-
rameters are set as x0 = 0.1260, y0 = 0.3259, a = 4, p = 0.499, unless otherwise stated. The
x-dimensional variable is used in these tests.

2.2.1. Sequence Generation Algorithm

Trajectory gives an intuitive expression of the dynamics of the LB compound chaotic
map. Both x and y dimensional variables are plotted in Figure 3. From Figure 3, we can see
that the generated sequences are random-like, without any obvious structures or cycles.
Furthermore, the value of both x and y dimensional variables can cover the whole interval
(0, 1), which indicates that this LB compound chaotic map has a good ergodicity.

Figure 3. Trajectories of the LB compound chaotic map: (a) x-dimensional variable (b) y-dimensional
variable (sub-figures are the partial enlargement).

2.2.2. Bifurcation Diagram

Bifurcation diagram reflects the relationship between chaotic characteristics and con-
trol parameters. For different parameter p ∈ (0, 1), the map will always be chaotic. Here, we
just reveal the bifurcation diagram of control parameter a, which is depicted in Figure 4. As
Figure 4 shows, the x-dimensional variable of the LB compound map comes to be chaotic
at about a > 3.45, and the y-dimensional variable of the LB compound map comes to be
chaotic at about a > 3.55. Since parameter a comes from Logistic map, thus, we compare
this result with the bifurcation diagram of logistic chaotic map. As we know, Logistic map
will come to be chaotic since a > 3.5699, which implies that this LB compound chaotic map
has a larger chaotic parameter region. Furthermore, the output of original Logistic map
will cover the whole interval (0, 1) only when a = 4, while, in this LB compound map, the
output will cover the whole interval (0, 1) since a > 3.57, which implies that this compound
map has a better ergodicity. Similar with Logistic map, this compound chaotic map also
has several period windows, which should be avoided in practical uses.
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Figure 4. Bifurcation diagram of the LB compound chaotic map: (a) x-dimensional variable;
(b) y-dimensional variable.

2.2.3. Auto-Correlation Analysis

Auto-correlation function reflects the relationship between the state variable at one
time and the state variables at other times. The mathematical model of auto-correlation
function can be shown as:

rk =
∑N−k

t = 1(xt−x)(xt+k−x)

∑N
t = 1(xt−x)2

−1 ≤ rk = rk
r0
≤ 1 ,

(9)

where xt (t = 0, 1, . . . , N) is state variable sequence, and k is a spacing coefficient. When
k = 0, the coefficient rk = 1 means the relationship between the state variable and itself. For
an ideal pseudo-random sequence, its auto-correlation function should be delta function.
The auto-correlation analysis of the LB compound chaotic map is shown in Figure 5.
From Figure 5, the auto-correlation function is extremely close to the ideal model, which
means that the generated sequence of the LB compound chaotic map can be regarded as a
pseudo-random sequence in this sense.

Figure 5. Auto-correlation function of the LB compound chaotic map.
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2.2.4. ApEn and PE Analysis

The main purpose of this LB compound chaotic map is to improve the chaotic behavior
of original chaotic maps. Here, we also test the ApEn and PE of the compound chaotic map,
and compare them with the complexity of original chaotic maps. The ApEn analysis and
comparison with the Logistic map and Baker map are provided in Figure 6a,b, respectively.
From Figure 6a, we have that the ApEn of the LB compound chaotic map is larger than
the original Logistic map for almost all different parameter a, except when a falls into the
period windows. Furthermore, we can also find that the ApEn of the LB compound chaotic
map is quite stable for different parameter a (without period windows), while the ApEn of
the Logistic map when a < 3.8 is obviously smaller than the values when a is close to 4. This
is an advantage that the LB compound chaotic map can maintain at a high complexity level
for different parameters, while the complexity of original Logistic map is rather low when
the parameters are smaller than 3.8, although the map is chaotic under these parameters.
From Figure 6b, we can also find that the ApEn of the LB compound chaotic map is larger
than the original Baker map for all different parameters p.

Figure 6. ApEn analysis of the LB compound chaotic map: (a) ApEn comaprison with logistic map
(b) ApEn comparison with Baker map.

Similar results can be obtained from PE analysis, shown in Figure 7a,b. Figure 7a
shows that the PE of the LB compound chaotic map is larger than PE of the Logistic map
for almost all parameters, except the period windows. From Figure 7b, we can also find
that the PE of the LB compound chaotic map is larger than PE of the original Baker map
for all parameters. Furthermore, both results show that the PE of the LB compound chaotic
map is extremely close to the ideal value 1, which implies that the LB compound chaotic
map has an ideal complexity level.

Figure 7. PE analysis of the LB compound chaotic map: (a) PE comaprison with logistic map (b) PE
comparison with Baker map.
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2.2.5. Lyapunov Exponent

Lyapunov exponent (LE) is used to indicate the divergence rate of two trajectories,
which is a key index for chaotic system. In this paper, the Wolf algorithm [40] is used to
calculate the LE of generated sequences. If the largest LE of a system is larger than zero,
this system can be regarded as chaotic. The LE value of x and y dimensional variables
of the LB compound map with different parameters a and p are shown in Figure 8a–d,
respectively. As Figure 8a,c show, the LE values of x and y dimensional variables of the
LB compound map are larger than zero with different parameter a, although the LE will
decrease rapidly when parameter a falls into the periodic period. Furthermore, the LE
value will have a significant improvement when comparing with the original Logistic map.
Similar results can be obtained for the parameter p. As Figure 8b,d shows, the LE values
are all great than zero and larger than the LE of original Baker map, as well. The results
proves that the LB compound chaotic map has greatly improved the chaotic performances
of original chaotic maps.

Figure 8. Lyapunov exponent analysis of the LB compound chaotic map: (a,b) x-dimensional variable;
(c,d) y-dimensional variable.

2.2.6. NIST Statistical Tests

Among all statistical tests suites, NIST statistical test suite has been regarded as
current industry norm for randomness testing [41]. NIST statistical test suite contains
16 independent statistical tests to test the randomness of binary sequences. In NIST, the
significance level is set to be 0.01. A sequence is regarded to pass the statistical test when
p-value ≥ 0.01. To test the randomness of the sequences generated by the LB compound
chaotic map, here, we have generated 500 different sequences by 500 randomly chosen
initial conditions. Since NIST statistical test suite is only used for binary sequences, thus,
before the test, we use the following binarization method:

b(xi) = f loor
(

xi × 106
)

mod 256. (10)

By using Equation (10), after 125,000 times of chaotic iterations, the 106 bits length
binary sequence can be generated. The passing ratio of each test and the mean value of
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p-values are shown in Table 1. From Table 1, we can have the conclusion that the sequences
generated by the LB compound chaotic map have good statistical properties, and they can
be regarded as random sequences.

Table 1. NIST test results of the LB compound chaotic map.

Test Index Passing Ratio p-Value Results

Approximate entropy 99.2% 0.765182 Success
Block frequency 99.6% 0.768090 Success

Cumulative sums 99.6% 0.853257 Success
FFT 99.8% 0.876031 Success

Frequency 99.6% 0.564615 Success
Linear complexity 99.8% 0.774610 Success

Random excursions 99.6% 0.563249 Success
Random excursions variant 99.6% 0.359811 Success

Longest runs of ones 99.4% 0.577500 Success
Overlapping template of all ones 99.6% 0.769284 Success

Rank 99.8% 0.266723 Success
Runs 99.6% 0.131128 Success
Serial 99.4% 0.320054 Success

Universal statistical 99.6% 0.621337 Success
Lempel-Ziv Compression Test 99.8% 0.423651 Success

3. A Novel Plain-Text Related Image Encryption Algorithm
3.1. A Plain-Text Related LB Compound Chaotic Map

Based on the ideal properties of the LB compound chaotic map Equation (7), in
this section, we propose an image encryption algorithm based on this map. To resist
the differential attack, the encryption process should be related to the plain-text image.
Since using some information of plain-text image to change the initial value of chaotic
map will not affect the chaotic system itself, the chaotic map will remain the same when
encrypting different images. Thus, here, we introduce the information of image to the
control parameter of chaotic map, whose mathematical model can be described as

(xi+1, yi+1) =


(axi(1− xi)/h(p, A), h(p, A)yi) 0 < axi(1− xi) ≤ h(p, A)(

((axi(1− xi)− h(p, A))/(1− h(p, A)),
(1− h(p, A))yi + h(p, A))

)
h(p, A) < axi(1− xi) ≤ 1

, (11)

where h(p, A) is defined as

h(p, A) = (p + mean(A)/255) mod 1. (12)

Here, mean(A) denotes the mean value of all pixel values of image A.
As Equation (11) shows, the plain-text image information is used to control the

parameter p. When encrypting different images, the parameter of the LB compound chaotic
map will be different, which makes the chaotic map have different dynamics.

Remark 1. Using plain-text image information to control the parameter a is not recommended
here. From the analysis above, we have that the complexity of the LB compound chaotic map is
significantly influenced by parameter a, especially the existence of periodic window. Using plain-text
image information to control the parameter a may lead to a low complexity of chaotic map, which
affects the encryption performances.

3.2. A Novel Plain-Text Related Image Encryption Algorithm

The proposed plain-text related image encryption algorithm consists of two parts:
shuffling algorithm and substitute algorithm.



Mathematics 2021, 9, 2778 11 of 25

3.2.1. Shuffling Algorithm 1

As in the PE analysis above, the PE of the LB compound chaotic map is quite close to
the ideal value. This result implies that the size order in the generated chaotic sequence
is pseudo-random. Therefore, we just shuffle the image according to the size order of the
generated chaotic sequence.

Assume A to be the plain-text image with size M × N, its pixel matrix be (Aij),
1 ≤ i ≤M, 1 ≤ j ≤ N. {xi} is the generated sequence with length MN by Equation (11).
Define the following order function:

order
(
xp
)

= k, (13)

if xp is the k-th smallest number in sequence {xi}, p < MN. Scanning the plain-text im-
age progressively, we can get a pixel sequence {Aq} with length MN. Then, we do the
following shuffling:

A∗i ← Ap, order
(
xp
)

= i, 1 ≤ i ≤ MN, (14)

where A* is the pixel sequence after shuffling. Equation (14) means that, if xp is the i-th
smallest number in sequence {xi}, then, we put the pixel value Ap to the i-th value of {A*}.
Finally, scan the {A*} into a M× N matrix. Obviously, this shuffling algorithm is completely
determined by the size order of the generated chaotic sequence {xi}. A simple example is
given for a more intuitive description of this algorithm.

Example 1. Assume A be the plain-text image with size 3× 3, whose pixel matrix can be written as

A =

 52 69 241
13 96 152
7 19 183

. (15)

The mean value of all pixel values of A is 92.4444. Setting x0 = 0.1260, y0 = 0.3259, a = 4,
p = 0.499, according to Equations (11) and (12), we can generate the 3 × 3 length chaotic se-
quence {xi} = {0.1260, 0.8828, 0.8296, 0.1325, 0.9212, 0.5817, 0.9468, 0.4040, 0.9265}. Scanning
the plain-text image progressively, we can get the pixel sequence {Aq} = {52, 69, 241, 13, 96, 152,
7, 19, 183}. In the sequence {xi}, we can easily find that x1 = 0.1260 is the smallest value; thus,
according to Equation (14), we have A*1 = A1 = 52; Similarly, x4 = 0.1325 is the 2nd smallest
value in {xi}; thus, we have A*2 = A4 = 13; . . . ; x7 = 0.9486 is the biggest value in {xi}; thus, we
have A*9 = A7 = 7. The pixel sequence {A*} after shuffling is {13, 96, 52, 7, 152, 69, 19, 183, 241}.
Scanning the sequence {A*} into a 3 × 3 matrix, we can get the image A* after shuffling.

A∗ =

 52 13 19
152 241 69
96 183 7

. (16)

3.2.2. Shuffling Algorithm 2

Different from the shuffling algorithm 1, another shuffling algorithm is proposed,
which not only changes the value of pixels but also the position of pixels. The detailed
steps are described below.

Assume A be the plain-text image with size M × N. Firstly, scan the image matrix A
progressively from left to right to obtain a pixel sequence {P1} with length MN. Secondly,
convert the values in sequence {P1} into 8-bit binary numbers and get a sequence {P2}.
Thirdly, divide each element of sequence {P2} from left to right into four sub-elements,
and each sub-element is a 2-bit binary number. Then, we can get four sequences called
{P2ai}, {P2bi}, {P2ci}, and {P2di}. Fourthly, use four chaotic sequences to shuffle these four
sequences by using the shuffling algorithm 1, respectively. Finally, splice four 2-bit binary
elements P2ai, P2bi, P2bi, and P2bi into one 8-bit binary element P3i and get a sequence
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{P3}. The range of i is from 1 to MN. Convert P3i into decimal number to complete this
shuffling algorithm.

3.2.3. Substitution Algorithm

To further prove the randomness of the LB compound chaotic map, in this substitution
algorithm, only the xor operation is used. Before substitution, we should first divide the
image into four blocks.

The blocking method is based on a chaotic indicator. Assume A be the plain-text
image with size M × N, and its pixel matrix is (Aij), 1 ≤ i ≤M, 1 ≤ j ≤ N. {x1i} and {x2i} are
the chaotic sequences generated by Equation (11) with length 2MN. Firstly, calculate the
chaotic indicator k:

k = p + 1 = b
(

x1 f loor(mean(A))mod MN

)
mod (min(M, N)) + 1. (17)

Here, b() is the binarization function defined in Equation (10). From Equation (17), we
can find that the indicator k is determined by the mean value of all pixel values of image A.

Then, the image can be divided into four sub-images A1, A2, A3, and A4 according to
the chaotic indicator k:

A1 = (A)k×k, A2 = (A)k×(N−k), A3 = (A)(M−k)×k, A4 = (A)(M−k)×(N−k). (18)

Scanning the generated chaotic sequences {x1i} and {x2i} progressively, we can get two
couples of chaotic matrixes X1, X2 and X3, X4 with size M × N, respectively. For these four
blocks, the substitution algorithms are different.

For the sub-images A1, A2, A3, A4, a bit exchange should be done before substitution.
Assume the bit position of an 8-bit integer m is numbered as m0m1m2m3m4m5m6m7, m0, m1,
. . . , m7 = 0 or 1. Define a group of transposition functions Tabcd which exchange the bit
value at position ma, mb with the bit value at position mc, md, 0 ≤ a, b, c, d ≤ 7. For example,
function T0167 exchange the bit value at position m0, m1 with the bit value at position m6,
m7. Supposing m = 01101110, we have T0167(m) = 10101101.

Sub-image A1: The substitution algorithm is defined as follows:

E
(

A1ij
)

= T0167
(

Aij
)
⊕ b

(
X1ij

)
, (19)

where 1 ≤ i, j ≤ k, and ⊕ denotes the bit-xor operation.
Sub-image A2: The substitution algorithm is defined as follows:

E
(

A2ij
)

= T2345
(

Aij
)
⊕ b

(
X2ij

)
, (20)

where 1 ≤ i ≤ k, and k + 1 ≤ j ≤ N.
Sub-image A3: The substitution algorithm is defined as follows:

E
(

A3ij
)

= T0145
(

Aij
)
⊕ b

(
X3ij

)
, (21)

where k + 1 ≤ i ≤M, and 1 ≤ j ≤ k.
Sub-image A4: The substitution algorithm is defined as follows:

E
(

A4ij
)

= T2367
(

Aij
)
⊕ b

(
X4ij

)
, (22)

where k + 1 ≤ i ≤M, and k + 1 ≤ j ≤ N.
A simple example is given for an intuitive description.

Example 2. Assume A be the plain-text image with size 3 × 3, whose pixel matrix is shown in
Equation (15). Set x1 = 0.1260, y1 = 0.5678, a1 = 4, p1 = 0.499 and x2 = 0.3265, y2 = 0.4862,
a2 = 3.77, p2 = 0.37, according to Equation (11), and the generated chaotic sequences {x1i} = {0.1260,
0.8828, 0.8296, 0.1325, 0.9212, 0.5817, 0.9468, 0.4040, 0.9265, 0.5461, 0.9830, 0.1340, 0.9300,
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0.5219, 0.9962, 0.0307, 0.2382, 0.4528} and {x2i} = {0.3265, 0.7286, 0.5960, 0.8535, 0.1607,
0.2199, 0.4394, 0.8867, 0.0138, 0.1382, 0.1254, 0.0691, 0.6550, 0.7650, 0.4886, 0.9080, 0.8515,
0.1692}. According to Equation (10), we have

b(X1) =

 48 121 75
69 146 58

192 25 252

, b(X2) =

 96 195 192
215 200 129
73 64 210

,

b(X3) =

 100 45 67
18 219 200
59 33 184

, b(X4) =

 215 151 178
226 33 84
187 168 247

.

(23)

By mean value of all pixel values of A is 92.4444, thus, according to Equation (17), we have

p = b(x192 mod 9)mod (min(3, 3)) = b(x12)mod 3 = 1. (24)

Therefore, k = p + 1 = 2. Dividing the image into 4 blocks as Equation (18), we can get

A1 =

(
52 69
13 95

)
2×2

, A2 =

(
241
152

)
2×1

, A3 =
(

7 19
)

1×2, A4 = (183)1×1. (25)

According to the substitution algorithm for different sub-images, we have

E(A1) =

(
52 69
76 133

)
⊕
(

48 121
69 146

)
=

(
4 62
9 23

)
E(A2) =

(
205
164

)
⊕
(

192
129

)
=

(
13
37

)
E(A3) =

(
67 19

)
⊕
(

59 33
)

=
(

120 50
)

E(A4) = (183) ⊕ (247) = (64).

(26)

Finally, the substituted image can be written as

E(A) =

 4 60 13
9 23 37

120 50 64

. (27)

3.2.4. The Novel Plain-Text Related Image Encryption Algorithm

For simplicity, this LB compound chaotic map-based image encryption algorithm is
called LBCCM-IEA. The LBCCM is used to generate pseudo-random sequence which is
used in both shuffling and substitution algorithms. The detail steps of this IEA can be
described as follows.

Step 1: Read the plain-image A and compute mean(A). Assume the size of A is M × N.
Step 2: Set two groups of system parameters (x1, y1, a1, p1) and (x2, y2, a2, p2).
Step 3: Generate two chaotic sequences {x1i} and {x2i} with length 2MN according to

Equation (11).
Step 4: Divide the sequence {x1i} and {x2i} into 2 sub-sequences with the same length,

respectively. Denote these 4 sequences as {x11i} = {x11, x12, . . . , x1MN}, {x12i} = {x1MN+1,
x1MN+2, . . . , x12MN}, {x21i} = {x21, x22, . . . , x2MN}, {x22i} = {x2MN+1, x2MN+2, . . . , x22MN}.

Step 5: Use sequences {x11i}, {x12i}, {x21i} and {x22i} to shuffle the image A according
to the shuffling algorithm 2, recorded as A*.

Step 6: Divide the image A* into four blocks according to Equations (17) and (18) by
using {x11i}.

Step 7: Scan the sequences {x11i}, {x12i}, {x21i}, and {x22i} progressively from left to right
and use Equation (10) to get four chaotic matrix X21, X22, X23, and X24 with size M × N.

Step 8: Encrypt sub-image1, 2, 3, and 4 according to Equations (19)–(22), respectively.
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Step 9: Combine the four encrypted blocks into a matrix X3, use sequences {x21i} to
shuffle this matrix using shuffling algorithm 1, and then save as encrypted image E(A*).

The flowchart of LBCCM-IEA is depicted in Figure 9. Since the chaotic sequence {xi} is
independent with initial value y0, thus, in this algorithm, y0 should not be used as security
keys. Therefore, the initial value (x1, x2) and control parameter (a1, a2, p1, p2) are selected
as the security keys. This algorithm can repeat multiple rounds by recycling the shuffle
algorithm and substitution algorithm. Actually, this IEA has a high security level with only
1 round encryption. Such security analysis will be presented in Section 4. Thus, in this
paper, only 1 round encryption is used.

Figure 9. The flowchart of the LBCCM-IEA.

The decryption of the encrypted image is the inverse process of the encrypt algorithm
by using the same keys. It should be noted that the mean value of pixel values of plain-text
image A should be transmitted securely to the receiver. The steps of decryption can be
described as:

Step 1: Read the encrypted image E(A*).
Step 2: Generate the chaotic sequences {x1i} and {x2i} with length 2MN according to

Equation (11) with the secret keys.
Step 3: Divide the sequence {x1i} and {x2i} into 2 sub-sequences with the same length,

respectively. Denote these 4 sequences as {x11i} = {x11, x12, . . . , x1MN}, {x12i} = {x1MN+1,
x1MN+2, . . . , x12MN}, {x21i} = {x21, x22, . . . , x2MN}, {x22i} = {x2MN+1, x2MN+2, . . . , x22MN}.

Step 4: Use sequence {x21i} to reshuffle the image A* according to the following
equation.

Ap ← A∗i , i f order
(
xp
)

= i, 1 ≤ i ≤ MN. (28)
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Step 5: Divide the reshuffled image into four blocks according to Equations (17) and (18)
by using {x11i}.

Step 6: Scan the sequences {x11i}, {x12i}, {x21i}, and {x22i} progressively from left to right
and use Equation (10) to get four chaotic matrix X21, X22, X23, and X24 with size M × N.

Step 7: Decrypt the four sub-images by using the following equations:

A1ij = T0167
(
E
(

A2ij
)
⊕ b

(
X1ij

))
A2ij = T2345

(
E
(

A2ij
)
⊕ b

(
X2ij

))
A3ij = T0145

(
E
(

A2ij
)
⊕ b

(
X3ij

))
A4ij = T2367

(
E
(

A2ij
)
⊕ b

(
X4ij

))
.

(29)

Step 8: Combine the four blocks and saved as A*.
Step 9: Use sequences {x11i}, {x12i}, {x21i}, and {x22i} to reshuffle the image A* and

record as A. The method is same as step 4.
Step 10: Save as the plain-text image A.

4. Statistical Tests and Security Analysis

In this section, several experimental analysis are provided to demonstrate the security
and efficiency of this LBCCM-IEA. Four images are used in these tests, including “Lena”,
“Cameraman”, “Horse”, and “Granules”, where “Lena”, “Cameraman”, and “Horse” are
natural images, and “Granules” is a computer composite image. In these tests, the security
keys are selected as a1 = 4, a2 = 3.77, p1 = 0.499, p2 = 0.37, x1 = 0.1260, and x2 = 0.3265. The
selection of y1 and y2 has no effect on the encryption/decryption.

4.1. Encryption and Decryption Tests

The encryption and decryption results of these four images are provided in Figure 10.
From Figure 10, we can have that the encrypted images are all unrecognized, which
reflects the encrypted image has no features for analysis. For different categories of image,
there are almost no differences in the characteristics of the encrypted images. It will be
further proved by the following security analysis. Thus, this image encryption algorithm
is effective and can be used for all different images. Furthermore, we can find that the
plain-images can be decrypt accurately by using the correct keys, which implies that this
encryption algorithm is applicable.

4.2. Key Space Analysis

Key space is an important index to evaluate the security of an encryption algorithm. The
key space of an encryption algorithm should be at least larger than 2128 to resist brute-force
attacks [21]. In this LBCCM-IEA, the initial values (x1, x2) and control parameters (a1, a2, p1,
p2) can be saw as secret keys. The computing precision is always assumed to be 10−14 in
many other studies [3,10,14]; therefore, we set the computing precision be 10−14, as well, in
this paper to compare with the key space of these studies at the same scale. The key space
of the LBCCM-IEA can be approximately estimated as 1014 × 1014 × 1014 × 1014 × 1014 ×
1014 = 1084 ≈ 2279, which is much larger than 2128, and also larger than the key spaces of
refs. [10,12,14,24] under the same precision, which are 2106, 2277, 2199, and 2186, respectively.
This result shows that this LBCCM-IEA can effectively resist the brute-force attack.
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Figure 10. Encryption and decryption test (a–d). Original images; (e–h) encrypted images;
(i–l) decrypted images.

4.3. Histogram Analysis

The distribution of the pixels of a plain-image is always uneven, which leads to the
leakage of pixel information. Therefore, the distribution of the encrypted image is a major
concern in image encryption. For an ideal encryption algorithm, the histogram of the
encrypted image should be uniformly distributed. The histograms of these four groups of
plain and encrypted images are shown in Figure 11. From Figure 11, we can easily find that
these four ciphered images all have quite flat distributions, which can resist the statistical
attack and cipher-only attack effectively.

Figure 11. Histograms of images (a–d). Original images: Lena, Cameraman, Horse and Granules;
(e–h) encrypted images: Lena, Cameraman, Horse and Granules.
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4.4. Key Sensitivity Analysis

An ideal encryption algorithm should be extremely sensitive to its secret keys. In
the encryption/decryption process, the encrypted/decrypted images should also be com-
pletely different if one of the secret keys has a small change when encrypting/decrypting
the same encrypted image. In this experiment, the secret keys are changed by only 10−14 to
test the sensitivity. The encryption sensitivity and decryption sensitivity results are shown
in Figures 12 and 13, respectively. From Figure 12, we can find that the encryption results
are all totally different from the encrypted image in Figure 10e by changing the secret
keys with 10−14. These results show that the six security keys are all extremely sensitive
in the encryption process. Moreover, Figure 13 shows that the decryption results are all
unrecognizable when the secret keys are changing slightly with 10−14, which implies that
the cipher image cannot be decrypted effectively. These results show that the six security
keys all have ideal sensitivity in the decryption process.

Figure 12. Key sensitivity analysis. Encrypted image with: (a) a1 = 4 − 10−14; (c) a2 = 3.77 − 10−14;
(e) p1 = 0.499 − 10−14; (g) p2 = 0.37 − 10−14; (i) x1 = 0.1260 − 10−14; (k) x2 = 0.3265 − 10−14.
(b) Difference between (a) and Figure 10e; (d) difference between (c) and Figure 10e; (f) difference
between (e) and Figure 10e; (h) difference between (g) and Figure 10e; (j) difference between (i) and
Figure 10e; (l) difference between (k) and Figure 10e.

Figure 13. Key sensitivity analysis. Decrypted image with (a) a1 = 4 − 10−14; (b) a2 = 3.77 − 10−14;
(c) p1 = 0.499 − 10−14; (d) p2 = 0.37 − 10−14; (e) x1 = 0.1260 − 10−14; (f) x2 = 0.3265 − 10−14.
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In order to depict the key sensitivity precisely, the following mean square error (MSE)
is used to evaluate the sensitivity.

MSE =
1
M ∑M

i = 1(yi − xi)
2, (30)

where xi denotes the pixel values of original image, and yi denotes the pixel values of
the changed image. The MSE values are calculated and plotted in Figures 14 and 15 for
encryption process and decryption process, respectively. From these two figures, we can
find that the MSE value will rapidly change from 0 to a quite large value if the secret key is
changing slightly, which proves that these six secret keys are extremely sensitive to both
encryption and decryption processes.

Figure 14. MSE analysis in encryption process for different keys: (a) a1; (b) p1; (c) x1; (d) a2; (e) p2;
(f) x2.

Figure 15. MSE analysis in decryption process for different keys: (a) a1; (b) p1; (c) x1; (d) a2; (e) p2;
(f) x2.

4.5. Correlation Analysis

The pixels of a plain image always has a high correlations with their neighboring
pixels. Therefore, reduction of this correlation of adjacent pixels is a basic requirement
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for a secure image encryption algorithm. In this experiment, 1024 pairs of adjacent pix-
els along with the horizontal, vertical, and diagonal directions are selected and plotted
in Figures 16–19, for the Lena image, Cameraman image, Horse image, and Granules im-
age, respectively. As these figures show, the pairs of adjacent pixels of plain-text images
are all located on or nearby the diagonal line, which indicates a high correlation between
adjacent pixels. However, after encryption, the pairs of adjacent pixels of ciphered images
are distributed randomly in the whole domain, which proves that this encryption algorithm
is complex enough.

Figure 16. Correlation analysis of Lena image: (a–c) horizontal, vertical and diagonal direction of
plain-text image; (d–f) horizontal, vertical and diagonal direction of cipher.

Figure 17. Correlation analysis of Cameraman image: (a–c) horizontal, vertical and diagonal direction
of plain-text image; (d–f) horizontal, vertical and diagonal direction of cipher.
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Figure 18. Correlation analysis of Horse image: (a–c) horizontal, vertical and diagonal direction of
plain-text image; (d–f) horizontal, vertical and diagonal direction of cipher.

Figure 19. Correlation analysis of Granules image: (a–c) horizontal, vertical and diagonal direction
of plain-text image; (d–f) horizontal, vertical and diagonal direction of cipher.

Furthermore, a correlation coefficient is used to measure the correlation between
adjacent pixels quantitatively, whose mathematically formula can be written as

Corr =
N ∑N

i = 1(xi × yi)−∑N
i = 1 xi ×∑N

i = 1 yi√(
N ∑N

i = 1 x2
i −

(
∑N

i = 1 xi

)2
)
×
(

N ∑N
i = 1 y2

i −
(

∑N
i = 1 yi

)2
) , (31)

where xi and yi are two sequences with length N. Two sequences are regarded to have
a high correlation since the Corr value is close to 1. However, the Corr value close to
0 means two sequences have little correlation with each other. In other words, they are
independent of each other. Table 2 shows the Corr value of adjacent pixel sequences for
different directions. From the results, we have that the Corr value of adjacent pixels of
plain-text image is quite close to 1, while, after encryption, the Corr value of adjacent pixels
of ciphered image is extremely close to 0, which proves that the LBCCM-IEA can greatly
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break the correlation between adjacent pixels of plain-text image. Compared with other
chaos-based schemes, our results are better than the correlation in refs. [3], and they are
similar in performances with refs. [10,15,24], which demonstrates that the LBCCM-IEA can
effectively resist the correlation attack.

Table 2. Correlation coefficients analysis.

Horizontal Vertical Diagonal

Original Lena 0.9237 0.9420 0.8906
Encrypted Lena −0.0034 −0.0079 0.0010

Original Cameraman 0.9333 0.9569 0.9520
Encrypted Cameraman −0.0094 0.0028 0.0041

Original Horse 0.6425 0.6682 0.5179
Encrypted Horse −0.0003 0.0249 0.0042
Original Granules 0.8850 0.8743 0.8558

Encrypted Granules 0.0012 −0.0002 0.0013
Ref. [3] Lena −0.0986 −0.063 0.0509

Ref. [10] Lena −0.0026 −0.0054 0.0082
Ref. [15] Lena −0.0119 −0.0087 −0.0045
Ref. [24] Lena 0.0010 0.0042 0.0063

4.6. Information Entropy Analysis

Information entropy is a significant measure to estimate the uncertainty and random-
ness, which can be used as an important feature in image encryption. The formula of
information entropy can be written as

H(m) = −∑M
i = 1 p(mi)log2 p(mi), (32)

where p(mi) denotes the probability of symbol mi. For a ciphered image, its entropy value
should be very close to the ideal value 8 to ensure its good randomness. The information
entropy analysis of plain-text images and the ciphered images in other chaos-based schemes
are listed in Table 3. From Table 3, we can find that, for four plain-text images, the entropy
values are all quite close to the ideal value 8 after encrypting by the LBCCM-IEA, which
means that these ciphered images can be regarded as ideal random images. Compared with
other schemes, the entropy value of the ciphered image by this LBCCM-IEA is larger than
the entropy values in refs. [14,15], and it is close to the entropy values in refs. [10,21,24],
which proves that our algorithm is competitive with other schemes in this sense.

Table 3. Information entropy analysis.

Original Image Encrypted Image

Lena 7.5984 7.9977
Cameraman 7.0084 7.9971

Horse 6.5645 7.9974
Granules 5.5145 7.9974

Ref. [10] Lena 7.5984 7.9979
Ref. [14] Lena 7.5984 7.9971
Ref. [15] Lena 7.5984 7.9897
Ref. [21] Lena 7.5984 7.9974
Ref. [24] Lena 7.5984 7.9979

4.7. Resistance to Different Attack Analysis

Differential attack is a popular and effective image analysis method. A secure image
encryption algorithm should have a high sensitivity on the plain-text image. To measure
the ability to resist differential attack of an encryption algorithm, two statistical indicators
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are used, named number of pixels change rate (NPCR) and unified average changing
intensity (UACI), which can be shown as follows [5].

NPCR =
∑i,j D(i, j)

L
× 100%, (33)

UCAI =
1
L

[
∑
i,j

|C1(i, j)− C2(i, j)|
H

]
× 100%, (34)

where

D(i, j) =

{
0, C1(i, j) = C2(i, j)
1, C1(i, j) 6= C2(i, j)

. (35)

In these formulas, C1 and C2 are two different images with the same size. L denotes
the number of pixels, and H is the largest allowed pixel value in the images. Setting C1
and C2 be the gray images with size 256 × 256, then, we have L = 65,536 and H = 255.
The ideal value of NPCR and UACI should be 0.9961 and 0.3346, respectively, for a secure
encryption algorithm.

In this text, to measure the sensitivity of the plain-text image, we encrypt two images
with only 1-bit difference by using the same keys. Four images are selected as the plain-
text image. The NPCR and UACI values are calculated and listed in Table 4. Table 4
shows that the NPCR and UACI values are all close to the ideal value for all images,
which indicates that the LBCCM-IEA has a high sensitivity to plain-text image, as well as
is competitive with other image encryption algorithms in resisting differential attack or
chosen-plaintext attack.

Table 4. NPCR and UACI analysis.

NPCR UACI

Lena 0.9958 0.3348
Cameraman 0.9964 0.3353

Horse 0.9958 0.3353
Granules 0.9958 0.3330

Ref. [10] Lena 0.9961 0.3220
Ref. [14] Lena 0.9960 0.3343
Ref. [15] Lena 0.9960 0.3349
Ref. [21] Lena 0.9962 0.3347
Ref. [24] Lena 0.9960 0.3340
Ref. [33] Lena 0.9955 0.3327

4.8. Robustness Analysis

Data change and loss are inevitable when the images are transmitting in the network,
especially in a noisy network. In this experiment, different levels of salt & pepper noise and
data loss are considered, and the test results are shown in Figure 20. From Figure 20, we
can see that, although the encrypted images are affected by noise or data loss, the decrypted
images can still be identified clearly. Based on these results, we can demonstrate that this
encryption scheme is robust to noise and data loss, which is suitable for practical uses.

4.9. Computational Complexity Analysis

Computational complexity is also an important measure to evaluate the practicability
of an encryption algorithm. The encryption and decryption processes of an image encryp-
tion algorithm should be complete in an ideal time. In these tests, the encryption and
decryption algorithms are processed by MATLAB 2019 on computer with 3.70 GHz CPU
and 7.58 GB memory. The speed of encryption and decryption processes are summarized
in Table 5. From Table 5, we can find that this LBCCM-IEA is faster than other chaotic
image encryption algorithms in refs. [2,10,30] in encrypting the same size image, as well as
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is also much faster than the traditional encryption algorithms DES and AES. Therefore, the
proposed LBCCM-IEA is convenient and efficient for practical uses.

Figure 20. Robustness analysis (a) 10.00% salt & pepper noise of ciphered Lena; (b) decrypted result
of (a); (c) 30.00% salt & pepper noise of ciphered Lena; (d) decrypted result of (c); (e) 10.00% data
loss of ciphered Lena; (f) decrypted result of (e); (g) 30.00% data loss of ciphered Lena; (h) decrypted
result of (g).

Table 5. Encryption and decryption speed test.

Image Size (256 × 256) Unit (s) Speed (Mb/s)

Lena 0.1055 4.7393
Cameraman 0.1053 4.7483

Horse 0.1171 4.2699
Granules 0.0979 5.1073

Ref. [3] Lena 0.1400 3.5714
Ref. [12] Lena 0.9250 0.5405
Ref. [33] Lena 0.1309 3.8197

DES (Lena) 0.6305 0.7930
AES (Lena) 0.2173 2.3010

5. Conclusions

Chaotic systems have been widely used in image encryption for its complex dynamics.
In this paper, we provide a logistic-Baker compound chaotic map. Several experiments
are given to prove that the proposed compound chaotic map has ideal characteristics.
Furthermore, based on the LB compound chaotic map, a novel image encryption algorithm
is proposed. In this algorithm, the compound chaotic function is influenced by the plain-text
image, which becomes different when encrypting different images. Thus, this algorithm can
resist the differential attack effectively. The proposed encryption algorithm includes three
main ideas, shuffling, blocking and substitution. All these steps are related to the sequences
generated by the LB compound chaotic map. To prove the security and practicability of
this encryption algorithm, several numerical experiments have been taken. All the test
results show that the proposed image encryption algorithm has a high security level, and
it is quite competitive with other chaos-based image encryption algorithms. The image
encryption algorithm proposed in this paper is also valid for color images by dividing the
color images into R, G, B three channels.

Recently, quantum computers and their corresponding algorithms have great prospects,
and it will indeed become a threat to many encryption algorithms. However, till now,
there is no literature that proves that the chaos-based ciphers can be cracked by quantum
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computing. Thus, in our future work, we will try to further improve the security level
of the chaos-based image encryption algorithm, especially to improve the ability of the
encryption algorithm to resist quantum attacks.
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