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Abstract: The spontaneous symmetry breaking phenomena applied to Quantum Finance considers
that the martingale state in the stock market corresponds to a ground (vacuum) state if we express
the financial equations in the Hamiltonian form. The original analysis for this phenomena completely
ignores the kinetic terms in the neighborhood of the minimal of the potential terms. This is correct
in most of the cases. However, when we deal with the martingale condition, it comes out that the
kinetic terms can also behave as potential terms and then reproduce a shift on the effective location
of the vacuum (martingale). In this paper, we analyze the effective symmetry breaking patterns and
the connected vacuum degeneracy for these special circumstances. Within the same scenario, we
analyze the connection between the flow of information and the multiplicity of martingale states,
providing in this way powerful tools for analyzing the dynamic of the stock markets.

Keywords: martingale condition; vacuum condition; spontaneous symmetry breaking; degenerate
vacuum; flow of information; Hermiticity; random fluctuations; conservation of the information

1. Introduction

When we express the financial equations of the stock market in the Hamiltonian form,
the flow of information through the market can be quantified by analyzing the flow of
probability. The financial Hamiltonians are in general non-Hermitian, and then they do not
preserve the information. However, under some special combination of the free-parameters
of the market, the financial Hamiltonian can become Hermitian, preserving the information
(probability). The flow of information in the market is connected with the definition of
the martingale, which is the equilibrium state where there is no flow of information. In
probability theory, a martingale process is the one where no change on the condition of the
system should be expected. This means that the present expectation value of a random
variable is the most probable one for a future result of the same variable [1,2]. Therefore, we
can imagine the martingale condition in Quantum Finance as a risk-neutral evolution of the
system [3–5]. For these types of evolution, there is no chance of having arbitrage [3,6]. When
there is arbitrage in finance, investors can operate simultaneously in different markets [6].
Then, for example, it might be possible for a broker to buy shares in London and then sell
them in Hong Kong. The broker will then generate income from the differences in prices in
both markets, over the same product. If the possibility of arbitrage exists, then this means
that the market is outside equilibrium (not in the martingale state). Additionally, arbitrage
is normally used by big organizations and not individuals, because only high volumes of
trade can generate a considerable income after subtracting the charges due to transfers [6].
The arbitrage itself is a process which helps the financial system to distribute its information
such that at the end an equilibrium condition or martingale state is obtained. When the
equilibrium condition appears, then the system will follow a martingale process. The
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existence of a martingale condition is known as the fundamental theorem of finance [6,7].
In a previous paper, some of the authors formulated the spontaneous symmetry breaking
in quantum finance [8]. Within this formalism, the martingale condition (state) appears
as a vacuum condition which becomes degenerate under some circumstances [6,8]. In
the most general sense, we have a multiplicity of vacuum states for the Black–Scholes
(BS) and the Merton–Garman (MG) cases. This vacuum degeneracy is related to the
symmetries under change of prices and the symmetry under changes in volatility for the
MG case. Therefore, we cannot conclusively say that these symmetries are spontaneously
broken [9,10] (their generators do not annihilate the vacuum state). The perfect vacuum
condition is only recovered for some combination of parameters, for which the ground
state (martingale state) is unique. For the regime analyzed in [8], it was possible to find
a natural connection between the flow of information in the system and spontaneous
symmetry breaking. Some suspects about this connection were mentioned in [11]. In [8],
an extended version of the martingale state was also proposed, which includes not only
prices but also the volatility as a variable. A degenerate vacuum condition again appears
in these situations, with the corresponding symmetries spontaneously broken. Another
interesting situation was analyzed in [8]. It corresponds to an ideal case where, for the MG
and the BS case, additional non-derivative terms are included, such that the martingale
condition is still satisfied. These potential terms are different to those analyzed before
by some other authors [6,12]. The potential terms added in [8] are also different to the
standard case studied in [13], where a double slit constraint was explored. Indeed, the
potential terms analyzed in [8] correspond to collective decisions or collective behavior.
Although the results obtained in [8] are correct, they were always focused on the analysis
of situations, ignoring the kinetic contributions in the neighborhood of the martingale
state. This corresponds to the strong-field regime to be defined in this paper. This regime,
although valid, does not represent the whole scenario. For this reason, in this paper we also
explore other regimes by extending the results obtained in [8]. We then explore situations
where the kinetic terms behave as additional potential terms (weak-field regime and
intermediate regimes). This certainly happens in reality when we consider the martingale
condition in the BS equation as well as for the MG equation. Indeed, the kinetic terms
cannot be ignored in general around the neighborhood of the martingale state when we
consider its standard definition. Still, we can say that there are regimes where the results
obtained in [8] are valid and regimes where the additional results obtained in this paper
represent a more accurate picture of the reality. Finally, in this paper we fully connect the
notions of spontaneous symmetry breaking and flow of information (probability) in the
stock market. The paper is organized as follows: In Section 2, we explain the BS equation
and we derive its Hamiltonian form. In Section 3, we explain the MG equation and again
we derive its Hamiltonian. In Section 4, we illustrate the standard definition of martingale
and then we justify why the martingale state (condition) can be perceived as a vacuum
state in Quantum Finance. In Section 5, we evaluate the conditions under which additional
terms in the potential can be included, such that the martingale condition is still preserved.
In Section 6, we make some extensions of the results obtained in [8], in connection with
the spontaneous symmetry breaking under changes of prices and volatility. In this paper
we analyze regimes which were ignored in [8]. This means that in this paper we explore
both weak and strong regimes for the quantum field, representing the series expansion
of the martingale state. The martingale state then corresponds to the vacuum condition
for this quantum field, denoted by φvac. Its explicit result depends on the regime under
analysis, as well as the order of the series expansion when we express the Hamiltonian
as a function of quantum fields. In Section 7, we analyze the details about the extended
martingale condition, which depends not only on the prices of the options but also on
the stochastic volatility. This is the section where the explicit results for the MG case are
analyzed. Finally, in Section 8, we conclude.
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2. The Black–Scholes Equation

The stock price S(t) is normally taken as a random stochastic variable, evolving in
agreement to a stochastic differential equation given by

dS(t)
dt

= φS(t) + σSR(t). (1)

Here, φ is the expected return of the security, R(t) is the Gaussian white noise with zero
mean, and σ is the volatility [6]. Note that this simple equation contains one derivative term
on the left-hand side and non-derivative terms on the right-hand side. The fundamental
analysis of Black and Scholes excludes the volatility so that we can guarantee the evolution
of the price of the stock with certainty [14]. In this way, by imposing σ = 0, we obtain a
simple solution for the Equation (1) as

S(t) = eφtS(0). (2)

The possibility of arbitrage is excluded if we can make a perfect hedged portfolio. In
this sense, any possibility of uncertainty is excluded and we can analyze the evolution of
the price free of any white noise [6]. We can consider the following portfolio

Π = ψ− ∂ψ

∂S
S. (3)

This is a portfolio where an investor holds the option and then short sells the amount
∂ψ
∂S for the security S. By using the Ito calculus (stochastic calculus) [6], it is possible to
demonstrate that

dΠ
dt

=
∂ψ

∂t
+

1
2

σ2S2 ∂2ψ

∂S2 . (4)

Deeper analysis about the Ito’s formula has been done in [15]. In Equation (4), the
change in the value of Π does not have any uncertainty associated with it [6]. The random
term has disappeared due to the choice of portfolio. Since here we have a risk-free rate of
return for this case (no arbitrage) [16,17], then the following equation is satisfied

dΠ
dt

= rΠ. (5)

If we use the results (3) and (4), together with the previous equation, then we get

∂ψ

∂t
+ rS

∂ψ

∂S
+

1
2

σ2S2 ∂2ψ

∂S2 = rψ. (6)

This is the Black–Scholes equation [14,18,19], which is independent of the expectations
of the investors, defined by the parameter φ, which appears in Equation (1). In other words,
in the Black–Scholes equation, the security (derivative) price is based on a risk-free process.
The basic assumptions of the Black–Scholes equation are:

(1) The spot interest rate r is constant.
(2) In order to create the hedged portfolio Π, the stock is infinitely divisible, and in

addition it is possible to short sell the stock.
(3) The portfolio satisfies the no-arbitrage condition.
(4) The portfolio Π can be re-balanced continuously.
(5) There is no fee for transaction.
(6) The stock price has a continuous evolution.

Black–Scholes Hamiltonian Formulation

We will explain how the Equation (6) can be expressed as an eigenvalue problem
after a change of variable. The resulting equation will be the Schrödinger equation with
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a non-Hermitian Hamiltonian. For Equation (6), consider the change of variable S = ex,
where −∞ < x < ∞. In this way, the BS equation becomes

∂ψ

∂t
= ĤBSψ, (7)

where we have defined the operator

ĤBS = −σ2

2
∂2

∂x2 +

(
1
2

σ2 − r
)

∂

∂x
+ r. (8)

as the BS Hamiltonian. Quantum extensions to the classical BS equation analyzed here
have been proposed in [20–22]. Note that the resulting Hamiltonian in Equation (8) is
non-Hermitian, since Ĥ 6= Ĥ+ [12,23,24]. In addition, note that since the spot interest
rate r is constant, then the potential term is just a constant term. This means that the
vacuum condition is trivial for this case. Under the BS Hamiltonian, the evolution in time
of the option is non-unitary in general (in addition, the Hamiltonian non-necessarily obeys
the PT symmetry). This means that the probability is not necessarily preserved in time,
although it is certainly well-defined and its total value is equal to one. In general, there are
some cases in ordinary Quantum Mechanics, as well as in Quantum Field Theory, where
it is interesting to explore non-Hermitian Hamiltonians (Lagrangians) [25]. Based on the
previous explanations, we cannot expect the financial market to obey unitarity. The reason
for this is simply because the market is not a closed system and there are many external
factors influencing its behavior: for example, it is the amount of people and organizations
trading at some instant of time. Then the assumption of unitarity makes no sense at all,
and the Hamiltonian must be non-Hermitian. In this paper, however, when we add some
potential terms to the BS and MG equations, we will impose the Hermiticity condition on
them. When the symmetry is spontaneously broken and we are working at the vacuum
level, all the terms in the original BS equation become irrelevant, giving then importance to
(only) the potential terms. In this way, we can follow the standard formalism suggested
in [25]. The same conclusions apply to any other equation only containing kinetic terms, as
it is the case of the Merton–Garman (MG) equation to be analyzed shortly. Inside the MG
case, the symmetry breaking process is more interesting than in the case where the same
process occurs in the BS scenario. We will return back to this argument later.

3. The Merton–Garman Equation: Preliminaries and Derivation

We can consider a more general case where the security and the volatility are both
stochastic. In such a case, the market is incomplete [6]. Although several stochastic
processes have been considered for modeling the case with stochastic volatility [26–32],
here we consider the generic case, defined by the set of equations [6]

dS
dt

= φSdt + S
√

VR1

dV
dt

= λ + µV + ζVαR2. (9)

Here, the volatility is defined through the variable V = σ2, and φ, λ, µ, and ζ are
constants [16]. The Gaussian noises R1 and R2, corresponding to each of the variables
under analysis, are correlated in the following form

〈R1(t′)R1(t)〉 = 〈R2(t′)R2(t)〉 = δ(t− t′) =
1
ρ
〈R1(t)R2(t′)〉. (10)

Here, −1 ≤ ρ ≤ 1, and the brackets 〈AB〉 correspond to the correlation between A
and B. If we consider a function f , depending on the stock price, the time, as well as on the
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white noises, with the help of the Ito calculus, it is possible to derive the total derivative in
time of this function as

d f
dt

=
∂ f
∂t

+ φS
∂ f
∂S

+ (λ + µV)
∂ f
∂V

+
σ2S2

2
∂2 f
∂S2 + ρV1/2+αζ

∂2 f
∂S∂V

+
ζ2V2α

2
∂2 f
∂V2

+σS
∂ f
∂S

R1 + ζVα ∂ f
∂V

R2. (11)

This equation can be expressed in a more compact form, which separates the stochastic
terms from the non-stochastic ones as follows

d f
dt

= Θ + ΞR1 + ψR2. (12)

Here we have defined

Ξ = σS
∂ f
∂S

, ψ = ζVα ∂ f
∂V

,

Θ =
∂ f
∂t

+ φS
∂ f
∂S

+ (λ + µV)
∂ f
∂V

+
σ2S2

2
∂2 f
∂S2 + ρV1/2+αζ

∂2 f
∂S∂V

+
ζ2V2α

2
∂2 f
∂V2 , (13)

keeping in this way the notation used in [6] for convenience.

3.1. Derivation of the Merton–Garman Equation

If we consider two different options defined as C1 and C2 on the same underlying
security with strike prices and maturities given by K1, K2, T1, and T2, respectively. It is
possible to create a portfolio

Π = C1 + Γ1C2 + Γ2S. (14)

If we consider the result (12), then we can define the total derivative with respect to
time as for the folio as

dΠ
dt

= Θ1 + Γ1Θ2 + Γ2φS + (Ξ1 + Γ1Ξ2 + Γ2σS)R1 + (ψ1 + Γ1ψ2)R2. (15)

Note that this result is obtained after recognizing f (t) = C1 or f (t) = C2 in Equation (12)
when it corresponds. It has been demonstrated that even in this case of stochastic volatility,
it is still possible to create a hedged folio and then at the end we arrive again to the
condition (5), after finding special constraints for Γ1 and Γ2 such that the white noises are
removed. The solution for Π is a non-trivial one for this case, and then it requires the
definition of the parameter

β(S, V, t, r) =
1

∂C1/∂V

(
∂C1
∂t

+ (λ + µV)
∂C1
∂S

+
VS2

2
∂2C1
∂S2 + ρV1/2+αζ

∂2C1
∂S∂V

)
+

1
∂C1/∂V

(
ζ2V2α

2
∂2C1
∂V2 − rC1

)
(16)

=
1

∂C2/∂V

(
∂C2
∂t

+ (λ + µV)
∂C2
∂S

+
VS2

2
∂2C2

∂S2 + ρV1/2+αζ
∂2C2
∂S∂V

+
ζ2V2α

2
∂2C2

∂V2 − rC2

)
This parameter does not appear for the case of the BS equation. Indeed, β in the MG

equation is defined as the market price volatility risk because the higher its value is, the
lower the intention is of the investors to risk. Take into account that in the MG equation the
volatility is a stochastic variable. Since the volatility is not traded in the market, then it is
not possible to make a direct hedging process over this quantity [6]. In this way, when we
have stochastic volatility, it is necessary to consider the expectations of the investors. This
effect appears through the parameter β. It has been demonstrated in [33] that the value
of β, in agreement with Equation (16), is a non-vanishing result. In general, it is always
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assumed that the risk of the market (in price) has been included inside the MG equation.
The MG equation is then obtained by rewriting the Equation (16) in the form

∂C
∂t

+ rS
∂C
∂S

+ (λ + µV)
∂C
∂V

+
1
2

VS2 ∂2C
∂S2 + ρζV1/2+αS

∂2C
∂S∂V

+ ζ2V2α ∂2C
∂V2 = rC, (17)

where the effects of β now appear contained inside the modified parameter λ in this
equation. In other words, we have shifted the parameter λ→ λ− β in Equation (17). Later
in this paper, we will express this equation in the Hamiltonian form, which is the ideal one
for understanding the concept of spontaneous symmetry breaking in Quantum Finance.

3.2. Hamiltonian form of the Merton–Garman Equation

The previously analyzed MG equation can be formulated as a Hamiltonian (eigen-
value) equation. We can define a change of variable defined as

S = ex, −∞ < x < ∞,

σ2 = V = ey, −∞ < y < ∞, (18)

and then the MG Equation (17) becomes [6,34,35]

∂C
∂t

+

(
r− ey

2

)
∂C
∂x

+

(
λe−y + µ− ζ2

2
e2y(α−1)

)
∂C
∂y

+
ey

2
∂2C
∂x2 + ρζey(α−1/2) ∂2C

∂x∂y
+

ζ2e2y(α−1) ∂2C
∂y2 = rC. (19)

If we express this equation as an eigenvalue problem in the same form as in Equation (7)
for the BS case, by following the same arguments illustrated in [6,36], then we have the
result

∂C
∂t

= ĤMGC, (20)

with the MG Hamiltonian defined as

ĤMG = − ey

2
∂2

∂x2 −
(

r− ey

2

)
∂

∂x
−
(

λe−y + µ− ζ2

2
e2y(α−1)

)
∂

∂y
− ρζey(α−1/2) ∂2

∂x∂y
−

ζ2e2y(α−1) ∂2

∂y2 + r. (21)

Exact solutions for the MG equation have been found for the case α = 1 in [34] by
using path-integral techniques. The same equation has been solved in [26–32] for the case
α = 1/2 by using standard techniques of differential equations. Note that the equation
has two degrees of freedom. Later, we will see that when we have spontaneous symmetry
breaking, it becomes irrelevant to know the exact solution of this equation.

4. The Martingale Condition in Finance

The martingale condition is required for having a risk-neutral evolution for the price
of an option. This means that the price of a financial instrument is free of any possibility
of arbitrage. In probability theory, the risk-free evolution is modeled inside a stochastic
process. Assume, for example, N + 1 random variables Xi, with a joint probability distri-
bution defined as p(x1, x2, ..., xN+1). Then the martingale process is simply defined as the
condition under which

E[Xn+1|x1, x2, ..., xn] = xn, (22)

is satisfied [6]. Note that E[Xi] is the expectation value of the random variable. Equation (22)
suggests that the expected value of a subsequent observation of a random variable is simply
the present value. For the purpose of this paper, the random variables correspond to the
future prices of the stock given by S1, S2, ..., SN+1, which are defined at different times
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t1, t2, ..., tN+1. We can then apply the same martingale condition to the stocks if we make
the corresponding discounts in order to compare prices defined at different moments [3,6].
We can assume that the future value of an equity is defined as S(t). If there is a free-risk
evolution of the discounted price defined as

e−
∫ t

0 r(t′)dt′S(t). (23)

Then the value follows the martingale process [7]. In this way, the conditional proba-
bility for the present price is the actual value given by S(0). The martingale condition can
then be expressed as [6]

S(0) = E
[
e−
∫ t

0 r(t′)dt′S(t)|S(0)
]
, (24)

and this result is general. Equivalent expressions have been used for the analysis of the
evolution of forward rates [6]. The importance of martingales is analyzed in [37]. The
interpretation of Equation (24) is clear. The left-hand side is just the present price of the
security. The right-hand side is the expected value of the discounted price of the security at
the time t. Discounted means that the quantity evaluated at the time t has to be extrapolated
to the present value. Both quantities must be equivalent under the martingale condition.

The Martingale Condition as a Vacuum Condition for a Hamiltonian

Here we justify why the martingale condition can be perceived as a vacuum state from
the perspective of the Hamiltonian formulation. Consider as before an option on a security
S = ex that matures at time T with the corresponding pay-off function g(x). In this way
we can describe the risk-free evolution of the option as

C(t, x) =
∫ ∞

−∞
dx′〈x|e−(T−t)Ĥ |x′〉g(x′). (25)

By using the previous definition of martingales, for this case we have

S(t) = E
[
e−(t∗−t)rS(t∗)|S(t)

]
. (26)

If we introduce S(x) (the price of the security) in Equation (25), then under the
martingale condition, we have

S(t, x) =
∫ ∞

−∞
dx′〈x|e−(t∗−t)Ĥ |x′〉S(x′). (27)

This equation can be re-expressed in Dirac notation as

〈x′|S〉 =
∫ ∞

−∞
dx′〈x|e−(t∗−t)Ĥ |x′〉〈x′|S〉. (28)

If we take the base |x′〉 as a complete set of states, then the condition Î =
∫

dx′|x′〉〈x′|
( Î is the identity matrix) is satisfied and then the previous expression is simplified as

|S〉 = e−(t∗−t)Ĥ |S〉. (29)

Then there is no Hamiltonian (time) evolution for the state |S〉 under the previous
conditions. It also comes out that the Hamiltonian annihilates the same state as follows

Ĥ|S〉 = 0. (30)

Since the Hamiltonian annihilates the martingale state, then we can interpret it as a
vacuum state. In standard Quantum Mechanics, the Hamiltonian annihilates the vacuum
(ground) state, which is additionally a state representing an equilibrium condition. This
is precisely what the martingale state represents in Quantum Finance, in agreement with
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the result (30) [38–40]. Interestingly, the BS Hamiltonian given in Equation (8), as well as
the MG Hamiltonian defined in Equation (21), satisfy the martingale condition in the form
defined in Equation (30).

5. Non-Derivative Terms Introduced in the Financial Hamiltonians

It is possible to introduce potential terms to the BS equation as well as to the MG one,
as it is explained in [6]. It has been demonstrated that the martingale condition can still be
maintained if the potential satisfies some special conditions. In general, a potential term
will appear as

Ĥe f f
BS,MG = ĤBS,MG + V̂(x), (31)

with the potential term V̂ containing non-derivative terms depending on the security S.
Since we usually have a change of variables in the Hamiltonian formulation, this functional
dependence is indirect. In the previous equation, Ĥe f f

BH,MG is the effective Hamiltonian,
including the potential contribution. Some barrier options as well as some path-dependent
options admit the inclusion of potential terms for their deep understanding [12,23,24]. On
the other hand, for the case of the Black–Scholes Hamiltonian, the martingale condition is
maintained if the potential appears in the Hamiltonian in the following form [6]

Ĥe f f
BS = −σ2

2
∂2

∂x2 +

(
1
2

σ2 −V(x)
)

∂

∂x
+ V(x). (32)

Then an effective Hamiltonian expressed in this way can be used for pricing the option.
The discount in these general cases depends on the price of the option itself. Then the
security discount defined in Equation (23) is modified as [6]

e−
∫ t

0 r(t′)dt′S(t)→ e−
∫ t

0 V(x(t′))dt′S(t). (33)

In [6] it is argued that the usual discounting of a security using the spot interest rate
r is determined by the argument of no arbitrage involving fixed deposits in the money
market account. Studies about viable potentials matching with the reality of the market are
under analysis. It is important to notice that the Hamiltonian (32) can be converted to a
Hermitian operator by using a similarity transformation, as has been reported in [6]. Then
we can define

Ĥe f f
BS = es ĤHerme−s. (34)

Here the Hermitian Hamiltonian is defined as

ĤHerm = −σ2

2
∂2

∂x2 +
1
2

V′(x) +
1

2σ2

(
V +

1
2

σ2
)2

, (35)

and s = x/2− (1/σ2)
∫ x

0 dyV(y). This result can be obtained by replacing (32) and (35) in
Equation (34). From the Hermitian Hamiltonians, it is possible to construct a complete basis
and then we can find real eigenvalues associated to this Hamiltonian. Note in particular
that in the Black–Scholes case, V(x) = r is constant. It is a simple task to demonstrate that
the Hermitian Hamiltonian obtained by similarity transformation can be also expressed as

ĤHerm = eαx
(
−σ2

2
∂2

∂x2 + γ

)
e−αx, (36)

with

γ =
1

2σ2

(
r +

1
2

σ2
)2

α =
1
σ2

(
1
2

σ2 − r
)

. (37)

Among the trivial examples of potentials already analyzed in the literature, we find
the “Down-and-Out” barrier option, where the stock price has to be over some minimal
value, below which it becomes worthless. This behavior can be guaranteed with an
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infinite potential barrier boundary condition imposed for the value of the corresponding
price. This case can be worked out directly from the non-Hermitian Hamiltonian defined
in Equation (31). Another example of potential corresponds to the “Double-Knock-Out”
barrier option, where it is easier to work with the Hermitian Hamiltonian part as it is
defined in Equation (34), but including the potential part as follows

ĤDB = ĤBS + V̂(x) = es(ĤHerm + V̂(x)
)
e−s. (38)

This definition is used for analyzing cases where the stock has to be maintained
between a maximal and a minimal value. Note that the definition (38) can be also used
for the analysis of the “Down-and-Out” barrier if we focus on the non-Hermitian part
(the term in the middle of the equation) with the corresponding potential. Note that these
examples of potentials representing real situations are trivial cases. More details about
these examples can be found in [6].

6. Deeper Analysis for the Black–Scholes and the Merton–Garman Equation

If we analyze the martingale condition, we can notice that its interpretation as a
vacuum condition is not perfect. The reason is that although the Hamiltonian annihilates
the martingale state |S〉, as can be seen from Equation (30), the momentum operator
corresponding to the prices of the options (p̂x) does not annihilate the vacuum perfectly.
This can be seen from their definitions as follows

p̂x|S〉 = ex|S〉. (39)

This means that the symmetry under translations of the prices, carried out from the
security S, is spontaneously broken. An exception is the case where S → 0 and then
x → −∞, as can be seen from Equation (18). This, however, would give us a trivial value
for the security as S = 0. For general values, the symmetry under translations of prices is
spontaneously broken. This means that the different values of S represent different possible
vacuums or ground states. Different vacuums, however, would have different amounts
of information because under the ideal conditions, all the information of the market is
stored inside the prices. The action of p̂x over |S〉 then maps one vacuum toward another
one defined through the selected value x. Such operation could be seen as a rotation in a
complex plane if we make the transformation of variables x → inθ. In such a case, we have

p̂x|S〉 = einθ |S〉 = |S′〉 6= |S〉. (40)

Here n is just a number and θ is a dimensionless phase. After this change of variable,
the action of p̂x is to map one vacuum into another one through a rotation defined by the
phase θ. This condition shows the vacuum degeneracy. The same condition has different
meanings depending on whether we consider the BS or the MG equation. This important
detail about the Martingale condition deserves more attention.

6.1. Standard Definition of Spontaneous Symmetry Breaking

In standard situations, the ground state of a system shares the same symmetries of
its Hamiltonian (Lagrangian). However, under special circumstances, for some specific
combinations of the free-parameters, the equilibrium configuration of the system might
change, up to the point of developing a new vacuum state configuration. When spon-
taneous symmetry breaking occurs, the free-parameters of a system take some values
for which the single vacuum state, being fully symmetric, becomes unstable [9,38–40].
In such a case, then any small fluctuation on the system forces it to select a more stable
vacuum which does not respect all the symmetries of the system. The symmetries of the
system which the vacuum does not satisfy are called broken symmetries [9,38–40]. In these
situations we claim that some of the symmetries of the system are spontaneously broken.
The most famous example of spontaneous symmetry breaking is the case of the “Mexican
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hat” [9,38–40]. We can take, for example, the following Lagrangian corresponding to a
complex scalar field φ [9,38–40]

£ = ∂µφ∗∂µφ−V(φ∗φ), (41)

where the potential term is defined as

V(φ∗φ) = −µ2φφ∗ + λ(φφ∗)2. (42)

Here, λ > 0 is a free-parameter of the system as well as µ2. The Lagrangian (41) is
symmetric under the U(1) symmetry. If we decompose the field φ as

φ =
1√
2
(φ1 + iφ2). (43)

Here we can select arbitrarily which component corresponds to the order parameter
and which one corresponds to the Nambu–Goldstone boson field [9,38–40]. Here by
convenience we select in the standard notation the order parameter to be

< 0|φ1|0 >= ± µ√
λ

. (44)

The corresponding Nambu–Goldstone field is just < 0|φ2|0 >= 0. No matter what
the notation is, the vacuum expectation value of the field in Equation (43) is simply
< 0|φ|0 >= ±µ/

√
λ. Note that in this example, we focus on the Lagrangian of some

specific system. However, the Hamiltonian formulation contains exactly the same infor-
mation of the Lagrangian formulation. Both of them are connected through a Legendre
transformation [41]. In this paper we do not analyze the role of the Nambu–Goldstone
field. All we care about in this paper is the conditions under which there is spontaneous
symmetry breaking in Quantum Finance and the relations between variables emerging
from such conditions. In general, we can define the ground state (vacuum state) of a system
as the state which is annihilated by its Hamiltonian Ĥ|0 >= 0. In standard situations, all
the symmetry generators of the system also annihilate the same ground state. However,
when spontaneous symmetry breaking occurs, then some symmetry generators cannot
annihilate the vacuum state of the system. Such generators are called broken generators
and they are related to the broken symmetries of the system. Then, for example, if a system
breaks its symmetry with respect to spatial translations spontaneously, this means that
the momentum p̂ (generator of spatial translations) cannot annihilate the ground state of
the system, namely, p̂|0 > 6= 0. This important statement is what we use in this paper for
developing our results around the BS and the MG equations.

6.2. Reinterpretation of the Martingale Condition

Now that we understand in deep detail some aspects of the Martingale condition and
the exact definition of spontaneous symmetry breaking, we can re-define the martingale
state S(x, t) as a quantum field by doing the following change of variable S(x, t) = ex =

∑∞
n=0 xn/n! = ∑∞

n=0 φn(x, t), as it was proposed in [8]. The purpose of this redefinition is
to transform the BS and MG equations from differential equations to algebraic ones. This is
not different in essence to what is done in Quantum Field Theory or in standard Quantum
Mechanics, when we use the Fourier transformation with the same purpose. Of course, we
could make further expansions in terms of annihilation and creation operators, but for the
purposes of this paper, it is not necessary to make further definitions for the financial fields.
Having re-defined the martingale state as a field, then we can express the BS equation as a
function of φ(x, t) by replacing this definition inside Equation (8), obtaining in this way

ĤBSS(x, t) = −σ2

2
n(n− 1)φn−2 +

(
1
2

σ2 − r
)

nφn−1 + rφn(x, t) = V(φ) = 0, (45)



Mathematics 2021, 9, 2777 11 of 18

which is valid in the neighborhood of the martingale state (vacuum). Here we omit the
sum symbol because the comparison has to be done term by term in the series. This means
that we have one equation for each term in the series expansion for φ. In Equation (45), we
can see that all the terms in the Hamiltonian can now be considered to be potential terms.
Note that the result (45) is valid if dφ/dx = ∑n φ/n. In some regimes (especially inside the
weak-field approximation), the kinetic terms in Equation (45) play a fundamental role in
the identification of the vacuum state. The vanishing condition in Equation (45) is a natural
consequence of the martingale state definition, which, being a vacuum condition, is annihi-
lated by the Hamiltonian. This is the case because the symmetries under time-translation
are not spontaneously broken. We can solve the martingale condition in Equation (45),
obtaining then

φvac =
n
2

(
1− σ2

2r

)(
1±

√
1 +

8rσ2

(σ2 − 2r)2
(n− 1)

n

)
, n 6= 0. (46)

This is the definition of the martingale state in the sense of the quantum field φ, as
a function of the free-parameters of the theory. Note that for n = 0, the result (46) is not
well-defined, and then we impose the condition n 6= 0. Another special case is n = 1, for
which Equation (46) provides the following solutions

φvac =
1
2

(
1− σ2

2r

)
(1± 1). (47)

The result for this previous equation gives a trivial non-degenerate vacuum φn=1
vac = 0,

but it can also give the following non-trivial result

φn=1
vac = 1− σ2

2r
. (48)

Note that this result is the same obtained in [8] when the BS eq. was analyzed. This
is the case because in [8], the kinetic terms were ignored (Strong-field regime), which is
precisely what happens in Equation (45) when n = 1. However, note that the result (48)
appeared for n = 2 instead of n = 1 in [8]. The reason for this is that in [8], the derivative of
the potential was considered instead of the potential itself, as it is the case here. In any case,
this only demonstrates that the regimes analyzed in this paper are more general than the
simple case studied in [8]. All the other results, with n 6= 0, 1 are non-trivial. Equation (45)
is by itself a potential function V(φ) and we can demonstrate that any derivative of this
potential will not give any information different to the one obtained from Equation (45).
Then, for example, if we find find the extreme condition for Equation (45) as ∂V(φ)/∂φ = 0,
we get

φ2 +

(
1
2

σ2

r
− 1
)
(n− 1)φ− σ2

2r
(n− 1)(n− 2) = 0, (49)

which is just essentially the same result in Equation (45), but with the coefficient terms
shifted. Then, for this case, when n = 1, the previous equation gives a trivial result φ = 0.
In this way, since any higher-order derivative provides the same information as the one
obtained from Equation (45), for the purpose of analysis, we will just focus on Equation (45)
for understanding the different regimes. Finally, note that although ĤBSφn = 0, still
p̂φn = nφn−1 6= 0, considering n 6= 0. Then, the vacuum is only annihilated by the
momentum if the field φ is itself trivial—something which happens for some combination
of parameters. Then, for example, Equation (48) gives a trivial result when σ2 = 2r, which
is the same condition for the Hamiltonian to be Hermitian. Then, at least for this particular
case, there is a direct connection between flow of information and spontaneous symmetry
breaking. When the martingale state is unique, no random fluctuations can change the
prices in the market. However, when the martingale (vacuum) state is degenerate, then a
multiplicity of possible ground states emerge and then any fluctuation generates changes
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in the information of the system, and as a consequence, changes on the prices of the Option
under analysis.

Vacuum Conditions for n 6= 0, 1: Weak and Strong Field Regimes

(1) Weak-field regime: φn << φ
For this regime, from Equation (45), we obtain

− σ2

2
(n− 1) +

(
1
2

σ2 − r
)

φ ≈ 0, (50)

which can be easily solved to obtain

φvac ≈
σ2

σ2 − 2r
(n− 1). (51)

Note that this result is trivial for n = 1 for any combination of parameters. This means
that in these situations, again random fluctuations cannot change the prices in the
market. The case (51) is also trivial when σ2 = 0 (zero volatility). Zero volatility means
zero fluctuations and then zero possibility of changing the prices in the market.

(2) Strong Field regime: φn >> φ
In this regime, Equation (45) gives the following condition

rφ2 +

(
1
2

σ2 − r
)

nφ ≈ 0. (52)

We have two solutions; one of them is the trivial φvac ≈ 0 and the second solution is

φvac =

(
1− 1

2
σ2

r

)
n. (53)

Here again, this result is trivial if σ2 = 2r, which is again the condition for the
Hamiltonian to be Hermitian and then preserve information. Therefore, it seems that
this is the combination of parameters which avoids changes of information due to
random fluctuations. Before going to the next section, we have to remark that the
results obtained for the BS case will be valid for the MG case because the standard
definition of martingale is independent of the stochastic volatility. The only change
to be done for the solutions inside the MG equation, when we consider φvac, is in the
definition of the volatility σ2 = ey, with y representing the variable connected to the
stochastic volatility.

7. A More General Condition for the Symmetry Breaking in the Merton Garman
Equation

When we analyze the MG equation, the martingale condition is normally taken such
that it is independent on the stochastic volatility. The volatility is a function of the variable
y, as it is defined in Equation (18). If the martingale condition is taken as independent of y,
then any term with derivative with respect to this variable will annihilate the state S(x, t)
defined previously. From this perspective, y can be taken as fixed when we are determining
the vacuum conditions. In this portion of the paper, we would like to define a more general
martingale condition, such that the possible changes in y can be considered. We will take
the martingale state as

ĤMGex+y = ĤMGS(x, y, t) = 0. (54)

Here, we extend the arguments showed in Equation (18), considering the extensions
of the original martingale state S(x, t) = ex. The condition (54) will be considered here as
the extended martingale condition with S(x, y, t) = ex+y. By using the Hamiltonian (21)
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and the result (54), we can observe that the condition for the Hamiltonian to annihilate the
martingale state is

λ + ey
(

µ +
ζ2

2
e2y(α−1) + ρζey(α−1/2)

)
= 0, (55)

as far as ex+y 6= 0, avoiding then the trivial solution. This previous condition is necessary
for the state ex+y to be considered as the martingale state and it represents a constraint
among the free-parameters involved in the MG equation.

7.1. The Extended Martingale Condition and the Flow of Information

Previously, when we studied the ordinary martingale condition, we could demonstrate
that it can be also considered as a vacuum state. The vacuum in the BS case came out
to be single if there is no flow of information through the boundaries of the system and
it was degenerate if the information flows through the boundaries of the system. When
the vacuum is single, the momentum, defined as the generator of the changes in prices, is
a perfect symmetry. On the other hand, when the vacuum is degenerate, then the same
symmetry is spontaneously broken because although the Hamiltonian annihilates the
ground state (martingale condition), the momentum does not do it. The interesting point
here is the connection between spontaneous symmetry breaking and flow of information,
which is connected with the changes on the prices in the market [6]—something which
has been suggested before in [11] in a different context. By using the previously proposed
extended martingale state, we can express it as a function of quantum fields in the form
S(x, y, t) = ex+y = (∑∞

n=0 φn
x )
(

∑∞
m=0 φm

y

)
. By replacing this expression in Equation (21),

we get

− ey

2
n(n− 1)φn−2

x φm
y −

(
r− ey

2

)
nφn−1

x φm
y −

(
λe−y + µ− ζ2

2
e2y(α−1)

)
mφn

x φm−1
y

−ρζey(α−1/2)nmφn−1
x φm−1

y − ζ2e2y(α−1)m(m− 1)φn
x φm−2

y + rφn
x φm

y = 0. (56)

The vanishing condition comes out from the definition of martingale. The previous
result is valid if dφx/dx = ∑n φx/n and dφy/dy = ∑n φy/n. The Equation (56) is a
quadratic equation for both fields, namely, φx and φy. Therefore, we can decide to solve
it with respect to either field if convenient. In this paper we will not do it; we will rather
analyze a few interesting cases and regimes in order to visualize the structure of the
extended martingale condition for the MG equation. With the new definition of martingale,
it is known that the symmetries under changes of price as well as the symmetries under
changes of volatility are both spontaneously broken. This means that the information of
the system changes due to fluctuations in the prices as well as fluctuations on the volatility.
These situations are represented Mathematically as [8]

p̂x|S〉 6= 0, p̂y|S〉 6= 0. (57)

with |S〉 representing the ket related to the martingale state S(x, y, t). Additionally,
〈x, y| p̂x|S〉 = ∂xS(x, y, t) and 〈x, y| p̂y|S〉 = ∂yS(x, y, t); representing in this way the ac-
tion of the operators p̂x,y as the generators of translations in the prices and volatility related
to the options. We can now analyze some important cases related to the condition (56).
Note, for example, that for n = m = 0, we do not get anything interesting from this
equation. Indeed, for this case, r = 0 (zero interest rate). On the other hand, we can analyze
the following interesting cases

7.1.1. Extended Martingale with n = 0 and m = 1

For this case, Equation (56) gives us the following result

φy vac =
1
r

(
λe−y + µ− ζ2

2
e2y(α−1)

)
, (58)
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with an arbitrary value for φx vac. This means that for this particular case, the symmetry
under changes in the volatility is spontaneously broken, except when the condition

λe−y + µ− ζ2

2
e2y(α−1) = 0, (59)

is satisfied. This condition, complemented with Equation (55), gives the result

ey(α−3/2) = −ρ

ζ
, (60)

which is a constraint related to important parameters connected to the stochastic volatil-
ity [6]. Note that in this case, the field φx is arbitrary. This means that the symmetry under
changes of the prices is also spontaneously broken. Note, in addition, that the condition (59)
corresponds to the condition for recovering the Hermiticity with respect to the variable y.
As a consequence of this, the unique vacuum condition with respect to y, here represented
by φy vac = 0, is connected to the no-flow of information with respect to volatility variable
y. This means that when (59) is valid, then the random fluctuations coming from the
stochastic volatility do not affect do not produce changes on the information of the system.
Still for this case however, the information is not completely preserved due to the random
fluctuations on the prices, which disappear when r = ey/2, eliminating in this way all the
non-Hermiticities in the MG Hamiltonian in Equation (21).

7.1.2. Extended Martingale with n = 1 and m = 0

For this case, Equation (56) gives us the solution

φx vac = 1− ey

2r
, (61)

with φy arbitrary. Compare Equation (61) with the case n = 1 of the BS result in Equation (48).
The result is basically the same, but with the re-defined volatility as a stochastic variable
σ2 = ey. Here again, the single vacuum condition φx vac = 0 is related to the no-flow of
information, but this time with respect to the variable x which is a function of the price of
the stock. For this case, φy vac is arbitrary and then still the symmetries with respect to the
changes in volatility are spontaneously broken. In this way, only the random fluctuations
of the volatility affect the information content of the market.

7.1.3. Extended martingale with n = 1 and m = 1

For this case, Equation (56) gives us the solution

−
(

r− ey

2

)
φy −

(
λe−y + µ− ζ2

2
e2y(α−1)

)
φx − ρζey(α−1/2) + rφxφy = 0. (62)

We can solve this expression for either quantum field, φy or φx. One interesting
situation emerges when the Hermiticity condition for the Hamiltonian (21) is satisfied. This
occurs when Equation (59) is satisfied and when ey = 2r. In such a case, we have from
Equation (62)

φx vacφy vac =
ρζey(α−1/2)

r
. (63)

If, in addition ρ = 0 or ζ = 0, then we would have φxφy = 0, and then either
the symmetry is spontaneously broken with respect to translation in prices but not with
respect the variations in volatility, or on the contrary, the symmetry is spontaneously
broken with respect to changes in the volatility but we still have a perfect symmetry with
respect to changes in the prices of the options. The same result also suggests that the
simultaneous changes in the price with a subsequent changes in volatility (and viceversa)
represent a perfect symmetry for the system as far as ρ = 0 or ζ = 0. This means that for
this combined symmetry, simultaneous random fluctuations of the volatility and prices



Mathematics 2021, 9, 2777 15 of 18

keep the information of the system unchanged. Note that ρ is a variable representing the
correlation between the Gaussian noises R1 and R2, as it was defined in Equation (10).
Therefore, ρ = 0 means zero correlation between the Gaussian noises. On the other hand,
if ζ = 0, then the Gaussian noise R2 decouples and it comes out that it does not affect the
changes in the stochastic volatility. This last issue can be observed from Equation (9).

7.1.4. Strong Field Condition φn
x >> φx and φm

y >> φy; for Any Value of n, m

For this case, from Equation (56), we obtain

φx vacφy vac ≈
(

1− ey

2r

)
nφy vac +

(
λ

r
e−y +

µ

r
− ζ2

2r
e2y(α−1)

)
mφx vac, (64)

which can be approximated to zero under the weak-field approximation if we ignore
cubic order terms in Equation (56) in comparison to the fourth-order terms. Even if we
do not ignore such terms, Equation (64) is exactly zero under the Hermiticity conditions
(no-flow of information) defined by Equation (59) and the constraint ey = 2r. In any
case, this result shows that for strong field approximation for both fields, connected to the
symmetries related to changes in prices and volatility, it is not possible to have a single
vacuum condition related to both symmetries. However, it is possible to have a perfect
vacuum condition after the simultaneous application of both symmetries, namely, the
symmetries under changes in the price plus the symmetries under changes in volatility.
This result comes out to be similar to the one analyzed in Equation (63) if we have ρ = 0 or
ζ = 0, as it was explained previously.

7.1.5. Weak-Field Condition φn
x << φx and φm

y << φy; for Any Value of n, m

For this regime, Equation (56) gives the approximation

− ey

2
n(n− 1)φ2

y − ρζey(α−1/2)nmφxφy − ζ2e2y(α−1)m(m− 1)φ2
x ≈ 0, (65)

which for n = m = 1 would give again φx vacφy vac ≈ 0 as before. We can certainly solve
this previous equation as a quadratic equation in either φx or φy. If we decide to solve for
φy, we get

φy vac ≈
ρζey(α−3/2)mφx vac

(1− n)

(
1±

√
1− 2(m− 1)(n− 1)

ρ2nm

)
. (66)

Note the coupling between φy vac and φx vac, such that the triviality of one field implies
the triviality of the other. However, it is still possible to have a trivial value for φy vac and
still a non-trivial one for φx vac if ζ = 0 or if m = 1. The coupling between fields means
that the broken symmetry, with respect to the changes in the prices, is connected to the
broken symmetry with respect to changes in volatility. This also means that the random
fluctuations of the prices are tied to the random fluctuations of the volatility. This naturally
is connected to the flow of information inside the system.

7.1.6. Weak and Strong-Field Approximation: φn
x >> φx and φm

y << φy

For this case, Equation (56) becomes(
λe−y + µ− ζ2

2
e2y(α−1)

)
φ2

xφy − ζ2e2y(α−1)(m− 1)φ2
x ≈ 0, (67)

which gives a trivial solution for φx vac ≈ 0 and the following result for φy vac

φy vac ≈
ζ2e2y(α−1)(1−m)

λe−y + µ− ζ2

2 e2y(α−1)
. (68)
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Then, for this case, the symmetry under changes in the prices is not broken, but the
one related to the changes in volatility is spontaneously broken, except when m = 1 or
ζ = 0. Then, in the most general situations, the random fluctuations cannot affect the prices
of the market under this approximation. Still, the random fluctuations generate changes in
the information content of the system because the location of the equilibrium condition
changes due to the random fluctuations on the volatility. Once again, a value of ζ = 0
decouples the Gaussian noise from the evolution in time of the volatility. Note that the
approximation (67) requires the additional condition φx >> φy, under the assumption that
all the coefficients in the Hamiltonian (56) are of the same order of magnitude. Of course,
other different regimes where different terms are relevant (or irrelevant) can be analyzed.

7.1.7. Weak and Strong-Field Approximation: φn
x << φx and φm

y >> φy

For this case, Equation (56) is approximated to

ey

2
(n− 1)φ2

y +

(
r− ey

2

)
φxφ2

y ≈ 0. (69)

This equation gives a trivial result for φy vac ≈ 0 and a non-trivial one for φx vac as

φx vac ≈
(1− n) ey

2

r− ey

2

, (70)

which vanishes when n = 1 or when y→ −∞ (σ2 → 0). Then for this case, in general, the
symmetry under changes of the volatility is a perfect symmetry, meanwhile, the symmetry
under changes of the prices is spontaneously broken. Then the random fluctuations
only affect the the information contained on the prices in the market in these special
circumstances. Interestingly, when y→ ∞, the previous expression becomes

φx vac ≈ n− 1, (71)

which is independent from any parameter and only depends on the order of the term
in the series expansion under analysis. Note that the approximation (69) requires the
additional complementary condition φy >> φx. Of course, other regimes different to the
ones analyzed here are possible. However, the selected regimes are enough for illustrating
the power of the proposed formulation.

8. Conclusions

In this paper, we have analyzed the degeneracy of the martingales state on regimes
which were not considered before in previous papers. We have also connected the concept
of spontaneous symmetry breaking in Quantum Finance with the flow of information
through the market. The analysis has been done for both the BS equation as well as for the
case where the volatility is stochastic, namely, for the MG equation. For the BS equation
as well as for the MG one, the symmetries under changes of the prices of the options
cannot annihilate the vacuum (taken as the martingale state). These symmetries are then
spontaneously broken in both cases. This means that random fluctuations in the market
generate changes in the information of the system, forcing it to move toward another
equilibrium condition. We found the conditions where the vacuum, in these two situations
(MG and BS equations), becomes unique. These come out to be the same conditions for
which there is no flow of information through the boundaries of the system (Market), or
equivalently, the same conditions correspond to the cases where the Hamiltonian becomes
Hermitian. Hermitian Hamiltonians, in general, preserve the information of the system.
Under the ordinary definition of martingale, the connection between flow of information
and spontaneous symmetry breaking is exact. We could then extend the martingale
condition for including the symmetries under changes of the stochastic volatility, in a
similar fashion to what is done in [8]. We then defined the momentum for the volatility
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as the generator of these transformations. We could also find the conditions under which
the martingale state (vacuum) becomes unique for different regimes and for the different
series expansion terms. A unique vacuum or martingale state means that the random
fluctuations cannot change the information of the system under such special situations.
In [8], the authors only focused on the strong field approximation. Here, however, we
could complete the scenario by analyzing the weak-field approximation for the BS as well
as for the MG case. In the weak-field approximation, the kinetic terms are the most relevant.
Since the kinetic terms, expressed as a function of a quantum field, behave as potential
terms, their existence then affects the vacuum location and behavior. For the case of the MG
equation, we have to define two different quantum fields, one corresponding to the prices
in the market and the other related to the volatility. In this paper, we analyzed the regimes
where both fields in the MG equation are either strong or weak. Additionally, we analyzed
the situations where one field is strong and the other is weak. In these cases, it came out
that one of the symmetries involved were perfect but the other one was spontaneously
broken in general, except for some specific combination of parameters. Perfect symmetries
mean conservation of the information under random fluctuations. This is a very important
statement for the stock market analysis. The use of symmetry arguments in order to
analyze the flow of information in the stock market and equilibrium conditions proposed
here can be complemented, with the formalism employing fractional functionals [42] in
order to have a deeper visualizations about the flow of information in the market. This
part will be developed in future papers. It is also important to remark that since the flow
of information in the stock market is related to whether or not the symmetries of the
system are spontaneously broken, then there should be a natural connection between the
concept of spontaneous symmetry breaking and decision theory. This immediately brings
us the chance to analyze possible connections between symmetry patterns and game theory.
Previous relations between quantum formulations and game theory were proposed in [43].
Finally, some previous studies suggest that modified diffusion equations might emerge
from the BS equation [44]. This point deserves attention in connection with the flow of
information in the stock market and its relation with the symmetries of the system.
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