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Abstract: Previous studies aimed at determining hedging strategies commonly used daily closing
spot and futures prices for the analysis and strategy building. However, the daily closing price might
not be the appropriate for price in some or all trading days. This is because the intraday data at
various minute intervals, in our view, are likely to better reflect the information about the concrete
behavior of the market returns and reactions of the market participants. Therefore, in this study,
we propose using high-frequency data along with daily data in an attempt to determine hedging
strategies, using five major international currencies against the American dollar. Specifically, in our
study we used the 5-min, 30-min, 60-min, and daily closing prices of the USD/CAD (Canadian
Dollar), USD/CNY (Chinese Yuan), USD/EUR (Euro), USD/GBP (British Pound), and USD/JPY
(Japanese Yen) pairs over the 2018–2019 period. Using data at 5-min, 30-min, and 60-min intervals
or high-frequency data, however, means the use of a relatively large number of observations for
information extractions in general and econometric model estimations, making data processing
and analysis a rather time-consuming and complicated task. To deal with such drawbacks, this
study collected the high-frequency data in the form of a histogram and selected the representative
daily price, which does not have to be the daily closing value. Then, these histogram-valued data
are used for investigating the linear and nonlinear relationships and the volatility of the interested
variables by various single- and two-regime bivariate GARCH models. Our results indicate that
the Markov Switching Dynamic Copula-Generalized autoregressive conditional heteroskedasticity
(GARCH) model performs the best with the lowest BIC and gives the highest overall value of
hedging effectiveness (HE) compared with the other models considered in the present endeavor.
Consequently, we can conclude that the foreign exchange market for both spot and futures trading
has a nonlinear structure. Furthermore, based on the HE results, the best derivatives instrument is
CAD using one-day frequency data, while GBP using 30-min frequency data is the best considering
the highest hedge ratio. We note that the derivative with the highest hedging effectiveness might not
be the one with the highest hedge ratio.

Keywords: bivariate Markov switching models; copulas; currency futures; forecasting ability;
methodology of optimal hedging

1. Introduction

Big data are understood as data in a gigantic size having a large volume of many
varieties of information, compiled continuingly and in general at a relatively high frequency.
However, the data collected can be either structured or non-structured, making it unable
to be managed in the general database systems [1,2]. Presently, big data are utilized in
many fields such as medicine, sciences, computer science, and business, in addition to as a
financial investment. At present, global stock markets such as the New York Stock Exchange
(NYSE) and the Nasdaq Stock Market (NASDAQ) commissioned IBM Netezza to collect
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and process big data from various sources, while some companies in different financial
markets have started to use big data technologies as a tool for extracting, processing,
and analyzing relevant information for the purpose of risk reduction, business control,
and trading strategy determination [3].

However, it remains uncommon for small-scale investors in financial markets to utilize
big data for risk management or investment decision-making, particularly those in the
international currency market, which is one of the financial markets characterized by high
liquidity and high risk at the same time. Risk, here, is the risk from investment in the
securities market defined as the likelihood of occurrence of losses relative to the expected
return on a particular investment, which is unpredictable for the future [4]. Therefore,
risk management needs to be considered in the process of making investment decisions.
One of the alternative methods for risk management is buying derivatives in the futures
market, which is quite effective and is commonly preferred by investors. Nevertheless,
an interesting issue is how an investor manages his/her investment portfolio with the
inclusion of futures. In other words, questions remain, such as what is the share of futures
to be purchased for an optimal portfolio? In addition, how much risk can be reduced by
the inclusion of futures in the portfolio? To address these questions, we are interested
in examining the performance of hedging—a strategic method for risk management—
using futures in the international Forex market, which has received enormous attention
from investors, institutions, transnational corporates, exporters, importers, etc., which is
exposed to foreign currencies that are highly fluctuating in values due to the dynamic
global economic conditions and the speculative currency trading.

Previous studies on currency hedging strategies are quite limited. Chang, González-
Serrano, and Jimenez-Martin [5] conducted a study on currency hedging strategies using
the dynamic multivariate generalized autoregressive conditional heteroscedastic (GARCH)
model for USD/EUR, USD/GBP, and USD/JPY pairs. Gagnon, Lypny, and McCurdy [6]
constructed efficient hedging foreign currency portfolios with futures, considering Deutsche
Mark (USD/DEM), Swiss Franc (USD/CHF), and Japanese Yen (USD/JPY), and us-
ing the multivariate GARCH model. Meanwhile, Kotkatvuori-Örnberg [7] used the
DCC-EGARCH model to determine the optimal hedge ratios for the Australian dollar
(USD/AUD), Canadian dollar (USD/CAD), European Euro (USD/EUR), British pound
(USD/GBP), and Japanese Yen (USD/JPY).

However, all of the previous studies briefly described above relied on daily closing
prices, which might not reflect the actual behavior of the price movements [8,9]. Further-
more, low frequency data (daily, weekly, and monthly data) are known for not being able to
reveal the actual behavior of stock prices comprehensively during the trading day. To take
into account the actual behavior of the currency returns, this study used big data for the
analysis and construction of currency hedging strategies. Therefore, the big data to be used
were those released every 5 min, 30 min, and 60 min.

In building the currency hedging strategies, we considered the hedge ratio and hedg-
ing effectiveness to determine the optimal number of spot and futures contracts in an
investment portfolio, as well as the risk that can be reduced. To calculate the hedge ratio
(HR) and the hedging effectiveness (HE), we need to know the variance and covariance
values of two variables: spot price and futures price [10]. Therefore, finding the best model
for the estimation to get the correct variance and covariance is another important task in
this endeavor. There are many models for estimating the correlation between the time-
series variables and for obtaining the variance and covariance values, such as the constant
conditional correlation (CCC)-GARCH model of Bollerslev [11], the dynamic conditional
correlation (DCC) GARCH model of Engle [12], and the dynamic copula GARCH model
of Patton [13]. Nonetheless, these models might not be appropriate for the analysis in
order to understand the real behavior of the data as they assume no structural change in
the time series. In reality, there are always ups and downs of a market, particularly the
securities markets and stock exchanges. Dueker [14], consequently, proposed using the
Markov switching-GARCH model to capture the economic fluctuations that are differ-
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ent between the upturn and the downturn periods. However, the MS-GARCH model is
still not suitable for the estimation to obtain the HR and the optimal portfolio containing
spot and futures contracts because it cannot provide the variance and covariance of the
returns of the hedging instruments, which are key variables in the hedging equation for
risk management.

The present study takes into consideration the probable existence of structural change,
which demarcates the upturns and downturns episodes in the currency market. It, thus,
employs the Markov switching CCC-GARCH model of Pelletier [15]; the Markov switching
DCC-GARCH model of Billio and Caporin [16]; and the recent Markov switching dynamic
copula GARCH models of Pastpipatkul, Yamaka, and Sriboonchitta [17] as a means to
obtain the variance and covariance of spot and future returns of the international currency
for calculating the hedge ratio and hedging effectiveness.

This study uses, for its analysis, the spot and future returns of the top five interna-
tional currencies against the American dollar released at 5-min, 30-min, 60-min, and daily
intervals for the one-year time period of 2018 to 2019. As the data used were of a high
frequency, we reduced the series into the daily histogram-valued form following the con-
cepts of González-Rivera and Arroyo [8] so as to simplify and quicken data processing.
The histogram is particularly useful for dealing with large data sets when big data are more
meaningful in some instances. In our case, conceptually, the optimal hedging strategies
should be built on the basis of the best representative of the intraday trading prices rather
than the daily closing price. In the conventional method, the solution to analyzing the daily
high-frequency data is to reduce the collection of records (in the form of histogram-valued
data) associated with each observation (taken every 5 min, 30 min or 60 min of the day) to
one value, which may be represented by either the mean, mode, maximum, or minimum
of all observations, called the histogram-valued data. However, with these representations,
the variability across the records in the histogram is lost [18]. Thus, Dias and Brito [18] sug-
gested finding the representative of the data by considering the quantile of the cumulative
distribution of the histogram-valued data. González-Rivera and Arroyo [8] and Rakpho
et al. [9] mentioned that by recording the high-frequency data as a histogram, all informa-
tion of the data during the day is collected, and It is possible to choose reference points
that better represent the histogram in each day. In this study, we aimed at finding currency
hedging strategies using histogram-valued data and Markov switching CCC-GARCH,
Markov switching DCC-GARCH, and Markov switching dynamic copula GARCH. More
specifically, we aimed at calculating the HR from the conditional covariance matrices to
achieve the hedging strategy and compared the performance of HR by considering HE.
One of the main contributions of this paper is that it allows for a comparison for whether
the results are different depending on the model, currency, and futures contract of the
currency selected. In addition, to the best of our knowledge, this was the first attempt ever
to investigate and determine currency hedging strategies using histogram-valued data and
the Markov switching dynamic copula GARCH model.

The remainder of this paper is organized as follows. Section 2 introduces the method-
ologies considered in this study. Section 3 describes the data and discusses the related
statistics in this study. Section 4 provides the model comparison results and compares the
hedge performance across the currency markets. Finally, Section 5 is the conclusion.

2. Model

In this section, we first explain the histogram-valued data concept and the way to
obtain the representative data from the histogram. Various econometric models used to
forecast the dynamic volatility and dynamic correlation are briefly presented. Finally,
we explain the procedure to compute the hedge ratio and hedging effectiveness for the
currency markets.
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2.1. Histogram-Valued Data

In this study, we consider high-frequency data, i.e., 5 min, 30 min, and 60 min and
these data can be recorded in the form of a histogram [18]. Let Y = {y(1), . . . , y(T)} be
the vector of the histogram-valued variable and y(t), t = 1, . . . , T be the histogram-valued
data at time t which can be represented by the histogram

Hy(t) =
{[

Iy(t)1,, Iy(t)1

]
, pt1;

[
Iy(t)2, Iy(t)2

]
, pt2; . . .

[
Iy(t)nt ,, Iy(t)nt

]
, ptnt

}
, (1)

where Iy(t)i and Iy(t)i are the lower and upper bounds of the sub-interval i, respectively,
with i = {1t, . . . , nt) . nt being the number of sub-intervals for the tth observation, pti being

the probability or frequency associated with the sub-interval i at time t and
nt
∑

i=1t

pti = 1.

Note that within sub-interval i, the values of y for each unit t are uniformly distributed.
To find the reference point that best represents y(t), the cumulative empirical distribu-

tion function is used to derive the y(t) and its inverse or quantile function [19,20]

Ψ−1
y(t)(k) =



Iy(t)1 +
k

pt1
ay(t)1 i f 0 ≤ k < pt1

Iy(t)2 +
k−pt1

pt2
ay(t)2 i f pt1 ≤ k < (pt1 + pt2)

...

Iy(t)nt
+

k−(pt1+pt2+...+ptnt−1)

1−(pt1+pt2+...+ptnt−1)
ay(t)nt

i f pt1 + pt2 + . . . + ptnt−1 ≤ k ≤ 1

(2)

where ay(t)i = Iy(t)i − Iy(t)i.

2.2. Markov Switching(MS)-CCC-GARCH and Markov Switching(MS)-DCC-GARCH

Billio and Caporin [16] and Chodchuangnirun, Yamaka, and Khiewngamdee [21]
introduced the extension of the CCC-GARCH and DCC-GARCH of Engle [12] to the
Markov switching model of Hamilton [22]. These two models have similar structures, with
the only difference being that MS-CCC-GARCH assumes the regime-dependent correlation
matrix Rst to be constant in each regime, while the regime-dependent correlation matrix
is considered to be varying over time in each regime, Rt,st , for MS-DCC-GARCH. Note
that st is a state variable, which follows a first-order Markov process and can assume only
integer values of 0,1.., S; thus, the correlation matrix at time t, Rt,st , can be split in S regimes,
and we have Rt for st = 0, st = 1, . . . , st = S.

In this section, only MS-DCC-GARCH is explained. Following Billio and Caporin [16],
the model takes the following form

Yt = QtUt (3)

where Yt =

{
Ψ−1

y(t)spot(k), Ψ−1
y(t) f utures(k)

}
is vector of the reference points that best represent

the histogram at time t for spot and futures returns, respectively. Ut is an independent and
identically distributed process with zero mean and variance-covariance matrix I2. Qt is the
time-varying variance-covariance matrix presented as

Qt = DtRt,st Dt (4)

where Dt = diag(
√

hspot
t ,

√
h f utures

t ) is the diagonal matrix of conditional variances hspot
t

and h f utures
t . We note that the univariate GARCH(1,1) model is also used to compute the

conditional variances hspot
t and h f utures

t , thus

Ψ−1
y(t)spot(k) = uspot + ε

spot
t

hspot
t = α

spot
0 + α

spot
1

(
ε

spot
t−1

)2
+ β

spot
1 hspot

t−1 ,
(5)
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Ψ−1
y(t) f utures(k) = u f utures + ε

f utures
t

h f utures
t = α

f utures
0 + α

f utures
1

(
ε

f utures
t−1

)2
+ β

f utures
1 h f utures

t−1 ,
(6)

where ε
spot
t and ε

f utures
t are the error terms following Student’s-t distributions with degrees

of freedom of vspot and v f uture for spot and futures, respectively. uspot and u f utures are the
constant terms.

Thus, Rt,st becomes a 2× 2 matrix of the regime-dependent time-varying correlation
between spot and futures. We would like to note that if MS-CCC-GARCH is estimated,
Rt,st is assumed to be constant for each regime. However, in the case of MS-DCC-GARCH,
Rt,st is the time-varying conditional correlation matrix that can be predicted by the follow-
ing process

Rt,st = Q∗−1
t,st

Qt,st Q
∗−1
t,st

(7)

Qt,st = (1− θ1,st − θ2,st)Qt,st + θ2,st Qt−1,st + θ2,st ξt−1ξ ′t−1, (8)

where Qt,st represents the regime-dependent unconditional correlation and ξt is the 2× 1

vector of standardized residuals, ξt = (ε
spot
t /hspot

t , ε
f utures
t /h f utures

t ). It is worth noting that
DCC just imposes a GARCH(1,1) on the conditional correlation and uses only θ1,st and
θ2,st to add a dynamic behavior according to Billio and Caporin (2005). This model allows
parameters θ1,st and θ2,st to be governed by st, where st = {1, . . . , S} is the latent and
unobservable market state variable at time t, and S is a positive integer representing the
total number of market states. In this study, we considered only upturn and downturn
market regimes, thus st = {1, 2} was assumed. The state variable st evolves according to
the following transition probabilities:

P =

[
p11 p12
p21 p22

]
, (9)

where pij = Pr(st = j|st−1 = i ),
2
∑

j=1
pij = 1. pij is the probability of switching from state i

to state j.

2.3. Markov Switching Dynamic Copula GARCH

In this subsection, the Markov switching dynamic copula (MSDC) GARCH model
is explained. The Student’s-t copula function is assumed for this model as it has been
commonly and successfully used for fitting financial data [17]. This model is different from
the MS-CCC-GARCH and MS-DCC-GARCH in two aspects. First, the joint distribution
assumption of this model is a Student’s-t copula, while multivariate Gaussian distribution
or normal joint distribution is assumed for the MS-CCC-GARCH and MS-DCC-GARCH
models. Second, the dynamic copula GARCH is extended to the Markov switching model;
thus the dynamic conditional correlation is predicted by restricted ARMA (1,10) [13], which
can be written as

Rt,st = Λ(ω0,st + ω1,st Rt,st + ω2,st Γt−10), (10)

where ω0,st , ω1,st , and ω2,st are parameters. Λ(•) is the transformation function to en-
sure that the regime-dependent dynamic correlation Rt,st always remains in [−1,1]. This
transformation function is represented by the following equation

Λ(Rt,st) = 1− exp(−Rt,st)(1 + exp(−Rt,st))
−1, (11)

and Γt is the forcing variable, which is defined as follows

Γt−10 =
1
10

10

∑
j=1

F−1
1
(
U1,t−j

)
F−1

2
(
U2,t−j

)
, (12)
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where F−1 is the quantile function of Student’s-t distribution. U1,t = F1(Ψ−1
y(t)spot(k))

and U2,t = F2(Ψ−1
y(t) f utures(k)) are student-t cumulative distribution functions (CDFs) of

Ψ−1
y(t)spot(k) and Ψ−1

y(t) f utures(k), respectively.

Formally, the copula function is used to join different univariate distributions to form
a valid multivariate distribution. According to the theorem of Sklar [23], the conditional
bivariate joint distribution function of Ψ−1

y(t)spot(k) and Ψ−1
y(t) f utures(k) can be defined as

H(Ψ−1
y(t)spot(k), Ψ−1

y(t) f utures(k)|Θst ) = Ct(F(Ψ−1
y(t)spot(k)), F(Ψ−1

y(t) f utures(k)) |Θ st
), (13)

where Ct is the time-varying Student’s-t copula function and Θst = {ω0,st , ω1,st , ω2,st}
denotes the vector of the regime-dependent parameters in ARMA(1,10) in Equation (11).
Assuming all CDFs are differentiable, the conditional bivariate joint density is then given by

h(Ψ−1
y(t)spot(k), Ψ−1

y(t) f utures(k)|Θst ) = ct(U1, U2|Θt−1,st ) f1,st(Ψ
−1
y(t)spot(k)

∣∣θspot,st ) f2,st(Ψ
−1
y(t) f utures(k)

∣∣∣θ f utures,st ), (14)

where θst is the vector of parameters to be estimated in the GARCH models in
Equations (5) and (6), and f1,st(Ψ

−1
y(t)spot(k)

∣∣θspot,st ), and f2,st(Ψ
−1
y(t) f utures(k)

∣∣∣θ f utures,st ) are

the density functions corresponding to the marginal distribution of Ψ−1
y(t)spot(k) and

Ψ−1
y(t) f utures(k), respectively, constructed by the GARCH models. Thus, the full conditional

likelihood function can be expressed as:

L(Φ) = ct,st(U1, U2|Θt−1,st ) f1,st(Ψ
−1
y(t)spot(k)

∣∣θspot ) f2,st(Ψ
−1
y(t) f utures(k)

∣∣∣θ f utures )Pr(st|Ωt−1 ), (15)

where Φst =
{

Θst , θspot,st , θ f utures,st

}
, and Pr(st|Ωt−1 ) is the filtered probabilities [24],

where Ωt−1 is all past information at time t− 1. Note that getting the filtered probabilities
is a recursive process and the probabilities of staying in regimes 1 and 2 are predicted by

Pr(st = 1|Ωt ) =
ct,st (U1,U2|Φt−1,st ) f1,st (Ψ

−1
y(t)spot (k)|θspot,st ) f2,st (Ψ

−1
y(t) f utures (k)|θ f utures,st )Pr[st=1|Ωt−1 ]

∑2
j=1 ct(U1,U2|st=j,Ωt−1 )Pr[st=j|Ωt−1 ]

Pr(st = 2|Ωt ) = 1− Pr(st = 1|Ωt )

(16)

In the estimation perspective, it is difficult to optimize and maximize the likelihood
function in Equation (15); thus, we followed the two-step estimation or inference for the
margins (IFM) of Joe and Xu [25] to partially resolve this problem, where the marginal
densities and the copula density were estimated separately. This is to say, the GARCH
process was firstly estimated to obtain the GARCH parameters. The obtained parameters
are treated as a fixed parameter in the likelihood function in Equation (15), and then MSDC

is estimated to obtain
_
Θst and forecasts the regime-dependent dynamic correlation Rt,st .

2.4. Hedge Ratio and Hedging Effectiveness

To secure positions in a spot market, investors employ futures as hedging assets. For
each spot contract, the hedge ratio tells us how many futures contracts should be purchased
or sold [26]. Once hSpot,t, hFutures,t and Rt,st are obtained, the regime-dependent hedge ratio
can be defined as

HRt,st = Rt,st

√
hspot

t h f utures
t

h f utures
t

(17)
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After obtaining the optimal hedge ratio, we consider the reduction in the hedged
portfolio’s variance as the hedging effectiveness. The corresponding regime-dependent
hedging effectiveness (HE) can be calculated by

HEt,st = (varunhedged
t,st

− varhedged
t,st

)/varunhedged
t,st

, (18)

where varunhedged
t,st

and varhedged
t,st

are the regime-dependent variance of the unhedged portfo-
lio (only spot) and the hedged portfolio at time t, respectively.

varhedged
t = var(Ψ−1

y(t)spot(k)) + HR2var(Ψ−1
y(t) f utures(k))− 2HRcov(Ψ−1

y(t)spot(k), Ψ−1
y(t) f utures(k)) (19)

To compare the performance of HR obtained from different correlation and volatility
models, Chang, González-Serrano, and Jimenez-Martin [5] suggested considering the HE
values, because a higher HE indicates a larger risk reduction, meaning that the hedging
method with a higher HE is regarded as a superior hedging strategy. Therefore, this study
also uses HE to compare the performance of our bivariate conditional correlation models,
namely Markov switching (MS) CCC-GARCH, Markov switching (MS) DCC-GARCH and
the Markov switching dynamic copula (MSDC) GARCH. In addition, we also consider the
classical models consisting of CCC-GARCH, DCC-GARCH, copula-GARCH, and dynamic
copula (DC)-GARCH as other competing models.

3. Data

The data used in the present study are the futures and spot closing prices of the top
five most traded currency pairs, namely USD/CAD, USD/CNY, USD/EU, USD/GBP,
and USD/JPY at 5 min, 30 min, 60 min, and one day’s intervals—thus considered as
high-frequency data. The study period is from January 2018 to May 2019, which coincides
with the time the UK is pursuing its withdrawal from the European Union (EU). Brexit is
considered one of the major events bringing about shocks and high volatility in financial
markets in UK, Europe, and the world, as well as the concern and interest of people
worldwide. The futures prices here refer to the prices of futures contracts with an expiry
date in June 2019. All historical time series were collected from the Bloomberg database for
transformation into a logarithm of the change in price or return as

∆St = ln[
St

St−1
], ∆Ft = ln[

Ft

Ft−1
] (20)

The descriptive statistics of the variables for the investigation are provided in Tables 1 and 2.

Table 1. Descriptive statistics of the currency returns with the American dollar as the base currency (Spot).

5 min CAD CNY EUR GBP JPY

Mean 7.89 × 10−7 3.37 × 10−7 −1.74 × 10−6 −1.08 × 10−6 0.0000
Max 0.0060 0.0088 0.0060 0.0090 0.0145
Min −0.0068 −0.0061 −0.0057 −0.0060 −0.0287
Std. 0.0002 0.0002 0.0003 0.0003 0.0003

Skewness −0.1445 0.4204 0.2095 0.4846 −9.4537
Kurtosis 34.1713 71.4895 21.7481 35.2831 1281.318

Obs 103,604 116,397 60,455 92,391 119,075

30 min

Mean 3.02 × 0−5 1.99 × 10−6 −7.31 × 10−6 −6.49 × 10−6 −1.79 × 10−6

Max 0.6093 0.0091 0.0060 0.0106 0.0083
Min −0.0153 −0.0062 −0.0071 −0.0111 −0.0183
Std. 0.0047 0.0005 0.0006 0.0008 0.0006

Skewness 126.7714 0.1468 0.03204 0.0072 −1.6232
Kurtosis 16,486.10 21.2806 11.8240 18.3823 56.7030

Obs 17,348 19,570 14,485 15,437 19,930
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Table 1. Cont.

60 min CAD CNY EUR GBP JPY

Mean 8.93 × 10−6 4.00 × 10−6 −1.45 × 10−5 −1.31 × 10−5 −3.66 × 10−6

Max 0.0073 0.0086 0.0076 0.0105 0.0080
Min −0.0106 −0.0073 −0.0074 −0.0107 −0.0202
Std. 0.0008 0.0006 0.0008 0.0010 0.0008

Skewness −0.4885 0.0598 −0.0515 0.1088 −1.625
Kurtosis 12.9943 14.2801 8.3690 10.6327 38.9840

Obs 8673 9827 7251 7729 9977

Daily

Mean 0.0002 0.0002 −0.0002 −0.0002 −7.21 × 10−5

Max 0.0130 0.0109 0.0140 0.0199 0.0355
Min −0.0130 −0.0129 −0.0191 −0.0169 −0.0252
Std. 0.0040 0.0032 0.0041 0.0051 0.0073

Skewness −0.1609 −0.3254 −0.1749 0.3476 0.3727
Kurtosis 0.2152 1.7091 0.9890 1.2315 1.5007

Obs 369 369 369 369 369

Std is standard deviation.

Table 2. Descriptive statistics of the currency returns with the American dollar as the base currency (Futures).

5 min CAD CNY EUR GBP JPY

Mean −4.57 × 10−6 2.47 × 10−7 −6.58 × 10−6 −7.16 × 10−6 1.53 × 10−7

Max 0.0121 0.0264 0.0101 0.0153 0.0333
Min −0.0240 −0.0235 −0.0225 −0.0333 −0.0162
Std. 0.0005 0.0005 0.0005 0.0006 0.0005

Skewness −4.4923 3.3161 −8.0345 −15.6030 18.7803
Kurtosis 16.9883 6.4898 8.5341 6.6042 15.3740

Obs 18,093 19,758 20,583 17,490 17,484

30 min

Mean 2.30 × 10−5 −8.41 × 10−7 −2.84 × 10−5 −3.55 × 10−5 7.65 × 10−7

Max 0.0258 0.0124 0.0101 0.0153 0.0333
Min −0.0121 −0.0147 −0.0225 −0.0333 −0.01623
Std. 0.0012 0.0009 0.0010 0.0015 0.0011

Skewness 2.4230 −0.7966 −3.6242 −7.1113 8.5869
Kurtosis 9.5451 3.7590 8.2527 15.2799 13.0434

Obs 3396 5801 4812 3530 3512

60 min

Mean −3.55 × 10−5 −1.30 × 10−6 4.82 × 10−5 −6.31 × 10−5 1.36 × 10−6

Max 0.0121 0.0075 0.0225 0.0153 0.0333
Min −0.0258 −0.0110 −0.0101 −0.0333 −0.0162
Std. 0.0015 0.0011 0.0014 0.0020 0.0014

Skewness −1.8307 −0.4499 2.7419 −5.4551 6.0877
Kurtosis 1.6838 0.0851 4.5631 6.8722 4.2320

Obs 2326 3553 2807 1988 1970

Daily

Mean −0.0002 −0.0002 0.0003 0.0002 −0.0003
Max 0.0118 0.0122 0.0160 0.0183 0.0306
Min −0.0121 −0.0129 −0.0120 −0.0187 −0.0245
Std. 0.0042 0.0033 0.0042 0.0051 0.0071

Skewness 0.1880 −0.0305 0.1210 −0.1395 0.2323
Kurtosis 0.2836 1.7600 0.3615 0.9335 1.0048

Obs 355 355 355 355 355

Std is standard deviation.
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Tables 1 and 2 present the descriptive statistics of the spot and future prices of the
variables at different frequencies. Most currency spot and futures prices have negative
means. The standard deviation (Std) of both the spot and future series is close to zero,
indicating the low dispersal of data points or return levels. The largest Std for both the
spot and futures belongs to the daily returns of JPY at 0.0073 and 0.0071, respectively,
suggesting the high dispersal of return levels, with some distance away from the mean.
Meanwhile, the smallest Std for both the spot and futures is found in the daily returns of
CAD and CNY at 0.0002 and 0.0005, respectively. The skewness of some variables is less
than 0, meaning that the returns are distributed skewed to the left, and if it is greater than
0, it is said to be negatively skewed. The largest skewness was presented in the 30-min
spot returns of CAD. As a measure of the tailedness of the data distribution, the kurtosis
of both spot and future returns at 5-min and 30-min intervals, including that of future
returns at 60-min intervals, had values indicating that the distributions had heavier tails
than a normal distribution. The kurtosis of 5-min JPY future returns, in particular, had a
value as high as 15.3740, much higher than the highest point of the bell-shaped curve of
a normal distribution. The remaining data series had kurtosis values lower than that of
the normal distribution (=3), meaning that their distributions were lightly tailed. Figure 1
reveals the high-frequency data of the spot and future returns of five currencies to exhibit
a high fluctuation over the whole sample period. The spot currencies seemed to be more
fluctuating than the futures. Figure 2 presents the histogram-valued data in the first ten
sample periods. We can see that the variation of the 5-min spot returns is not greater
compared with the futures counterpart.

Figure 1. Cont.
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Figure 1. Spot (blue line) and future (black dotted line) 5-min return plots: (a) CAD-5 min, (b) CNY-5 min, (c) EUR-5 min,
(d) GBP-5 min, and (e) JPY-5 min.

Figure 2. Cont.
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Figure 2. The 5-min spot returns in the first ten days of the sample period in the form of a histogram. (a) CAD spot-histogram,
(b) CAD futures-histogram, (c) CNY spot-histogram, (d) CNY futures-histogram, (e) EUR spot-histogram, (f) EUR futures-
histogram, (g) GBP spot-histogram, (h) GBP futures-histogram, (i) JPY spot-histogram, and (j) JPY futures-histogram.

4. Results

In this section, we provide the results of the study. The estimation results of the
GARCH models are firstly reported, then the obtained standardized residual of spot and
futures are further used as the input of single-regime bivariate GARCH and two-regime
bivariate GARCH models. Finally, all volatility models are compared using various criteria.

4.1. The GARCH Model Estimation Results

Tables 3–6 report the results from the estimation using the GARCH(1,1) model for spot
and future returns at various frequencies, which will be used to determine the standardized
residuals for further analysis of the relationship among the variables. The results tell us
that only the parameter estimates of β1 are statistically significant for all currencies in
terms of spot and futures, as well as data frequencies, except for future returns of CNY.
The coefficients of the intercept term are also statistically significant for the returns of EUR
futures and CNY futures.

Table 3. Results from the GARCH (1,1) model estimation for 5-min spot and future returns.

5 min CAD CNY EUR GBP JPY

EST. Std. EST. Std. EST. Std. EST. Std. EST. Std.

Spot
µ −0.001 ** 0.000 −0.000 ** 0.000 −0.001 ** 0.000 −0.001 ** 0.000 −0.000 ** 0.000
α0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α1 0.015 ** 0.003 0.027 ** 0.012 0.015 ** 0.006 0.012 0.008 0.003 0.003
β1 0.982 ** 0.004 0.961 ** 0.009 0.980 ** 0.005 0.984 ** 0.008 0.986 ** 0.001
v 11.610 ** 3.884 5.040 ** 1.013 5.125 ** 1.644 8.675 ** 2.603 3.193 ** 0.312
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Table 3. Cont.

5 min CAD CNY EUR GBP JPY

EST. Std. EST. Std. EST. Std. EST. Std. EST. Std.

Q(10)
0.114

(0.735)
2.118

(0.146)
0.209

(0.647)
1.127

(0.288)
0.090

(0.764)

Q2(10)
0.566

(0.663)
2.911

(0.148)
0.347

(0.770)
2.628

(0.479)
0.1044
(0.917)

ARCH(1)
3.253

(0.071)
0.109

(0.741)
1.105

(0.293)
1.222

(0.268)
0.008

(0.929)
Futures

µ −0.000 ** 0.000 −0.000 ** 0.000 −0.001 0.000 −0.000 0.000 −0.000 ** 0.000
α0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α1 0.000 0.002 0.002 0.003 0.015 ** 0.006 0.000 0.002 0.012 0.003
β1 0.999 ** 0.002 0.996 ** 0.001 0.980 ** 0.005 0.992 ** 0.003 0.862 ** 0.006
v 2.172 ** 0.056 2.228 ** 0.168 5.125 ** 1.643 2.101 ** 0.010 2.195 ** 0.036

Q(10)
2.077

(0.150)
0.118

(0.731)
0.209

(0.647)
0.0214
(0.884)

0.014
(0.904)

Q2(10)
2.083

(0.249)
0.286

(0.803)
0.347

(0.770)
0.094

(0.923)
0.232

(0.834)

ARCH(1)
0.018

(0.892)
0.166

(0.684)
1.105

(0.293)
0.009

(0.925)
0.047

(0.827)

Note: (1) In parentheses ( ) is the p-value. (2) ***, **, and * denote significance at the 0.01, 0.05, and 0.1 levels, respectively.

Table 4. Results from the GARCH(1,1) model estimation for 30-min spot and future returns.

30 min CAD CNY EUR GBP JPY

EST. Std. EST. Std. EST. Std. EST. Std. EST. Std.

Spot
µ −0.001 ** 0.000 −0.001 ** 0.000 −0.001 ** 0.000 −0.002 ** 0.000 −0.002 ** 0.000
α0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α1 0.001 ** 0.001 0.003 * 0.001 0.004 0.001 0.007 0.003 0.001 0.001
β1 0.997 ** 0.001 0.994 ** 0.001 0.994 ** 0.002 0.989 ** 0.002 0.998 ** 0.001
v 10.064 ** 3.272 4.392 ** 0.800 2.725 ** 0.911 6.045 ** 1.850 5.960 ** 1.047

Q(10)
0.047

(0.827)
1.248

(0.264)
0.0146
(0.904)

0.003
(0.956)

0.048
(0.827)

Q2(10)
0.261

(0.818)
1.387

(0.388)
3.697

(0.091)
0.357

(0.765)
0.048

(0.957)

ARCH(1)
2.535

(0.111)
0.959

(0.327)
2.669

(0.102)
0.647

(0.421)
0.358

(0.549)
Futures

µ −0.000 ** 0.000 −0.000 ** 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α1 0.011 * 0.006 0.006 0.028 0.001 ** 0.000 0.002 0.001 0.005 ** 0.001
β1 0.962 ** 0.021 0.991 ** 0.023 0.515 ** 0.032 0.961 ** 0.014 0.794 ** 0.041
v 2.100 ** 0.011 2.100 ** 0.012 2.116 ** 0.014 2.108 ** 0.010 2.177 ** 0.019

Q(10)
1.132

(0.287)
0.103

(0.748)
0.041
0.839

0.212
(0.645)

0.643
(0.422)

Q2(10)
2.582

(0.182)
0.981

(0.504)
0.054
0.953

0.216
(0.844)

0.646
(0.629)

ARCH(1)
0.0410
(0.839)

0.447
(0.504)

0.018
(0.893)

0.605
(0.437)

0.087
(0.767)

Note: (1) In parentheses ( ) is the p-value. (2) ***, **, and * denote significance at the 0.01, 0.05, and 0.1 levels, respectively.
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Table 5. Results from the GARCH(1,1) model estimation for 60-min spot and futures returns.

60 min CAD CNY EUR GBP JPY

EST. Std. EST. Std. EST. Std. EST. Std. EST. Std.

Spot
µ −0.001 ** 0.000 −0.001 ** 0.000 −0.001 ** 0.000 −0.003 ** 0.000 −0.002 0.000
α0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ** 0.000
α1 0.001 ** 0.000 0.001 0.001 0.000 0.001 0.000 0.000 0.000 ** 0.000
β1 0.998 ** 0.000 0.997 ** 0.001 0.998 ** 0.000 0.999 ** 0.000 1.000 ** 0.000
v 12.853 ** 4.703 4.242 ** 0.860 3.116 ** 0.456 4.720 ** 0.839 6.090 1.242

Q(10)
0.108

(0.742)
6.114

(0.013)
1.928

(0.165)
0.030

(0.862)
1.926

(0.165)

Q2(10)
0.108

(0.914)
6.450

(0.017)
4.271

(0.064)
0.138

(0.893)
2.185

(0.234)

ARCH(1)
0.726

(0.394)
1.597

(0.206)
0.003

(0.958)
0.332

(0.565)
0.3501
(0.554)

Futures
µ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α0 0.000 ** 0.000 0.000 ** 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α1 0.000 0.000 0.000 0.000 0.004 ** 0.000 0.000 0.000 0.005 ** 0.001
β1 0.953 ** 0.008 0.000 0.154 0.167 ** 0.010 0.548 ** 0.045 0.441 ** 0.088
v 2.100 ** 0.011 2.100 ** 0.010 2.161 ** 0.017 2.101 ** 0.009 2.157 ** 0.021

Q(10)
1.113

(0.2914)
0.034

(0.853)
0.039

(0.843)
0.051

(0.822)
0.000

(0.984)

Q2(10)
1.272

(0.417)
0.274

(0.810)
0.059

(0.949)
0.052

(0.955)
0.007

(0.992)

ARCH(1)
0.0410
(0.839)

0.0566
(0.812)

0.0329
(0.867)

0.422
(0.516)

0.077
(0.780)

Note: (1) In parentheses ( ) is the p-value. (2) ***, **, and * denote significance at the 0.01, 0.05, and 0.1 levels, respectively.

Table 6. Results from the GARCH(1,1) model estimation for one-day spot and future returns.

Daily CAD CNY EUR GBP JPY

EST. Std. EST. Std. EST. Std. EST. Std. EST. Std.

Spot
µ 0.000 0.000 −0.000 * 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α1 0.001 ** 0.014 0.000 0.031 0.000 ** 0.000 0.004 0.003 0.018 * 0.010
β1 0.997 ** 0.012 1.000 ** 0.029 1.000 ** 0.000 0.994 ** 0.003 0.970 ** 0.011
v 13.812 * 41.153 4.470 ** 6.869 14.178 ** 6.552 10.167 7.050 23.396 22.772

Q(10)
0.120

(0.728)
0.598

(0.439)
0.275

(0.600)
0.381

(0.537)
1.344

(0.246)

Q2(10)
1.814

(0.296)
0.598

(0.649)
0.707

(0.604)
1.487

(0.364)
1.758

(0.306)

ARCH(1)
0.320

(0.571)
1.121

(0.289)
1.229

(0.267)
0.270

(0.603)
2.845

(0.092)
Futures

µ 0.000 0.000 0.00 * 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α1 0.000 0.000 0.000 0.002 0.00 ** 0.000 0.005 ** 0.002 0.000 0.000
β1 1.000 ** 0.000 0.997 ** 0.002 1.000 ** 0.000 0.994 ** 0.002 0.994 ** 0.000
v 25.890 19.725 5.368 ** 0.934 16.752 * 8.929 9.884 ** 4.781 10.807 4.363

Q(10)
0.188

(0.664)
0.034

(0.854)
0.070

(0.791)
0.580

(0.446)
0.537

(0.464)

Q2(10)
0.711

(0.399)
0.350

(0.769)
0.473

(0.707)
3.015

(0.138)
0.965

(0.509)

ARCH(1)
0.169

(0.681)
0.203

(0.652)
0.262

(0.609)
0.394

(0.530)
6.200

(0.012)

Note: (1) In parentheses ( ) is the p-value. (2) **, and * denote significance at the 0.05, and 0.1 levels, respectively.
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To validate the estimation model, we performed a test of autocorrelation and het-
eroscedasticity using the Ljung−Box Q-Statistic and the ARCH(1,1)-LM tests, respec-
tively [27,28]. Evidently, these two econometric problems were not present in the spot and
future returns of all currencies at all data frequencies. This means that the standardized
residuals derived from the GARCH(1,1) model estimation were reliable and thus could be
used for further estimation using the correlation models.

As this study took into consideration the probable structural change causing the oc-
currence of upturn and downturn episodes in the currency market, we proposed using the
Markov switching CCC-GARCH, Markov switching DCC-GARCH, and Markov switching
dynamic copula GARCH models as the mechanisms to find out the covariance of the spot
and future returns of all currencies that were used for calculating the hedge ratio and the
hedging effectiveness. However, we had to test the reliability of our proposed models to
ensure achieving an accurate HR and HE by comparing them with the other five competing
models commonly found in previous research works, namely the CCC-GARCH, DCC-
GARCH, COPULA-GARCH, DC-GARCH, and MS-COPULA-GARCH. Therefore, we had
eight models to estimate in order to get the optimal hedge ratio and hedging effectiveness.

4.2. Optimal Model Selection

In this sub-section, we compared the performance of the volatility models for all of
the data frequencies. The results of the model performance comparison are shown in
Tables 7–10, and the selection of the optimal model was based on the Bayesian information
criterion (BIC) and Log-likelihood (LL). The model with the lowest BIC was preferred
because the lower BIC corresponded to the lower variation in the error term. As evident
in Tables 7–10, the MSDC-GARCH model had the lowest BIC for all cases. Thus, we will
used its estimates to compute HR and HE.

Table 7. BIC and Log-likelihood (LL) values for different models fitted to the 5-min returns of five currencies.

Model CAD CNY EUR GBP JPY
BIC LL BIC LL BIC LL BIC LL BIC LL

DCC-GARCH −4355 2187.701 −5241.7 2631.053 −3469.26 1744.832 −3689.39 1854.896 −5014.32 2517.362
CCC-GARCH −6403.5 3210.674 −9944.01 4980.929 −6724.18 3371.015 −6827.82 3422.834 −7234.49 3626.171

COPULA-GARCH −8119.76 4068.806 −10,006.2 5012.039 −6724.3 3371.078 −6737.76 3377.807 −9703.25 4860.552
DC-GARCH −7615.42 3819.188 −8813.71 4418.329 −6798.94 3410.945 −9977.75 5000.351 −6621.7 3322.328

MS-DCC-GARCH −8019.09 4022.298 −10,285.9 5155.698 −8005.23 4015.368 −6871.89 3448.698 −10,416.9 5221.225
MS-CCC-GARCH −10,002.8 5011.598 −11,982.4 6001.396 −8802.27 4411.336 −8037.56 4028.981 −10,574.3 5297.364

MSC-GARCH −12,024.3 6022.339 −12,180.2 6100.325 −8981.53 4500.965 −10,290.2 5155.320 −11,012.8 5516.584
MSDC-GARCH −12,392.6 6211.584 −13,972.7 7001.669 −10,170.1 5100.335 −11,852.7 5941.639 −12,172.7 6101.651

Note: bold numbers correspond to the lowest BIC and the highest Log-likelihood.

Table 8. BIC and Log-likelihood (LL) values for different models fitted to the 30-min returns of five currencies.

Model CAD CNY EUR GBP JPY
BIC LL BIC LL BIC LL BIC LL BIC LL

DCC-GARCH −3532.69 1776.544 −4326.78 2173.592 −3993.51 2006.954 −2905.78 1463.089 −4099.53 −3532.69
CCC-GARCH −6876.33 3447.092 −8252.23 4135.043 −5903.87 2960.859 −6370.65 3194.25 −8699.67 −6876.33

COPULA-GARCH −6014.12 3015.987 −8258.63 4138.240 −6724.3 3371.078 −6348.57 3183.209 −9957.46 −6014.12
DC-GARCH −7174.4 3598.674 −7932.44 3977.698 −11,932.4 5977.661 −10,007.7 5015.338 −6428.16 −7174.4

MS-DCC-GARCH −8011.82 4018.661 −8167.81 4096.658 −11,946.4 5985.965 −6011.83 3018.668 −10,006.5 −8011.82
MS-CCC-GARCH −10,002.1 5011.269 −10,329.6 5174.985 −12,582.2 6301.288 −10,211.1 5115.761 −12,084.2 −10,002.1

MSC-GARCH −10,357 5188.697 −10,090.9 5055.639 −10,354.9 5187.668 −10,976.3 5498.328 −12,203.4 −10,357
MSDC-GARCH −12,392.6 6211.584 −13,972.7 7001.669 −10,170.1 5100.335 −11,852.7 5941.639 −12,172.7 6101.651

Note: bold numbers correspond to the lowest BIC and the highest Log-likelihood.
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Table 9. BIC and Log-likelihood (LL) values for different models fitted to the 60-min returns of five currencies.

Model CAD CNY EUR GBP JPY
BIC LL BIC LL BIC LL BIC LL BIC LL

DCC-GARCH −3156.64 1588.522 −3837.89 1929.144 −4608.46 2314.43 −2557.48 1288.943 −3745.99 −3156.64
CCC-GARCH −6161.85 3089.852 −7692.6 3855.227 −3130.82 1574.337 −5637.28 2827.565 −6216.28 −6161.85
COPULA-GARCH −6149.22 3083.536 −7693.97 3855.910 −4226.88 2122.364 −5640.51 2829.183 −7879.87 −6149.22
DC-GARCH −7980.34 4001.645 −5999.61 3011.281 −6294.44 3158.697 −5516.4 2769.674 −8088.44 −7980.34
MS-DCC-GARCH −7969.01 3997.254 −10,201.2 5113.328 −6417.15 3221.328 −6013.17 3019.334 −7085.89 −7969.01
MS-CCC-GARCH −10,344.9 5182.662 −11,078.7 5549.541 −7375.48 3697.941 −6417.57 3218.985 −11,928.9 −10,344.9
MSC-GARCH −9982.93 5001.668 −10,229.5 5124.951 −8002.93 4011.668 −6599.48 3309.942 −11,062.3 −9982.93
MSDC-GARCH −10,970.7 5500.664 −10,412.8 5221.694 −8548.79 4289.694 −6970.7 3500.649 −12,007.4 −10,970.7

Note: bold numbers correspond to the lowest BIC and the highest Log-likelihood.

Table 10. BIC and Log-likelihood (LL) values for different models fitted to the one-day returns of five currencies.

Model CAD CNY EUR GBP JPY
BIC LL BIC LL BIC LL BIC LL BIC LL

DCC-GARCH −2863.85 1442.127 −3037.24 1528.820 −2848.34 1434.371 −2716.3 1368.351 −2897.86 −2863.85
CCC-GARCH −6469.19 3243.523 −6192.26 3105.058 −6567.42 3292.635 −6301.86 3159.854 −4219.35 −6469.19

COPULA-
GARCH −6468.68 3243.266 −6195.32 3106.587 −6567.72 3292.788 −6303.59 3160.722 −6603.65 −6468.68

DC-GARCH −6680.42 3351.684 −10,096.4 5059.666 −11,966.4 5994.667 −6398.38 3210.667 −7163.5 −6680.42
MS-DCC-
GARCH −6885.15 3455.324 −10,396.9 5211.225 −11,939.1 5982.294 −7011.22 3518.361 −7856.94 −6885.15

MS-CCC-
GARCH −6980.99 3500.694 −10,116.9 5068.668 −11,812.3 5916.329 −7376.18 3698.289 −13,244.9 −6980.99

MSC-GARCH −8175.97 4098.188 −10,580.9 5300.648 −11,824.9 5922.629 −7953.83 3987.114 −11,075.6 −8175.97
MSDC-GARCH −8388.06 4209.331 −10,926.7 5478.668 −12,228.7 6129.648 −8380.73 4205.665 −13,640.7 −8388.06

Note: bold numbers correspond to the lowest BIC and the highest Log-likelihood.

4.3. Parameter Estimates of the Optimal Model

The parameter estimates from all models are presented in Table 11. This result implies
that a structural change exists in currency spot and futures. Our finding is in line with
Korley and Giouvris [29].

Table 11. Parameter estimates of the MSDC-GARCH model.

5 min
CAD CNY EUR GBP JPY

30 min
CAD CNY EUR GBP JPY

Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef.

ω0,st=1
1.047 ***
(0.339)

1.920 **
(0.887)

3.213
(2.993)

2.823 *
(1.061)

4.457
(2.935) ω0,st=1

0.715
(1.822)

0.949 ***
(0.288)

3.370 **
(1.242)

2.223 *
(1.086)

2.233
(1.447)

ω1,st=1
4.215 *
(2.418)

0.586
(3.935)

0.627
(13.119)

0.349
(4.084)

0.950
(2.971) ω1,st=1

5.000 *
(1.868)

0.560
(3.335)

1.166
(3.290)

0.921
(6.913)

0.317
(5.509)

ω2,st=1
0.316

(0.266)
0.010

(0.165)
−0.031
(0.226)

0.264
(0.227)

0.128*
(0.077) ω2,st=1

−0.080
(0.189)

0.165
(0.159)

−0.206
(0.272)

−0.272
(0.174)

0.333 *
(0.200)

ω0,st=2
5.000

(6.323)
0.568

(2.466)
2.122

(14.055)
1.608

(4.964)
−0.095
(3.625) ω0,st=2

1.935
(4.325)

−0.538
(1.395)

5.000
(3.684)

−0.392
(2.074)

2.747
(11.976)

ω1,st=2
−2.786
(7.598)

1.865
(3.116)

0.569
(16.231)

0.545
(6.144)

2.583
(5.274) ω1,st=2

1.259
(4.823)

3.517**
(1.641)

−4.159
(4.220)

2.751
(2.669)

0.403
(12.916)

ω2,st=2
0.757

(0.900)
0.565

(0.397)
0.009

(0.472)
0.727 **
(0.072)

0.074
(0.285) ω2,st=2

0.306
(0.451)

0.173
(0.218)

3.037 **
(0.948)

0.959 **
(0.461)

−0.361
(0.741)

p11
0.787 **
(0.057)

0.874 **
(0.028)

0.878 **
(0.031)

0.875 **
(0.033)

0.938 **
(0.015) p11

0.811 **
(0.054)

0.863 **
(0.028)

0.932 **
(0.028)

0.851 **
(0.035)

0.852 **
(0.741)

p12
0.000

(0.212)
0.000

(0.112)
0.157

(0.112)
0.091

(0.090)
0.115

(0.103) p12
0.183

(0.223)
0.066

(0.062)
0.596 **
(0.238)

0.058
(0.158)

0.042
(0.044)
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Table 11. Cont.

60 min
CAD CNY EUR GBP JPY Daily CAD CNY EUR GBP JPY
Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef.

ω0,st=1
1.200 ***
(0.314)

1.230 **
(0.545)

2.219
(1.781)

1.834 ***
(0.185)

4.323 **
(2.144) ω0,st=1

2.472
(2.003)

2.230
(1.645)

1.406 ***
(0.396)

1.445 **
(0.487)

2.211 *
(0.927)

ω1,st=1
0.592

(14.946)
0.578

(3.588)
0.437

(4.851)
0.885

(4.194)
0.590

(3.596) ω1,st=1
3.064

(3.893)
0.820

(3.687)
5.000

(3.366)
5.000 **
(1.427)

0.392
(5.967)

ω2,st=1
−0.024
(0.196)

−0.035
(0.132)

0.006
(0.298)

−0.096
(0.171)

0.177
(0.197) ω2,st=1

0.111
(0.197)

−0.340
*

(0.178)

0.202
(0.243)

0.046
(1.427)

0.023
(0.198)

ω0,st=2
0.245

(1.642)
1.917

(43.114)
5.000

(9.132)
−1.000
(1.437)

2.309
(7.781) ω0,st=2

0.684
(3.549)

5.00*
(2.590)

5.000
(3.741)

2.367
(3.676)

2.426
(28.235)

ω1,st=2
3.129

(1.980)
0.542

(52.122)
−3.272
(10.933)

3.792 **
(1.823)

0.575
(8.607) ω1,st=2

3.380
(3.306)

−4.108
(2.969)

−3.528
(4.541)

0.355
(4.273)

0.950
(29.759)

ω2,st=2
0.143

(0.397)
0.156

(1.206)
1.353

(1.311)
0.463 **
(0.217)

−0.007
(0.455) ω2,st=2

−0.217
(0.396)

1.626 **
(0.683)

1.621 **
(0.655)

0.340
(0.349)

0.057
(0.279)

p11
0.866 **
(0.045)

0.897 **
(0.024)

0.794 **
(0.051)

0.860**
(0.031)

0.852 **
(0.030) p11

0.765 **
(0.073)

0.908 **
(0.031)

0.926**
(0.028)

0.866 **
(0.045)

0.898 **
(0.046)

p12
0.248 *
(0.148)

0.143 *
(0.078)

0.000
(0.208)

0.234 **
(0.114)

0.040
(0.049) p12

0.277 **
(0.139)

0.366
(0.224)

0.798 **
(0.092)

0.057
(0.190)

0.359
(0.253)

Note: ***, ** and * indicate the rejection of the null hypothesis at 1%, 5%, and 10% significance levels, respectively. The parentheses ( )
present the standard error.

4.4. Testing the Efficiency of Hedge Ratios Obtained from Different Estimation Models

After getting the optimal model, we used its estimation results for calculating the
hedging effectiveness: HE for the hedge ratio and HR for hedging with futures for interna-
tional currencies. Furthermore, we assessed the extent of risk reduction by the hedging
strategy using HE. To confirm that the selected MSDC-GARCH model could produce un-
questionably reliable results, we calculated HE for comparison using the estimation results
of the other seven competing models, and the overall results are presented in Table 12.

Table 12. The estimated hedging effectiveness (HE) and hedge ratios (HR) through different models.

Model CAD CNY EUR GBP JPY

5 min HE HR HE HR HE HR HE HR HE HR
DCC-GARCH 0.904 0.354 0.115 0.514 0.405 0.511 0.307 0.631 0.405 0.454
CCC-GARCH 0.003 0.271 0.209 0.589 0.374 0.531 0.339 0.651 0.374 0.435

COPULA-GARCH 0.658 0.211 0.272 0.664 0.389 0.515 0.339 0.651 0.389 0.444
DC-GARCH 0.531 0.336 0.278 0.601 0.487 0.551 0.456 0.623 0.487 0.501

MS-DCC-GARCH 0.408 0.355 0.338 0.611 0.338 0.501 0.42 0.633 0.338 0.412
MS-CCC-GARCH 0.484 0.396 0.466 0.632 0.473 0.494 0.406 0.615 0.473 0.493

MSC-GARCH 0.698 0.301 0.398 0.621 0.474 0.499 0.486 0.658 0.474 0.494
MSDC-GARCH 0.786 0.301 0.562 0.615 0.502 0.52 0.488 0.628 0.502 0.487

CAD CNY EUR GBP JPY

30 min HE HR HE HR HE HR HE HR HE HR
DCC-GARCH 0.401 0.353 0.193 0.514 0.123 0.514 0.339 0.639 0.123 0.423
CCC-GARCH 0.399 0.328 0.301 0.589 0.122 0.538 0.334 0.658 0.122 0.419

COPULA-GARCH 0.75 0.519 0.429 0.664 0.137 0.519 0.335 0.656 0.137 0.454
DC-GARCH 0.362 0.331 0.386 0.64 0.162 0.557 0.342 0.628 0.162 0.505

MS-DCC-GARCH 0.41 0.358 0.34 0.613 0.121 0.508 0.327 0.683 0.121 0.417
MS-CCC-GARCH 0.487 0.399 0.382 0.638 0.159 0.499 0.348 0.605 0.159 0.499

MSC-GARCH 0.322 0.307 0.365 0.628 0.147 0.497 0.341 0.633 0.147 0.474
MSDC-GARCH 0.899 0.575 0.547 0.667 0.17 0.541 0.356 0.611 0.17 0.519
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Table 12. Cont.

Model CAD CNY EUR GBP JPY

60 min HE HR HE HR HE HR HE HR HE HR
DCC-GARCH 0.315 0.359 0.101 0.51 0.126 0.513 0.311 0.633 0.126 0.454
CCC-GARCH 0.311 0.36 0.154 0.582 0.116 0.521 0.32 0.655 0.116 0.432

COPULA-GARCH 0.572 0.514 0.178 0.611 0.122 0.532 0.318 0.65 0.122 0.444
DC-GARCH 0.286 0.338 0.187 0.621 0.15 0.551 0.307 0.622 0.15 0.504

MS-DCC-GARCH 0.315 0.359 0.171 0.603 0.109 0.507 0.314 0.64 0.109 0.415
MS-CCC-GARCH 0.371 0.397 0.186 0.62 0.147 0.498 0.309 0.628 0.147 0.497

MSC-GARCH 0.536 0.501 0.189 0.624 0.148 0.499 0.322 0.659 0.148 0.499
MSDC-GARCH 0.693 0.375 0.19 0.625 0.16 0.556 0.322 0.68 0.16 0.524

CAD CNY EUR GBP JPY

1 Day HE HR HE HR HE HR HE HR HE HR
DCC-GARCH 0.774 0.353 0.574 0.515 0.018 0.516 0.404 0.632 0.018 0.453
CCC-GARCH 0.387 0.575 0.598 0.575 0.17 0.53 0.416 0.651 0.17 0.435

COPULA-GARCH 0.214 0.516 0.5 0.565 0.194 0.519 0.418 0.655 0.194 0.444
DC-GARCH 0.736 0.338 0.564 0.605 0.165 0.557 0.497 0.621 0.165 0.507

MS-DCC-GARCH 0.764 0.357 0.54 0.601 0.126 0.508 0.403 0.631 0.126 0.418
MS-CCC-GARCH 0.654 0.305 0.553 0.6 0.143 0.591 0.497 0.621 0.143 0.413

MSC-GARCH 0.657 0.306 0.579 0.612 0.207 0.603 0.421 0.66 0.207 0.406
MSDC-GARCH 0.779 0.367 0.61 0.613 0.221 0.641 0.405 0.633 0.221 0.391

Table 12 shows the averages of the HE and HR values derived from the eight models
considered in this study for all currencies and four data frequencies, which were at 5-min,
30-min, 60-min, and 1-day intervals. Our MSDC-GARCH model was indeed the best
hedging model for all currencies and all frequencies as it provided higher HE values than
other the models. From this model, the hedging effectiveness lay between a maximum of
8.99 % for CAD 30 min data and a minimum of 1.60% for JPY 60 min data. In contrast,
we found that the average of HE was smaller for the CCC-GARCH in most cases and in
particular, ranging from a maximum of 7.22% for EUR daily data to a minimum of 0.003%
for CAD 5-min data. We also observed that with the use of CAD 30-min data, the HR
of the MSDC-GARCH model was 0.301; indicating that in order to minimize risk, a long
position of one dollar in CAD should be hedged by a short position of $0.301 in CAD
futures contracts. Meanwhile, the HR of the CCC-GARCH model for EUR daily data and
CAD 5-min data were 0.530 and 0.271, respectively. By comparing the HE across data
frequencies, we found that the highest HE values for CNY, EUR, and GBP were from using
1-day future returns, while CAD had the highest HE using the 30-min returns, and JPY did
so from using the 5-min returns.

To obtain a better picture of time-varying evolution, we illustrated the evolution of the
time-varying hedge ratio between the spot and futures returns over the full sample period.
These time-varying hedge ratios were computed from the MSDC-GARCH model with
5-min data (presented by the blue dotted line), 30-min data (presented by the black dashed
line), 60-min data (presented by the red dashed line), and daily data (presented by the
green dashed line) and are shown in Figure 3. We can observe that there was a substantial
time-variation in the optimal hedge ratio for all currencies in most frequencies, arguably
only for 5-min data, as there was some stability in the HR. Nevertheless, all time-varying
hedge ratios exhibited a mean-reverting pattern and were stationary.
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Figure 3. Time-varying hedge ratio measurements. Note: the hedge ratio measure plotted is the weighted average
(HRt,st=1 × Pr(st = 1|Ωt )) + (HRt,st=2 × Pr(st = 2|Ωt )) with weights given by the smoothed probability of two regimes,
i.e., Pr(st = 1|Ωt ) and Pr(st = 2|Ωt ): (a) CAD, (b) CNY, (c) EUR, (d) GBP, and (e) JPY.

5. Conclusions and Recommendations

This study introduces various bivariate MS-GARCH models for histogram-valued
data to quantify HR and HE for five major international currencies. This study finds
that the MSDC-GARCH model outperforms the others because it provides the highest
HE values for all currencies and data frequencies. In addition, BIC also indicates that
the MSDC-GARCH model outperforms other hedging methods. Therefore, with a more
precise specification of the joint distribution of assets, we can effectively manage the risk
exposure of portfolios. This result also confirms that the behavior of spot and future returns
in the currency market can be explained appropriately by a nonlinear model.

MSDC-GARCH provides the best-performed hedge ratios and hedge effectiveness
for risk reduction for all currencies, implying that MSDC-GARCH hedge strategies are
suitable for those currency markets. Among the five currencies, the most efficient hedging
currency is CAD with an HE of 0.889, while the least efficient hedging currency is JPY with
an HE of 0.160.
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Considering that the highest HE values estimated from the MSDC-GARCH model
for JPY and CAD are from the 5-min and 30-min data, respectively, we can state that the
data series for a particular variable (or currency in our case) and different frequencies
will lead to a difference in the estimated values of HR and HE. Therefore, risk managers
that commonly prefer using daily closing price or return for investment analysis and risk
prevention have to be careful about using such data. With the use of big data in this study,
we can conclude that daily data may not provide the best HE, and thus we should estimate
HE using different frequencies of data.

The data used in this study are regarded as big data because of its enormous size and
being collected at a high frequency—sometimes described as high-frequency data. The siz-
able data points result in the time-consuming and complicated nature of data management.
This study uses the histogram-valued data as a solution for data management, but this
approach has a drawback in that we cannot determine which data frequency will lead to
the highest hedging effectiveness. In essence and to the best of our understanding, daily
closing prices should be used carefully along with data at a wide range of frequencies [30].

For further study, we suggest applying the Smooth transition dynamic copula model
of Yamaka and Maneejuk [31] to fit histogram-valued data and to quantify the HR and
HE. Moreover, the copula approach is quite flexible for modeling the dependence between
spot and futures; thus, we suggest considering different copula functions to capture the
dependence structure of spot and futures and to improve the hedging strategy.
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