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Abstract: In this paper, we study the problem of optimal routing for the pair of two-server hetero-
geneous queues operating in parallel and subsequent optimal allocation of customers between the
servers in each queue. Heterogeneity implies different servers in terms of speed of service. An
open-loop control assumes the static resource allocation when a router has no information about
the state of the system. We discuss here the algorithm to calculate the optimal routing policy based
on specially constructed Markov-modulated Poisson processes. As an alternative static policy, we
consider an optimal Bernoulli splitting which prescribes the optimal allocation probabilities. Then,
we show that the optimal allocation policy between the servers within each queue is of threshold
type with threshold levels depending on the queue length and phase of an arrival process. This
dependence can be neglected by using a heuristic threshold policy. A number of illustrative exam-
ples show interesting properties of the systems operating under the introduced policies and their
performance characteristics.

Keywords: parallel queues; open-loop policy; Markov decision process; threshold policy; matrix-
analytic approach; difference equations

1. Introduction

The very rapidly spreading and upgrading of telecommunications and computer
technology has led to combination and simultaneous maintenance of inter-generational
systems. Various hybrid and heterogeneous service systems, where the servers are dif-
ferentiated by their service rates, usage costs or reliability attributes, are being created to
ensure proper quality and reliability of service while wishing to ensure energy efficiency
and generally limit the amount of resources used. In many practical service applications
it has become necessary to provide stochastic modeling by means of queueing systems
consisting of individual queues and operating in parallel. Such systems often face the chal-
lenge of optimal routing between parallel queues which can be either dynamic (also called
closed-loop policy) or static (open-loop policy). In the first case, the router dynamically
receives information about the state of the system, while in the second case, the routing
policy is based only on the information available at the initial point in time.

Most of papers dedicated to the parallel queueing systems deal with a dynamic routing.
The homogeneous case, where each parallel queue is supplied with only one server and all
of them are identical, was studied in [1]. It was shown that the shortest queue (SQ) policy is
optimal for the average cost criterion. A similar heterogeneous server model was analyzed
in [2]. The authors proved the result that the policy to use the faster server with a shorter
queue minimizes the expected cost. In [3], a dynamic programming approach was used
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to find an optimal routing policy with the aim to minimize the expected total discounted
cost. It was shown that the optimal policy has a switch structure. The optimal routing
problems in finite-source parallel queueing system were presented in [4,5]. A classical
routing problem in exponential system with K parallel heterogeneous servers was studied
in [6] with respect to the SQ policy which, in general, eliminate the service rates and cost
structure and to the shortest expected delay (SED) routing which takes these attributes into
account. Systems where each of the parallel queues is supplied with a multi-server service
area were considered in [7], where a static policy in form of the optimal Bernoulli splitting,
and three alternative dynamic index policies were considered. Obviously, when system
information is available to the router during the decision-making process, it can respond
more flexibly to changing system states, which means lower values for the optimised
mean cost function as a result. Unfortunately, in certain cases, the transmission of such
information to the router is not always reliable and control errors can occur taking into
account possible losses and delays. Alternatively an open-loop control policy can be used
instead. Ref. [8] considered the problem of routing N arrivals to M queues in parallel
without information about system states and proposed two policy iteration algorithms.
The optimal routing for a static policy based on a routing words was investigated in [9].
The authors proposed some heuristics used to approximate the optimal policy.

The main aim of the paper is to study the open-loop control problem with an applica-
tion to parallel queues, each of them has two heterogeneous servers operating at different
service rates. In contrast to the previous research, this model is new one, since the optimal
routing problem must be solved simultaneously both for the routing between the queues
and for the allocation between the servers within each queue. Furthermore, the control
policy for the routing between queues must be of an open-loop type, i.e., be independent
of the state changing, and the control allocation policy for the servers should depend only
on the number of customers in a certain queue. Our analysis of the proposed system
includes the following contributions. We define the arrival process to each queue as a
special case of a Markov-modulated Poisson process (MMPP) with l phases, where the
transition within a set of the first k phases in the first queue and l − k phases in the second
queue, 1 ≤ k ≤ l, accompany the arrival of a new customer. For the fixed parameters l and
k we formulate the Markov decision problem to calculate the optimal control policy for the
allocation of customers between the servers to minimize the long-run average cost per unit
of time. Then, the model is optimized with respect to parameters k and l. We show that the
dynamic-programming value function satisfies certain monotonicity properties indicating
that the optimal allocation policy is of the threshold type with threshold levels depending
on the queue length and the phase of the arrival process. Further, we propose a heuristic
threshold policy depending only on the queue length and derive a matrix-analytic solution
for the mean number of customers in the system. As an alternative model with a static
policy we consider an optimal Bernoulli splitting policy and obtain a closed-form solution
for the stationary state probabilities and the optimized functional.

The rest of the paper is organized as follows. Section 2 formally describes the queueing
model where the optimal routing between the queues is formulated as an optimal number of
phases in MMPP arrival process connected with arrivals and provides the MDP formulation
for the optimal allocation between servers for a certain queue. Section 3 presents the results
required to show the optimality of a threshold allocation policy and a corresponding
matrix-analytic solution under a heuristic threshold policy. The Bernoulli splitting policy is
discussed in Section 4. A brief review for the proposed results is given in Section 5.

For use in sequel, let e(n), ej(n) and In denote, respectively, the n-dimensional unit
vector, the unit vector with each element equal to zero except jth unity element, an identity
matrix of dimension n. When there is no need to specify the dimension of these vectors we
will omit the corresponding argument. The notation > appearing in a vector or in a matrix
stand for the matrix transpose. Denote further by Hi,j the square matrix of the suitable
dimension where only the element in the ith row and jth column is 1 and 0 elsewhere. The
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notation ⊗ will stand for the Kronecker product of two matrices. Denote by Sj, j ≥ 1, the
shift operators, i.e., Sjx = x + ej and Sn

j x = x + nej for n ≥ 2 applied to a vector x.

2. Routing with an Open-Loop Control and MDP Formulation

The queueing system shown in Figure 1 is studied. This system consists of two
exponential parallel queues: Q1—Queue 1 and Q2—Queue 2. The arrival stream forms
a Poisson process with a rate λ. Each queue is supplied with two heterogeneous servers
operating without pre-emption, i.e., the customer is not able to change the server during a
service time. The service rates of the queue Qi are µ1i and µ2i with µ1i > µ2i. We assume
that the first queue has a faster service area as the second one, i.e., µ11 > µ12 and µ21 > µ22.
The Router 0 allocates the customers between the queues while the Routers 1 and 2 assign
the customers between the servers of the corresponding queue. The main task consists both
in optimal open-loop routing of customers to parallel queues and in their optimal allocation
between heterogeneous servers within each queue. As it is known, see e.g., [10–13], in an
ordinary queueing system with two heterogeneous servers operating without pre-emption,
one common waiting line and a Poisson arrival stream the optimal allocation policy has
a threshold structure, where the fastest server must be occupied whenever it is idle and
slower server is used according to a specified threshold level for the queue length. We
have to find out if the optimal policy for the allocation between the servers in the system
under study exhibits similar structural properties for non-Poisson arrival stream. In this
case we could have a static control not only for the routing between the queues but also for
the servers.

Figure 1. Controllable multi-server queueing system with heterogeneous servers and operating costs.

This section will look at the situation where separate queues receive applications
according to the open-loop control when the information for the Router 0 is available at
starting time point. We define the routing policy as a periodic binary sequence {0, 1}l with
a period length l, where 1 means that the customer is sent to Q1 and 0—the customer is sent
to Q2. Note that for the routing policy f0 in stationary regime only the number k ≤ l of 1s in
a binary sequence of length l for one queue matters but not their specific locations. In other
words, if k is the number of 1s for the routing to the first queue, then l − k is the number
of 1s for the routing to the second queue. Denote by u(i) = (l − 2k)(i− 1) + k, i = 1, 2.
For the arbitrary sequence a parallel queueing system Qi behaves as a Gi/Mi/2 queue
with two heterogeneous servers. For a given routing policy f0 = k the arrival process in
the queue Qi can be formulated as a special case of a Markov-modulated Poisson process
(MMPP). This arrival process is defined by two square matrices D0i and D1i of dimension l,
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D0i =



−λ 0 0 0 0 . . . 0
0 −λ 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . .

...
0 . . . −λ 0 0 . . . 0
0 . . . 0 −λ λ . . . 0
. . . . . . . . . . . . . . . . . .

...
0 . . . 0 0 . . . −λ λ
λ . . . 0 0 . . . 0 −λ



 u(i)

,

D1i =



0 λ 0 0 0 . . . 0
0 0 λ 0 0 . . . 0
. . . . . . . . . . . . . . . . . .

...
0 . . . 0 0 λ . . . 0
0 . . . 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . .

...
0 . . . 0 0 0 . . . 0
0 . . . 0 0 0 . . . 0


Here, Di = D0i + D1i is a generator of the continuous-time Markov chain associated

with an arrival process with a state space {1, 2, . . . , l}, i.e., Die(l) = 0. The matrix D0i
contains transitions without arrivals while D1i includes transition rates accompanying
with a new arrival. The average arrival rate λ̄i = αiD1ie(l) =

u(i)
l λ, where αi =

1
l e>(l) is a

solution of a linear system αiDi = 0 and αie(l) = 1. The lag-1 correlation coefficient ri of
the inter-arrival times in the queue Qi is computed by

ri =
λu(i)e>(l)(−D0i)

−1D1i(−D0i)
−1e(l)− l2

2λ̄e>(l)(−D0)−1e(l)− l2 . (1)

Further, in the paper we use the fact that in each queue Q1 and Q2 the faster server
must always be used as was shown for Poisson arrivals in [11,12] and phase type arrival
processes in [14,15]. Therefore, we collapse the state space to three dimensions avoiding
a state specification for the faster server. Due to capacity limits and the fact that proof
is similar to that in the references above, we skip it. Denote by Qi(t), Si(t), and Ni(t),
respectively the total number of waiting customers and at the fast server, the number of
customers at the second server and the state of an arrival process at time t in a certain
queue Qi. The Markov decision process is associated with a continuous-time Markov-chain

{Xi(t)}t≥0 = {Qi(t), Si(t), Ni(t)}t≥0 (2)

with a state space given by

E = {x = (q, s, n) : q ≥ 0, s ∈ {0, 1}, j = 1, 2, 1 ≤ n ≤ l}.

Denote by q(x), dj(x) and n(x) the corresponding components of the vector state
x ∈ E. The decision epochs consists of the moments when the change of an arrival state is
accompanied with a real arrival which occurs if 1 ≤ n(x) ≤ k and service completions
while the queue is non empty. The action space is A = {0, 1, 2} where as usual a = 0 means
to put a customer to the queue and a 6= 0 means to assign a customer to the ath server and
A(x) ⊆ A—the subsets of actions in state x ∈ E. The immediate cost c(x) is the number of
customers in state x, i.e., c(x) = q(x) + d1(x) + d2(x). The optimization problem consists
to find the optimal policy f = {k, f u(i)

i , i = 1, 2} including the routing policy f0 = k and the
corresponding allocation policies f k

1 and f l−k
2 to minimize the long-run average number of

customers in the system N̄ f = g f , where

min
f

g f = min
k, f k

1 , f l−k
2

2

∑
i=1

gu(i)
i

and

g
f u(i)
i

i = lim sup
t→∞

1
t
E f u(i)

i

[ ∫ t

0

(
Qi(t) + Di(t)

)
dt|Xi(0) = x0

]
, i = 1, 2.
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Consider the ith queue of the original system. The optimality equation of the MDP
model for such a queue can be expressed using uniformization in the form

vi(x) =
1
Li

[
c(x)− gi + λTvi(S

m(x)
3 x)1{n(x)≤k} + λvi(S

m(x)
3 x)1{n(x)>k} (3)

+ µ1i(vi(x)1{q(x)=0} + vi(S−1
1 x)1{q(x)>0})

+ µ2i(vi(x)1{d(x)=0,q(x)=0} + Tvi(S−1
1 x)1{d(x)=0,q(x)>0}

+ vi(S−1
2 x)1{d(x)=1,q(x)≤1} + Tvi(S−1

1 S−1
2 x)1{d(x)=1,q(x)>1}

]
= Bvi(x),

where B is a dynamic-programming operator, vi : E→ R is a relative value function, and
Tvi(x) = mina∈A(x) vi(Sax), x ∈ E, is an event-based operator, m(x) = 1 + (n(x) mod l)−
n(x) and Li = λ + µ1i + µ2i. The second and third terms in the right-hand side of (3)
describe the changing of the phase in the arrival process, respectively, accompanied with
an arrival of a new customer and without an arrival. The fourth and fifth term stand for
service completions, respectively, at server 1 and 2. Note that the terms including vi(x) for
q(x) = 0 and the term Tvi(S−1

1 x) for q(x) > 0 represent fictitious transitions in accordance
with the uniformization procedure, as shown in [16]. In the latter case, we allow the action
to be performed which is required for the proof of the monotonicity properties. However,
as it was discussed in [12], the optimal policy in a system with decision actions at fictitious
transition epochs remains the same as in the original system without such actions. In
general case the MDP model is assumed to be countable infinite so the cost in a state can
not be bounded. To prove the existence of the stationary average-cost optimal policy and
convergence of the policy-iteration algorithm [16,17] in this case it is necessary to use the
main theorem proposed in [18] by checking the Assumptions 1, 2, 3, and 3∗.

Further, we want to show that in each queue Qi there exists an optimal threshold
policy that depends on the queue length and the state of an arrival process. To complete it,
it is required to study some properties of the function v(x). Define a real-valued function
v : E→ R. We say that v ∈ F1 if the following monotonicity inequalities hold:

v(x) ≤ v(S1x), x ∈ E, (4)

v(x) ≤ v(S2x), d(x) = 0, x ∈ E. (5)

Proposition 1. If v ∈ F1, then for the operator B defined in (3) holds Bv ∈ F1.

Proof. The fact that the operator T, as well as B preserves the properties (4) and (5) can be
proved in the same way as it has been done in [12,15] for the ordinary infinite population
heterogeneous queueing system, therefore the details will be omitted.

Consider now the real valued function v ∈ F1 which additionally belongs to a set F2
when the monotonicity properties of increments

v(S1x)− v(S2x)− v(S2
1x) + v(S1S2x) ≤ 0, x ∈ E, d(x) = 0, (6)

v(S1x)− v(x)− v(S1S2x) + v(S2x) ≤ 0, x ∈ E, d(x) = 0, (7)

2v(S1x)− v(x)− v(S2
1x) ≤ 0, x ∈ E. (8)

The superconvexity condition (6) confirms optimality of a threshold-based policy for
the usage of second server. To prove it we need to use a supermodularity condition (7)
together with a convexity condition (8), which can be obtained by summing (6) and (7).

Proposition 2. If v ∈ F2, then for the operator B defined in (3) holds Bv ∈ F2.
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Proof. For the operator B according to (3) we obtain

Bv(S1x)− Bv(S2x)− Bv(S2
1x) + Bv(S1S2x) (9)

=
1
L

[
(c(S1x)− c(S2x)− c(S2

1x) + c(S1S2x))− 0

+ λ(Tv(Sm(S1x)
3 S1x)− Tv(Sm(S2x)

3 S2x)− Tv(Sm(S2
1x)

3 S2
1x) + Tv(Sm(S1S2x)

3 S1S2x))1{n(x)≤k}

+ λ(v(Sm(S1x)
3 S1x)− v(Sm(S2x)

3 S2x)− v(Sm(S2
1x)

3 S2
1x) + v(Sm(S1S2x)

3 S1S2x))1{n(x)>k}

+ µ1i(−v(S2x)1{q(x)=0} + v(x)− v(S2x)1{q(S2x)>0} − v(S1x) + v(S2x))

+ µ2i(Tv(x)− Tv(S1x)− v(x)1{q(S2x)≤1} + v(S1x)1{q(S1S2x)≤1}

− Tv(S−1
1 x)1{q(S2x)>1} + Tv(x)1{q(S1S2x)>1})

]
≤ 0.

The last inequality holds due to the following arguments. The first term in the right-
hand side of (9) is obviously non-positive according the definition of the immediate cost
c(x). Consider the second term with λ

Tv(Sm(S1x)
3 S1x)− Tv(Sm(S2x)

3 S2x)− Tv(Sm(S2
1x)

3 S2
1x) + Tv(Sm(S1S2x)

3 S1S2x)

= Tv(Sm(S1x)
3 S1x)− v(Sm(S2x)

3 S1S2x)− Tv(Sm(S2
1x)

3 S2
1x) + v(Sm(S1S2x)

3 S2
1S2x)

= Tv(Sm(x)
3 S1x)− v(Sm(x)

3 S1S2x)− Tv(Sm(x)
3 S2

1x) + v(Sm(x)
3 S2

1S2x),

where m(x) = m(S1x) = m(S2x) = m(S2
1x) = m(S1S2x). If the control action f (Sm(x)

3 S2
1x) =

a then from the last expression we obtain

Tv(Sm(x)
3 S1x)− v(Sm(x)

3 S1S2x)− v(Sm(x)
3 S2

1Sax) + v(Sm(x)
3 S2

1S2x)

≤ v(Sm(x)
3 S1Sax)− v(Sm(x)

3 S1S2x)− v(Sm(x)
3 S2

1Sax) + v(Sm(x)
3 S2

1S2x) ≤ 0,

since for a = 1 we obtain the inequality (6) in state Sm(x)
3 x and for a = 2 the term is equal

to 0. The third term is obviously non-positive due to the condition (6) when replacing x by
Sm(x)

3 x. For the fourth term of (9) we have two cases,

− v(S2x)1{q(x)=0} + v(x)− v(S2x)1{q(S2x)>0} − v(S1x) + v(S2x)

=

{
−v(S2x) + v(x)− v(S1x) + v(S2x) = v(x)− v(S1x) ≤ 0 q(x) = 0
v(x)− v(S2x)− v(S1x) + v(S2x) = v(x)− v(S1x) ≤ 0 q(S2x) > 0.

For the fifth term we have three cases,

Tv(x)− Tv(S1x)− v(x)1{q(S2x)≤1} + v(S1x)1{q(S1S2x)≤1} − Tv(S−1
1 x)1{q(S2x)>1} + Tv(x)1{q(S1S2x)>1}

=


Tv(x)− Tv(S1x)− v(x) + Tv(x), q(S1S2x) ≤ 1,

Tv(x)− Tv(S1x)− v(x) + v(S1x), q(S2x) ≤ 1, q(S1S2x) > 1,

Tv(x)− Tv(S1x)− Tv(S−1
1 x) + Tv(x), q(S2x) > 1.

In case q(S1S2x) ≤ 1, if we assume f (S1x) = 1, then

2Tv(x)− v(S2
1x)− v(x) ≤ 2v(S1x)− v(S2

1x)− v(x) ≤ 0,

due the condition (8), and, if f (S1x) = 2, then

2Tv(x)− v(S1S2x)− v(x) ≤ v(S1x) + v(S2x)− v(S1S2x)− v(x) ≤ 0
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according to (7). In case q(S2x) ≤ 1, q(S1S2x) > 1, if f (S1x) = 1, then

Tv(x)− v(S1S2x)− v(x) + v(S1x) ≤ v(S2x) + v(S1S2x)− v(x) + v(S1x) ≤ 0,

by (7) and if f (S1x) = 2, then we get

Tv(x)− v(S2
1x)− v(x) + v(S1x) ≤ v(S1x)− v(S2

1x)− v(x) + v(S1x) ≤ 2v(S1x)− v(x)− v(S2
1x) ≤ 0

by (8). Finally, in case q(S2x) > 1, if f (S1x) = 1 and f (S−1
1 x) = 1, then we obtain

Tv(x)− v(S2
1x)− v(x) + Tv(x) ≤ 2v(S1x)− v(S2

1x)− v(x) ≤ 0,

if f (S1x) = 2 and f (S−1
1 x) = 1, then

Tv(x)− v(S1S2x)− v(x) + Tv(x) ≤ v(S1x)− v(S1S2x)− v(x) + v(S2x) ≤ 0,

and, if f (S1x) = 2 and f (S−1
1 x) = 2, we have

Tv(x)− v(S1S2x)− v(S2S−1
1 x) + Tv(x) ≤ 2v(S2x)− v(S1S2x)− v(S2S−1

1 x) ≤ 0,

by condition (8) in state S2S−1
1 x. The case, when f (S1x) = 1 and f (S−1

1 x) = 2 is not
possible, since it implies that v(S2

1x) ≤ v(S1S2x) and v(S2S−1
1 x) ≤ v(x). However, from (6)

it follows that

v(x)− v(S2S−1
1 ) ≤ v(S1x)− v(S2x) ≤ v(S2

1x)− v(S1S2x) ≤ 0,

that contradicts to assumption v(S2S−1
1 x) ≤ v(x). The condition (7) can be proved similarly

to the above condition (6). Details are omitted to conserve space.

Proposition 3. For the state x = (q, 0, n) in queue Qi there exists thresholds q2,n,i ∈ N for the ac-
tivation of slower servers such that for the optimal control action f u(i)

i (x) = argmina∈A(x) vi(Sax),
i = 1, 2, holds

f u(i)
i (x) =

{
2 d(x) = 0, q(x) ≥ q2,n,i,
0 d(x) = 0, q(x) < q2,n,i.

Proof. The statement follows directly from a convergence of the policy iteration algorithm
v(k)i (x) = Bv(k−1)

i assuming that v(0)i (x) = 0 for all x ∈ E, the condition (6) for the function

v(x) = v(0)i (x) and from the Proposition 2.

Example 1. Consider the system with an arrival rate λ = 20 and l = 6 phases of the arrival
process. The service rates in Q1 are equal to: µ11 = 20, µ21 = 4 and in Q2: µ12 = 10, µ22 = 2.
The optimal k for the queue Q1 is 4 and l − k = 2 for the queue Q2. The table of optimal control
actions f u(i)(x) for the queue Qi, i = 1, 2, are summarized, respectively, in Tables 1 and 2.
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Table 1. Control policy f k
1 for the queue Q1.

System State x Queue Length q(x)

(d, n) 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0, 1) 0 0 2 2 2 2 2 2 2 2 2 2 2

(0, 2) 0 0 2 2 2 2 2 2 2 2 2 2 2

(0, 3) 0 0 2 2 2 2 2 2 2 2 2 2 2

(0, 4) 0 0 0 2 2 2 2 2 2 2 2 2 2

(0, 5) 0 0 0 2 2 2 2 2 2 2 2 2 2

(0, 6) 0 0 0 2 2 2 2 2 2 2 2 2 2

Table 2. Control policy f l−k
2 for the queue Q2.

System State x Queue Length q(x)

(d, n) 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0, 1) 0 0 2 2 2 2 2 2 2 2 2 2 2

(0, 2) 0 0 2 2 2 2 2 2 2 2 2 2 2

(0, 3) 0 0 0 2 2 2 2 2 2 2 2 2 2

(0, 4) 0 0 0 2 2 2 2 2 2 2 2 2 2

(0, 5) 0 0 2 2 2 2 2 2 2 2 2 2 2

(0, 6) 0 0 2 2 2 2 2 2 2 2 2 2 2

Threshold levels q2,n,1 = 3 for n = 1, 2, 3 and q2,n,1 = 4 for n = 4, 5, 6, q2,n,2 = 3 for
n = 1, 2, 5, 6 and q2,n,2 = 4 for n = 3, 4. In this example g4, f 4

1 , f 2
2 = 2.7962.

Remark 1. The thresholds q2,n,i for the queue Qi in general are not equal for different arrival
phases n, 1 ≤ n ≤ l. Numerical results show that these thresholds can vary by at most 1. Hence, we
can try to use instead one heuristic threshold level which is independent of n. It can be established
on the basis of the heuristic solution obtained in [19] for the ordinary queueing system M/M/K,
where we replace λ by a corresponding average arrival rate λ̄i,

q2,i = max
{

2,
⌊
(µ1i − λ̄i)

( 1
µ2i
− 1

µ1i

)⌋
+ 2
}

, i = 1, 2, (10)

taking into account the fact that the number q2,i here is a sum of customers in the queue and at
server 1. An alternative heuristic solution can be obtain using such a solution obtained in [20],

q2,i = max
{

2,
⌊µ1i − λ̄i +

√
(µ1i − λ̄i)2 + 4λ̄iµ2i

2µ2i

⌋
+ 2
}

, i = 1, 2. (11)

Both of these solutions are of roughly the same quality.

According to the last remark we can reformulate the problem in the following way.
Consider the Markov-chain {Xi(t)}t≥0 defined in (2). For the fixed threshold levels q2,i we
define a new state-space by

Ei = {(q, d, n) : 0 ≤ q ≤ q2,i − 1, d ∈ {0, 1} ∪ q ≥ 0, d = 1, 1 ≤ n ≤ l}.
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This set is partitioned as

q = {(q, 0, 1), . . . , (q, 0, l), (q, 1, 1), . . . , (q, 1, l)}, 0 ≤ q ≤ q2,i − 1,

q = {(q, 1, 1), . . . , (q, 1, l)}, q ≥ q2,i.

Proposition 4. The Markov-chain {Xi(t)}t≥0 for the allocation control f0 = u(i) is a quasi-birth
and death process (QBD) with a threshold dependent three-diagonal block infinitesimal matrix

Λ(q2,i) =



A1,0 A0,1 0 0 0 0 0 0 0 . . .
A2,0 A1,1 A0,1 0 0 0 0 0 0 . . .

0 A2,0 A1,1 A0,1 0 0 0 0 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 A2,0 A1,1 A0,1 0 0 0 . . .
0 . . . 0 0 A2,0 A1,2 A0,2 0 0 . . .
0 . . . 0 0 0 A2,1 A1,3 A0,3 0 . . .
0 . . . 0 0 0 0 A2,2 A1,3 A0,3 . . .
0 . . . 0 0 0 0 0 A2,2 A1,3 . . .
...

...
...

...
...

...
...

...
...

. . .




q2

.

(12)

Here, the square blocks A1,0, A0,1, A2,0, A1,1, A1,2 with dimension 2l, the rectangular blocks
A2,1 and A0,2 with dimensions l × 2l and 2l × l, and the square blocks A2,2, A1,3 and A0,3 with
dimension l × l are of the following form

A1,0 =

(
−λIl 0
µ2i Il −(λ + µ2i)Il

)
+ λ

l

∑
r=u(i)+1

Hr,1+(r mod l) ⊗ I2 1{u(i)<l}, A0,1 = A0,3 ⊗ I2,

A2,0 = µ1i I2l , A1,1 = A1,0 − A2,0, A1,2 = A1,1 +

(
0 A0,3

0 0

)
, A2,1 = (0, A2,2), A2,2 = (µ1i + µ2i)Il ,

A0,2 =

(
0

A0,3

)
, A1,3 = −(λ + µ1i + µ2i)Il + λ

l

∑
r=u(i)+1

Hr,1+(r mod l), A0,3 = λ
u(i)

∑
r=1

Hr,1+(r mod l).

Proof.

λπ(0,0,n) = λπ(0,0,l)1{n=1} + µ1iπ(1,0,1) + µ2iπ(0,1,1), (13)

(λ + µ2i)π(0,1,n) = λπ(0,1,l)1{n=1} + λπ(0,1,n−1)1{n≥u(i)+2} + µ1iπ(1,1,n),

(λ + µ1i)π(q,0,n) = λπ(q,0,l)1{n=1} + λπ(q−1,0,n−1)1{2≤n≤u(i)+1} + λπ(q,0,n−1)1{n≥u(i)+2}

µ1iπ(q+1,0,n) + µ2iπ(q,1,n), 1 ≤ q ≤ q2,i − 1,

+(λ + µ1i + µ2i)π(q,1,n) = λπ(q,1,l)1{n=1} + λπ(q−1,1,n−1)1{2≤n≤u(i)+1} + λπ(q,0,n−1)1{n=q2,i−1}

+ λπ(q,1,n−1)1{n≥u(i)+2} + µ1iπ(q+1,1,n), 1 ≤ q ≤ q2,i − 1,

(λ + µ1i + µ2i)π(q,1,n) = λπ(q,1,l)1{n=1} + λπ(q−1,1,n−1)1(2≤n≤u(i)+1) + λπ(q,1,n−1)1{n≥u(i)+2}

+ (µ1i + µ2i)π(q+1,1,n), q ≥ q2,i .

We note that at an arrival epoch in state (q, 0, n) or (q, 1, n) with q ≤ q2,i − 1 the
Markov-chain jumps, respectively, to the state (q + 1, 0, 1 + (n mod l)) or (q + 1, 1, 1 + (n
mod l)) if f0(n) = 1 and to the state (q, 0, 1 + (n mod l)) or (q, 1, 1 + (n mod l)) if
f0(n) = 0. additionally in state (q2 − 1, 0, n) the transition at the arrival epoch occurs
to state (q2 − 1, 1, 1 + (n mod l)) if f0(n) = 1. Let π partitioned as πi = (π0i, π1i, . . . )
denotes the stationary probability vector of Λ(q2,i), i.e., πiΛ(q2,i) = 0, πie = 1. By expressing
Equation (13) in matrix form we obtain the infinitesimal matrix (12).
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Example 2. In case l = 3 and k = 2 for the queues Q1 the blocks of the matrix Λ(q2,1) are of the form

A1,0 =



−λ 0 0 0 0 0
0 −λ 0 0 0 0
λ 0 −λ 0 0 0
µ2 0 0 −(λ + µ2) 0 0
0 µ2 0 0 −(λ + µ2) 0
0 0 µ2 λ 0 −(λ + µ2)

,

A1,1 =



−(λ + µ1) 0 0 0 0 0
0 −(λ + µ1) 0 0 0 0
λ 0 −(λ + µ1) 0 0 0
µ2 0 0 −(λ + µ1 + µ2) 0 0
0 µ2 0 0 −(λ + µ1 + µ2) 0
0 0 µ2 λ 0 −(λ + µ1 + µ2)

,

A1,2 =



−(λ + µ1) 0 0 0 λ 0
0 −(λ + µ1) 0 0 0 λ
λ 0 −(λ + µ1) 0 0 0
µ2 0 0 −(λ + µ1 + µ2) 0 0
0 µ2 0 0 −(λ + µ1 + µ2) 0
0 0 µ2 λ 0 −(λ + µ1 + µ2)

,

A1,3 =

−(λ + µ1 + µ2) 0 0
0 −(λ + µ1 + µ2) 0
λ 0 −(λ + µ1 + µ2)

,

A0,1 =



0 λ 0 0 0 0
0 0 λ 0 0 0
0 0 0 0 0 0
0 0 0 0 λ 0
0 0 0 0 0 λ
0 0 0 0 0 0

,

A0,2 =



0 0 0
0 0 0
0 0 0
0 λ 0
0 0 λ
0 0 0

, A0,3 =

0 λ 0
0 0 λ
0 0 0

,

A2,0 = µ1 I6, A2,1 = (µ1 + µ2)

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, A2,2 = (µ1 + µ2)I3.

Proposition 5. The necessary and sufficient condition for the ergodicity of the QBD process
{Xi(t)} is

λ̄i =
u(i)

l
λ <

2

∑
j=1

µji. (14)

Proof. For the ergodicity of the the QBD process {Xi(t)} according to [21] it is required that
pi A0,3e(l) < pi A2,2e(l), where the stationary probability vector pi = (p1i, . . . , pli) satisfies
the system p(A0,3 + A1,3 + A2,2) = 0 and pie(l) = 1. The matrix A0,3 + A1,3 + A2,2 =

λ(−Il + ∑u
r=1(i)Hr,r+1 + ∑l

r=u(i)+1 Hr,1+(r mod l)), which implies that p1i = pli, pr−1 i =

pri, 2 ≤ r ≤ l, and hence due to the normalizing condition, p1i = · · · = pli =
1
l . It is easy to

see that pi A0,3e(l) = u(i)
l λ and pi A2,2e(l) = µ1 + µ2.
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If the condition (14) is met, there are stationary state probabilities πx = limt→∞ P[Xi(t) = x].

Proposition 6. The sub-vectors πqi of the stationary state probabilities satisfy the following relations

πqi = πq2,i i

q2,i−q

∏
j=1

Mq2,i−j, 0 ≤ q ≤ q2,i − 1, (15)

πqi = πq2,i iRq−q2,i , q ≥ q2,i, (16)

where the matrices Mq are defined by

M0 = −A2,0 A−1
1,0 , (17)

Mq = −A2,0(A1,1 + Mq−1 A0,1)
−1, 1 ≤ q ≤ q2,i − 2,

Mq2,i−1 = −A2,1(A1,2 + Mq2,i−2 A0,1)
−1.

The sub-vector πq2,i i is a unique solution of the system

πq2,i i

( q2,i−1

∑
q=0

q2,i−q

∏
j=1

Mq2,i−je(2l) + (Il − R)−1e(l)
)
= 1, (18)

πq2,i i(A1,3 + Mq2,i−1 A0,2 + RA2,2) = 0.

The matrix R is the minimal non-negative solution to the matrix equation

R2 A2,2 + RA1,3 + A0,3 = 0.

Proof. The proof follows directly from the theory of matrix-geometric solutions [21]
using a block forward elimination-backward substitution method for the quasi-birth-and-
death processes.

Proposition 7. The mean number of customers N̄i in the queue Qi is given by

N̄i := N̄i(q2,i, u(i), l) = πq2,i i

[ q2,i−1

∑
q=1

q
q2,i−q

∏
j=1

Mq2,i−je(2l) +
q2,i−1

∑
q=0

q2,i−q

∏
j=1

Mq2,i−j

( 2l

∑
n=l+1

en(2l)
)

(19)

+ (R(Il − R)−1 + (q2,i + 1)Il)(Il − R)−1
]
.

Proof. The mean number of customers in the queueing system Qi satisfies the relation

N̄i =
q2,i−1

∑
q=1

2l

∑
n=1

qπ(q,0,n) i +
q2,i−1

∑
q=0

2l

∑
n=l+1

π(q,1,n) i +
∞

∑
q=q2,i

l

∑
n=1

(q + 1)π(q,1,n) i. (20)

By expressing relation (20) in vector-matrix form we obtain the expression

N̄i =
q2,i−1

∑
q=1

qπqie(2l) +
q2,i−1

∑
q=0

πqi

( 2l

∑
n=l+1

en(2l)
)
+ πq2,i i

∞

∑
q=q2,i

(q + 1)Rq−q2,i ,

where the last geometric sum due to the properties of the matrix R converges to the value
(R(Il − R)−1 + (q2,i + 1)Il)(Il − R)−1. The final substitution of (15) to the last relation
completes the proof.
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Thus instead of the policy-iteration algorithm we use the results of Propositions 6 and
7 in form of the vector–matrix relation (19) for the mean value

N̄(q2,1, q2,2, k, l) =
2

∑
i=1

N̄i(q2,i, u(i), l)

to calculate optimal values k, l and q2,i, i = 1, 2 and provide comparison analysis of an
optimal policy with an alternative one.

3. Bernoulli Splitting Policy

As an alternative model with a heuristic state independent routing we consider a
so-called Bernoulli splitting policy (BSP) model. According to this model, the total arrival
rate λ is split into rates pλ for the system Q1 and (1− p)λ for the system Q2. Obviously, the
optimal allocation policy for each parallel queue is of threshold type with corresponding
threshold levels q21 and q22, where 1 ≤ q21, q22 < ∞. The optimization problem can be
formulated then as follows:

N̄1(q21, pλ) + N̄2(q22, (1− pλ))⇒ min
q21,q22,p

(21)

subject to 0 ≤ p ≤ 1. First of all, we derive the expression for the mean number of
customers in heterogeneous queueing system M/M/2 with an arrival rate λ and threshold-
based policy q2. This model is obviously a special case of that model discussed in Section 2
for k = l = 1. The infinitesimal matrix of the Markov-chain describing the queueing
system with two heterogeneous servers and threshold-based policy q2 is of the same form

as in (12), where A1,0 =

(
−λ 0
µ2 −λ

)
, A1,1 = A1,0 − A0,2, A0,1 = λI2, A0,2 = µ1 I2, A1,2 =

A1,1 + λH1,2, A0,2 = λe2, A2,1 = (µ1 + µ2)e′2, A1,3 = −(λ + µ1 + µ2), A0,3 = λ, A2,2 =
µ1 + µ2. To calculate the stationary state probabilities, in principle, one can also use the
results of Proposition 6 with R = λ

µ1+µ2
. However, for the given two-dimensional process

the result can be obtained also directly by solving a system of balance difference equations.

Proposition 8. The stationary probabilities for the threshold policy q2 satisfy the relations

π(q,0) = [rq−1−q2
1 (b1β

q2+1
1 + b2β

q2+1
2 )− (b1β

q
1 + b2β

q
2)]π(0,1), 0 ≤ q ≤ q2, (22)

π(q,1) = (b1β
q
1 + b2β

q
2)π(0,1), 0 ≤ n ≤ q2,

π(q,1) = ρq−q2(b1β
q2
1 + b2β

q2
2 )π(0,1), q ≥ q2,

π(0,1) =

[
ρ

1− ρ
(b1β

q2
1 + b2β

q2
2 ) +

1− rq2+1
1

(1− r1)r
q2+1
1

(b1β
q2+1
1 + b2β

q2+1
2 )

]−1

,

where ρ = λ
µ1+µ2

and r1 = λ
µ1

, β1,2 =
λ+µ1+µ2±

√
(λ+µ1+µ2)2−4λµ1
2µ1

, b1 = 1−β1
β2−β1

and b2 =
β2−1

β2−β1
.

Proof. The system of balance equations is divided into subsystems which can be solved
as the system of homogeneous difference equations. For the first subsystem taking into
account a threshold policy q2 we have

(λ + µ2)π(0,1) = µ1π(1,1), (23)

(λ + µ1 + µ2)π(q,1) = λπ(q−1,1) + µ1π(q+1,1), 1 ≤ q ≤ q2 − 1.

The solution for this system of difference equations can be assumed in form

π(q,1) = βqπ(0,1), 0 ≤ q ≤ q2. (24)
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By substituting (24) to the difference equations (23) and dividing by βq−1 we obtain
the equation

µ1β2 − (λ + µ1 + µ2)β + λ = 0.

The last equation has two roots,

β1,2 =
(λ + µ1 + µ2 ±

√
(λ + µ1 + µ2)2 − 4µ1)

2µ1
.

The probabilities π(q,1) are the solutions of difference equation and they must satisfy
the following relation

π(q,1) = (b1β
q
1 + b2β

q
2)π(0,1), 0 ≤ q ≤ q2, (25)

where b1 and b2 are unknown constant factors. From one side b1 + b2 = 1. From the other
side, the boundary condition for the probability π(0,1) implies

λ + µ2

µ1
π(0,1) = (β1 + β2 − 1)π(0,1) = (b1β1 + b2β2)π(0,1) = π(1,1)

and then the expressions for b1 = 1−β1
β2−β1

and b2 = β2−1
β2−β1

. The second subsystem includes
equations for the states x with q(x) ≥ q2 + 1,

(λ + µ1 + µ2)π(q,1) = λπ(q−1,1) + (µ1 + µ2)π(q+1,1), q ≥ q2 + 1. (26)

In this case, a solution of (26) has obviously a geometric form,

π(q,1) =
( λ

µ1 + µ2

)q−q2
π(q2,1) = ρq−q2 π(q2,1), q ≥ q2. (27)

For the third subsystem we obtain,

(λ + µ1)π(q,0) = λπ(q−1,0) + µ1π(q+1,0) + µ2π(q,1), 1 ≤ q ≤ q2 − 1, (28)

(λ + µ1)π(q2,0) = λπ(q2−1,1) + µ2π(q2,1),

(λ + µ1 + µ2)π(q2,1) = λπ(q2−1,1) + λπ(q2,0) + (µ1 + µ2)π(q2+1,1).

Now we sum up the Equation (23) for π(q,1) and (28) for π(q,0), 1 ≤ q ≤ q2 − 1, and
obtain the following difference equations,

(λ + µ1)(π(q,0) + π(q,1)) = λ(π(q−1,0) + π(q−1,1)) + µ1(π(q+1,0) + π(q+1,1)). (29)

The solution of (29) can be represented in a geometric form

π(q,0) + π(q,1) =
( λ

µ1

)q
(π(0,0) + π(0,1)) = rq

1(π(0,0) + π(0,1)), 0 ≤ q ≤ q2. (30)

After some simple algebra we can rewrite (30) in the following way,

π(q,0) = rq−q2
1 (π(q2,0) + π(q2,1))− π(q,1), 0 ≤ q ≤ q2. (31)
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Now, we substitute π(q2+1,1) =
λ

µ1+µ2
π(q2,1) to the last equation of the subsystem (28)

and using (25) we obtain

π(q2,0) + π(q2,1) =
λ + µ1 + µ2

λ
π(q2,1) − π(q2−1,1) (32)

=
µ1

λ

(λ + µ1 + µ2

µ1
π(q2,1) −

λ

µ1
π(q2−1,1)

)
=

µ1

λ

(
(β1 + β2)π(q2,1) − β1β2π(q2−1,1)

)
= r−1

1 (b1β
q2+1
1 + b2β

q2+1
2 )π(0,1).

Combination of (31) with (32) leads to expression (22) for π(q,0). Finally, the probability
π(0,1) is calculated from the normalizing condition ∑

q2
q=0 π(q,0) + ∑∞

q=0 π(q,1) = 1.

Proposition 9. The mean number of customers N̄ is of the form

N̄ := N̄(q2, λ) =

[
b1

1 + β
q2+1
1 q2 − β

q2
1 (1 + q2)

1− β1
+ b2

1 + β
q2+1
2 q2 − β

q2
2 (1 + q2)

1− β2
(33)

+
r1(1− (1 + q2)r

q2
1 + q2rq2+1

1 )

rq2+1
1 (1− r1)2

(b1β
q2+1
1 + b2β

q2+1
2 ) +

1 + q2 − q2ρ

(1− ρ)2 (b1β
q2
1 + b2β

q2
2 )

]

×
[

ρ

1− ρ
(b1β

q2
1 + b2β

q2
2 ) +

1− rq2+1
1

(1− r1)r
q2+1
1

(b1β
q2+1
1 + b2β

q2+1
2 )

]−1

.

Proof. For the mean number of customers in the system under the threshold policy q2
we obtain

N̄(q2, λ) =
q2

∑
q=0

qπ(q,0) +
q2−1

∑
q=0

(q + 1)π(q,1) +
∞

∑
q=q2

(q + 1)π(q,1).

By substituting expressions (22) after some algebra for geometric series we obtain the
relation (33).

The results of Propositions 8 and 9 are characteristic for the Bernoulli splitting policy.
Using (33) we solve optimization problem (21). As a heuristic solution for the threshold
q2 we use the solutions obtained by (10) and (11) for the optimal open-loop policy. For
numerical experiments we replace in these expressions λ̄i by λ((1− 2p)(i− 1) + p) and
then optimized numerically the functional

N̄(q2,1, q2,2, p) =
2

∑
i=1

N̄i(q2,i, ((1− 2p)(i− 1) + p)λ)⇒ min
q2,1,q2,2,p

.

4. Numerical Analysis

In this section, we provide numerical examples which include a comparative analysis
of calculations obtained by means of the policy iteration algorithm, the matrix-analytical
method, and expressions obtained for the Bernoulli splitting model.

In a first example we compare the results on the behavior of N̄ f calculated numerically
for the optimal threshold policy (OTP) where threshold levels depend on the phase of the
arrival process and using analytic vector–matrix relations for the heuristic threshold policy
(HTP) defined in (10). The arrival intensity λ is fixed at λ = 20 and the number of arrival
phases l = 6. The Router 0 dispatches the customers according to the optimal open-loop
control (OLC) with value k. We fix also heterogeneity factors for the queues Q1 and Q2 at
level µ11/µ21 = µ12/µ22 = 5. The following cases are under study:

• Case 1: µ11 = 15, µ21 = 3;
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• Case 2: µ11 = 20, µ21 = 4;
• Case 3: µ11 = 25, µ21 = 5;
• Case 4: µ11 = 30, µ21 = 6.

Note that the main conclusions about behavior of the average number of customers in
the system drawn from the proposed experiments at given cases are also valid for other
values of service intensities and heterogeneity factors, provided that the total intensity in
queue Q1 is higher than in queue Q2.
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Figure 2. N̄ f for µ12 = 10, µ22 = 2 (a) and for µ12 = 12, µ22 = 2.4 (b) versus λ, µ11 and µ21.

In Figure 2, we display the mean values N̄OLP-OTP and N̄OLP-HTP as λ varies in the in-
terval [1, 29], the service rates µ11 and µ21 of the queue Q1 vary according to specified cases,
for the queue Q2 we set µ12 = 10, µ22 = 2 in a figure labeled by (a) and µ12 = 12, µ22 = 2.4
in a figure labeled by (b). As to be expected, the total mean number of customers in the sys-
tem increases monotonously with increasing values of the traffic intensity and decreasing
of service rates. The curves in most cases are graphically indistinguishable in the displayed
domain. Only in some cases of high load there is a slight difference in the curves and in
general the optimal policy has a very little advantage over the heuristic one. Thus, for
different system parameters the influence of individual states of the arrival process can be
neglected, so that the Routers 1 and 2 needs only the information q2,i.

The optimal open-loop control policy k for different system parameters are illustrated
the following tables based on the results of the previous experiment. In Table 3, we take
for the queue Q2 the service rates µ12 = 10 and µ22 = 2 and, in Table 4, the service rates of
Q2 are equal to µ12 = 12 and µ22 = 2.4. The maximal possible number of arrival phases
is as before fixed to l = 6. From these Tables, we may remark that in light-traffic case,
e.g., when λ < µ11 − µ12, the Router 0 uses only the queue Q1 and the optimal policy
k = l = 6. As λ increases, the incentive to make an assignment to the slower queue Q2 is
rising higher. When the difference in service rate between the two queues decreases, Router
0 starts sending more customers to the slower queue Q2 at lower traffic intensity values.
For example, if µ11 = 15, µ21 = 3, in a heavy traffic case, λ > 17, the optimal policy is
equal to k = 4 when µ12 = 10, µ22 = 2, i.e., only 1/3 of customers must be sent to Q2, while
k = 3 when µ12 = 12, µ22 = 2.4, i.e., 1/2 of customers must be dispatched to queue Q2.

Table 3. Optimal policy k versus λ, µ11 and µ21 for fixed µ12 = 10, µ22 = 2.

(µ11, µ21) λ k (µ11, µ21) λ k

(15, 3)
[1, 2] 6

(20, 4)
[1, 6] 6

[3, 7] 5 [7, 18] 5
[8, 29] 4 [19, 29] 4

(25, 5) [1, 10] 6
(30, 6) [1, 15] 6

[11, 29] 5 [16, 29] 5
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Table 4. Optimal policy k versus λ, µ11 and µ21 for fixed µ12 = 12, µ22 = 2.4

(µ11, µ21) λ k (µ11, µ21) λ k

(15, 3)

1 6

(20, 4)

[1, 4] 6
[2, 4] 5 [5, 12] 5
[5, 17] 4 [13, 29] 4
[18, 29] 3

(25, 5)
[1, 8] 6

(30, 6)
[1, 12] 6

[9, 24] 5 [13, 29] 5
[25, 29] 4

It is interesting to show the influence of the number of the phases l of the arrival
process. This is done in Figures 3 and 4, respectively, for the queue Q1 and Q2, where in
figures labeled by (a) we illustrate the mean number of customers in each queue operating
under the HTP and by (b) a 1-lag correlation with l = 3, 6, 9. The arrival rate varies in
the interval [1, 29], the service rates in Q1 and Q2 are fixed at µ11 = 20, µ21 = 4, and
µ12 = 10, µ22 = 2. We observe that the mean number of customers N̄OLP-HTP

i in each
queue i changes with jumps as λ increases. Jumps occur where policy k changes, as can be
clearly seen by the behavior of the correlation function ri. Moreover, the function N̄OLP-HTP

1
increases non-monotonically, although the function N̄OLP-HTP = N̄OLP-HTP

1 + N̄OLP-HTP
2 has

due to previous experiments a monotonic structure by increasing λ and the choice l = 3
for the original system and specified service rates seems to be the better one.

We can also compare the performance of the optimal open-loop policy (OLP) k and
the Bernoulli-splitting policy (BSP). For the allocation of customers between the servers the
heuristic threshold policy (HTP) is chosen. In Figure 5, we consider the mean values N̄ f

when λ increases, service rates of Q1 change according to specified above cases, service
rates of Q2 are equal to µ12 = 10, µ22 = 2 in a figure labeled by (a) and µ12 = 12, µ22 = 2.4
in a figure labeled by (b). We see that the OLP outperforms the BSP despite the fact that
under the OLP the arrival stream has correlated inter-arrival times, and as it is known,
correlation in Markovian arrival processes often leads to a significant increase in the mean
number of customers in the system. such an advantage is drastically reduced in a light-
traffic and heavy-traffic cases. The advantage of the OLP in performance metric N̄ f can
be up to more than 25% for certain values of system parameter values compared to the
heuristic BSP.
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Figure 3. N̄ f
1 (a) and r1 (b) versus λ and l.
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Figure 4. N̄ f
2 (a) and r2 (b) versus λ and l.
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Figure 5. Functions N̄ f for µ12 = 10, µ22 = 2 (a) and for µ12 = 12, µ22 = 2.4 (b) versus λ, µ11 and µ21.

5. Conclusions

In this research, we provide the model to calculate the optimal open-loop routing
policy and corresponding optimal allocation policies for the servers in two heterogeneous
queues operating in parallel. It is show that the routing policy influences the arrival process
of the specific queue. It is reflected in the fact that the optimal threshold policy to dispatch
the customers between servers depends both on the number of waiting customers and on
the phase of the arrival process. For the heuristic threshold policy a matrix-analytic solution
is obtained. The quality of such a solution is compared with an alternative static policy
defined by the optimal Bernoulli splitting. The optimal open-loop policy outperforms
the probabilistic heuristic policy and advantage in a mean sojourn time can be more than
25%. This topic can be developed further to provide an exhaustive performance analysis,
including not only the calculation of average characteristics, but also stationary waiting
time distributions for a given control policy. A comparison of the proposed routing policy
with an optimal dynamic closed-loop policy is also a topic for subsequent research.
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