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Abstract: Numerov-type methods using four stages per step and sharing sixth algebraic order are
considered. The coefficients of such methods are depended on two free parameters. For addressing
problems with oscillatory solutions, we traditionally try to satisfy some specific properties such
as reduce the phase-lag error, extend the interval of periodicity or even nullify the amplification.
All of these latter properties come from a test problem that poses as a solution to an ideal trigonometric
orbit. Here, we propose the training of the coefficients of the selected family of methods in a wide set
of relevant problems. After performing this training using the differential evolution technique, we
arrive at a certain method that outperforms the other ones from this family in an even wider set of
oscillatory problems.

Keywords: initial value problem; numerov methods; differential evolution; periodic solutions

MSC: 65L05; 65L06; 90C26; 90C30

1. Preliminary Discussion

We are interested in the initial value problem (IVP) of the particular form:

z′′ = f (t, z), z(t0) = z0, z′(t0) = z′0, (1)

where f : R×Rm −→ Rm and z0, z′0 ∈ Rm. This equation is used to model a wide range
of problems in science and engineering. We remark that z′ is absent from Equation (1).

The Numerov method, which aids in advancing the numerical estimation of the
solution from tk to tk+1 = tk + h, is one of the most well-known approaches for solving
Equation (1), is given by the formula:

zk+1 = 2zk − zk−1 +
h2

12
( fk+1 + 10 fk + fk−1),

with zk ≈ z(kn) and fk ≈ z′′n = f (tk, zk). Remark also that fk, zk ∈ Rm.
Hairer [1], Chawla [2] and Cash [3] presented implicit Numerov-type techniques using

off-step points for the first time around 40 years ago. The primary challenge at the time was
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dealing with the P-stability characteristic, which is important for addressing stiff oscillatory
problems. Chawla [4] presented the following modified Numerov scheme, which had the
advantage of being evaluated explicitly:

v1 = zk−1,

v2 = zk,

v3 = 2zk − zk−1 + h2 f (tk, v2),

zk+1 − 2zk + zk−1 = 1
12 h2 · ( f (tk+1, v3) + 10 f (tk, v2) + f (tk−1, v1)),

(2)

with h a steplength that remains constant through the integration of Equation (1):

h = tk − tk−1 = tk+1 − tk = · · · = t1 − t0.

The vectors zk−1, zk and zk+1 are approximating z(tk − h), z(tk) and z(tk + h), re-
spectively, while v1 ∈ Rm, v2 ∈ Rm and v3 ∈ Rm are the function evaluations used by
the method.

We utilize the known information at mesh according to

v1 = zk−1, v2 = zk.

Since we have already computed f (tk−1, v1) in the previous step, we need only to
evaluate f (tk+1, v3) and f (tk, v2) every step, and consequently, we spend only two stages
per step.

Tsitouras then suggested a Runge–Kutta–Nyström (RKN)-style method [5]. This technique
significantly lowered the cost. As a result, just four steps are required to create a sixth-order
method, whereas previous implementations required six function evaluations (see [6]).

In the years that followed, our group delved thoroughly into the issue. Tsitouras
developed eighth-order methods with nine steps per step in [7]. Ninth-order methods
were studied in [8]. Simultaneously, a group of Spanish researchers published some highly
interesting work on the same topic [9–11].

In the present work, we intend to present a new method for addressing the problems
with periodic solutions better. Traditionally, for achieving this, we try to fulfill various
properties coming from a simple test equation. The main novelty here is that we will train
the available free parameters in a wide set of relevant problems. For this training, we will
use the differential evolution technique. It is believed that by using this methodology, we
will conclude with a method better tuned for oscillatory problems.

2. Theory of Two-Step Hybrid Numerov-Type Methods

For numerically addressing Equation (1), higher algebraic order methods are in great
demand. We may express t, which is the independent variable, as one of the components
of z. As a result, we concentrate without losing generality on the autonomous system
z′′ = f (z). Then, an s-stages hybrid Numerov method may presented as [7]:

zk+1 = 2zk − zk−1 + h2 · (w⊗ Is) · f (v)

v = (1 + a)⊗ zk − a⊗ zk−1 + h2 · (D⊗ Is) · f (v)
(3)

with Is ∈ Rs×s the identity matrix, D ∈ Rs×s, wT ∈ Rs, a ∈ Rs the coefficient matrices of
the method and

1 = [1 1 · · · 1]T ∈ Rs.
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For the presentation of the coefficients, we make use of the Butcher tableau [12,13],

a D

w
.

Method (2) can be given using matrices [8]. Since the function evaluations are com-
puted sequentially, these methods are explicit. Thus, D is strictly lower triangular matrix.
When s = 5, the associated matrices take the following form:

D =



0 0 0 0 0
0 0 0 0 0

d31 d32 0 0 0

d41 d42 d43 0 0

d51 d52 d53 d54 0


,

w =
[

w1 w2 w3 w4 w5
]

and a =
[
−1 0 a3 a4 a5

]T .

Since f (v1) is known from the previous step, four function evaluations are evaluated
each step. For attaining sixth algebraic order, we must cancel the associated truncation
error terms (see [14]).

Seventeen parameters are shared by the scheme under examination. Namely, nine
entries from the matrix D (i.e., d31, d32, · · · , d54), five coefficients for vector w and 3 coef-
ficients for vector a. However, in order to obtain 6th order, we must solve 23 condition
equations (see Table 5 in [14]).

The parameters are less than the equations. This is a usual problem while developing
Runge–Kutta type methods. Using simplifying assumptions is a common way to get
around this issue. We proceed setting,

D · 1 =
1
2
(a2 + a), D · a =

1
6
(a3 − a).

Then we spend only the six parameters d31, d32, d41, d42, d51 and d52 to satisfy the
above assumptions. Our profit is that all order conditions, including D · 1 and D · a, are
discarded from the relevant list given in [14]. As a result, only 9 order conditions remain to
be satisfied by the remaining 11 coefficients.

We select a3 and a4 as free parameters. The remainder of the coefficients are computed
successively below through a Mathematica [15] listing presented in Figure 1.

For exhaustive information on the derivation of truncation error coefficients, see the
review in [14]. Through its link with the so-called T2 rooted trees, Coleman [16] advocated
using the B2 series representation of the local truncation error.

A first method from this family was given by Tsitouras [5]. We may write in Mathe-
matica the following lines and derive the method given in there.

In[1]:= numer6[1/2, -1/2] // AbsoluteTiming
Out[1]= {0.0141117, {
{{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{1/16, 5/16, 0, 0, 0},
{-(7/144), -(5/48), 1/36, 0, 0},
{-(2/9), 1/3, 2/9, 2/3, 0}},
{1/60, 13/30, 4/15, 4/15, 1/60},
{-1, 0, 1/2, -(1/2), 1}}}
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Thus, we verify the efficiency of the algorithm since almost 0.01 seconds are enough
for furnishing the coefficients in a Ryzen 9 3900X processor running at 3.79 GHz. Later,
Franco [9] chose a3 = − 1

5 , a4 = − 2
5 . These were all-purpose methods. In [17], we proposed

another approach for selecting a3 and a4 that concentrates on the method’s behavior in
Keplerian type orbits. There we concluded that the choice a3 = 3

44 , a4 = − 23
38 furnishes a

method that best address the latter type of problems.

numer6[a3_, a4_] :=
Module[{d, w, a, e, d31, d32, d41, d42, d43, d51, d52, d53, d54, a5,
w1, w2, w3, w4, w5, de, da, so},
d = {{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {d31, d32, 0, 0, 0},
{d41, d42, d43, 0, 0}, {d51, d52, d53, d54, 0}};
a = {-1, 0, a3, a4, a5}; w = {w1, w2, w3, w4, w5};
e = {1, 1, 1, 1, 1};
a5 = (2 - 2 a4 + a3 (-2 + 5 a4))/(2 + 5 a3 (-1 + a4) - 5 a4);
de = (d.e)[[3 ;; 5]] - 1/2*(a^2 + a)[[3 ;; 5]];
da = (d.a)[[3 ;; 5]] - 1/6*(a^3 - a)[[3 ;; 5]];
so = Solve[
Join[{w.e - 1, w.a, -(1/6) + w.a^2, w.a^3, -(1/15) + w.a^4}, de,
da, {-(1/15) - w.a + 12 w.d.a^2}, {-w.a - 20 w.d.a^3},
{w.a^2 - 12 w.(a d.a^2)}] == Array[0 &, 14], {w1, w2, w3, w4, w5,
d31, d32, d41, d42, d51, d52, d43, d54, d53}];
w1 = Simplify[so[[1, 1, 2]]]; w2 = Simplify[so[[1, 2, 2]]];
w3 = Simplify[so[[1, 3, 2]]]; w4 = Simplify[so[[1, 4, 2]]];
w5 = Simplify[so[[1, 5, 2]]]; d31 = Simplify[so[[1, 6, 2]]];
d32 = Simplify[so[[1, 7, 2]]]; d41 = Simplify[so[[1, 8, 2]]];
d42 = Simplify[so[[1, 9, 2]]]; d51 = Simplify[so[[1, 10, 2]]];
d52 = Simplify[so[[1, 11, 2]]]; d43 = Simplify[so[[1, 12, 2]]];
d54 = Simplify[so[[1, 13, 2]]]; d53 = Simplify[so[[1, 14, 2]]];
Return[{d, w, a}]]

Figure 1. Mathematica listing for the derivation of the coefficients with respect to a3 and a4.

3. Performance of Methods in a Wide Set of Problems with Oscillating Solutions

From the above-mentioned family, we intend to develop a particular hybrid Numerov-
type scheme. The resulting method has to perform best on problems with oscillating
solutions. For this reason, we have chosen to test the following problems.

1–5. The model problem

z′′(x) = −ν2z(t), z(0) = 1, z′(0) = 0, t ∈ [0, 10π],

with the theoretical solution z(t) = cos(νx). This problem was run for five different
selections of ν. Namely, µ = 1, 3, 5, 7, 9. Thus, we obtain five problems 1–5.

6. The inhomogeneous problem

z′′(t) = −100z(t) + 99 sin t, z(0) = 1, z′(0) = 11, t ∈ [0, 10π],

with the theoretical solution z(t) = cos(10t) + sin(10t) + sin t.

7. The Bessel equation
The wellknown Bessel equation

z′′(t) = −z(t) · 1 + 400t2

4t2 ,

is verified by a theoretical solution of the form,

z(t) = J0(10t) ·
√

t,
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with J0 the zeroth-order Bessel function of the first kind. This equation in also integrated in
the interval [0, 10π].

8. The Duffing equation
Next, we choose the equation

z′′(t) =
1

500
· cos(1.01t)− z(t)− z(t)3,

z(0) = 0.2004267280699011, z′(0) = 0,

with an approximate analytical solution given in [14],

z(t) ≈


6 · 10−16 cos(11.11t) + 4.609 · 10−13 cos(9.09t)
+3.743495 · 10−10 cos(7.07t) + 3.040149839 · 10−7 cos(5.05t)
+2.469461432611 · 10−4 cos(3.03t) + 0.2001794775368452 cos(1.01t)


We again solved the above equation in the interval [0, 10π].
The three methods F6 [9], M6 [17] and T6 [5] were run for the above problems and

for different numbers for steps. The results in [5,9,17] showed the superiority of the latter
methods over the older schemes. The global errors over the whole mesh was recorded
in Table 1. Actually, we presented the errors in the form of the accurate digits observed.
A final row with the mean value is also given in Table 1.

In these 8 problems and for the 32 runs carried, it seems that T6 performed best.
The question raised now is if we can do even better.

4. Phase-Lag and Amplification Errors

At first, we select a method of high phase-lag order. This means that we try to
reduce the gap in the angle among the numerical and the theoretical solution in a free
oscillator [18]. The latter approach is well suited for use in problems with periodic solutions.
Thus, after considering the test problem

z′′ = −λz,

and applying Method (3), we verify as phase-lag the expression:

ρ = cos 2τ − (2− τ2w · (Is − τ2D)−1 · (1 + a)) cos τ + (1− τ2w · (Is − τ2D)−1 · a).

A sixth-order method shares sixth phase-lag order. Then after expanding with respect to
τ = hλ, we obtain

ρ = ρ8τ8 + ρ10τ10 + · · ·

The equations for eighth and tenth phase-lag order are

ρ8 =
22− 70a3 + 57a2

3 − 42a− 4 + 112a3a4 − 70a2
3a4

60480(−2 + 5a2
3)

,

and

ρ10 =
−94 + 280a3 − 150a2

3 − 105a3
3 + 210a4 − 455a3a4 + 70a2

3a4 + 175a3
3a4

907200 ∗ (−2 + 5a2
3)

,

respectively.
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Table 1. Testing phase. Accurate digits observed, using various steps by F6, M6 and T6.

Problem Steps F6 M6 T6

1 50 3.25 3.52 4.21
150 6.12 6.39 7.08
250 7.45 7.72 8.41
350 8.33 8.60 9.29

2 200 3.51 3.78 4.47
350 4.98 5.25 5.93
500 5.90 6.17 6.86
650 6.59 6.86 7.55

3 300 3.02 3.29 3.97
600 4.83 5.09 5.78
900 5.88 6.15 6.84

1200 6.63 6.90 7.59

4 400 2.75 3.02 3.70
800 4.55 4.82 5.51

1200 5.61 5.88 6.56
1600 6.36 6.63 7.31

5 500 2.56 2.83 3.51
100 4.37 4.63 5.32

1500 5.42 5.69 6.38
2000 6.17 6.44 7.13

6 600 2.56 2.83 3.51
1200 4.37 4.64 5.32
1800 5.42 5.69 6.38
2400 6.18 6.44 7.13

7 500 2.93 3.20 3.88
1000 4.74 5.01 5.70
1500 5.80 6.07 6.75
2000 6.55 6.82 7.50

8 50 3.86 4.08 4.65
100 5.69 5.89 6.52
150 6.75 6.95 7.60
200 7.50 7.70 8.36

Average r = 5.21 5.47 6.15

The only acceptable solution of ρ8 = ρ10 = 0 is a3 = 16
15 and a4 = 1371

245 . However, we
can not use such coefficients being so far away from the interval of interest [−1, 1]. Thus,
we may draw back and accept only ρ8 = 0 by setting

a3 = −1
2

and a4 =
95

154
.

We name this method PL8.
Another choice is the elimination of amplification errors. This is the distance from the

orbit of the theoretical solution of a free oscillator. It is given as

σ = (1− τ2w · (Is − τ2D)−1 · a).

Expanding with respect to τ, we conclude to the exact form,

σ = 1 +
(2− 7a3 + 8a2

3 − 3a3
3 − 3a4 + 11a3a4 − 13a2

3a4 + 5a3
3a4)

12960 ∗ (−2 + 5a2
3)

τ8.



Mathematics 2021, 9, 2756 7 of 12

Unfortunately, we may not satisfy simultaneously σ ≡ 1 and ρ8 = 0 since we arrive at
coefficients with indeterminate values. Thus, we may admit only σ ≡ 1 by setting a3 = − 1

2
and a4 = 7

11 . We name this method σ1.
Another interesting property is P-stability [2,3]. Then, we have to satisfy σ ≡ 1 along

with
−2 ≤ (2− τ2w · (Is − τ2D)−1 · (1 + a)) ≤ 2.

Only implicit methods may address these two requirements simultaneously.

5. Training the Free Parameters in a Wide Set of Periodic Problems

Our current project’s initial concept is based on [19]. After choosing the free parameters
a3, a4, we obtain a method named NEW6 and form another column in Table 1 for it. The average
value r obtained after the 32 runs may serve as a fitness measure and meant to be maximized.
For the maximization process, we applied the differential evolution technique [20].

DE is an iterative procedure, and in every iteration, named generation g, we work
with a “population” of individuals

(
a(g)

3i , a(g)
4i

)
, i = 1, 2, · · · , N, with N the population size.

An initial population
(

a(0)3i , a(0)4i

)
, i = 1, 2, · · · , N is randomly created in the first step of

the method. We have also set the measure r as the fitness function, i.e., the average of
accurate digits after the 32 runs mentioned above. The fitness function is then evaluated
for each individual in the initial population. In each generation (iteration) g, a three-phases
sequential scheme updates all of the individuals involved. These phases are Differentiation,
Crossover and Selection.

We used MATLAB [21] software DeMat [22] for implementing the latter technique.
Indeed, we manage to produce an improvement by choosing:

a3 =
40
53

, a4 = −37
60

. (4)

The coefficients of the new method in matrix forms are given below, which are suitable for
double precision computations.

D =



0 0 0 0 0
0 0 0 0 0

8060
148877

90520
148877 0 0 0

− 16805621
334527269 − 54356993

633622128
332246

18633899 0 0

12147948
222080867

61296188
157860699

2355019
374043401

14402708
628527665 0


,

w =
[ 28187

11022267
9681557

17031840
10794995

327298604
86494431

406871840
42418984

231244317

]
,

and
a =

[
−1 0 40

53 − 37
60

1918
3235

]T .

For this method, we obtained r ≈ 7.75, which is a very impressive result. Actually, we
obtained many methods with r > 7.7 since there seems to exist a small area of pairs a3, a4,
where r attains high values. We also remark that for Selection (4), the amplification is σ 6= 1
and for phase lag ρ = O(v8) holds, i.e., ρ8 6= 0, and no special property is satisfied.

We run the methods constructed for addressing periodic problems in the eight problems
listed in the third section. We summarize the results in Table 2. It is clear from this Table that
NEW6 performs better than all methods referred until now. Namely, F6, M6, T6, PL8 and σ1.

Other authors have also tried recently to train coefficients of RK methods [23].
However, in that later paper, only second- and third-order methods are considered [24,25]
with constant step sizes and over single problems (e.g., Van der Pol). The learning al-
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gorithm given there remains to be tested on current and stiffer cases. Our proposal for
differential evolution comes after several papers through the years [19].

Table 2. Testing phase. Accurate digits delivered after using various steps by PL8, σ1 and NEW6 in
the interval [0, 10π].

Problem Steps PL8 σ1 NEW6

1 50 4.82 4.34 5.61
150 8.16 7.21 8.95
250 9.71 8.61 10.50
350 10.74 10.09 11.53

2 200 5.22 4.59 6.01
350 6.92 6.05 7.71
500 8.01 6.99 8.79
650 8.80 7.70 9.59

3 300 4.68 4.08 5.46
600 6.78 5.90 7.57
900 8.02 6.97 8.80

1200 8.89 7.77 9.68

4 400 4.38 3.81 5.17
800 6.49 5.63 7.28

1200 7.72 6.69 8.51
1600 8.60 7.48 9.38

5 500 4.18 3.62 4.97
1000 6.30 5.45 7.08
1500 7.53 6.51 8.31
2000 8.40 7.29 9.19

6 600 4.22 3.64 5.01
1200 6.34 5.45 7.12
1800 7.57 6.52 8.36
2400 8.44 7.31 9.23

7 500 4.53 4.00 5.32
1000 6.64 5.82 7.43
1500 7.87 6.88 8.66
2000 8.75 7.65 9.53

8 50 4.06 5.46 4.79
100 5.81 7.04 6.56
150 6.86 8.06 7.62
200 7.61 8.78 8.36

Average r = 6.97 6.36 7.75

6. Numerical Results

Method NEW6 was produced to perform best on problems 1–8 listed in Section 3.
In the tests recorded in Tables 1 and 2, it was meant to outperform other methods for the
intervals and steps used there.

Thus, we intend to test NEW6 in a different set of problems, intervals and number of
steps. In this direction, we run again problems 1–8 to the longer interval [0, 20π]. We name
these problems now 1a, 1b, · · · , 8a. In addition, we included two nonlinear problems more.

9. Semi-Linear system.
The nonlinear problem proposed by Franco and Gomez [26] follows:

z′′(t) =

(
−199 −198

99 98

)
· z(t) +

(
(z1(t) + z2(t))

2 + sin2(10t)− 1

(z1(t) + 2z2(t))
2 − 10−6 sin 2(t)

)
,

t ∈ [0, 20π],
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with theoretical solution

z(t) =
(

2 cos(10t)− 10−3 sin(t)
− cos(10t) + 10−3 sin(t)

)
.

10. Two coupled oscillators with different frequencies.
The problem is characterized by the equations [27],

z′′1 (t) = −z1(t) + 0.002 · z1(t)z2(t),
z′′2 (t) = −2z2(t) + 0.001 · {z1(t)}2 + 0.004 · {z2(t)}2

z1(0) = 1, z2(0) = 1, z′1(0) = 0, z′2(0) = 0.

We also integrated this problem into [0, 20π], but no analytical solution is avail-
able. For an estimation of the error in the grid points, we used a Runge–Kutta–Nyström
method [28] with very stringent tolerance.

11. Wave equation.
Finally, we consider the linearized wave equation, which is a rather large-scale prob-

lem [14],

ϑ2u
ϑt2 = 4

ϑ2u
ϑx2 + sin t · cos

(πx
b

)
, 0 ≤ x ≤ b = 100, t ∈ [0, 20π],

ϑu
ϑx

(t, 0) =
ϑu
ϑx

(t, b) = 0

u(0, x) ≡ 0,
ϑu
ϑt

(0, x) =
b2

4π2 − b2 cos
πx
b

,

with the theoretical solution

u(t, x) =
b2

4π2 − b2 · sin t · cos
πx
b

.

We semi-discretisize ϑ2u
ϑx2 with fourth order symmetric differences at internal points

and one sided differences of the same order at the boundaries (including the knowledge of
ϑu
ϑx there) and conclude with the system:


z′′0
z′′1

z′′N

 =
4

(∆x)2



− 415
72 8 −3 8

9 − 1
8

257
144 − 10

3
7
4 − 2

9
1

48 0

− 1
12

4
3 − 5

2
4
3 − 1

12
. . . . . . . . . . . . . . .

− 1
12

4
3 − 5

2
4
3 − 1

12

0 1
48 − 2

9
7
4 − 10

3
257
144

− 1
8

8
9 −3 8 − 415

72


·


z0
z1
...

zN



+ sin t ·



cos
(

0·∆x
b · π

)
cos
(

1·∆x
b · π

)
...

cos
(

N·∆x
b · π

)


.

By choosing ∆x = 5, we arrive at a constant coefficients system with N = 20. The re-
sults for this problem were dominated by the semi-discretization errors.
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We run these 11 problems for various numbers of steps and tabulated the results
in Table 3. There, we included results with other state-of-the-art methods considered
in the area of sixth-order Numerov-type (i.e., including off step points) methods. It is
obvious from there that NEW6 outperformed all other methods from the literature by a
considerable distance.

Table 3. Final numerical results. Accurate digits delivered after using various steps by T6, PL8, σ1
and NEW6 in the interval [0, 20π].

Problem Steps T6 PL8 σ1 NEW6

1a 2× 50 3.90 4.52 r4.03 5.31
2× 150 6.77 7.86 6.90 8.65
2× 250 8.10 9.41 8.30 10.20
2× 350 8.97 10.44 9.79 11.22

2a 2× 200 4.16 4.92 4.29 5.71
2× 350 5.63 6.62 5.75 7.41
2× 500 6.56 7.70 6.69 8.49
2× 650 7.24 8.50 7.39 9.29

3a 2× 300 3.67 4.38 3.78 5.16
2× 600 5.48 6.48 5.60 7.27
2× 900 6.53 7.72 6.67 8.50

2× 1200 7.28 8.59 7.46 9.38

4a 2× 400 1.56 1.93 1.64 2.74
2× 800 3.39 4.07 3.50 4.87

2× 1200 4.45 5.31 4.57 6.10
2× 1600 5.20 6.19 5.33 6.98

5a 2× 500 3.21 3.87 3.32 4.67
2× 1000 5.02 5.99 5.14 6.78
2× 1500 6.08 7.23 6.21 8.01
2× 2000 6.83 8.10 6.99 8.89

6a 2× 600 3.21 3.91 3.34 4.71
2× 1200 5.02 6.03 5.15 6.82
2× 1800 6.08 7.27 6.21 8.05
2× 2400 6.83 8.14 7.01 8.93

7a 2× 500 3.53 4.17 3.65 4.96
2× 1000 5.35 6.28 5.47 7.07
2× 1500 6.40 7.51 6.53 8.30
2× 2000 7.15 8.39 7.30 9.17

8a 2× 50 4.29 3.70 5.24 4.52
2× 100 6.20 5.49 6.80 6.28
2× 150 7.29 6.56 7.80 7.33
2× 200 8.06 7.31 8.51 8.08

9 1000 r2.56 2.81 2.69 3.52
2000 4.39 4.77 4.50 5.44
3000 5.45 5.88 5.56 6.53
4000 6.20 6.67 6.32 7.31

10 200 4.66 5.43 4.78 6.21
400 6.46 7.54 6.59 8.32
600 7.52 8.77 7.67 9.55
800 8.27 9.64 8.57 10.43

11 100 5.06 4.54 4.79 5.01
120 5.48 5.02 5.27 5.49
140 5.76 5.43 5.68 5.92
160 r5.91 5.80 6.04 6.26

Average r = 5.62 6.29 5.91 7.04
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7. Conclusions

The main points of our research was the following.

• We considered a family of a sixth-order hybrid two-step scheme that shares the lowest
number of stages, and the main novelty is suggesting a method for selecting proper
free parameters.

• The parameters of the new method were chosen after testing their performance in a
large set of periodic problems.

• The best choice was found using the differential evolution method. In a wide range of
problems with oscillating solutions, the developed scheme significantly outperformed
other methods from the same or other families.

• The presented method is tuned for problems with periodic solutions,F especially when
these problems share a large linear part.
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