
mathematics

Article

An Algebraic Approach for Identification of Rotordynamic
Parameters in Bearings with Linearized Force Coefficients

José Gabriel Mendoza-Larios 1 , Eduardo Barredo 1, Manuel Arias-Montiel 2,* , Luis Alberto Baltazar-Tadeo 3,
Saulo Jesús Landa-Damas 3, Ricardo Tapia-Herrera 4 and Jorge Colín-Ocampo 3

����������
�������

Citation: Mendoza-Larios, J.G.;

Barredo, E.; Arias-Montiel, M.;

Baltazar-Tadeo, L.A.; Landa-Damas,

S.J.; Tapia-Herrera, R.; Colín-Ocampo,

J. An Algebraic Approach for

Identification of Rotordynamic

Parameters in Bearings with

Linearized Force Coefficients.

Mathematics 2021, 9, 2747. https://

doi.org/10.3390/math9212747

Academic Editor: Carlo Bianca

Received: 15 September 2021

Accepted: 25 October 2021

Published: 29 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Industrial and Automotive Engineering, Technological University of the Mixteca,
Huajuapan de León 69000, Oaxaca, Mexico; jgml@mixteco.utm.mx (J.G.M.-L.);
eduardin@mixteco.utm.mx (E.B.)

2 Institute of Electronics and Mechatronics, Technological University of the Mixteca,
Huajuapan de León 69000, Oaxaca, Mexico

3 Department of Mechanical Engineering, National Technological of Mexico—CENIDET,
Cuernavaca 62490, Morelos, Mexico; luis_atadeo@cenidet.edu.mx (L.A.B.-T.);
saulojesuslanda@cenidet.edu.mx (S.J.L.-D.); jorge.co@cenidet.tecnm.mx (J.C.-O.)

4 CONACYT—Technological University of the Mixteca, Huajuapan de León 69000, Oaxaca, Mexico;
rtapiah@conacyt.mx

* Correspondence: mam@mixteco.utm.mx; Tel.: +52-95-3532-0214

Abstract: In this work, a novel methodology for the identification of stiffness and damping ro-
tordynamic coefficients in a rotor-bearing system is proposed. The mathematical model for the
identification process is based on the algebraic identification technique applied to a finite element
(FE) model of a rotor-bearing system with multiple degree-of-freedom (DOF). This model considers
the effects of rotational inertia, gyroscopic moments, shear deformations, external damping and linear
forces attributable to stiffness and damping parameters of the supports. The proposed identifier only
requires the system’s vibration response as input data. The performance of the proposed identifier is
evaluated and analyzed for both schemes, constant and variable rotational speed of the rotor-bearing
system, and numerical results are obtained. In the presented results, it can be observed that the
proposed identifier accurately determines the stiffness and damping parameters of the bearings in
less than 0.06 s. Moreover, the identification procedure rapidly converges to the estimated values in
both tested conditions, constant and variable rotational speed.

Keywords: algebraic identification; rotor-bearing system; finite element model; rotordynamic coefficients

1. Introduction

Over the past few decades, several numerical approximations on the dynamic behavior
analysis for rotordynamic systems have been developed. Among these approximations,
the most popular approach is the finite element (FE) method because it is highly efficient
and convenient for modelling diverse physical systems. According to Koutromanos [1],
with this method a complex region that defines a continuous system is discretized with
simple geometrical forms called finite elements. The material properties as well as the
governing relationships are taken into consideration for these elements and expressed
in terms of unknown values on the element boundaries. After an assembly process and
consideration of the loads and boundary conditions, an equation system is obtained. The
solution for these equations provides the approximated behavior of the continuous system.
At the start of the 1960s, engineers used the FE method to obtain approximated solutions
for problems related to stress analysis, fluid flows, heat transfers and other areas. However,
the FE method was not applied to rotordynamics until a decade later. Through the 1970s,
diverse efforts were made to incorporate effects of rotational inertia, gyroscopic moments,
axial load, shear deformation and internal damping, as pointed out in [2]. Recently,
Shen et al. [3] remarked on the importance of including the effects of rotational inertia in
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the finite elements used to model and analyze rotordynamic systems, in order to have a
more general and appropriate kinematic and dynamic description of rotating structures
supported by bearings with stiffness and viscous damping characteristics.

Through the bearing characterization in rotor-bearing systems, the rotordynamic
stiffness and damping coefficients can be determined. Physical insight of these parameters
is essential for the correct modelling of every rotordynamic system as they are important
factors in determining the system’s dynamical behavior. In general, when a rotor-bearing
system is studied, stiffness and damping coefficients of the bearings are unknown, meaning
it is therefore necessary to implement a methodology to determinate them. According to
Tiwari [4], Matsushita et al. [5] and Breńkacz [6], there are eight rotordynamic coefficients
in bearings, four for stiffness (two directs and two crossed) and four for damping (two
directs and two crossed). Nowadays, rotor-bearing systems can be modelled in a very
precise way by using modern modelling techniques. However, accurately estimating the
dynamic parameters through theoretical models is still a challenge because it is difficult to
accurately model every phenomenon affecting the dynamic behavior of the bearings. This
problem has led to the development of novel numerical and experimental techniques for
dynamic parameter identification [4,6,7]. Tiwari and Chougale [8] developed an algorithm
to estimate the dynamic parameters of active magnetic bearings as well as the residual rotor
unbalance. The proposed algorithm is based on the least squares technique in frequency
domain. Moreover, Xu et al. [9] presented a novel identification approach for estimating
bearing dynamic parameters based on the transfer matrix method. Stiffness and damp-
ing parameters of an active magnetic bearing were determined by minimizing the error
between the unbalance response calculated by the transfer matrix approach and the experi-
mental approach. Mao et al. [10] also proposed a method for identifying bearing dynamic
parameters in flexible rotor-bearing systems by minimizing the quadratic error between the
numerical and experimental results of the vibration response caused by system unbalance.
There are several investigations on methods for identifying unbalance and bearing dynamic
parameters [11–15]. Recently, Wang et al. [16] presented the development of algorithms
for the simultaneous identification of unbalance and bearing dynamic parameters. In both
cases, the proposed algorithms were validated by comparison with experimental data.
Additionally, in [17], the authors estimated the rotordynamic coefficients of a controllable
floating ring bearing with a magnetorheological fluid (MRF) showing that the magnetic
field-induced, field-dependent viscosity of the MRF changes the stiffness and damping
bearing coefficients, which can be used to modify the dynamic behavior of the rotor-bearing
system. In 2020, Kang et al. [18] used the Kalman filter to estimate the bearing dynamic co-
efficients of a flexible rotor-bearing system. The rotor system is modeled with Timoshenko
beam elements, but the imbalance force considered in the dynamic model is calculated for
a constant rotational velocity condition. More recently, in 2021, Chen et al. [19] proposed
a method to simultaneously identify the parameters of the oil-film bearings and active
magnetic bearings/bearingless motors AMBs/BELMs along with the residual unbalanced
forces during the unbalanced vibration of the rotor. The proposed method requires inde-
pendent rotor responses and control currents to form a regression equation to estimate all
of the unknown parameters. Independent rotor responses are realized by changing the PID
control parameters of the AMBs/BELMs. The finite element method is used to model the
system by using Timoshenko beam elements, and both numerical and experimental results
are presented at a unique operation velocity of 2400 rpm. Taherkhani and Ahmadian [20]
used the Bayesian approach to an appropriate parameter selection procedure and suitable
sampling strategy for stochastic model updating to investigate variability in the dynamic
behavior of a complex turbo compressor supported by hydrodynamic bearings, leading to
successful parameter identification results. Brito Jr. et al. [21] presented an experimental
method to estimate the direct and cross-coupled dynamic coefficients of tilting-pad journal
bearings of vertical hydro-generators. The method employs only the shaft radial relative
vibrations, and the bearing radial absolute vibrations originated by the hydro-generator
residual unbalance. The authors affirmed that the vibration measurements required by the
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estimation method could be a major problem in low-speed machines (less than 400 rpm).
Although any type of bearing provides stiffness and damping forces that may depend
on the operation speed and many other factors, linearized force coefficients are widely
used to model the reaction forces from fluid film bearings. These linear force coefficients
are derived from the assumption of small amplitude motions about an equilibrium posi-
tion [22] and have been used to study the dynamic responses and analyze the stability of
rotor systems supported by oil-lubricated tilting-pad bearings, cylindrical bearings and foil
bearings, as pointed out in [23] and references within. Recently, Dyk et al. [24] presented
diverse linearization methods in the stability analysis of rotating systems supported on
floating ring bearing (FRBs), demonstrating the usefulness of the linear force coefficients
to predict the dynamic behavior of non-linear systems such as turbochargers supported
by FRBs.

There is also substantial literature on parameter identification and estimation methods.
Most of these schemes are essentially asymptotic, recursive or complex [25–27], and, accord-
ing to Arias-Montiel et al. [28], these methods lead to unrealistic implementations. Over the
past few years, another method of parametric identification called algebraic identification
has been successfully implemented in a wide range of engineering applications [29]. The
algebraic identification method is based on differential algebra and operational calculus
for developing estimators in determining unknown system parameters from a mathemat-
ical model. These estimations are carried out on-line in continuous or discrete time. An
advantage of algebraic identification over other methods is that it provides identification
expressions that are completely independent of the initial system conditions. Algebraic
identification has been used for parameter and signal estimation in linear and non-linear
vibrational mechanical systems [30–39]. Numerical and experimental results show that
algebraic identification is extremely robust against parameter uncertainty, frequency vari-
ations, measurement errors and signal noise. Additional information on the algebraic
identification robustness and other advantages and disadvantages of this method are
highlighted by Sira-Ramírez et al. in [29].

In this work, a novel methodology for developing two mathematical models for
identifying the unknown stiffness and damping parameters of bearings in multiple degree-
of-freedom (DOF) rotor-bearing systems is proposed. This methodology is based on the
algebraic identification technique. Developed identifiers are obtained based on an FE model
for a multiple DOF rotor-bearing system that considers the effects of rotational inertia,
gyroscopic effects, shear deformations, internal damping and linear forces attributable to
stiffness and damping parameters of the supports. Estimators are developed for two differ-
ent operation conditions of the rotor-bearing system: constant and variable rotational speed.
Analysis and evaluation of the proposed identifiers is carried out by numerical results
showing the viability for applying algebraic identification techniques for the rotordynamic
coefficients in rotor-bearing systems.

2. Materials and Methods
2.1. Mathematical Model of the Rotor-Bearing System

The FE method is used to obtain the mathematical model of the multiple DOF rotor-
bearing system. The shaft is modelled with a finite element type beam with four DOF
per node, two lateral displacements and two rotations (beam deflections), as illustrated
in Figure 1.
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Figure 1. Beam-like finite element for the modelling of the rotor-bearing shaft.

The nodal displacement vector is defined as

{δ} = {u1, w1, ψ1, θ1, u2, w2, ψ2, θ2}T (1)

where superscript T denotes the transposed vector.
Displacement and rotations corresponding to the movement along X and Z directions are

{δu} = {u1, ψ1, u2, ψ2}T

{δw} = {w1, θ1, w2, θ2}T (2)

The mathematical model of the multiple DOF rotor-bearing system with excitation by
unbalanced mass is given by [2]

[M]
{ ..

δ
}
+
[
C
( .

φ
)]{ .

δ
}
+
[
K
( ..

φ
)]
{δ} =

.
φ

2{
Fu(1)(φ)

}
+

..
φ
{

Fu(2)(φ)
}

(3)

with
Fu(1) = mud(sin(φ + α) + cos(φ + α))

Fu(2) = mud(sin(φ + α)− cos(φ + α))

where mu, d and α, are mass, eccentricity and angular position of system unbalance,
respectively,

..
φ and

.
φ are angular acceleration and velocity of the rotor-bearing system,

respectively, and φ =
.
φt. Moreover, {δ} is a vector with all the nodal displacements, [M] is

the global mass matrix of the system,
[
C
( .

φ
)]

is the global damping matrix that includes

gyroscopic effects as a function of the rotational velocity
( .

φ[C2]
)

and [C1] that represents

the damping in the supports,
[
K
( ..

φ
)]

is the global stiffness matrix constituted by [K1], [K2],

which include the supports and rotor stiffness, respectively, and
..
φ[K3], which is a stiffness

term as a function of the rotational acceleration of the system. Finally,
{

Fu(1)(φ)
}

and{
Fu(2)(φ)

}
are the components of the centrifugal force vector caused by the unbalanced

mass. Shape functions for the beam type finite element and a detailed definition for
matrices in Equation (3) are provided in Appendix A.

Stiffness and damping matrices provided by the bearings are obtained by determining
the generalized forces that these elements exert on the rotor shaft. After applying the
virtual work principle to the bearing model shown in Figure 2, forces acting on the rotor
can be expressed in a matrix form as [40]{

Fui

Fwi

}
= −

[
kxx
kzx

kxz
kzz

]{
ui
wi

}
−
[

cxx
czx

cxz
czz

]{ .
ui.
wi

}
(4)
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where i denotes the nodal location of the bearing inside the rotordynamic systems. Matrices
from the right side of Equation (4) are stiffness and damping matrices corresponding to
system supports [K1] and [C1], respectively.
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2.2. Operation Velocity of the Rotor-Bearing System

Two different conditions for the operation velocity of the rotor-bearing system are
considered: constant velocity and a linear ramp excitation.

Under the constant velocity scheme, no time variation of the rotating machine excita-
tion is considered. This condition can be expressed as

.
φ(t) = Ω = constant (5)

The term “ramp excitation” means a continuous variation in the excitation frequency
with a specific ratio with respect to time and can be ascendant (up) or descendent (down).
With most real rotating systems, the excitation frequency does not change in a linear manner
with respect to time. However, in some cases, frequency variation is sufficiently slow to
be approximated by a linear function. For the solution of Equation (3), it is considered a
variation of the excitation frequency of the form

.
φ(t) =

.
φ0 +

..
φt (6)

where:
.
φ0 is the excitation frequency at the ramp beginning;
..
φ is the change ratio with respect to time of the excitation frequency;
t is the time.

2.3. Mathematical Model for Bearing Rotordynamic Parameters Identification

The development of the mathematical model of the identifier is carried out from the
rotordynamic system model given in Equation (3), considering both cases: constant and
variable system operation velocity.

2.3.1. Algebraic Identifier with Constant Operation Velocity

As pointed out above, it is necessary to have a mathematical model for the dynamic
behavior of the rotor-bearing system to develop algebraic identifiers. From this model
and through an algebraic manipulation of the equations, estimators for the unknown
parameters are obtained.
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If a constant rotational velocity of the system is considered, Equation (3) can be written as

[M]
{ ..

δ
}
+ [C1 + ΩC2]

{ .
δ
}
+ [K1 + K2]{δ} = mudΩ2{sin(Ωt + α) + cos(Ωt + α)} (7)

Now, Equation (7) is multiplied by t2 and, after that, the result is twice integrated with
respect to time, giving

∫ (2)
[K1]t2{δ}+ [C1]

[∫
t2{δ} − 2

∫ (2)
t{δ}

]
=
∫ (2)

mudΩ2{sin(Ωt + α) + cos(Ωt + α)}t2 (8)

where
∫ (2) f (t) denotes iterated integrals. Furthermore, bearing stiffness and damping

terms to be identified are included in [K1] and [C1], respectively. Therefore, after the inte-
gration of the left side of Equation (8) and an algebraic treatment, the following expression
can be obtained∫ (2)

[
[M]

{ ..
δ
}
+ [C1 + ΩC2]

{ .
δ
}
+ [K1 + K2]{δ}

]
t2

=
∫ (2)[2ΩC2t− 2M− K2t2]{δ}+ ∫ [4M−ΩC2t]t{δ}

−{M}t2{δ}+
∫ (2) mudΩ2{sin(Ωt + α) + cos(Ωt + α)}t2

(9)

Equation (9) can be separated into individual equation systems for each node where
the bearings are located. These equations can be presented in the form[

kxx kxz
kzx kzz

] ∫ (2)
t2
{

ui
wi

}
+

[
cxx cxz
czx czz

](∫
t2
{

ui
wi

}
− 2

∫ (2)
t
{

ui
wi

})
=

{
bui
bwi

}
(10)

To solve Equation (10) an equal number of equations and unknowns is needed. For
this, Equation (10) is successively integrated three times in order to obtain the missing
equations, which are written as[

kxx kxz
kzx kzz

] ∫ (3)
t2
{

ui
wi

}
+

[
cxx cxz
czx czz

](∫ (2)
t2
{

ui
wi

}
− 2

∫ (3)
t
{

ui
wi

})
=
∫ { bui

bwi

}
(11)

[
kxx kxz
kzx kzz

] ∫ (4)
t2
{

ui
wi

}
+

[
cxx cxz
czx czz

](∫ (3)
t2
{

ui
wi

}
− 2

∫ (4)
t
{

ui
wi

})
=
∫ (2){ bui

bwi

}
(12)

[
kxx kxz
kzx kzz

] ∫ (5)
t2
{

ui
wi

}
+

[
cxx cxz
czx czz

](∫ (4)
t2
{

ui
wi

}
− 2

∫ (5)
t
{

ui
wi

})
=
∫ (3){ bui

bwi

}
(13)

From Equations (10)–(13), a linear system equation is obtained for each node where
the bearings are located. These equations can be expressed as

[As(t)]{Θs} = {bs(t)} (14)

where {Θs} = {kxx kxz kzx kzz cxx cxz czx czz }T denotes the transposed vector of parame-
ters to be identified and [As(t)], {bs(t)} are 8 × 8 and 8 × 1, respectively.

As can be observed in Figure 2, eight parameters are required to define stiffness and
damping characteristics provided by the system supports. This is because in order to obtain
the terms of [As(t)] and {bs(t)} in Equation (14), eight simultaneous equations involving
the unknown support parameters are required to obtain their magnitudes.

From Equation (14) it can be concluded that vector {Θs} is identifiable if, and only
if, the dynamic system trajectory is persistent. That is to say, the trajectories or dynamic
system behaviors satisfy the condition det[As(t)] 6= 0. In general, this condition is main-
tained at least in a small interval ( t0, t0 + ε] where ε is a positive and sufficiently small
value [29]. Then, the linear system Equation (14) is solved to obtain the algebraic identi-
fier for determining the stiffness and damping parameters of rotor-bearing support with
constant operation velocity.

{Θs} = [As]
−1{bs} ∀t ∈ ( t0, t0 + ε]. (15)
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It is important to mention that to identify the support parameters, lateral vibration
measurements at the node and the nodal slopes are required. Moreover, similar information
from the adjacent node is also needed. The nodal slopes can be calculated by numerical
approximation using the lateral displacements from two adjacent nodes.

2.3.2. Algebraic Identifier with Variable Operation Velocity

In this section, the rotor-bearing system velocity is considered as a linear ramp of
excitation. The mathematical model of the system is defined by Equation (3). In order to
develop the parameter identifier, this equation is rewritten as follows

[M]
{ ..

δ
}
+
[
C1 +

.
φC2

]{ .
δ
}
+
[
K1 + K2 +

..
φK3

]
{δ} =

.
φ

2
F1(φ) +

..
φF2(φ) (16)

By multiplying Equation (16) by t2 and integrating the result twice with respect to
time, the following is obtained∫ (2)[

[M]
{ ..

δ
}
+
[
C1 +

.
φC2

]{ .
δ
}
+
[
K1 + K2 +

..
φK3

]
{δ}
]
t2 =

∫ (2){ .
φ

2
F1(φ) +

..
φF2(φ)

}
t2 (17)

where
∫ (2)

ϕ(t) are iterated time-integrals of the form
∫ t

0

∫ σ1
0 · · ·

∫ σn−1
0 ϕ(σn)dσn · · · dσ1 with∫

ϕ(t) =
∫ t

0 ϕ(σ)dσ, and n a positive integer.
Similarly for the case of constant velocity, matrices [K1] and [C1] contain the stiffness

and damping parameters provided by the supports. Therefore, after the integration of the
left part of Equation (17) and rearranging terms, we have∫ (2)

[K]1t2{δ}+ [C1]
[∫

t2{δ} − 2
∫ (2) t{δ}

]
=
∫ [

4Mt−
.
φC2t2

]
{δ}

+
∫ (2)

[
C2

( ..
φt2 + 2

.
φt
)
− 2M−

(
K2 +

..
φK3

)
t2
]
{δ} − [M]t2{δ}

+
∫ (2)

{
.
φ

2
F1(φ) +

..
φF2(φ)

}
t2

(18)

It is worth mentioning that Equation (18) can be separated into individual equation
systems for each node where the bearings are located. These equations can be written as
follows[

kxx kxz
kzx kzz

] ∫ (2)
t2
{

ui
wi

}
+

[
cxx cxz
czx czz

](∫
t2
{

ui
wi

}
− 2

∫ (2)
t
{

ui
wi

})
=

{
bui
bwi

}
(19)

To solve Equation (19), an equal number of equations and unknows is required. There-
fore, Equation (19) is successively integrated three times to obtain the missing equations
which are expressed as[

kxx kxz
kzx kzz

] ∫ (3)
t2
{

ui
wi

}
+

[
cxx cxz
czx czz

](∫ (2)
t2
{

ui
wi

}
− 2

∫ (3)
t
{

ui
wi

})
=
∫ { bui

bwi

}
(20)

[
kxx kxz
kzx kzz

] ∫ (4)
t2
{

ui
wi

}
+

[
cxx cxz
czx czz

](∫ (3)
t2
{

ui
wi

}
− 2

∫ (4)
t
{

ui
wi

})
=
∫ (2){ bui

bwi

}
(21)

[
kxx kxz
kzx kzz

] ∫ (5)
t2
{

ui
wi

}
+

[
cxx cxz
czx czz

](∫ (4)
t2
{

ui
wi

}
− 2

∫ (5)
t
{

ui
wi

})
=
∫ (3){ bui

bwi

}
(22)

From Equations (19)–(22), a linear system equation is obtained for each node where
the bearings are located. These equations can be expressed as

[As(t)]{Θs} = {bs(t)} (23)

where {Θs} = {kxx kxz kzx kzz cxx cxz czx czz }T denotes the transposed vector of parame-
ters to be identified and [As(t)], {bs(t)} are 8 × 8 and 8 × 1, respectively.

Again, the condition det[As(t)] 6= 0 must be satisfied to identify the vector {Θs}.
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From the solution of Equation (23), a mathematical model for an on-line identifier of
stiffness and damping bearing parameters can be obtained as

{Θs} =
[

As
−1
]
{bs} ∀t ∈ ( t0, t0 + ε] (24)

As can be observed, algebraic identification of stiffness and damping bearing param-
eters is independent of system initial conditions and only depends on the displacement
vector and the type of ramp excitation. It is important to mention that as with the case
of constant velocity, to identify the supports parameters, lateral vibration measurements
at the node and the nodal slopes are required. Moreover, similar information from the
adjacent node is also needed.

3. Results

In Figure 3, a scheme of the rotor-bearing system considered in this work and its
discretization is presented.
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Figure 3. Rotor-bearing system scheme [40].

To obtain the mathematical model for the rotor-bearing system using the FE method,
it was discretized into 11 beam-like elements, as is shown in Figure 3. The system includes
two inertial disks located at nodes 1 and 12, while supports (bearings) are placed at
nodes 4 and 8. The correct nodal location ensures that the simulation replicates the model’s
real conditions. In addition, two unbalanced masses were considered in two different
angular positions located on inertial disks D1 and D2.

In Table 1, the mechanical and geometrical properties of the shaft are shown, while
the inertial properties of discs and unbalanced masses are presented in Table 2.

Table 1. Mechanical and geometrical properties of the rotor-bearing shaft.

Parameter Value Parameter Value

Modulus of elasticity 2× 1011 N/m2 L1 0.035 m
Density 7800 kg/m3 L2 0.010 m

Poisson ratio 0.3 L3 0.025 m
r1 0.005 m L4 0.130 m
r2 0.02 m L5 0.050 m
r3 0.035 m L6 0.050 m
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Table 2. Inertial properties of the disks and unbalance masses.

Parameter Value Parameter Value

D1 mass 1.2 kg D2 mass 1.0 kg
D1 moment of inertia 1.2× 10−3 kg·m2 D2 moment of inertia 1.0× 10−3 kg·m2

D1 polar moment of inertia 2.4× 10−3 kg·m2 D2 polar moment of inertia 2.0× 10−3 kg·m2

D1 mass unbalance 5× 10−7 kg·m ∠0 rad D2 mass unbalance 5× 10−7 kg·m ∠π rad

In Table 3, the stiffness and damping bearing parameters [40] used for numerical
simulation are presented.

Table 3. Stiffness and damping bearing parameters [40].

Parameter Bearing 1 (Node 4) Bearing 2 (Node 8)

kxx 8× 107 N/m 5× 107 N/m
kxz −1× 107 N/m −2× 107 N/m
kzx −6× 107 N/m −4× 107 N/m
kzz 1× 108 N/m 7× 107 N/m
cxx 8× 103 N·s/m 6× 103 N·s/m
cxz −3× 103 N·s/m −1.5× 103 N·s/m
czx −3× 103 N·s/m −1.5× 103 N·s/m
czz 1.2× 104 N·s/m 8× 103 N·s/m

On-line algebraic identification of stiffness and damping bearing parameters was
determined based on the vibratory response of the rotor-bearing system in the time do-
main, which was obtained from Equations (3) and (7) by using the Newmark method for
numerical integration.

3.1. Algebraic Parameter Identification with Constant System Velocity

The displacement vector used in the algebraic identification procedure was obtained
from Equation (7) by using the Newmark method for numerical integration and taking
into account a constant rotational velocity of the rotor-bearing system.

In Figure 4, vibration signals at node 4 (corresponding to bearing 1 location) of the
rotor-bearing system of Figure 3 are presented. This response is obtained for an operation
rotational velocity Ω = 600 rpm. These signals, the nodal slopes and the corresponding
information of the nodes adjacent to the bearing locations are the required data to identify
stiffness and damping parameters of the bearings.
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Figure 4. Vibration signal at node 4 (bearing 1) at 600 rpm: (a) X direction; (b) Z direction.

Figures 5 and 6 present the obtained results from the numerical simulation for the alge-
braic identification of stiffness and damping parameters for bearing 1, while Figures 7 and 8
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show the results corresponding to bearing 2. It is important to mention that the sample
time used in the simulation was 0.1 milliseconds. However, by carrying out numerical
simulations with different sample times, it was observed that the shorter the sampling
period, the faster the identifier converges.
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Figure 8. Identified damping parameters for bearing 2 at 600 rpm. (a) cxx, (b) cxz, (c) czx, (d) czz.

As can be observed in Figures 5–8, the identification of both stiffness and damping
parameters of the bearings is carried out in less than 0.1 s, and once the parameter reaches
the identified value, this remains for the rest of the time period. For a better analysis of
the identifier behavior, only results for 0.1 s are presented in Figures 5–8, because it is
important to observe the time that the identifier requires to converge to the estimated value.

3.2. Algebraic Parameter Identification with Variable System Velocity

The displacement vector used as input data for the algebraic identification is obtained
from Equation (3) by using the Newmark method for numerical integration and taking into
account a linear ramp excitation with angular acceleration

..
φ = 10 rad/s2. The rotor-bearing

system response at node 4 is shown in Figure 9 where the vibratory behavior of the system
in the location of bearing 1 can be appreciated.
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Figure 9. System vibratory response at node 4 with a linear ramp of excitation of 10 rad/s2.

In Figures 10–13, the behavior of the algebraic identifier for bearing stiffness and
damping parameters of both bearings (placed at nodes 4 and 8) is shown as a function
of time.
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As in the case of constant rotor system velocity, stiffness and damping bearing pa-
rameters are identified in les tan 0.1 s as can be observed in Figures 10–13. Furthermore,
the parameter values remain constant until the rotor-bearing system reaches its nominal
operation velocity. For a better analysis of the identifier behavior, the results for 0.1 s are
presented in Figures 10–13 because it is important to observe the required time for the
identifier convergence. The sample time used to solve Equation (3) using the Newmark
method was 0.1 milliseconds. The numerical solution of Equation (3) was used as input
data for the proposed algebraic identifier. Moreover, achieving this sample time with
diverse data acquisition systems for experimental implementation was verified.

4. Discussion

Different numerical simulations were carried out in order to determine the robustness
of the proposed identifiers under different conditions for the rotor-bearing system velocity.
For the constant velocity case, different magnitudes for the rotor system velocity were
considered, while for the variable velocity case, different ramps of excitation were explored.

Figure 14 shows results for the algebraic identification of stiffness and damping
parameters for bearing 1 at a constant operation velocity of the rotor-bearing system of
50,000 rpm. A rapid identifier convergence to the estimated values can be observed,
meaning that an increase in operation velocity does not affect the identifier performance. It
is important to mention that, while the results for the identification of damping parameters
of bearing 1 and the stiffness and damping parameters of bearing 2 are not presented, these
parameters are correctly identified in less than 0.1 s.

The identifier performance for different ramps’ excitation was analyzed. The accel-
eration values considered for numerical simulation were:

..
φ = 10 rad/s2,

..
φ = 100 rad/s2,

..
φ = 1000 rad/s2,

..
φ = 3000 rad/s2 and

..
φ = 6000 rad/s2. The result for

..
φ = 10 rad/s2 were

reported in the previous section. Due to the similar behavior of the identifier with different
acceleration values, only results for

..
φ = 6000 rad/s2 are shown here. The rotor-bearing

system response for a ramp of excitation with the mentioned value of acceleration at node 4
(bearing 1 location) is presented in Figure 15. It can be seen that there is a considerable
change in the time scale in comparison with Figure 9 because the acceleration is increased
600 times.
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The algebraic identification performance under the conditions described above is
shown in Figures 16–19 where the estimation for the stiffness and damping bearings
parameter is visualized. For this simulation, the system response in Figure 15 is used as
input data.
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From the results presented in Figures 16–19, it can be observed that despite the linear
ramp excitation being 600 times faster than the corresponding one in Figure 9, the proposed
identifier rapidly converges to the estimated values and remains in these values for the
rest of the time period. Note that the algebraic identifier is not affected by the system’s
acceleration and only depends on the displacement vector at each instance. The robustness
of the algebraic identification method against acceleration ramp variations had already
been proved by Mendoza-Larios et al. [36] but only for the identification of unbalance
parameters in rotor-bearing parameters.

Furthermore, the obtained results for both cases, constant and variable rotor-bearing
velocity, show a transient state of the identifiers before the convergence to the estimated
values of stiffness and damping bearing parameters. This behavior is due to the sample



Mathematics 2021, 9, 2747 18 of 21

time used in the numerical simulations of the identifiers for solving the iterated integrals
of Equations (15) and (24), which utilize the trapezoidal rule. According to Kharab and
Guenther [41], this method presents major calculation errors in comparison with other
integration methods. However, it was found that the smaller the sample time the shorter
the error in the trapezoidal rule calculation.

5. Conclusions

In this article the identification problem for stiffness and damping parameters of
the supports in rotor-bearing systems was addressed. The system model was obtained
by the finite element method and using a finite element type beam, which consider the
effects of rotational inertia, gyroscopic moments and shear deformations. The algebraic
identification technique was applied to the finite element model to obtain two identifiers
for the stiffness and damping parameters attributable to the bearings. The first identifier
considers a rotor-bearing system operating at a constant velocity, and the second with
a linear ramp of excitation as a system velocity input. The numerical results present
the identifier behavior showing a fast convergence and robustness in both operation
conditions with different values of constant rotational velocity and ramp of acceleration.
The numerical results indicate a fast convergence in the stiffness and damping parameters
identification in less than 0.06 s for both considered operation conditions. It is important to
mention that the convergence time of the identifier depends mainly on the sample time
used in numerical simulations. An important characteristic of the proposed algebraic
identifiers is that the unbalance parameters (magnitude and phase) are not needed for their
development and implementation because only the vibratory response of the system at
the bearings’ location and the adjacent nodes is required. As a first approach we have
proved the proposed identifiers in rotor-bearing system models with constant rotordynamic
coefficients. However, as a future work, the proposed identifiers can be used to numerically
and experimentally determine rotordynamic coefficients, which are a function of the system
rotational velocity as in the case of pressurized bearings, by adapting the identifier method
to estimate non-constant functions. This is possible because in the mathematical model used
for the identifiers’ development, only the effects (stiffness and damping) of the supports
are considered without taking into account the nature of the bearings.
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Appendix A

Shape functions for the beam finite element.

N1(y) =
[
1− 3y2

L2 + 2y3

L3 ;−y + 2y2

L −
y3

L2 ; 3y2

L2 −
2y3

L3 ; y2

L −
y3

L2

]
N2(y) =

[
1− 3y2

L2 + 2y3

L3 ; y− 2y2

L + y3

L2 ; 3y2

L2 −
2y3

L3 ;− y2

L + y3

L2

] (A1)
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Expressions for matrices in Equation (3) are

[MT ] =
ρSL
420



156 0 0 −22L 54 0 0 13L
0 156 22L 0 0 54 −13L 0
0 22L 4L2 0 0 13L −3L2 0
−22L 0 0 4L2 −13L 0 0 −3L2

54 0 0 −13L 156 0 0 22L
0 54 13L 0 0 156 −22L 0
0 −13L −3L2 0 0 −22L 4L2 0

13L 0 0 −3L2 22L 0 0 4L2


(A2)

[MR] =
ρI

30L



36 0 0 −3L −36 0 0 3L
0 36 3L 0 0 −36 3L 0
0 3L 4L2 0 0 3L −L2 0
−3L 0 0 4L2 3L 0 0 −L2

−36 0 0 3L 36 0 0 3L
0 −36 3L 0 0 36 −3L 0
0 −3L −L2 0 0 −3L 4L2 0
−3L 0 0 −L2 3L 0 0 4L2


(A3)

[C1] =



cxx
czx
0
0
0
0
0
0

cxz
czz
0
0
0
0
0
0

0
0

0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0


or



0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0

cxx
czx
0
0

0
0
0
0

cxz
czz
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0


(A4)

[C2] =
ρI

15L



0 −36 −3L 0 0 36 −3L 0
36 0 0 −3L −36 0 0 −3L
3L 0 0 −4L2 −3L 0 0 L2

0 3L 4L2 0 0 −3L −L2 0
0 36 3L 0 0 −36 3L 0
−36 0 0 3L 36 0 0 3L
3L 0 0 L2 −3L 0 0 4L2

0 3L −L2 0 0 −3L 4L2 0


(A5)

[K1] =



kxx
kzx
0
0
0
0
0
0

kxz
kzz
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0


or



0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0

kxx
kzx
0
0

0
0
0
0

kxz
kzz
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0


(A6)
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[K2] = A



12 0 0 −6L −12 0 0 −6L
0 12 6L 0 0 −12 6L 0
0 6L (4 + a)L2 0 0 −6L (2− a)L2 0
−6L 0 0 (4 + a)L2 6L 0 0 (2− a)L2

−12 0 0 6L 12 0 0 6L
0 −12 −6L 0 0 12 −6L 0
0 6L (2− a)L2 0 0 −6L (4 + a)L2 0
−6L 0 0 (2− a)L2 6L 0 0 (4 + a)L2


(A7)

[K3] =
ρI

15L



0 −36 −3L 0 0 36 −3L 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 3L 4L2 0 0 −3L −L2 0
0 36 3L 0 0 −36 3L 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 3L −L2 0 0 −3L 4L2 0


(A8)

with A = EI/((1 + a)L3) and a = 12EI/
(
GSL2), where E is the Young modulus of the

shaft material, I is the moment of inertia of the shaft transversal section, a is the shear
factor, S is the cross-sectional area of the shaft, L is the element length, G and ρ are the
shear modulus and the density of the shaft material, respectively.
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