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Abstract: The influence of the dynamic wear model considering the tooth contact flash temperature
on the dynamic characteristics of a gear-bearing system is studied. Firstly, the meshing stiffness
model, based on flash temperature theory, is established. Then, the changing of tooth surface
temperature and meshing stiffness in the process of gear meshing is analyzed. Next, the initial
tooth surface wear is calculated based on the Archard theory, and the dynamic wear model of the
system is established. Finally, the effects of initial wear, friction factors, and damping ratio on the
system response are studied. The results show that with the increase of fractal dimension D, the
uncertainty and the fluctuation amplitude of backlash decrease, and the meshing force decreases.
Therefore, the initial tooth surface wear is reduced, and the stability of the system response with
a dynamic wear model is improved; with the increase of the friction coefficient, the tooth surface
flash temperature rises, and the root mean square value of the vibration displacement of the system
amplifies, which indicates that the system tends to be unstable; with the increase of damping ratio,
the system changes from unstable quasi-periodic and chaotic motion to the stable periodic motion.
The increase of damping accelerates the energy loss of the system and makes the system prone to
be stable.

Keywords: flash temperature; Archard theory; gear; bearing; tooth surface wear; dynamic wear

1. Introduction

With the development of science and technology, clean energy has become an inte-
gral part of society. Wind energy is a kind of renewable clean energy, and wind power
generation is an important part of non-fossil energy power generation. Furthermore, wind
power generation plays a key role in reducing the use of fossil energy and alleviating
environmental pollution.

The gear transmission system, which is in the gearbox of the wind power generation,
has an important impact on the stability of the system, and many scholars have carried out
modeling analysis on it [1,2]. Based on a 1.5 MW wind turbine, Chen et al. [3] established
a planetary gear system considering random wind speed excitation, and they studied
the change of system response under the random component of comprehensive error.
Zhao et al. [4] established a nonlinear dynamic model of the two-stage planetary gear and
one-stage parallel axial gear transmission. Sun et al. [5] established an 8-DOF dynamic
differential equation, and the dynamic responses caused by progressive tooth wear was
studied. Wang et al. [6] transformed the semi-custom system with a rigid displacement
model into a custom system. Then, the dynamic characteristics of a one-stage planetary
gear transmission system and two-stage parallel axial gear transmission system were
analyzed. Xu et al. [7] divided the gearbox of the wind power system into a transmission
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subsystem and an ontology subsystem. Then, the dynamic characteristics of the system
were analyzed, and experiments were carried out.

Most of the above literature was calculated by the numerical method; however, the
analysis methods of gear systems are becoming more and more diversified. Based on the
parametric model order reduction (PMOR) scheme and the Hertz theory, Niccolò et al. [8]
proposed a combined analytic–numerical contact model to solve the contact problem of
flexible multi-body gears. According to the dynamic modeling and signal processing
method, Wu et al. [9] proposed a gear crack fault feature analysis method. It included
a local oscillatory-characteristic decomposition (LOD) method and an analytical–finite
element gear contact model. Lin et al. [10] established the semi-analytical contact model
by combining the penalty element method and Lagrange multiplier method. Then, the
dynamic contact analysis of a helical gear pair was carried out.

In the process of gear meshing, most of the energy consumed by friction is converted
into heat. Then, that inevitably leads to increasing of the tooth surface temperature and
influences the contact conditions as well as system stability. Based on the flash temperature
theory and the Hertz contact theory, Gou et al. [11] calculated the time-varying meshing
stiffness considering the tooth surface contact temperature and analyzed the dynamic
characteristics of the gear system under corresponding working conditions. Mao [12] took
the polymer composite gear as the research object and studied the flash temperature as well
as heat distribution between teeth, which provided a new idea for the design of polymer
composite gears. Su et al. [13] analyzed the heat generation, as well as conduction in the
process of the gear form grinding, and established the corresponding mathematical model.
Pan et al. [14] established a time-varying meshing stiffness model including the influence
of tooth contact temperature, friction coefficient, and normal load. Then, it was substituted
into the nonlinear dynamic model of a gear-bearing system with 10 degrees of freedom.

However, with increasing of the tooth surface temperature, it is easy to cause the tooth
surface wear and scuffing, which will make the backlash change. Then, the nonlinearity
of the gear system is enhanced, and the motion state of the system tends to be unstable.
Wang [15] combined the tooth surface wear with the changing of backlash. Then, it
provided the vibration mechanism and the fault wear diagnosis method of the multi-stage
gear transmission system. Li et al. [16,17] established a 9-DOF dynamic model of the
gear-bearing system. Then, they studied the effects of backlash with fractal characteristics
and backlash with tooth surface wear on the dynamic characteristics of the system.

Meanwhile, the tooth surface wear and scuffing also can change the meshing stiffness.
Wang [18] and Feng et al. [19] both analyzed the gear-meshing stiffness under wear condi-
tion, but the methods were different. Wang et al. [18] used the Weber–Banaschek method
to calculate the wear stiffness and analyzed the effect of wear on the system. However,
according to the Timoshinko beam theory, Feng et al. [19] calculated the influence of wear
on stiffness more accurately, which provided a technical path for the gear dynamic mod-
eling considering tooth surface wear. Huangfu et al. [20] established the wear prediction
model and the gear dynamic model, comparing the results obtained with the finite element
model. Then, the change of wear depth with speed is analyzed.

In this paper, the gear-bearing system in references [14,16] is taken as the research
object. Although both references are based on the same gear-bearing system, the stiffness
and backlash considered in the model are quite different. In reference [14], the effects of
tooth surface flash temperature and the backlash with fractal characteristics on the system
response were analyzed, but the calculation of tooth surface wear was not involved. In
reference [16], the fractal theory and the Archard theory were used to calculate the tooth
surface wear. Then, the influence of wear amount of different fractal dimensions on system
response was studied. However, the wear amount of each period was regarded as the
same, and the dynamic changing process of tooth surface wear was not considered.

Above all, the influence of dynamic wear, considering the initial tooth surface wear
and tooth surface contact temperature, on the response of the gear-bearing system is studied.
In Section 2, the gear-bearing systems considering different backlash and meshing stiffness
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are introduced to calculate parameters (initial tooth surface wear, dynamic tooth surface
wear, and tooth surface temperature). Then, dynamic characteristics of the gear-bearing
system with the initial tooth surface wear are studied. In Section 3, the meshing stiffness,
considering tooth surface temperature, is established based on the flash temperature
theory. Then, the meshing forces of gear bearing considering the backlash, which has
fractal characteristics, are calculated. Furthermore, the influence of meshing force and
friction coefficient on the tooth surface temperature and meshing stiffness is analyzed. In
Section 4, based on the tooth surface temperature model and the initial tooth surface wear,
the dynamic wear model of the tooth surface is established. Furthermore, the effects of
the tooth surface initial wear, the dynamic wear, the tooth contact temperature, and the
damping ratio on the dynamic characteristics of the gear-bearing system are analyzed.

2. System Model

The gear-bearing system in references [14,16] is taken as the research object, and the
model diagram is shown in Figure 1. The meshing stiffness, considering the tooth surface
flash temperature and the backlash with tooth surface wear, are calculated. Then, the
dynamic wear model of a gear is constructed, and the interaction between the surface
fractal dimension, temperature, and wear is analyzed.
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Figure 1. The lumped mass model of a gear-bearing system. 
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Figure 1. The lumped mass model of a gear-bearing system.

In the model, the gear is an involute spur gear, and the bearing is a sliding bearing.
Considering the time-varying meshing stiffness, backlash, tooth surface friction, compre-
hensive transmission error, nonlinear oil film force, and radial vibrations of the shaft and
the torsional vibration of two gears, the coordinate system xiOiyi (i = 1 or 2) is established,
in which O1 and O2 are the geometric centers of the two bearings, Oj1 and Oj2 are the
centers of the two transmission shafts, and Op and Og are the geometric centers of the
driving and driven gears, respectively.

To calculate parameters (initial tooth surface wear, dynamic tooth surface wear, and
tooth surface temperature), the gear-bearing systems considering different backlash and
meshing stiffness are defined. Then, the gear-bearing system considering backlash with
fractal characteristics is called System I, through which the meshing force is calculated;
the gear-bearing system considering backlash with initial tooth surface wear is called
System II, through which the system response under a wear condition is analyzed; and the
gear-bearing system considering the dynamic wear model is called System III.

In this paper, the backlash considering the initial tooth surface wear (Section 4.1) is
calculated, and it is substituted into the gear-bearing system (System II). We are using the
parameters µ = 0.3, ki = 1, ζh = 0.01, ζ1 = ζ2 = ζp = ζg = 0.01, ep = eg = 0.01, e = 0.1, Fm =
0.105, Fa = 0.01, and D = 1.5, and the system component parameters are shown in Tables 1–3
in reference [16]. The Runge–Kutta method is used to calculate, and the dynamic equations
are shown in Equation (8) in reference [16]. The bifurcation diagram, the top Lyapunov
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exponent diagram, and the three-dimensional spectrum diagram are obtained, respectively,
as shown in Figure 2.
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From Figure 2a, it can be observed that the system has experienced a series of motion
states, such as nT-periodic, quasi-periodic, and chaotic in the process of the relative speed
changing from 0.5 to 4. In Figure 2a, region A represents the chaotic motion state and
its corresponding top Lyapunov exponent is greater than zero; region B represents the
nT-periodic motion state and its corresponding top Lyapunov exponent is less than zero;
other regions are quasi-periodic motion states between the chaotic and periodic motion
state. In region A, there is a sudden change of the top Lyapunov exponent, and the system
motion states have also changed correspondingly, which also indicates that the system is
unstable in this speed range. At the same time, it can be observed from Figure 2b that the
system contains 1/3f m, 1/2f m, 2/3f m, f m, and 2f m harmonic responses, which can prove
that the system has rich nonlinear factors.

3. Meshing Stiffness Based on the Flash Temperature Theory
3.1. Calculation of Tooth Surface Flash Temperature

When the gear is running under high speed and heavy load, an abundant of heat will
be generated due to the friction consumption of the tooth surface. Then, it will increase
the tooth surface contact temperature and affect the stability as well as the service life
of the gear system. The influence of contact temperature on the stiffness and dynamic
characteristics of the system was analyzed in reference [11], but the gear system is simple.
Based on the multi-degree-of-freedom gear-bearing system, the paper not only analyzes
the influence of temperature on stiffness and system response but also studies the dynamic
interaction between temperature and wear.

The tooth contact temperature consists of two parts: the base temperature ∆M and the
instantaneous flash temperature ∆f of the tooth surface [11], which is given by Equation (1).

∆B = ∆M + ∆ f . (1)

According to the flash temperature theory [11], ∆f can be expressed as:

∆ f =
uµm fe

∣∣vp − vg
∣∣(√

g1ρ1c1v1 +
√

g2ρ2c2v2
)√

B
, (2)

where u is the temperature rise coefficient, and µm is the friction coefficient. (For the
convenience of subsequent analysis, the friction coefficient µm in this section and the
friction coefficient µ in the friction force of the gear-bearing system are represented by
different symbols). Here, fe is the normal load on the tooth surface per unit tooth width, vi
(i = p, g) is the tangential speed of the tooth surface, which is given by Equation (3) [21],
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gi is the heat conduction coefficient, ρi is the material density, B is the half width of the
contact belt, and ci is the specific heat capacity. vp = ωp

(
d1
2 sin α + y

)
vg = ωg

(
d2
2 sin α− y

) , (3)

where ωp and ωg are the rotating speeds of the driving and driven gears, respectively, d1
and d2 are the diameter of the graduated circle of the driving and driven gears, α is the
pressure angle of the graduated circle (α = 20◦), and y is the distance from the meshing
point to the pitch.

3.2. Deformation Caused by the Tooth Surface Flash Temperature

The increasing of tooth surface temperature will change the contact state of teeth, and
then, it will lead to change of the tooth surface profile [11], which is given by:

σi(t) =
−∆ f (t)λ f rbi(rbi + ubi)

2×
[
rbi + ubi cos αki + ∆ f (t)λ f rbi(1− cos αki)

] × [ sbi
rbi
− 2(invαki − invα)

]
, (4)

where ∆f(t) is the difference between the tooth surface contact temperature ∆B(t) and the
base temperature ∆M, sbi (i = p, g) is the thickness of the driving and driven gears, λf is the
linear expansion coefficient, αki (i = p, g) is the pressure angle of the addendum circle of
the driving and driven gears, and invα is the involute function.

ubi (i = p, g) is the thermal deformation of the base circle of the driving and driven
gears when the system works stably, given by:

ubi(t) = λ f rbi∆(r0i) +
(1 + µ)λ f

1− µ
×

rbi
[
r2

bi(1− 2µ)− r2
0i
]

r2
bi − r2

0i
× [∆(rbi)− ∆(r0i)], (5)

where ∆(r0i) (i = p, g) is the temperature of transmission shafts of the driving and driven
gears, ∆(rbi) (i = p, g) is the temperature of the base circle of the driving and driven gears,
and r0i is the shaft radius of the driving and driven gears.

3.3. Meshing Stiffness Caused by the Tooth Surface Flash Temperature

Due to the gear transmission, an abundant heat is generated, and it leads to a change
of the tooth surface contact conditions. Then, the meshing force and deformation of the
tooth surface also change. Thus, the meshing stiffness fluctuates. According to the Hertz
contact theory, the change of meshing stiffness caused by temperature can be calculated as:

kDetai =
P

bσbi
, (6)

where kDetai (i = p, g) is the stiffness of the driving and driven gears caused by temperature,
b is the tooth width, and P is the meshing force. In this paper, the meshing force P is
calculated by Equation (7). In addition, the displacement and the velocity in Equation (7)
are calculated by system I. Thus, the meshing force is related to fractal dimension D.

Due to the manufacturing and installation errors of gears, the backlash will produce
certain fluctuations and uncertainties. In this paper, the fractal characteristics of backlash
are used to describe the influence of errors, which is caused by the gear manufacturing
and installation on backlash. The fractal characteristics of backlash are expressed by
Equation (8) [17,22].

P = ch
.
xh + kh(t) fb(xh) (7)

z(t) = L
(

G
L

)D−1 ∞

∑
n=0

cos 2πγnt
L

γ(2−D)n
, (8)



Mathematics 2021, 9, 2739 6 of 17

where L is the sampling length, G is the characteristic parameter, D is the fractal dimension,
and γ is the spatial frequency of the contour. Since the variable in Equation (8) is time t, the
sampling length L = T (Period).

Then, we take parameters as µ = 0.3, ki = 1, ζh = 0.01, ζ1 = ζ2 = ζp = ζg = 0.01,
ep = eg = 0.01, e = 0.1, Fm = 0.105, Fa = 0.01, D = 1.43, 1.5, and 1.6. Based on System
I and Equation (7), the meshing force is calculated. Since the meshing force changes
periodically with time, the meshing force in one period is selected for comparative analysis
(the 2716th period is adopted in this paper). Then, the backlash diagrams, the system phase
diagrams, the Poincare section diagrams, and the meshing force diagrams are obtained by
System I (s 3–5).

From Figure 3, it can be observed that when D = 1.43, the amplitude of the backlash
with fractal characteristics is high (Figure 3a). Then, the Poincare section diagram (red
region in Figure 3b) of the system is a set of three regiment points, and it indicates that the
system is in the quasi-three-periodic motion state. In addition, the amplitude of meshing
force (Figure 3c) is large, and the fluctuation is obvious. In Figure 4, the fractal dimension
D is 1.5. It can be observed that the amplitude of the backlash decreases and the set of
three regiment points (red region in Figure 4b) begins to contract, which means that the
system begins to change from a quasi-periodic motion state to a stable periodic motion
state. Meanwhile, the amplitude of the meshing force (Figure 4c) reduces, and the curve
of it tends to be smooth. As the fractal dimension D increases, it can be observed from
Figure 5 that when D = 1.6, the amplitude of the backlash (Figure 5a) is low, and the system
is in the stable three periodic motion state (Figure 5b). At the same time, the meshing force
is small, and the curve is smooth with little volatility.
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Poincare section diagram. (c) Meshing force. 
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Above all, with increasing the fractal dimension D, the amplitude of the backlash
with fractal characteristics reduces. Then, according to the change of the system response,
the system changes from an unstable quasi-periodic motion state to the stable periodic
motion state, and the meshing force gradually decreases. However, the change trend of the
meshing force in one period is similar.

The meshing forces are substituted into Equations (2)–(6) to calculate the tooth surface
flash temperature and the stiffness kDetai of the driving and driven gears. The specific
parameters are the same in reference [11]. According to reference [23], the comprehensive
stiffness generated by temperature is shown by Equation (9).

According to reference [16], the stiffness can be given in the form of Fourier expansion,
and combined with reference [23], the meshing stiffness, considering the tooth surface flash
temperature, can be calculated by Equation (10). Then, the curves of the tooth surface flash
temperature and dimensionless meshing stiffness are obtained by Figures 6 and 7.

kDeta =
kDetapkDetag

kDetap + kDetag
, (9)

{
kh(t) = khm + kha cos(ωht + ϕhr)

k f =
khkDeta

kh+kDeta

. (10)
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4. Dynamic Wear Model of the Tooth Surface 
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Figure 6. Tooth surface flash temperature with different fractal dimension D. (a) D = 1.43. (b) D = 1.5. (c) D = 1.6.

From Figure 6, it can be observed that with the increase of D, the amplitude of the
meshing force decreases, and the tooth surface flash temperature also decreases. It shows
that the meshing force of the gear system of the backlash with small fluctuation is relatively
stable and then the tooth surface temperature is also relatively stable. Figure 7 shows
changing of the meshing stiffness under different fractal dimensions D. However, the
meshing force and deformation caused by the temperature are both changing with different
fractal dimensions D. Therefore, the variation law of stiffness is not analyzed, and only the
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influence of temperature in the dynamic wear model (Section 4) on the system response is
studied.

Mathematics 2021, 9, x FOR PEER REVIEW 8 of 17 
 

 

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

0

1

2

3

4

To
ot

h 
su

rfa
ce

 fl
as

h 
te

m
pe

ra
tu

re
/°

Distance to Pitch/m

To
ot

h 
su

rfa
ce

 fl
as

h 
te

m
pe

ra
tu

re
/°

Distance to Pitch/m

To
ot

h 
su

rfa
ce

 fl
as

h 
te

m
pe

ra
tu

re
/°

Distance to Pitch/m
-6 -4 -2 0 2 4 6 10-3

-6 -4 -2 0 2 4 6 10-3
-6 -4 -2 0 2 4 6 10-3

(a) (b) (c)

 
Figure 6. Tooth surface flash temperature with different fractal dimension D. (a) D = 1.43. (b) D = 1.5. (c) D = 1.6. 

0.85

0.9

0.95

1

1.05

1.1

Meshing stiffness considering 
flash temperature

Meshing stiffness

0.85

0.9

0.95

1

1.05

1.1

0.85

0.9

0.95

1

1.05

1.1

Meshing stiffness considering 
flash temperature

Meshing stiffness
Meshing stiffness considering 
flash temperature

Meshing stiffness

Distance to Pitch/m

D
im

en
sio

nl
es

s m
es

hi
ng

 st
iff

ne
ss

Distance to Pitch/m

D
im

en
sio

nl
es

s m
es

hi
ng

 st
iff

ne
ss

Distance to Pitch/m

D
im

en
sio

nl
es

s m
es

hi
ng

 st
iff

ne
ss

-6 -4 -2 0 2 4 6 10-3
-6 -4 -2 0 2 4 6 10-3

-6 -4 -2 0 2 4 6 10-3

(a) (b) (c)

 
Figure 7. Meshing stiffness with different fractal dimension D. (a) D = 1.43. (b) D = 1.5. (c) D = 1.6. 

4. Dynamic Wear Model of the Tooth Surface 
Tooth surface wear is a dynamic process and the contact temperature, as well as sys-

tem excitation, have an important impact on it. At the same time, wear can also change 
the conditions of the tooth surface contact, which has an impact on the stiffness and tooth 
surface temperature. Furthermore, the tooth surface wear is generally calculated by Ar-
chard theory [24], which is given by: 

V WK
s H

= , (11)

where V is the wear volume of the material, s is the relative sliding distance, W is the 
positive pressure of the contact surface, H is the hardness of the material, and K is the 
wear coefficient. 

The meshing process of the gear is discretized into the movement of each meshing 
point and the wear amount at different meshing point is calculated, which is shown by: 

p,g p,g p,gh kP sΔ = . (12)

It can be observed that the calculation of the tooth surface wear mainly involves three 
parameters: wear coefficient k, sliding distance s, and contact pressure P. Then, the wear 
coefficient k is 5 × 10−16 m2/N, the contact pressure is calculated by Equation (7), and the 
sliding distance is calculated by the equation in reference [21], which is given by: 

p
p H

g

p
g H

g

2 (1 )

2 ( 1)

v
s a

v
v

s a
v


= −



 = −


, (13)

Figure 7. Meshing stiffness with different fractal dimension D. (a) D = 1.43. (b) D = 1.5. (c) D = 1.6.

4. Dynamic Wear Model of the Tooth Surface

Tooth surface wear is a dynamic process and the contact temperature, as well as
system excitation, have an important impact on it. At the same time, wear can also change
the conditions of the tooth surface contact, which has an impact on the stiffness and
tooth surface temperature. Furthermore, the tooth surface wear is generally calculated by
Archard theory [24], which is given by:

V
s
= K

W
H

, (11)

where V is the wear volume of the material, s is the relative sliding distance, W is the
positive pressure of the contact surface, H is the hardness of the material, and K is the wear
coefficient.

The meshing process of the gear is discretized into the movement of each meshing
point and the wear amount at different meshing point is calculated, which is shown by:

∆hp,g = kPp,gsp,g. (12)

It can be observed that the calculation of the tooth surface wear mainly involves three
parameters: wear coefficient k, sliding distance s, and contact pressure P. Then, the wear
coefficient k is 5 × 10−16 m2/N, the contact pressure is calculated by Equation (7), and the
sliding distance is calculated by the equation in reference [21], which is given by:{

sp = 2aH(1−
vp
vg
)

sg = 2aH(
vp
vg
− 1)

, (13)

where vp and vg are the sliding speeds of the driving and driven gears, respectively, which
are shown by Equation (3), and aH is the half-width of the contact zone.

In order to analyze and calculate the dynamic wear model more accurately, a certain
initial wear amount (Hinitial) is adopted in the numerical calculation of the system. The
calculation flow of dynamic wear is shown in Figure 8. Then, the specific steps are as
follows:

(1) The fractal theory is used to describe the backlash in order to represent the error
caused by gear manufacturing and installation. Then, the meshing force P(t, D) is
obtained through System I.

(2) Based on the Archard theory and flash temperature theory, the initial tooth surface
wear and the flash temperature are calculated.
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(3) The backlash bh(1) with initial wear and the stiffness kDetai (t, D, 1) with flash temper-
ature in the first round are calculated, which represent the initial conditions of the
gear system. Then, they are substituted into System III.

(4) According to System III, the dynamic meshing force Pdynamic(t, D, n + 1) can be
obtained.

(5) The dynamic tooth surface wear Hdynamic(t, D, n + 1) and the flash temperature in the
(n + 1)th round are calculated.

(6) The backlash bh(n + 1) in the (n + 1)th round is obtained by adding the dynamic wear
Hdynamic(t, D, n+1) to the backlash bh(n) in the (n)th round. Then, the stiffness with
flash temperature kDetai(t, D) in the (n + 1)th round is obtained based on the Hertz
theory.

(7) The backlash bh(n + 1) and the stiffness with flash temperature kDetai(t, D) in the (n +
1)th round are substituted into System III. Then, go back to step 4 until the total time
is reached.
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4.1. Calculation of Initial Wear

Based on System I, the meshing forces with different fractal dimensions D are calcu-
lated. Then, based on Equation (12), the tooth surface wear ∆h in one period T is obtained.
It is assumed that the amount of wear per round is the same and the tooth surface wear of
106 rounds is calculated, that is, ∆h × 106. The accumulated wear of the tooth surface is
shown in Figure 9; furthermore, it is called the initial tooth surface wear (Hinitial) in this
paper. From Figure 9, it can be observed that with increase of D, the amplitude and the
fluctuation of the tooth surface wear decrease.

4.2. Influence of Dynamic Wear on the System Response

Based on backlash considering the initial tooth surface wear (Hinitial) and the meshing
stiffness considering the tooth surface flash temperature, the gear-bearing system consider-
ing the dynamic wear model (System III) is calculated. Taking the parameters as µ = 0.3, ki
= 1, ζh = 0.01, ζ1 = ζ2 = ζp = ζg = 0.01, µm = 0.06, ep = eg = 0.01, e = 0.1, Fm = 0.105, Fa = 0.01,
and ω = 1.5, the dynamic characteristics of the gear system with 100 rounds are calculated
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and simulated. Then, the phase diagrams, the Poincare section diagrams, and the time
domain diagrams of the system are obtained, as shown in Figures 10–12.
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Figure 10. System response diagram with D = 1.43. (a) Phase diagram. (b) Poincare section diagram. (c) Time domain 
diagram. 
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Figure 9. Initial tooth surface wear. (a) D = 1.43. (b) D = 1.5. (c) D = 1.6.
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Figure 10. System response diagram with D = 1.43. (a) Phase diagram. (b) Poincare section diagram. (c) Time domain 
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Figure 10. System response diagram with D = 1.43. (a) Phase diagram. (b) Poincare section diagram. (c) Time domain diagram.
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Figure 11. System response diagram with D = 1.5. (a) Phase diagram. (b) Poincare section diagram. (c) Time domain diagram.

It can be observed that due to the different initial tooth surface wear (Hinitial), the
system responses are slightly different after the same numbers of periods. When the fractal
dimension D is 1.43, there are less blanks in the phase diagram (Figure 10a), which indicates
that the phase trajectories of the system are widely distributed in the space; regions 1, 2,
and 3 in the Poincare section diagram (Figure 10b) are dispersive, and the regularity of
motion is weak; at the same time, in Figure 10c, the displacement in region 5 (the time-
domain diagram) fluctuates greatly, and all the above phenomena indicate that the system
is unstable. When the fractal dimension D is 1.5, the blank area in Figure 11a becomes
larger, which indicates that the concentration region of phase trajectories is smaller than
that of D = 1.43; this phenomenon can also be obtained from the Poincare section diagram
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(Figure 11b), where regions 1, 2, and 3 begin to contract; at the same time, the displacement
of region 5 in Figure 11c also shows a periodic change with small fluctuation, which proves
that the system tends to be stable. As the fractal dimension continues to increase, the
initial wear amount is low when the fractal dimension D is 1.6. The difference between
Figures 11a and 12a is not obvious, the set of points in Figure 12b continues to contract,
and the changing of displacement in Figure 12c basically conforms to periodic motion.
Furthermore, all these indicate that the motion state of the system is more stable.
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In conclusion, the fractal characteristics of backlash represent the uncertainty and
amplitude. That is, the amplitude and the uncertainty of backlash decrease with the
increase of the fractal dimension D. As a result, the initial tooth surface wear (Hinitial)
becomes smaller. Then, the system response (system III) becomes stable gradually. Thus,
the stable backlash can slow down the tooth surface wear.

The calculation of dynamic wear is a cumulative process. Since the tooth surface wear
of the previous period will affect the wear of the next period, the wear amount and the
system response of each period are different. Then, the system responses (system III) of
150 rounds are calculated by using the above parameters. Since the front periods will be
affected by the transient response, the dynamic cumulative wear (Hdynamic) of different
rounds with D = 1.43 is analyzed. Then, the dynamic cumulative wear amount (Hdynamic)
and the system responses are obtained, as shown in Figures 13–15.

In Figure 13, it can be observed that the dynamic cumulative wear (Hdynamic) increases
with the rotation of the gear. Since the number of rounds calculated is small, the difference
of tooth surface wear between rounds is not obvious. Thus, the system response (system
III) is analyzed in order to study the difference of wear of different rounds. Figure 14a–c
represent the phase diagrams obtained by the corresponding displacement and velocities
with 75–100, 100–125, and 125–150 rounds, respectively, while Figure 15a–c represent the
Poincare section diagrams obtained by the corresponding displacement and velocities with
75–100, 100–125, and 125–150 rounds, respectively. Then, it can be observed from Figure 14
that the blank part in the phase diagram decreases with rotation of the gear, which indicates
that the displacement and velocity of the system are widely distributed. From Figure 15,
it can be observed that with the rotation of the gear, the concentration of regions 1 and 2
becomes worse, the points in Poincare diagram begin to disperse gradually, and region 3
gradually extends to the distance. All these show that the stability of the system becomes
worse, and the accuracy of the dynamic wear model is also proven.
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Figure 14. Phase diagram with different rounds. (a) Rounds 75–100. (b) Rounds 100–125. (c) Rounds 125–150. 

The relative displacement of meshing point 

Th
e r

el
at

iv
e 

ve
lo

ci
ty

 o
f m

es
hi

ng
 p

oi
nt

 

The relative displacement of meshing point 

Th
e r

el
at

iv
e 

ve
lo

ci
ty

 o
f m

es
hi

ng
 p

oi
nt

 

The relative displacement of meshing point 

Th
e r

el
at

iv
e 

ve
lo

ci
ty

 o
f m

es
hi

ng
 p

oi
nt

 

1

2

3
1

2

3
1

2

3

(a) (b) (c)

-2

-4

-6

-2

-4

-6

-2

-4

-6

2

4

0

2

4

0

2

4

0

 
Figure 15. Poincare section diagram with different rounds. (a) Rounds 75–100. (b) Rounds 100–125. (c) Rounds 125–150. 

4.3. Influence of μm on the System Response 

Figure 13. Tooth surface wear with different rounds. (a) Tooth surface wear. (b) Enlarged diagram of tooth surface wear.

Mathematics 2021, 9, x FOR PEER REVIEW 12 of 17 
 

 

with 75–100, 100–125, and 125–150 rounds, respectively. Then, it can be observed from 
Figure 14 that the blank part in the phase diagram decreases with rotation of the gear, 
which indicates that the displacement and velocity of the system are widely distributed. 
From Figure 15, it can be observed that with the rotation of the gear, the concentration of 
regions 1 and 2 becomes worse, the points in Poincare diagram begin to disperse gradu-
ally, and region 3 gradually extends to the distance. All these show that the stability of the 
system becomes worse, and the accuracy of the dynamic wear model is also proven. 

-6 -4 -2 0 2 4 6 10-30

1

2

3

4

5 10-5

-5.5 -5 -4.5 -4 -3.5 -3 -2.5
10-30

1

2

3

10-5

Rounds 75~100
Rounds 75~125
Rounds 75~150

Rounds 75~100
Rounds 75~125
Rounds 75~150

Distance to pitch/m

To
ot

h 
su

rfa
ce

 w
ea

r/μ
m

Distance to pitch/m

To
ot

h 
su

rfa
ce

 w
ea

r/μ
m

(a) (b)

 
Figure 13. Tooth surface wear with different rounds. (a) Tooth surface wear. (b) Enlarged diagram 
of tooth surface wear. 

The relative displacement of meshing point The relative displacement of meshing point The relative displacement of meshing point 

(a) (b) (c)
15

10

5

0

-5

-10

-15

-20Th
e r

el
at

iv
e 

ve
lo

ci
ty

 o
f m

es
hi

ng
 p

oi
nt

 15

10

5

0

-5

-10

-15

-20

15

10

5

0

-5

-10

-15

-20Th
e r

el
at

iv
e 

ve
lo

ci
ty

 o
f m

es
hi

ng
 p

oi
nt

 

Th
e r

el
at

iv
e 

ve
lo

ci
ty

 o
f m

es
hi

ng
 p

oi
nt

 

 
Figure 14. Phase diagram with different rounds. (a) Rounds 75–100. (b) Rounds 100–125. (c) Rounds 125–150. 

The relative displacement of meshing point 

Th
e r

el
at

iv
e 

ve
lo

ci
ty

 o
f m

es
hi

ng
 p

oi
nt

 

The relative displacement of meshing point 

Th
e r

el
at

iv
e 

ve
lo

ci
ty

 o
f m

es
hi

ng
 p

oi
nt

 

The relative displacement of meshing point 

Th
e r

el
at

iv
e 

ve
lo

ci
ty

 o
f m

es
hi

ng
 p

oi
nt

 

1

2

3
1

2

3
1

2

3

(a) (b) (c)

-2

-4

-6

-2

-4

-6

-2

-4

-6

2

4

0

2

4

0

2

4

0

 
Figure 15. Poincare section diagram with different rounds. (a) Rounds 75–100. (b) Rounds 100–125. (c) Rounds 125–150. 

4.3. Influence of μm on the System Response 

Figure 14. Phase diagram with different rounds. (a) Rounds 75–100. (b) Rounds 100–125. (c) Rounds 125–150.

Mathematics 2021, 9, x FOR PEER REVIEW 12 of 17 
 

 

with 75–100, 100–125, and 125–150 rounds, respectively. Then, it can be observed from 
Figure 14 that the blank part in the phase diagram decreases with rotation of the gear, 
which indicates that the displacement and velocity of the system are widely distributed. 
From Figure 15, it can be observed that with the rotation of the gear, the concentration of 
regions 1 and 2 becomes worse, the points in Poincare diagram begin to disperse gradu-
ally, and region 3 gradually extends to the distance. All these show that the stability of the 
system becomes worse, and the accuracy of the dynamic wear model is also proven. 

-6 -4 -2 0 2 4 6 10-30

1

2

3

4

5 10-5

-5.5 -5 -4.5 -4 -3.5 -3 -2.5
10-30

1

2

3

10-5

Rounds 75~100
Rounds 75~125
Rounds 75~150

Rounds 75~100
Rounds 75~125
Rounds 75~150

Distance to pitch/m

To
ot

h 
su

rfa
ce

 w
ea

r/μ
m

Distance to pitch/m

To
ot

h 
su

rfa
ce

 w
ea

r/μ
m

(a) (b)

 
Figure 13. Tooth surface wear with different rounds. (a) Tooth surface wear. (b) Enlarged diagram 
of tooth surface wear. 

The relative displacement of meshing point The relative displacement of meshing point The relative displacement of meshing point 

(a) (b) (c)
15

10

5

0

-5

-10

-15

-20Th
e r

el
at

iv
e 

ve
lo

ci
ty

 o
f m

es
hi

ng
 p

oi
nt

 15

10

5

0

-5

-10

-15

-20

15

10

5

0

-5

-10

-15

-20Th
e r

el
at

iv
e 

ve
lo

ci
ty

 o
f m

es
hi

ng
 p

oi
nt

 

Th
e r

el
at

iv
e 

ve
lo

ci
ty

 o
f m

es
hi

ng
 p

oi
nt

 

 
Figure 14. Phase diagram with different rounds. (a) Rounds 75–100. (b) Rounds 100–125. (c) Rounds 125–150. 

The relative displacement of meshing point 

Th
e r

el
at

iv
e 

ve
lo

ci
ty

 o
f m

es
hi

ng
 p

oi
nt

 

The relative displacement of meshing point 

Th
e r

el
at

iv
e 

ve
lo

ci
ty

 o
f m

es
hi

ng
 p

oi
nt

 

The relative displacement of meshing point 

Th
e r

el
at

iv
e 

ve
lo

ci
ty

 o
f m

es
hi

ng
 p

oi
nt

 

1

2

3
1

2

3
1

2

3

(a) (b) (c)

-2

-4

-6

-2

-4

-6

-2

-4

-6

2

4

0

2

4

0

2

4

0

 
Figure 15. Poincare section diagram with different rounds. (a) Rounds 75–100. (b) Rounds 100–125. (c) Rounds 125–150. 

4.3. Influence of μm on the System Response 

Figure 15. Poincare section diagram with different rounds. (a) Rounds 75–100. (b) Rounds 100–125. (c) Rounds 125–150.

4.3. Influence of µm on the System Response

In the dynamic wear model, in addition to the initial tooth surface wear (Hinitial)
and the number of rounds n, the meshing stiffness considering the tooth surface flash
temperature also has an important influence on the system response. From Equation (2), it
can be observed that the friction coefficient µm of the tooth surface and the relative speed
have important effects on the tooth surface flash temperature and then, they affect the
stiffness and system response. Due to the difference of meshing forces at different relative
speeds, System I is chosen to be calculated. Taking the parameters as µ = 0.3, ki = 1, eg =
0.01, ζh = 0.01, ζ1 = ζ2 = ζp = ζg = 0.01, ep = eg = 0.01, e = 0.1, Fm = 0.105, Fa = 0.01, and D =
1.43, the meshing forces at different relative speeds are obtained. Then, the mean values of
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the meshing forces are shown in Table 1. Taking the parameters as ω = 0.5–4, µm = 0.02–0.1,
the tooth surface flash temperature is calculated, which is shown in Figure 16.

Table 1. The mean values of the meshing forces.

ω 0.5 0.8 1.1 1.4 1.7 2.0 2.3 2.6 2.9 3.2 3.5 3.8

mean 2523 2532 2367 2778 2739 2589 2544 2801 2575 2481 2475 2473
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Figure 16. Tooth surface flash temperature with different µm.

From Figure 16, it can be observed that the abscissa is the relative speed of the gear
system, and different lines represent the tooth surface flash temperature with different
friction coefficients. Then, through increasing the relative speed and the friction coefficient,
the tooth surface flash temperature increases gradually. Since the meshing force does
not increase monotonically, there are some fluctuations in the changing process of flash
temperature.

Then, the influence of friction coefficient µm on the system response (System III) is
studied. Taking the parameters as µm = 0.02, 0.06, 0.1, they are substituted into System III,
and the Poincare section diagrams are obtained, which are shown in Figure 17.

Mathematics 2021, 9, x FOR PEER REVIEW 14 of 17 
 

 

rises with the increase of friction coefficient. Then, the root mean square value of the vi-
bration displacement of the system amplifies, which indicates that the system tends to be 
unstable. 

The relative displacement of meshing point 

Th
e r

el
at

iv
e 

ve
lo

ci
ty

 o
f m

es
hi

ng
 p

oi
nt

 

The relative displacement of meshing point 

Th
e r

el
at

iv
e 

ve
lo

ci
ty

 o
f m

es
hi

ng
 p

oi
nt

 

The relative displacement of meshing point 

Th
e r

el
at

iv
e 

ve
lo

ci
ty

 o
f m

es
hi

ng
 p

oi
nt

 

1

2

1

2

1

2

(a) (b) (c)

-2

-4

-6

2

4

0

6

-2

-4

-6

2

4

0

6

-2

-4

-6

2

4

0

6

 
Figure 17. Poincare section diagram with different μm. (a) μm = 0.02. (b) μm = 0.06. (c) μm = 0.1. 

0.02 0.04 0.06 0.08 0.1 0.12
2.022

2.024

2.026

2.028

D=1.43
D=1.5
D=1.6

R
oo

t m
ea

n 
sq

ua
re

 v
al

ue
 o

f r
el

at
iv

e 
di

sp
la

ce
m

en
t

Friction factor  
Figure 18. Root mean square value of relative displacement. 

4.4. Influence of Damping Ratio on the System Response 
The influence of important factors in the dynamic wear model on the system re-

sponse (System Ⅲ) is studied in the above sections. Then, in order to analyze the system 
in detail, the influence of the damping ratio on the system response (System Ⅲ) is ana-
lyzed. Taking the parameters as μm = 0.06, μ = 0.3, ki = 1, ζh = 0.01, ζ1 = ζ2 = ζp = ζg = 0.01, ep 
= eg = 0.01, e = 0.1, Fm = 0.105, Fa = 0.01, and D = 1.43, they are substituted into System Ⅲ. 
Then, the phase diagram and the Poincare section diagram are obtained, as shown in Fig-
ures 19–21. 

Figure 19 shows the Poincare diagram and the phase diagram with damping ratio ζ 
= 0.01. Combined with Figure 19a,b, it can be observed that the system has experienced 
chaotic, quasi-double-periodic, quasi-three-periodic, quasi-periodic, quasi-four-periodic 
and 1T-periodic motion states; when ζ = 0.05 (Figure 20), the phase diagram changes to 
the limit cycle, and the set of points in the Poincare section diagram begins to contract. 
Then, combined with Figure 20a,b, it can be observed that the system has experienced 2T-
periodic, 3T-periodic, 1T-periodic, and quasi-double-periodic and motion states. Com-
pared to the motion states when ζ = 0.01, the system changes from unstable quasi-periodic 
and chaotic motion to stable periodic motion; when ζ = 0.1 (Figure 21), the system presents 
stable periodic motion states. Therefore, under the influence of dynamic wear, the increase 
of damping ratio can also accelerate the energy loss of the system and make the system 
tend to be stable. 

Figure 17. Poincare section diagram with different µm. (a) µm = 0.02. (b) µm = 0.06. (c) µm = 0.1.

It can be observed that when µm = 0.02, the system response is shown as a set of four
regiment points, and the system is in a quasi-periodic motion state at this time. The set of
points in regions 1 and 2 is relatively close, and the system is relatively stable. When µm =
0.06, a small number of points in regions 1 and 2 begin to diffuse outward. Although it
is not obvious, that also indicates that the system transforms from a stable to an unstable
state. When µm = 0.1, many points in regions 1 and 2 break away from the set and diffuse
outward, and then, the system tends to be unstable and change to a chaotic motion state. It
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can be concluded that with an increase of the friction coefficient, the system tends to be
unstable. However, the trend is not very obvious. In order to conduct a more detailed and
obvious analysis, the root mean square diagrams of system displacement with different
friction coefficients are calculated, as shown in Figure 18.
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In the three cases of different initial wear amount (D = 1.43, 1.5, 1.6), taking the
parameters as µm = 0.02–0.12, D = 1.43, 1.5, and 1.6, the root mean square values of system
displacement are calculated. It can be concluded that the tooth surface flash temperature
rises with the increase of friction coefficient. Then, the root mean square value of the
vibration displacement of the system amplifies, which indicates that the system tends to be
unstable.

4.4. Influence of Damping Ratio on the System Response

The influence of important factors in the dynamic wear model on the system response
(System III) is studied in the above sections. Then, in order to analyze the system in detail,
the influence of the damping ratio on the system response (System III) is analyzed. Taking
the parameters as µm = 0.06, µ = 0.3, ki = 1, ζh = 0.01, ζ1 = ζ2 = ζp = ζg = 0.01, ep = eg = 0.01,
e = 0.1, Fm = 0.105, Fa = 0.01, and D = 1.43, they are substituted into System III. Then, the
phase diagram and the Poincare section diagram are obtained, as shown in Figures 19–21.
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Figure 20. System response diagram with ζ = 0.05. (a) Poincare section diagram. (b) Phase diagram. 
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Figure 21. System response diagram with ζ = 0.1. (a) Poincare section diagram. (b) Phase diagram. 

Figure 19. System response diagram with ζ = 0.01. (a) Poincare section diagram. (b) Phase diagram.

Figure 19 shows the Poincare diagram and the phase diagram with damping ratio ζ
= 0.01. Combined with Figure 19a,b, it can be observed that the system has experienced
chaotic, quasi-double-periodic, quasi-three-periodic, quasi-periodic, quasi-four-periodic
and 1T-periodic motion states; when ζ = 0.05 (Figure 20), the phase diagram changes to the
limit cycle, and the set of points in the Poincare section diagram begins to contract. Then,
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combined with Figure 20a,b, it can be observed that the system has experienced 2T-periodic,
3T-periodic, 1T-periodic, and quasi-double-periodic and motion states. Compared to the
motion states when ζ = 0.01, the system changes from unstable quasi-periodic and chaotic
motion to stable periodic motion; when ζ = 0.1 (Figure 21), the system presents stable
periodic motion states. Therefore, under the influence of dynamic wear, the increase of
damping ratio can also accelerate the energy loss of the system and make the system tend
to be stable.
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Figure 21. System response diagram with ζ = 0.1. (a) Poincare section diagram. (b) Phase diagram. 
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Figure 21. System response diagram with ζ = 0.1. (a) Poincare section diagram. (b) Phase diagram. 

Figure 21. System response diagram with ζ = 0.1. (a) Poincare section diagram. (b) Phase diagram.

Due to different coordinates of Figures 19–21, the transition of motion states is not
obvious. The system with relative speed ω = 2.5 is taken for analysis, and the Poincare
section diagrams with ζ = 0.01, 0.05 and 0.1 are obtained, as shown in Figure 22. Then,
it can be observed that the system gradually changes from quasi four periodic to single
periodic, and the system tends to be stable.
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5. Conclusions 
(1) With the increase of the fractal dimension D, the uncertainty and the amplitude 

of backlash decrease. Then, the meshing force is reduced, and the wear is small when the 
gear runs for the same time. The influence on the dynamic wear model is reduced, and 
the stability of the system considering dynamic wear is enhanced. Therefore, the stable 
backlash can slow down the tooth surface wear. 

(2) The friction coefficient and rotational speed of the tooth surface have an important 
influence on the temperature of the tooth surface. With the increase of the friction coeffi-
cient, the flash temperature and root mean square value of displacement increase, and the 
system tends to be unstable.  

(3) With the increase of the damping ratio, the system changes from unstable quasi-
periodic and chaotic motion to stable periodic motion. The increase of damping acceler-
ates the energy loss of the system, makes the system tend to be stable, and has the effect 
of reducing wear. 
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5. Conclusions

(1) With the increase of the fractal dimension D, the uncertainty and the amplitude
of backlash decrease. Then, the meshing force is reduced, and the wear is small when the
gear runs for the same time. The influence on the dynamic wear model is reduced, and
the stability of the system considering dynamic wear is enhanced. Therefore, the stable
backlash can slow down the tooth surface wear.

(2) The friction coefficient and rotational speed of the tooth surface have an important
influence on the temperature of the tooth surface. With the increase of the friction coefficient,
the flash temperature and root mean square value of displacement increase, and the system
tends to be unstable.

(3) With the increase of the damping ratio, the system changes from unstable quasi-
periodic and chaotic motion to stable periodic motion. The increase of damping accelerates
the energy loss of the system, makes the system tend to be stable, and has the effect of
reducing wear.
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