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Abstract: In this article, the authors study the Lebesgue point of functions from Hajłasz–Sobolev,
Besov, and Triebel–Lizorkin spaces with generalized smoothness on doubling metric measure spaces
and prove that the exceptional sets of their Lebesgue points have zero capacity via the capacities
related to these spaces. In case these functions are not locally integrable, the authors also consider
their generalized Lebesgue points defined via the γ-medians instead of the classical ball integral
averages and establish the corresponding zero-capacity property of the exceptional sets.
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1. Introduction

The study of function spaces on the Euclidean space Rn and its subsets with gener-
alized smoothness started from the middle of the 1970s (see, for instance, [1–4]), and has
found various applications in interpolations, embedding properties of function spaces [5–8],
fractal analysis ([9], Chapters 18–23), and many other fields such as probability theory and
stochastic processes [10,11]. Recall that, in [11], Farkas and Leopold studied the generalized
Besov spaces B(σ,N)

p,q (Rn) and Triebel–Lizorkin spaces F(σ,N)
p,q (Rn) for the full range of param-

eters, in which the smoothness, instead of the classical smoothness sequence {2 js} j≥0, was
given via a weight sequence σ := {σ j} j≥0 of positive numbers. Intensive investigations on
generalized Besov and Triebel–Lizorkin spaces also exist in which smoothness is described
by a parameter function; see, for instance [6,12–16]. In recent years, a lot of attention has
been paid to Besov and Triebel–Lizorkin spaces on Rn with logarithmic smoothness; see,
for instance [17–27].

Recently, using Hajłasz gradient sequences, the authors [28] introduced Hajłasz–Besov
and Hajłasz–Triebel–Lizorkin spaces with generalized smoothness on a given metric space
X with a doubling measure and, when X = Rn, proved their coincidence with the classical
Besov and Triebel–Lizorkin spaces with generalized smoothness. Recall that the Hajłasz
gradients were originally introduced by Hajłasz [29] and have been an important tool
used to develop Sobolev spaces on metric measure spaces (see, for instance [30–34]). The
fractional Hajłasz gradients were introduced independently by Hu [35] and Yang [36] in
2003. In 2011, Koskela et al. [37] introduced the notion of sequences of Hajłasz gradients and
characterized Besov and Triebel–Lizorkin spaces via some pointwise inequalities involving
these Hajłasz gradient sequences; as an application, this pointwise characterization has
been used in [37] to show the invariance of quasi-conformal mappings on some Triebel–
Lizorkin spaces.

It is well known, by the Lebesgue differentiation theorem, that almost every point
is a Lebesgue point of a locally integrable function. Then, it is very natural to expect a
smaller exceptional set when the function has higher regularity. In [38], Kinnunen and
Latvala considered the Lebesgue point of functions in the Hajłasz–Sobolev space M1,p(X)
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on a given metric measure space X and proved that, when the measure doubles and
p ∈ (1, Q], a Hajłasz–Sobolev function has Lebesgue points outside a set of zero Hajłasz–
Sobolev capacity, where Q represents the doubling dimension of X. This result leads to a
series of related work on many other function spaces such as fractional Hajłasz–Sobolev
spaces [39], Orlicz–Sobolev spaces [40], as well as Hajłasz–Besov and Hajłasz–Triebel–
Lizorkin spaces [41]. We also refer the reader to [42,43] for a related study on variable
function spaces.

Inspired by these works, in this article, we study the Lebesgue point of functions
from the Hajłasz–Sobolev space Mφ,p(X), the Hajłasz–Besov space Nφ

p,q(X), and the Hajłasz–
Triebel–Lizorkin space Mφ

p,q(X) with generalized smoothness on a given doubling measure
space X, via measuring the related exceptional sets of Lebeguse points. Note that functions
in the Hajłasz–Besov or Hajłasz–Triebel–Lizorkin spaces with generalized smoothness
might fail to be locally integrable when their index p or q is close to zero. To overcome
this obstacle, similar to [41,44,45], we also consider a class of generalized Lebesgue points,
which are defined via the γ-medians introduced in [46,47], instead of the classical integrals.
As the main results of this article, we prove that the exceptional sets of (generalized)
Lebesgue points of functions from the above spaces have zero capacity, where those
capacities are defined by related spaces. These results can apply to a wide class of function
spaces due to the generality of the smoothness factor φ. In particular, the logarithmic
Hajłasz–Sobolev space is an admissible function space for our main results.

The structure of this article is as follows.
In Section 2, we state some basic notions and assumptions on the smoothness function

φ. We also introduce the inhomogeneous Hajłasz–Sobolev space Mφ,p(X), the inhomo-
geneous Hajłasz–Besov space Nφ

p,q(X), and the inhomogeneous Hajłasz–Triebel–Lizorkin
space Mφ

p,q(X) with generalized smoothness and establish their coincidence with those
classical Besov and Triebel–Lizorkin spaces with generalized smoothness when X = Rn.

Section 3 is devoted to studying the Lebesgue point of functions from Nφ
p,q(X) and

Mφ
p,q(X) and, in particular, Mφ,p(X) = Mφ

p,∞(X), via the capacities Cap Nφ
p,q(X)

and Cap Mφ
p,q(X)

related to the spaces Nφ
p,q(X) and Mφ

p,q(X), respectively. To this end, via establishing some
Poincaré-type inequalities and estimates related to Hajłasz-type spaces with generalized
smoothness, we first prove the convergence of discrete convolution approximations in
Nφ

p,q(X) and Mφ
p,q(X) when p, q < ∞, and a dense subset in Mφ,p(X) = Mφ

p,∞(X) exists when
p < ∞, which consists of continuous functions. Recall that, when s ∈ (0, 1] and p ∈ (0,∞),
the class of all s-Hölder continuous functions is dense in the classical Hajłasz–Sobolev
space Ms,p(X) (see, for instance, ([48], Theorem 5.19)), which was proved via an extension
argument together with the inequality

[d(x, y)]s ≤ [d(x, z)]s + [d(z, y)]s

for any x, y, z ∈ X. However, this inequality may not be true if one replaces [d(·, ·)]s by
φ(d(·, ·)) due to the generality of φ. To overcome the difficulties caused by this, we borrow
the notion of the modulus of continuity and, for certain φ that satisfies such assumptions,
find a dense subset of Mφ,p(X) consisting of generalized Lipschitz functions. Applying
these dense properties, we obtain the boundedness of discrete maximal operators on
these Hajłasz-type spaces and then a weak-type capacitary estimate for restricted maximal
functions, which is further used to prove that the exceptional sets of Lebesgue points
of functions from Mφ,p(X), Nφ

p,q(X), and Mφ
p,q(X) have zero Cap Mφ,p(X), Cap Nφ

p,q(X)
, and

Cap Mφ
p,q(X)

capacities, respectively.
In Section 4, we deal with the generalized Lebesgue point of functions from the spaces

Mφ,p(X), Nφ
p,q(X), and Mφ

p,q(X), which are defined via the γ-medians instead of the classical
ball integral averages. Following a procedure similar to that of Section 3, we also prove
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that the exceptional sets of generalized Lebesgue points of functions from F have zero
Cap F -capacity with

F ∈
{
Nφ

p,q(X), Mφ
p,q(X), Mφ,p(X)

}
.

Finally, we compare the capacity Cap F with some Netrusov–Hausdorff contents
and prove that they have the same null sets. This enables us to also use some Netrusov–
Hausdorff contents to measure the exceptional set of Lebesgue points of functions from
these Hajłasz-type spaces.

2. Hajłasz–Besov and Hajłasz–Triebel–Lizorkin Spaces with Generalized Smoothness

In this section, we recall some basic notation and notions as well as the definitions
of the function spaces used in this article. Let Z be the collection of all integers, N be
the collection of all positive integers, and Z+ := N ∪ {0}. We write A . B if there exists
a positive constant C that is independent of the main parameters such that A ≤ CB and
write A ∼ B if A . B . A. We also denote by C(a1,a2,...) a positive constant depending on the
parameters a1, a2, . . ..

A triple (X, d, µ) is called a metric measure space if X is a non-empty set, d is a metric on
X, and µ is a regular Borel measure on X such that all of the balls defined by d have finite
and positive measures. Recall that (see [48], [Convention 1.4]) a measure µ on X is called
a regular Borel measure if open sets are µ-measurable and every set is contained in a Borel
set with the same measure. Additionally, the measure µ is said to double if there exists a
positive constant Cµ ∈ [1,∞) such that, for any ball B ⊂ X,

µ(2B) ≤ Cµµ(B).

Here and thereafter, for any λ ∈ (0,∞), λB denotes the ball with the same center as B
but λ-times radius of B. The doubling property of µ implies that, for any ball B ⊂ X and
any λ ∈ [1,∞),

µ(λB) ≤ Cµλ
Dµ(B), (1)

where D := log2 Cµ. Here and thereafter, we assume that Cµ is the smallest positive constant
such that (1) holds true. Clearly, when X = Rn, D = n. Throughout this article, we always
let(X, d, µ) be a metric space with a doubling measure (for short, a doubling metric measure space).
For any subset E ⊂ X, we denote by 1E the characteristic function of E.

Let L0(X) be the collection of all measurable functions on X that are finite almost
everywhere and L1

loc (X) be the collection of all measurable functions on X satisfying that,
for any x0 ∈ X, there exists an r0 ∈ (0,∞) such that f 1B(x0,r0) ∈ L1(X). For any p, q ∈ (0,∞],
let Lp(X, lq) and lq(X, Lp) be, respectively, the collections of all sequences {uk}k∈Z ⊂ L0(X)
such that

‖{uk}k∈Z‖Lp(X,lq) :=

∥∥∥∥∥∥∥∥
∑

k∈Z
|uk |

q

1/q
∥∥∥∥∥∥∥∥

Lp(X)

< ∞

and

‖{uk}k∈Z‖lq(X,Lp) :=

∑
k∈Z
‖uk‖

q
Lp(X)

1/q

< ∞

with the usual modifications made when p = ∞ or q = ∞.
For any u ∈ L0(X) and E ⊂ Xwith µ(E) ∈ (0,∞), let

uE :=
?

E
u dµ :=

1
µ(E)

∫
E

u dµ :=
1

µ(E)

∫
E

u(x) dµ(x). (2)

For any L ∈ (0,∞), a function f is said to be L-Lipschitz if it satisfies∣∣∣ f (x) − f (y)
∣∣∣ ≤ L d(x, y), ∀ x, y ∈ X.
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For a Lipschitz function f , the smallest constant L satisfying the above inequality is
called the Lipschitz constant of f and denoted by Lip f .

We also frequently use the following inequality: if q ∈ (0, 1], then, for any {ai}i∈Z ⊂ C,∑
i∈Z
|ai|

q

≤
∑
i∈Z
|ai|

q. (3)

We now recall the definition and some basic properties of weight functions used to
describe the smoothness of function spaces under consideration. We begin with a classical
notion of admissible sequences; see, for instance [11,49].

Definition 1. Let E ∈ {Z,Z+}. A sequence of positive numbers, {σ j} j∈E , is said to be admissible
if there exist two positive constants d0 and d1 such that, for any j ∈ E, d0σ j ≤ σ j+1 ≤ d1σ j.

Several examples of admissible sequences can be found in [11], which illustrate the
flexibility of this assumption.

Definition 2. A continuous function φ : [0,∞)→ [0,∞) is said to be of admissible growth if
{φ(2 j)} j∈Z is an admissible sequence and φ(t) ∼ φ(2k) for any k ∈ Z and t ∈ [2k, 2k+1) with the
positive equivalence constants independent of both t and k.

We point out that, for any given admissible sequence σ := {σ j} j∈Z, there exists a
continuous function φ of admissible growth such that, for any j ∈ Z, φ(2− j) = 1/σ j.
Indeed, the function

φσ(t) := 2 j+1
(

1
σ j
−

1
σ j+1

)
(t − 2− j−1) +

1
σ j+1

, ∀ t ∈ [2− j−1, 2− j), ∀ j ∈ Z, (4)

suits this job; see ([28] [Proposition 2.4]) or ([14] [Example 2.3]). Throughout this article, for
any given admissible sequence σ := {σ j} j∈Z, we always let φσ be as in (4).

For any given sequence σ := {σk}k∈Z of positive numbers or any given function
φ : [0,∞)→ [0,∞), let

ασ := max{α−σ,α+σ } := max
{

lim sup
k→−∞

σk

σk+1
, lim sup

k→∞

σk

σk+1

}
,

βσ := max{β−σ, β+σ } := max
{

lim sup
k→−∞

σk+1

σk
, lim sup

k→∞

σk+1

σk

}
,

αφ := max{α−φ ,α+φ } := max
{

lim sup
k→−∞

φ(2k)

φ(2k+1)
, lim sup

k→∞

φ(2k)

φ(2k+1)

}
,

and

βφ := max{β−φ , β+φ } := max
{

lim sup
k→−∞

φ(2k+1)

φ(2k)
, lim sup

k→∞

φ(2k+1)

φ(2k)

}
.

Since, for any j ∈ Z, φσ(2− j) = 1/σ j, then α−φσ = α+σ , α+φσ = α−σ, β−φσ = β+σ , and
β+φσ = β−σ, which means that αφσ = ασ and βφσ = βσ. By an obvious observation that
1/α−σ ≤ β−σ and 1/α+σ ≤ β+σ , it is also easy to show that 1/ασ ≤ βσ; furthermore, αφ < 1
implies βφ > 1, and βφ < 2 implies αφ > 1/2.

Observe that, if α−φ ∈ (0, 1) (resp., α+φ ∈ (0, 1)), then there exists a δ1 ∈ (0,∞) such that
α−φ + δ1 < 1 (resp., α+φ + δ1 < 1). Let K0 be a given integer. By the definition of α−φ (resp.,α+φ ),



Mathematics 2021, 9, 2724 5 of 46

we find that there exists an integer K1 (resp., K2) such that, for any k ∈ (−∞, min{K1, K0}]
(resp., k ∈ [max{K2, K0},∞)),

φ(2k)

φ(2k+1)
< α−φ + δ1

(
resp.,

φ(2k)

φ(2k+1)
< α−φ + δ1

)
and hence, for any i, j ∈ (−∞, min{K1, K0}] (resp., i, j ∈ [max{K2, K0},∞)) with i ≤ j,

φ(2i)

φ(2 j)
< (α−φ + δ1)

j−i
(
resp.,

φ(2i)

φ(2 j)
< (α+φ + δ1)

j−i
)
. (5)

Since φ(2k)/φ(2k+1) is bounded on [min{K1, K0}, K0] (resp., k ∈ [K0, max{K2, K0}]), then,
from (5), we deduce that there exists a positive constant C, depending only on K0, φ, and
δ1, such that, for any i, j ∈ (−∞, K0] ∩Z (resp., i, j ∈ [K0,∞) ∩Z) with i ≤ j,

φ(2i)

φ(2 j)
≤ C(α−φ + δ1)

j−i
(
resp.,

φ(2i)

φ(2 j)
≤ C(α+φ + δ1)

j−i
)
. (6)

By this, we further obtain, for any k0 ∈ (−∞, K0] ∩ Z (resp., k0 ∈ [K0,∞) ∩ Z) and
r ∈ (0,∞], ∑

k≤k0

[
φ(2k)

]r


1/r

= φ(2k0)

∑
k≤k0

[
φ(2k)

φ(2k0)

]r


1/r

. φ(2k0)

∑
k≤k0

(α−φ + δ1)
(k0−k)r


1/r

. φ(2k0)

resp.,

∑
k≥k0

[
1

φ(2k)

]r


1/r

≤
1

φ(2k0)

∑
k≥k0

(α+φ + δ1)
(k−k0)r


1/r

.
1

φ(2k0)

,
where the implicit positive constants depend only on K0, φ, and δ1.

If β−φ ∈ (0, 2) (resp., β+φ ∈ (0, 2)), by an argument similar to the above, we conclude
that there exist a δ2 ∈ (0,∞) such that β−φ + δ2 < 2 (resp., β+φ + δ2 < 2) and a positive
constant C, depending only on K0, φ, and δ2, such that, for any i, j ∈ (−∞, K0] ∩Z (resp.,
i, j ∈ [K0,∞) ∩Z) with i ≤ j,

2i− j φ(2
j)

φ(2i)
≤ C

β−φ + δ2

2

 j−i resp., 2i− j φ(2
j)

φ(2i)
≤ C

β+φ + δ2

2


j−i. (7)

Furthermore, for any k0 ∈ (−∞, K0]∩Z (resp., k0 ∈ [K0,∞)∩Z) and r ∈ (0,∞], we have∑
k≤k0

[
2k

φ(2k)

]r


1/r

=
2k0

φ(2k0)

∑
k≤k0

[
2k−k0

φ(2k0)

φ(2k)

]r


1/r

.
2k0

φ(2k0)

∑
k≤k0

β−φ + δ2

2

(k0−k)r


1/r

.
2k0

φ(2k0)
(8)

resp.,

∑
k≥k0

[
2−kφ(2k)

]r


1/r

. 2−k0φ(2k0)


∑
k≥k0

β+φ + δ2

2


(k−k0)r


1/r

. 2−k0φ(2k0)

.
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If αφ ∈ (0, 1) (resp., βφ ∈ (0, 2)), then α−φ ∈ (0, 1) and α+φ ∈ (0, 1) (resp., β−φ ∈ (0, 2) and
β+φ ∈ (0, 2)). Thus, by (6) and (7), we obtain, for any i, j ∈ Z with i ≤ j,

φ(2i)

φ(2 j)
. (αφ + δ1)

j−i

resp., 2i− j φ(2
j)

φ(2i)
.

(
βφ + δ2

2

) j−i,
where δ1 (resp., δ2) is any given positive constant such that αφ + δ1 < 1 (resp., βφ + δ2 < 2),
and the implicit positive constants depend only on φ and δ1 (resp., δ2). By this, we conclude
that, for any r ∈ (0,∞] and k0 ∈ Z,∑

k≤k0

[
φ(2k)

]r


1/r

. φ(2k0) and

∑
k≥k0

[
1

φ(2k)

]r


1/r

.
1

φ(2k0)
(9)

resp.,

∑
k≤k0

[
2k

φ(2k)

]r


1/r

.
2k0

φ(2k0)
and

∑
k≥k0

[
2−kφ(2k)

]
1/r

. 2−k0φ(2k0)

. (10)

Here, the implicit positive constants depend only on φ.
The following lemma is just ([28] [Lemma 2.5]).

Lemma 1. Let φ : [0,∞) → [0,∞) satisfy αφ ∈ (0, 1), ε ∈ (0,− log2 αφ), and δ ∈ (log2 βφ,∞).
Then,

(i) there exist positive constants C1 and C2, depending on φ, such that, for any k ∈ Z,

∑
j≥k

2 jε

φ(2 j)
≤ C1

2kε

φ(2k)
and

∑
j≤k

2− jε φ(2 j) ≤ C2 2−kεφ(2k);

(ii) there exist positive constants c1 and c2, depending on φ, such that, for any i, j ∈ Z with i ≤ j,

2( j−i)ε φ(2
i)

φ(2 j)
≤ c1 and 2(i− j)δ φ(2

j)

φ(2i)
≤ c2.

We recall another widely used notion (see, for instance, [50], Section 2.2.1) to describe
the smoothness function as follows.

Definition 3. A function f : [0,∞)→ [0,∞) is said to be almost increasing (resp., decreasing)
if there exists a positive constant C ∈ [1,∞) such that, for any t1, t2 ∈ [0,∞) with t1 ≤ t2 (resp.,
t1 ≥ t2), f (t1) ≤ C f (t2).

Throughout this article, for simplicity, we always denote byA the class of all continuous
and almost increasing functions φ : [0,∞)→ [0,∞) satisfying that φ(0) = 0, φ(1) = 1, and
{φ(2 j)} j∈Z is admissible.

Let A∞ be the set of all functions φ ∈ A satisfying that the function φ̃, defined by
setting, for any t ∈ [0,∞), φ̃(t) := φ(t)/t, almost decreases.

For any r ∈ (0,∞), let Ar be the set of all functions φ ∈ A∞ satisfying that φ is of
admissible growth and that there exist a k0 ∈ Z and two positive constants Xk0 and Yk0 ,
depending on k0 and r, such that∑

j≥k0

[
φ(2 j)

]−r


1/r

≤ Xk0 and

∑
j≥k0

2− jr
[
φ(2− j)

]−r


1/r

≤ Yk0 . (11)
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We claim that if, for some k0 ∈ Z, there exist positive constants Xk0 and Yk0 such
that (11) holds true, then, for any k ∈ Z, there exist positive constants Xk and Yk, depending
on k and r, such that (11) holds true with k0 replaced by k. Indeed, this claim is trivial
when k ≥ k0, while when k < k0, it easily follows from the fact that

∑k0−1
j=k [φ(2

j)]−r and∑k0−1
j=k 2− jr[φ(2− j)]−r are always finite. This proves the above claim.

Clearly, by (3), Ar1 ⊂ Ar2 ⊂ A∞ for any r1, r2 ∈ (0,∞) with r1 ≤ r2. For instance, for
any b ∈ (0,∞) and r ∈ (1/b,∞], the function

φ(t) :=

[log2(1 + t)]b, t ∈ (0, 1),

(1 + log2 t)b, t ∈ [1,∞)
(12)

belongs toAr.
If φ is of admissible growth, then αφ ∈ (0, 1) implies φ ∈ A; furthermore, αφ ∈ (0, 1),

together with β−φ ∈ (0, 2), implies that, for any r ∈ (0,∞], φ ∈ Ar. In view of these, we
let A0 be the class of all functions φ satisfying that αφ ∈ (0, 1), β−φ ∈ (0, 2), and φ is of
admissible growth.

Now, we state the notions of generalized Hajłasz gradients and the related Hajłasz-
type spaces with respect to the smoothness function φ ∈ A.

Definition 4. Let φ ∈ A and u ∈ L0(X).

(i) A nonnegative measurable function g is called a φ-Hajłasz gradient of u if there exists a set
E ⊂ X with µ(E) = 0 such that, for any x, y ∈ X \ E,∣∣∣u(x) − u(y)

∣∣∣ ≤ φ(d(x, y))[g(x) + g(y)]. (13)

Denote byDφ(u) the collection of all φ-Hajłasz gradients of u.
(ii) A sequence of nonnegative measurable functions, ~g := {gk}k∈Z, is called a φ-Hajłasz gradient

sequence of u if, for any k ∈ Z, there exists a set Ek ⊂ X with µ(Ek) = 0 such that, for any
x, y ∈ X \ Ek with 2−k−1 ≤ d(x, y) < 2−k,∣∣∣u(x) − u(y)

∣∣∣ ≤ φ(d(x, y))[gk(x) + gk(y)].

Denote by Dφ(u) the collection of all φ-Hajłasz gradient sequences of u.

The following are basic properties of these generalized gradients, which can be proved
by an argument similar to those about classical Hajłasz gradients (see, for instance, ([51]
[Lemma 2.4]), ([38] [Lemma 2.6]), ([41] [Lemmas 2.3 and 2.4]), and ([45][Lemmas 4 and 5]));
we omit the details.

Lemma 2. (i) Let u, v ∈ L0(X), {gk}k∈Z ∈ Dφ(u), and {hk}k∈Z ∈ Dφ(v). Then,

{max(gk, hk)}k∈Z ∈ Dφ(max{u, v}) and {max(gk, hk)}k∈Z ∈ Dφ(min{u, v}).

(ii) Let {ui}i∈N ⊂ L0(X) and, for any i ∈ N, let {g(i)k }k∈Z ∈ Dφ(ui). Let u := supi∈N ui and

{gk}k∈Z := {supi∈N g(i)k }k∈Z. If u ∈ L0(X), then {gk}k∈Z ∈ Dφ(u).

Using these generalized gradients, we introduced the following homogeneous φ-
Hajłasz–Triebel–Lizorkin and φ-Hajłasz–Besov spaces in [28].

Definition 5. Let φ ∈ A and p, q ∈ (0,∞].

(i) The homogeneous φ-Hajłasz–Triebel–Lizorkin space Ṁφ
p,q(X) is defined to be the set of all

u ∈ L0(X) such that
‖u‖Ṁφ

p,q(X)
:= inf

~g∈Dφ(u)
‖~g‖Lp(X,lq) < ∞
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when p ∈ (0,∞) and q ∈ (0,∞], or p = q = ∞, and

‖u‖Ṁφ
∞,q(X)

:= inf
~g∈Dφ(u)

sup
k∈Z

sup
x∈X

∑j≥k

?
B (x,2−k)

[g j(y)]
q dµ(y)


1
q

< ∞

when p = ∞ and q ∈ (0,∞).
(ii) The homogeneous φ-Hajłasz–Besov space Ṅφ

p,q(X) is defined to be the set of all u ∈ L0(X)
such that

‖u‖Ṅφ
p,q(X)

:= inf
~g∈Dφ(u)

‖~g‖lq(X,Lp) < ∞.

In [28], we proved that, when X = Rn, for any given admissible sequence σ :=
{σ j} j∈Z with ασ ∈ (0, 1) and βσ ∈ (0, 2), Ṁφσ

p,q(Rn) = Ḟσ
p,q(Rn) for any given p, q ∈

(n/[n − log2 ασ],∞], and Ṅφσ
p,q(Rn) = Ḃσp,q(Rn) for any given p ∈ (n/[n − log2 ασ],∞] and

q ∈ (0,∞], where Ḃσp,q(Rn) and Ḟσ
p,q(Rn) are, respectively, the classical generalized Besov

and Triebel–Lizorkin spaces in which smoothness is described by an admissible sequence
σ (see Definition 7 below). In this sense, the spaces Ṁφ

p,q(X) and Ṅφ
p,q(X) serve as natural

generalizations of classical Besov and Triebel–Lizorkin spaces with generalized smoothness
on metric measure spaces.

In this article, we also consider the inhomogeneous version of the above spaces.

Definition 6. Let φ ∈ A and p, q ∈ (0,∞].

(i) The inhomogeneous φ-Hajłasz–Triebel–Lizorkin space Mφ
p,q(X) is defined as the set Lp(X) ∩

Ṁφ
p,q(X). Moreover, for any u ∈ Mφ

p,q(X), let

‖u‖Mφ
p,q(X)

:= ‖u‖Lp(X) + ‖u‖Ṁφ
p,q(X)

.

(ii) The inhomogeneous φ-Hajłasz–Besov space Nφ
p,q(X) is defined as the set Lp(X) ∩ Ṅφ

p,q(X).
Moreover, for any u ∈ Mφ

p,q(X), let

‖u‖Mφ
p,q(X)

:= ‖u‖Lp(X) + ‖u‖Ṅφ
p,q(X)

.

Remark 1. (i) Recall that, for any given p ∈ (0,∞], Ṁφ
p,∞(X) = Ṁφ,p(X) (see [28], [Remark

3.4(i)]), where Ṁφ,p(X) denotes the homogeneous Hajłasz–Sobolev space with respect to φ,
which consists of all u ∈ L0(X) such that

‖u‖Ṁφ,p(X) := inf
g∈Dφ(u)

‖g‖Lp(X) < ∞.

Consequently, if the inhomogeneous Hajłasz–Sobolev space Mφ,p(X) is defined as the set
Lp(X) ∩ Ṁφ,p(X), then Mφ

p,∞(X) = Mφ,p(X). In particular, when φ is as in (12), the related
spaces are called the logarithmic Hajłasz–Sobolev spaces.

(ii) Let φ ∈ A, k0 ∈ Z, and u ∈ L0(X). Let Dφ
k0
(u) be the set of all sequences ~h := {hk}k∈Z, defined

by setting hk := h̃k when k ≥ k0 and hk ≡ 0 when k < k0, where h̃ := {̃hk}k∈Z is a φ-Hajłasz
gradient sequence of u. Naturally, Dφ

k0
(u) denotes the set of all functions g such that, for

almost every x, y ∈ X with d(x, y) < 2−k0 , (13) holds true. Then, for any given p ∈ (0,∞],
q = ∞, and φ ∈ A or for any given p ∈ (0,∞], q ∈ (0,∞), and φ ∈ A with α+φ ∈ (0, 1),

|||u|||Nφ
p,q(X)

:= ‖u‖Lp(X) + inf
~h∈Dφ

k0
(u)
‖~h‖lq(X,Lp), ∀ u ∈ Nφ

p,q(X),
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is an equivalent quasi-norm of Nφ
p,q(X) with the positive equivalence constants depending on

k0. Indeed, for any u ∈ L0(X), |||u|||Nφ
p,q(X)

≤ ‖u‖Nφ
p,q(X)

obviously holds true. Conversely, let

q ∈ (0,∞) and u ∈ L0(X). Notice that, for any k ∈ Z and x, y ∈ X,

∣∣∣u(x) − u(y)
∣∣∣ ≤ φ(2−k)

[
|u(x)|
φ(2−k)

+
|u(y)|
φ(2−k)

]
.

Then, { |u|
φ(2−k)

}k∈Z is a φ-Hajłasz gradient sequence of u modulo some uniform constant, which

implies that, for any ~h := {hk}k∈Z ∈ D
φ
k0
(u), the sequence ~g := {gk}k∈Z, defined by setting,

for any k ≥ k0, gk := hk and, for any k < k0, gk := |u|
φ(2−k)

is an element of Dφ
k0
(u). By

α+φ ∈ (0, 1), we can choose a δ1 ∈ (0,∞) such that α+φ + δ1 < 1. Then, there exists a K ∈ Z
such that, for any integer k ≤ K, φ(2−k)/φ(2−k+1) < a+φ + δ1. Notice that φ(2−k)/φ(2−k+1)

is bounded when k ∈ [K, k0]. We then have

∑
k≤k0

[φ(2−k)]−q = [φ(2−k0)]−q
∑
k≤k0

[
φ(2−k−1)

φ(2−k)

φ(2−k−2)

φ(2−k−1)
· · ·

φ(2−k0)

φ(2−k0+1)

]q

.
∑
k≤k0

(α+φ + δ1)
(k0−k)q . 1,

where the implicit positive constants depend only on φ, q, and k0. This implies that

‖u‖Nφ
p,q(X)

≤ ‖~g‖lq(X,Lp) + ‖u‖Lp(X) . ‖~h‖lq(X,Lp) + ‖u‖Lp(X) . |||u|||Nφ
p,q(X)

.

The proof for the case q = ∞ is similar, and we omit the details here.
Similarly, for any φ ∈ A with α+φ ∈ (0, 1), p ∈ (0,∞], and q ∈ (0,∞) or any φ ∈ A

with p ∈ (0,∞] and q = ∞, |||u|||Mφ
p,q(X)

, defined by replacing ~g ∈ Dφ(u) in ‖u‖Mφ
p,q(X)

by

~h ∈ Dφ
k0
(u), is also an equivalent quasi-norm of Mφ

p,q(X).

As was mentioned above, the spaces Ṁφσ
p,q(Rn) and Ṅφσ

p,q(Rn) coincide, respectively,
with the Triebel–Lizorkin space Ḟσ

p,q(Rn) and the Besov space Ḃσp,q(Rn) with generalized
smoothness; see [28]. It is natural to expect to obtain their inhomogeneous counterparts.
To this end, we let S(Rn) be the collection of all Schwartz functions on Rn, in which the
topology is determined by a family of norms, {‖ · ‖Sk,m(Rn)}k,m∈Z+ , where, for any k, m ∈ Z+

and any ϕ ∈ S(Rn),

‖ϕ‖Sk,m(Rn) := sup
α∈Zn

+ ,|α|≤k
sup
x∈Rn

(1 + |x|)m∣∣∣∂αϕ(x)
∣∣∣

with α := (α1, . . . ,αn) ∈ Zn
+, |α| := α1 + · · ·+ αn, and ∂α := ( ∂

∂x1
)α1 · · · ( ∂

∂xn
)αn . Additionally,

let S′(Rn) be the space of all tempered distributions on Rn equipped with the weak-∗
topology. Define

S∞(Rn) :=
{
ϕ ∈ S(Rn) :

∫
Rn
ϕ(x) xγ dx = 0 for all multi-indices γ ∈ Zn

+

}
,

and let S′∞(Rn) be the topological dual of S′∞(Rn) equipped with the weak-∗ topology.
For any f ∈ S′∞(Rn), we use f̂ to denote its Fourier transform in the sense of S′∞(Rn); in
particular, for any f ∈ L1(Rn) and ξ ∈ Rn, f̂ (ξ) :=

∫
Rn f (x) e−2πix·ξ dx. For any t ∈ (0,∞) and

x ∈ Rn, let ϕt(x) := t−nϕ(x/t).
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Definition 7. Let σ := {σ j} j∈Z be an admissible sequence. Let p, q ∈ (0,∞] and ϕ, Φ ∈ S(Rn)
be such that

supp ϕ̂ ⊂
{
ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2

}
, and |̂ϕ(ξ)| ≥ C1 if 3/5 ≤ |ξ| ≤ 5/3

and
supp Φ̂ ⊂

{
ξ ∈ Rn : |ξ| ≤ 2

}
, and |Φ̂(ξ)| ≥ C2 if |ξ| ≤ 5/3,

where C1, C2 are two positive constants.

(i) The homogeneous Triebel–Lizorkin space Ḟσ
p,q(Rn) with generalized smoothness is

defined as the set of all u ∈ S′∞(Rn) such that ‖u‖Ḟσp,q(Rn) < ∞, where, when p < ∞,

‖u‖Ḟσp,q(Rn) := ‖{σk ϕ2−k ∗ u}k∈Z‖Lp(Rn,lq) :=

∥∥∥∥∥∥∥∥
∑

k∈Z
σ

q
k

∣∣∣ϕ2−k ∗ u
∣∣∣q1/q

∥∥∥∥∥∥∥∥
Lp(Rn)

with the usual modification made if q = ∞ and, when p = ∞,

‖u‖Ḟσ∞,q(Rn) := sup
x∈Rn

sup
l∈Z


?

B(x,2−l)

∑
k≥l

σ
q
k

∣∣∣ϕ2−k ∗ u(y)
∣∣∣q dy


1/q

with the usual modification made if q = ∞.
(ii) The homogeneous Besov space Ḃσp,q(Rn) with generalized smoothness is defined as the

set of all u ∈ S′∞(Rn) such that

‖u‖Ḃσp,q(Rn) := ‖{σk ϕ2−k ∗ u}k∈Z‖lq(Rn,Lp) :=

∑
k∈Z

σ
q
k

∥∥∥ϕ2−k ∗ u
∥∥∥q

Lp(Rn)

1/q

< ∞

with the usual modification made if q = ∞.
(iii) The inhomogeneous Triebel–Lizorkin space Fσ

p,q(Rn) with generalized smoothness is
defined as the set of all u ∈ S′(Rn) such that ‖u‖Fσp,q(Rn) is finite, where ‖u‖Fσp,q(Rn) is defined
as ‖u‖Ḟσp,q(Rn) with {σk ϕ2−k ∗ u}k∈Z and ϕ1 replaced, respectively, by {σk ϕ2−k ∗ u}k∈Z+ and Φ.

(iv) The inhomogeneous Besov space Bσp,q(Rn) with generalized smoothness is defined
as the set of all u ∈ S′(Rn) such that ‖u‖Bσp,q(Rn) is finite, where ‖u‖Bσp,q(Rn) is defined as
‖u‖Ḃσp,q(Rn) with {σk ϕ2−k ∗ u}k∈Z and ϕ1 replaced, respectively, by {σk ϕ2−k ∗ u}k∈Z+ and Φ.

We then have the following relation between homogeneous and inhomogeneous spaces.

Proposition 1. Let p ∈ [1,∞], q ∈ (0,∞], and σ := {σ j} j∈Z+ be admissible sequences with
α+σ ∈ (0, 1). Then, for A ∈ {B, F}, Aσp,q(Rn) = [Lp(Rn) ∩ Ȧσ̃p,q(Rn)], where σ̃ := {σ̃ j} j∈Z is any
given admissible sequence satisfying that, for any j ∈ Z+ and α−

σ̃
∈ (0, 1), σ̃ j = σ j.

Proof. By similarity, we only consider the Triebel–Lizorkin case.
First, we show Fσ

p,q(Rn) ⊂ [Lp(Rn) ∩ Ḟσ̃
p,q(Rn)]. From p ∈ [1,∞], α+σ < 1, ([14] [Corol-

lary 3.18]), or ([52] [Theorem 4.1]), we deduce that Bσp,max{p,q}(R
n) ⊂ Lp(Rn), which, together

with the trivial embedding Fσ
p,q(Rn) ⊂ Bσp,max{p,q}(R

n), implies that Fσ
p,q(Rn) ⊂ Lp(Rn) and,

for any u ∈ Fσ
p,q(Rn), ‖u‖Lp(Rn) . ‖u‖Fσp,q(Rn). Moreover, if p ∈ [1,∞), applying (3) when

p/q ≤ 1, the Minkowski inequality when p/q > 1, or the Minkowski integral inequality,
we conclude that, for any u ∈ Fσ

p,q(Rn),∥∥∥∥∥∥∥∥
∑

k≤0

σ̃
q
k

∣∣∣ϕ2−k ∗ u
∣∣∣q1/q

∥∥∥∥∥∥∥∥
Lp(Rn)

≤

∑
k≤0

σ̃
min{p,q}
k ‖ϕ2−k ∗ u‖min{p,q}

Lp(Rn)

1/ min{p,q}
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.

∑
k≤0

σ̃
min{p,q}
k

1/ min{p,q}

‖u‖Lp(Rn).

By α−
σ̃
∈ (0, 1), we know that there exists a δ1 ∈ (0,∞) small enough such that

α−
σ̃
+ δ1 < 1. Then we have, for any k ≤ 0 and r ∈ (0,∞],∑

k≤0

σ̃r
k . (α−σ̃ + δ1)

kr,

where the implicit positive constant only depends on σ̃ and δ1. Therefore, we obtain∥∥∥∥∥∥∥∥
∑

k≤0

σ̃
q
k

∣∣∣ϕ2−k ∗ u
∣∣∣q1/q

∥∥∥∥∥∥∥∥
Lp(Rn)

.

∑
k≤0

(α−σ̃ + δ1)
k min{p,q}

1/ min{p,q}

‖u‖Lp(Rn) . ‖u‖Lp(Rn),

which implies that ‖u‖Ḟσ̃p,q(Rn) . ‖u‖Lp(Rn) + ‖u‖Fσ̃p,q(Rn). Similar estimates also holds true for

the case p = ∞. Altogether, we obtain the embedding Fσ
p,q(Rn) ⊂ [Lp(Rn) ∩ Ḟσ̃

p,q(Rn)].
Conversely, let u ∈ [Lp(Rn) ∩ Ḟσ̃

p,q(Rn)]. By the Minkowski integral inequality, we
know that, for any given p ∈ [1,∞], ‖Φ ∗ u‖Lp(Rn) . ‖u‖Lp(Rn). This, combined with the
obvious fact that ‖{σk |ϕ2−k ∗ u|}k≥1‖Lp(Rn,lq) ≤ ‖u‖Ḟσ̃p,q(Rn), implies the embedding [Lp(Rn) ∩

Ḟσ̃
p,q(Rn)] ⊂ Fσ

p,q(Rn). This finishes the proof of Proposition 1. �

As an application of Proposition 1 and ([28], Theorem 3.10), we immediately obtain
the following conclusion; we omit the details.

Corollary 1. Let p ∈ [1,∞], and σ := {σ j} j∈Z+ be an admissible sequence with α+σ ∈ (0, 1)
and β+σ ∈ (0, 2). Then, Fσ

p,q(Rn) = Mφσ̃
p,q(Rn) for any q ∈ (n/[n − log2 α

+
σ ],∞] and Bσp,q(Rn) =

Nφσ̃
p,q(Rn) for any q ∈ (0,∞], where σ̃ := {σ̃ j} j∈Z is any given admissible sequence satisfying

σ̃ j = σ j for any j ∈ Z+, α−
σ̃
∈ (0, 1), and β−

σ̃
∈ (0, 2).

3. Lebesgue Points of φ-Hajłasz-Type Functions

Let u be a function on the metric measure space (X, d, µ). A point x ∈ X is called a
Lebesgue point of u if it satisfies

lim
r→0+

?
B(x,r)

∣∣∣u(y) − u(x)
∣∣∣ dµ(y) = 0.

For such an x,

u(x) = lim
r→0+

?
B(x,r)

u(y) dµ(y).

Here and thereafter, t → 0+ means t ∈ (0,∞) and t → 0. The classical Lebesgue
differentiation theorem states that almost every point is a Lebegsue point of a locally
integrable function on Rn. If the function has higher regularity, one could expect a smaller
exceptional set. In 2002, Kinnunen and Latvala [38] studied the Lebesgue point of functions
of Hajłasz–Sobolev spaces on doubling metric measure spaces, which has led to a lot of
related works; see, for instance [39–44].

In this section, we study the Lebesgue point of φ-Hajłasz–Besov and φ-Hajłasz–Triebel–
Lizorkin functions on a given doubling metric measure space (X, d, µ). To this end, one key
tool is the maximal operators. Let R ∈ (0,∞]. The restricted maximal operatorMR is defined
by setting, for any u ∈ L0(X) and x ∈ X,

MRu(x) := sup
Br3x, r∈(0,R)

?
Br

|u| dµ, (14)
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where the supremum is taken over all balls Br in X containing x with the radius r ∈ (0, R).
Obviously,M :=M∞ is just the classical Hardy–Littlewood maximal operator, which is
known to be bounded on Lp(X) for any given p ∈ (1,∞] when X is a doubling measure
space; see, for instance ([53], Theorem 14.13). We also need the discrete Hardy–Littlewood-
type maximal operator defined via discrete convolutions (see, for instance [38,41,54]). To
recall this, we first need the notion of the partition of unity.

Definition 8. Let r ∈ (0,∞), J ⊂ N be an index set, and balls {B j} j∈J be a covering of X with
the radius r such that

∑
j∈J 12B j . 1, where the implicit positive constant is some positive absolute

constant. A sequence {ϕ j} j∈J of functions is called a partition of unity with respect to the above
ball covering {B j} j∈J if, for any j ∈ J , ϕ j is a Lipschitz function with the Lipschitz constant cr−1,
ϕ j ≥ C > 0 on B j, suppϕ j ⊂ 2B j, 0 ≤ ϕ j ≤ 1, and

∑
j∈J ϕ j ≡ 1, where c and C are two positive

constants depending only on the doubling constant.

The existence of the partition of unity in Definition 8 with respect to any given ball
covering of X can be seen, for instance, in ([38], p. 690).

Definition 9. (i) Let u ∈ L0(X). The discrete convolution of u at the scale r ∈ (0,∞) is
defined by setting

ur :=
∑
j∈J

uB j ϕ j,

where {B j} j∈J is a ball covering of X with the radius r and {ϕ j} j∈J a partition of unity with
respect to {B j} j∈J as in Definition 8.

(ii) The discrete maximal operatorM∗ is defined by setting, for any u ∈ L0(X),

M∗u := sup
k∈Z
|u|2−k ,

where |u|2−k is the discrete convolution of |u| at the scale 2−k.
(iii) Let R ∈ (0,∞]. The restricted discrete maximal operatorM∗R is defined by setting, for any

u ∈ L0(X),
M∗Ru := sup

{k∈Z: 2−k<R}
|u|2−k ,

where |u|2−k is the discrete convolution of |u| at the scale 2−k.

Obviously,M∗∞ =M∗. Now, we present two Poincaré-type inequalities with respect
to φ as below. The first one is easy to prove using the definition of Hajłasz gradients, and
the other is provided in ([28], Lemma 3.7).

Lemma 3. Let φ ∈ A. Then, there exists a positive constant C = C(φ,Cµ) such that, for any
x ∈ X, k ∈ Z, u ∈ L0(B(x, 2−k)), and g ∈ Dφ(u),

inf
c∈R

?
B (x,2−k)

|u(y) − c| dµ(y) ≤ C φ(2−k)

?
B (x,2−k)

g(y) dµ(y),

where Cµ is as in (1).

Proof. Let x ∈ X, k ∈ Z, u ∈ L0(B(x, 2−k)) and g ∈ Dφ(u). Then,

inf
c∈R

?
B (x,2−k)

|u(y) − c| dµ(y) ≤
?

B (x,2−k)
|u(y) − uB(x,2−k)| dµ(y)

≤

?
B (x,2−k)

?
B (x,2−k)

|u(y) − u(z)| dµ(z) dµ(y)

≤

?
B (x,2−k)

?
B (x,2−k)

φ(2−k+1)[g(y) + g(z)] dµ(z) dµ(y)
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. φ(2−k)

?
B (x,2−k)

g(y) dµ(y).

This finishes the proof of Lemma 3. �

Lemma 4. Let φ ∈ A with αφ ∈ (0, 1). Then, for any ε, ε′ ∈ (0,− log2 αφ) with ε < ε′ and
p ∈ (0, D/ε), there exists a positive constant C = C(φ,p,ε′,Cµ) such that, for any x ∈ X, k ∈ Z, u ∈
L0(B(x, 2−k+1)) and ~g := {g j} j∈Z ∈ Dφ(u),

inf
c∈R

[?
B (x,2−k)

|u(y) − c|
Dp

D−εp dµ(y)
] D−εp

np

≤ C 2−kε′
∑

j≥k−2

2 jε′φ(2− j)

{?
B (x,2−k+1)

[g j(y)]
p dµ(y)

}1/p

, (15)

where D and Cµ are as in (1).

Remark 2. Let D and Cµ be as in (1).

(i) Let φ, ε, and p be as in Lemma 4. By taking, for any k ∈ Z, x ∈ X, u ∈ L0(B(x, 2−k+1)), and
g ∈ Dφ(u), ε′ := (ε − log2 αφ)/2 and ~g := {g j := g} j∈Z in (15), we obtain

inf
c∈R

[?
B (x,2−k)

|u(y) − c|
Dp

D−εp dµ(y)
] D−εp

Dp

. φ(2−k)

{?
B (x,2−k+1)

[g(y)]p dµ(y)
}1/p

, (16)

where the implicit positive constant depends only on φ, p, ε, and Cµ.
(ii) Notice that, if Dp/(D − εp) = 1, then p = D/(D + ε). In this case, (15) and (16) become,

respectively,

inf
c∈R

?
B (x,2−k)

|u(y) − c| dµ(y)

≤ C(φ,p,ε′,Cµ) 2−kε′
∑

j≥k−2

2 jε′φ(2− j)

{?
B (x,2−k+1)

[g j(y)]
D

D+ε dµ(y)
} D+ε

D

(17)

and

inf
c∈R

?
B (x,2−k)

|u(y) − c| dµ(y)

≤ C(φ,p,ε,Cµ) φ(2
−k)

{?
B (x,2−k+1)

[g(y)]
D

D+ε dµ(y)
} D+ε

D

. (18)

Applying these Poincaré-type inequalities, we obtain the following estimates.

Lemma 5. Let φ ∈ A, D, and Cµ be as in (1) andM be the Hardy–Littlewood maximal operator.

(i) Then, there exists a positive constant C = C(φ,Cµ) such that, for any u ∈ L1
loc (X), g ∈ Dφ(u),

i ∈ Z, y ∈ X with uB(y,2−i) < ∞, and almost every x ∈ B (y, 2−i+1),∣∣∣∣u(x) − uB(y,2−i)

∣∣∣∣ ≤ C φ(2−i)M(g)(x).

(ii) Let αφ ∈ (0, 1). Then, for any λ ∈ (D/[D − log2 αφ],∞), there exists a positive constant
C = C(φ,λ,Cµ) such that, for any u ∈ L1

loc (X), g ∈ Dφ(u), i ∈ Z, y ∈ X with uB(y,2−i) < ∞,
and almost every x ∈ B (y, 2−i+1),∣∣∣∣u(x) − uB(y,2−i)

∣∣∣∣ ≤ C φ(2−i)
[
M

(
gλ

)
(x)

]1/λ
. (19)
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(iii) Let αφ ∈ (0, 1). Then, for any λ ∈ (D/[D − log2 αφ],∞), there exist an ε ∈ (0,− log2 αφ)
depending on λ, and a positive constant C = C(φ,λ,Cµ) such that, for any u ∈ L1

loc (X),
~g := {gl}l∈Z ∈ Dφ(u), i ∈ Z, y ∈ X with uB(y,2−i) < ∞, and almost every x ∈ B (y, 2−i+1),∣∣∣∣u(x) − uB(y,2−i)

∣∣∣∣ ≤ C
∑

l≥i−4

2(l−i)εφ(2−l)
[
M

(
gλl

)
(x)

]1/λ
. (20)

Proof. Let u, g, i, y, and x be as in the present lemma. By the definition of Hajłasz gradients,
the doubling property of µ, the geometrical observation that, for any x ∈ B(y, 2−i+1),
B(y, 2−i+1) ⊂ B(x, 2−i+2) and, for almost every x ∈ X, g(x) ≤ M(g)(x), we have, for almost
every x ∈ B(y, 2−i+1),∣∣∣∣u(x) − uB(y,2−i)

∣∣∣∣ ≤ ?
B(y,2−i)

|u(x) − u(z)| dµ(z)

. φ(2−i)

?
B(y,2−i)

[g(x) + g(z)] dµ(z)

. φ(2−i)

[
g(x) +

?
B(x,2−i+2)

g(z) dµ(z)
]

. φ(2−i)M(g)(x),

which proves (i) of the present lemma.
To complete the proof of the present lemma, we observe that, for any i ∈ Z, y ∈ X and

x ∈ B (y, 2−i+1), B (y, 2−i) ⊂ B (x, 2−i+2). Thus, by the Lebesgue differentiation theorem and
the doubling property of µ, we find that, for almost every x ∈ B (y, 2−i+1),∣∣∣∣u(x) − uB(y,2−i)

∣∣∣∣ ≤ ∣∣∣∣u(x) − uB(x,2−i+2)

∣∣∣∣+ ∣∣∣∣uB(x,2−i+2) − uB(y,2−i)

∣∣∣∣
.

∑
k≥i−2

?
B(x,2−k)

∣∣∣∣u(z) − uB(x,2−k)

∣∣∣∣ dµ(z)
+

?
B(x,2−i+2)

∣∣∣∣u(z) − uB(x,2−i+2)

∣∣∣∣ dµ(z) (21)

.
∑

k≥i−2

?
B(x,2−k)

∣∣∣∣u(z) − uB(x,2−k)

∣∣∣∣ dµ(z)
.

∑
k≥i−2

inf
c∈R

?
B(x,2−k)

∣∣∣u(z) − c
∣∣∣ dµ(z).

If λ ∈ (D/[D − log2 αφ], 1), choose ω ∈ (0,− log2 αφ) such that λ = D/(D + ω). By
αφ ∈ (0, 1), (21), and the definition ofM, we conclude that (19) and (20) follow from (18)
and (17) with ε = ω therein, respectively.

If λ ∈ [1,∞), then, for any ε ∈ (0,− log2 αφ), by the Hölder inequality, we also obtain the
same estimate as the case λ ∈ (D/[D − log2 αφ], 1). This finishes the proof of Lemma 5. �

Remark 3. (i) Let φ ∈ A with αφ ∈ (0, 1). Recall that, for any p ∈ (D/(D − log2 αφ),∞], q ∈
(0,∞], and u ∈ [Ṁφ

p,q(X) ∪ Ṅφ
p,q(X)], the integral of u on any ball in X is finite (see [28],

Remark 3.8), where D is as in (1).
(ii) Let φ ∈ A. For any u ∈ Ḟ , the integral of |u|p on any ball B := B(x, 2−k) in X with k ∈ Z is

also finite, where

Ḟ ∈
{
Ṁφ,p(X) : p ∈ [1,∞)

}
∪

{
Ṁφ,p(X) : p ∈ (0, 1), αφ ∈ (0, 1)

}
∪

{
Ṁφ

p,q(X), Ṅφ
p,q(X) : p, q ∈ (0,∞], αφ ∈ (0, 1)

}
.
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To see this, by similarity, we only prove the case Ḟ = Ṁφ
p,q(X) with p, q ∈ (0,∞] and

αφ ∈ (0, 1). Indeed, by (15), the Hölder inequality, Lemma 1(i), and the definition ofA, we
find that

inf
c∈R

[?
B
|u(y) − c|p dµ(y)

]1/p

. 2−kε′
∑

j≥k−2

2 jε′φ(2− j)

{?
2B
[g j(y)]

p dµ(y)
}1/p

. 2−kε′
∑

j≥k−2

2 jε′φ(2− j)[µ(2B)]−1/p∥∥∥{g j} j∈Z
∥∥∥

Lp(2B,lq)

. φ(2−k)[µ(2B)]−1/p∥∥∥{g j} j∈Z
∥∥∥

Lp(X,lq) < ∞,

where ε′ ∈ (0,− log2 αφ) and {g j} j∈Z ∈ Dφ(u) ∩ Lp(X, lq). Let c0 ∈ R be such that?
B
|u(y) − c0|

p dµ(y) < ∞.

Then, ∫
B
|u(y)|p dµ(y) . µ(B)

?
B
|u(y) − c0|

p dµ(y) + µ(B)cp
0 < ∞.

Thus, the above claim holds true.

Due to Remark 3(i), the classical Lebesgue differentiation theorem implies that almost
every point is a Lebesgue point of u. As u has certain regularity, one would expect a
smaller exceptional set than that of usual locally integrable functions. Inspired by [41,45],
we introduce capacities related, respectively, to Mφ

p,q(X) and Nφ
p,q(X) to measure such

exceptional sets.
Below, for simplicity, we use F to denote either Mφ

p,q(X) or Nφ
p,q(X), or Ḟ to denote

either Ṁφ
p,q(X) or Ṅφ

p,q(X).

Definition 10. Let E be a subset of X. Recall that a set U is called a neighborhood of E if it is
open and E ⊂ U. Let F ∈ {Mφ

p,q(X), Nφ
p,q(X)} with φ ∈ A and p, q ∈ (0,∞], and

GF (E) :=
{
u ∈ F : u ≥ 1 on a neighborhood of E

}
.

The F -capacity Cap F (E) of E is defined by setting

Cap F (E) := inf
{
‖u‖p
F

: u ∈ GF (E)
}
.

Remark 4. Let E, E1, E2 ⊂ X and F ∈ {Mφ
p,q(X), Nφ

p,q(X)} with φ ∈ A and p, q ∈ (0,∞].

(i) Let G′
F
(E) := {u ∈ GF (E) : 0 ≤ u ≤ 1}. By Lemma 2(i), ‖max{min{u, 1}, 0}‖F ≤ ‖u‖F , and

an argument similar to that used in ([55], Remark 3.2), we have

Cap F (E) = inf
{
‖u‖p
F

: u ∈ G′
F
(E)

}
.

(ii) If Cap F (E) = 0 with p ∈ (0,∞), then µ(E) = 0. Indeed, for any ε ∈ (0,∞), there always
exists a neighborhood Uε of E such that ‖1Uε ‖F < ε, which implies that

[µ(E)]1/p = ‖1E‖Lp(X) ≤ ‖1E‖F ≤ ε.

Letting ε → 0+, we obtain µ(E) = 0.
(iii) If E1 ⊂ E2, then GF (E2) ⊂ GF (E1), which means that Cap F (E1) ≤ Cap F (E2).

The following lemma provides a basic property of the capacity which is a slight
generalization of ([41], Lemma 6.4); we omit the details.
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Lemma 6. Let F ∈ {Mφ
p,q(X), Nφ

p,q(X)} with φ ∈ A and p ∈ (0,∞) and q ∈ (0,∞]. Let
θ := min{1, q/p}. Then, there exists a positive constant C = C(p,q) ∈ [1,∞) such that, for any
sequence {Ei}i∈N of subsets of X, Cap F

⋃
i∈N

Ei


θ ≤ C

∑
i∈N

[Cap F (Ei)]
θ.

Via F -capacities, we introduce the F -quasi-continuity as follows.

Definition 11. Let F ∈ {Mφ
p,q(X), Nφ

p,q(X)} with φ ∈ A and p, q ∈ (0,∞]. A function u is said
to be F -quasi-continuous if, for any ε ∈ (0,∞), there exists a set Uε such that Cap F (Uε) < ε

and the restriction u|X\Uε of u on X \Uε is continuous.

The following theorem shows the convergence of discrete convolution approximations
in F , which generalizes ([41], Theorem 5.1).

Theorem 1. Let φ ∈ A0, p ∈ (D/(D − log2 αφ),∞), F = Mφ
p,q(X) [resp., Ḟ = Ṁφ

p,q(X)] with
q ∈ (D/(D − log2 αφ),∞), or F = Nφ

p,q(X) [resp., Ḟ = Ṅφ
p,q(X)] with q ∈ (0,∞), and u ∈ Ḟ .

Then, ‖u− u2−i‖F → 0 as i→ ∞, where {u2−i }i∈Z+ are the discrete convolutions as in Definition 9(i).

To prove Theorem 1, we need the following lemma, which generalizes ([41], Lemma 3.1)
(see also [47], Lemma 3.10).

Lemma 7. Let E ⊂ X be a measurable set, L ∈ (0,∞), ϕ be a bounded L-Lipschitz function
supported in E, u ∈ L0(X), and φ ∈ A∞.

(i) If {gk}k∈Z ∈ Dφ(u), then, for any i ∈ Z, the sequence {hk}k∈Z, defined by setting

hk :=


{
2−k

[
φ(2−k)

]−1
L |u|+ ‖ϕ‖L∞(X) gk

}
1E , k > i,

‖ϕ‖L∞(X)
[
φ(2−k)

]−1
|u| 1E , k ≤ i,

(22)

is an element of Dφ(uϕ) modulo a positive constant that is independent of i and L.
(ii) If g ∈ Dφ(u), then

h :=
{
‖ϕ‖L∞(X) g +

[
‖ϕ‖L∞(X) + 1

][
φ(L−1)

]−1
|u|

}
1E

is an element ofDφ(uϕ) modulo a positive constant that is independent of L.

Proof. We first prove (i). Let ϕ be a bounded L-Lipschitz function supported in E, u ∈ L0(X),
and {gk}k∈Z ∈ Dφ(u). For any k ∈ Z and x, y ∈ Xwith d(x, y) ∈ [2−k−1, 2−k), we have

d(x, y)/φ(d(x, y)) . 2−k/φ(2−k) and [φ(d(x, y))]−1 . [φ(2−k)]−1.

Then, from the Lipschitz continuity of ϕ and the definition of Dφ(u), it follows that,
for any k ∈ Z and almost every x, y ∈ E with d(x, y) ∈ [2−k−1, 2−k),∣∣∣u(x)ϕ(x) − u(y)ϕ(y)

∣∣∣ ≤ |u(x)|
∣∣∣ϕ(x) − ϕ(y)

∣∣∣+ ‖ϕ‖L∞ ∣∣∣u(x) − u(y)
∣∣∣

≤ φ(d(x, y))
{

Ld(x, y)|u(x)|
φ(d(x, y))

+ ‖ϕ‖L∞(X)[gk(x) + gk(y)]
}

. φ(d(x, y))
{

L2−k |u(x)|
φ(2−k)

+ ‖ϕ‖L∞(X)[gk(x) + gk(y)]
}
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and ∣∣∣u(x)ϕ(x) − u(y)ϕ(y)
∣∣∣ . |u(x)|‖ϕ‖L∞(X) + ‖ϕ‖L∞(|u(x)|+ |u(y)|)

. φ(d(x, y))
‖ϕ‖L∞(X)(|u(x)|+ |u(y)|)

φ(d(x, y))

. φ(d(x, y))
‖ϕ‖L∞(X)(|u(x)|+ |u(y)|)

φ(2−k)
.

For any k ∈ Z and almost every x ∈ E and y ∈ X \ E with d(x, y) ∈ [2−k−1, 2−k),
we have ∣∣∣u(x)ϕ(x) − u(y)ϕ(y)

∣∣∣ ≤ |u(x)|
∣∣∣ϕ(x) − ϕ(y)

∣∣∣
≤ φ(d(x, y))

Ld(x, y)|u(x)|
φ(d(x, y))

. φ(d(x, y))
L2−k |u(x)|
φ(2−k)

and

∣∣∣u(x)ϕ(x) − u(y)ϕ(y)
∣∣∣ ≤ ‖ϕ‖L∞(X)|u(x)| . φ(d(x, y))

‖ϕ‖L∞(X)|u(x)|

φ(2−k)
.

Similarly, for any k ∈ Z and almost every x ∈ E and y ∈ X \ E with d(x, y) ∈ [2−k−1, 2−k),
we have

∣∣∣u(x)ϕ(x) − u(y)ϕ(y)
∣∣∣ . φ(d(x, y))

L2−k |u(y)|
φ(2−k)

and

∣∣∣u(x)ϕ(x) − u(y)ϕ(y)
∣∣∣ . φ(d(x, y))

‖ϕ‖L∞(X)|u(y)|

φ(2−k)
.

From these estimates, we deduce that {hk}k∈Z as in (22) is a positive constant multiple
of an element inDφ(uϕ), with the positive constant independent of i and L. This proves (i).

The item (ii) is easy to show using the result in (i) and choosing h := supk∈Z hk and
i ∈ Z such that L ∈ [2i, 2i+1). This finishes the proof of Lemma 7. �

We now state some corollaries of Lemma 7 as follows.

Corollary 2. Let E ⊂ X be a measurable set, L ∈ [1/2,∞), ϕ be a bounded L-Lipschitz function
supported in E and p ∈ (0,∞). Let F ∈ {Mφ

p,q(X), Nφ
p,q(X)} with q ∈ (0,∞) and φ ∈ Aq,

or F ∈ {Mφ
p,∞(X) = Mφ,p(X), Nφ

p,∞(X)} with φ ∈ A∞. Then, for any u ∈ F , uϕ ∈ F with
‖uϕ‖F . ‖u‖F , where the implicit positive constant is independent of u.

Proof. By similarity, we only consider F = Mφ
p,q(X) with p, q ∈ (0,∞) and φ ∈ Aq. Let i ∈

Z+ be such that 2i−1 ≤ L < 2i, u ∈ L0(X), {gk}k∈Z ∈ Dφ(u) satisfy ‖{gk}k∈Z‖Lp(X,lq) . ‖u‖Ṁφ
p,q(X)

,
and {hk}k∈Z be as in (22). By the definition ofAq, we have

∑
k≤i

1
[φ(2−k)]q

. Xq
L and

∑
k>i

2−kq

[φ(2−k)]q
. Yq

L,

where XL and YL are two positive constants independent of φ. From this, we deduce that

‖{hk}k∈Z‖Lp(X,lq) .

∑
k>i

(
2−k

[
φ(2−k)

]−1
)q


1/q

L‖u1E‖Lp(X)



Mathematics 2021, 9, 2724 18 of 46

+ ‖ϕ‖L∞(X)‖{gk}k∈Z‖Lp(E,lq)

+

∑
k≤i

([
φ(2−k)

]−1
)q


1/q

‖ϕ‖L∞(X)‖u1E‖Lp(X) (23)

. ‖ϕ‖L∞(X) ‖{gk}k∈Z‖Lp(E,lq)

+
[
XL ‖ϕ‖L∞(X) + YL L

]
‖u‖Lp(E),

which, combined with Lemma 7 and ‖uϕ‖Lp(X) ≤ ‖u‖Lp(X)‖ϕ‖L∞(X), implies that

‖uϕ‖Mφ
p,q(X)

. ‖uϕ‖Lp(X) + ‖{hk}k∈Z‖Lp(X,lq)

.
[
(XL + 1)‖ϕ‖L∞(X) + YLL

]
‖u‖Mφ

p,q(X)
,

where the implicit positive constants are independent of L, ϕ, and u. This finishes the proof
of Corollary 2. �

Corollary 3. With the same assumptions as in Corollary 2, if the set E is bounded, then, for any
u ∈ Ḟ , uϕ ∈ F .

Proof. Again, by similarity, we only consider F = Mφ
p,q(X) with p, q ∈ (0,∞) and φ ∈ Aq.

Let i ∈ Z+ be such that 2i−1 ≤ L < 2i, u ∈ L0(X), and {gk}k∈Z ∈ Dφ(u) be such that
‖{gk}k∈Z‖Lp(X,lq) . ‖u‖Ṁφ

p,q(X)
. Since E is bounded, we can find a ball B containing E. Then,

by Remark 3(ii), we conclude that ‖u‖Lp(E) ≤ ‖u‖Lp(B) < ∞. Let {hk}k∈Z be as in (22).
Then, from (23), we deduce that ‖{hk}k∈Z‖Lp(X,lq) < ∞, which, combined with Lemma 7,
implies that ‖uϕ‖Ṁφ

p,q(X)
< ∞. Notice that ‖uϕ‖Lp(X) = ‖u‖Lp(E)‖ϕ‖L∞(X) < ∞. We then obtain

‖uϕ‖Mφ
p,q(X)

< ∞, which completes the proof of Corollary 3. �

Corollary 4. Let E ⊂ X be a measurable set with µ(E) ∈ (0,∞); L ∈ (0,∞); ϕ be a bounded
L-Lipschitz function supported in E; and F ∈ {Mφ

p,q(X), Nφ
p,q(X)} with p, q ∈ (0,∞), αφ ∈ (0, 1),

and βφ ∈ (0, 2) or F ∈ {Mφ
p,∞(X) = Mφ,p(X), Nφ

p,∞(X)}with p ∈ (0,∞), φ ∈ A∞, and u ∈ L0(X).
Then,

‖ϕ‖F .
[
1 + ‖ϕ‖L∞(X)

]{
1 +

[
φ(L−1)

]−1
}
[µ(E)]1/p (24)

with the implicit positive constant independent of L, ϕ, and E.

Proof. We first consider F = Mφ
p,q(X) with p, q ∈ (0,∞), αφ ∈ (0, 1), and βφ ∈ (0, 2). Let

{hk}k∈Z be as in (22). From Lemma 7(i) and choosing u ≡ 1, gk ≡ 0 for any k ∈ Z, and i ∈ Z
such that 2i ≤ L < 2i+1 in (22), we deduce that

‖ϕ‖Ṁφ
p,q(X)

. ‖{hk}k∈Z‖Lp(X,lq)

.


∑

k>i

(
2−k

[
φ(2−k)

]−1
)q


1/q

L

+

∑
k≤i

([
φ(2−k)

]−1
)q


1/q

‖ϕ‖L∞(X)

‖1E‖Lp(X)

.
{[
φ(L−1)

]−1
+

[
φ(L−1)

]−1
‖ϕ‖L∞(X)

}
[µ(E)]1/p,

where, in the last inequality, we used (9) and (8). This, combined with the fact that

‖ϕ‖Lp(X) ≤ ‖ϕ‖L∞(X)[µ(E)]
1/p,

implies (24) with F = Mφ
p,q(X).
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By choosing u ≡ 1 and g ≡ 0 in Lemma 7(ii), the case

F ∈
{
Mφ

p,∞(X) = Mφ,p(X), Nφ
p,∞(X)

}
with p ∈ (0,∞) and φ ∈ A∞ can be similarly proved. This finishes the proof of Corollary 4. �

Now, we prove Theorem 1.

Proof of Theorem 1. By similarity, we only consider the case F = Mφ
p,q(X). Let p, q,

and φ be as in the present theorem; Cµ be as in (1); i ∈ Z+; u ∈ Ṁφ
p,q(X); and {gk}k∈Z ∈

Dφ(u) ∩ Lp(X, lq). Let {B j} j∈J be any given ball covering of X with the radius 2−i such that∑
j∈J 12B j . 1 and {ϕ j} j∈J , consisting of a sequence of c2i-Lipschitz functions, be a partition

of unity with respect to {B j} j∈J as in Definition 8, where c is a positive constant depending
only on Cµ. For any j ∈ J , let uB j be as in (2). By ([28], Remark 3.8), we have, for any j ∈ J ,
|uB j | < ∞. Let u2−i be as in Definition 9(i). Thus, by the properties of {ϕ j} j∈J , we obtain

u − u2−i =
∑
j∈J

(
u − uB j

)
ϕ j. (25)

Noticing that ϕ j is a c2i-Lipschitz function and ‖ϕ j‖L∞(X) ≤ 1, from Lemma 7 with u

and L replaced, respectively, by u− uB j and c2i, we deduce that, for any j ∈ J , ~h j := {hk, j}k∈Z,
defined by setting, for any k ∈ Z,

hk, j :=


{
2i−k

[
φ(2−k)

]−1
|u − uB j |+ gk

}
12B j , k > i,[

φ(2−k)
]−1 ∣∣∣u − uB j

∣∣∣ 12B j , k ≤ i,

is a positive constant multiple of an element of Dφ([u−uB j ]ϕ j). By this, (25), and
∑

j∈J 12B j .

1, we conclude that, for almost every x, y ∈ Xwith d(x, y) ∈ [2−k−1, 2−k),∣∣∣(u − u2−i)(x) − (u − u2−i)(y)
∣∣∣

=
∑
j∈J

(
u(x) − uB j

)
ϕ j(x) −

∑
j∈J

(
u(y) − uB j

)
ϕ j(y)

≤
∑

j∈J , 2B j∩{x,y},∅

∣∣∣∣(u(x) − uB j

)
ϕ j(x) −

(
u(y) − uB j

)
ϕ j(y)

∣∣∣∣
. φ(d(x, y))

∑
j∈J , 2B j∩{x,y},∅

[hk, j(x) + hk, j(y)]. (26)

For any given ε ∈ (0,− log2 αφ) and λ ∈ (n/[n− log2 αφ],∞), by Lemma 5(iii), we obtain,
for any j ∈ J and almost every x ∈ 2B j,∣∣∣u(x) − uB j

∣∣∣ . ∑
l≥i−4

2(l−i)εφ(2−l)
[
M

(
gλl

)
(x)

]1/λ
.

Then,

hk, j ≤



2i−k
[
φ(2−k)

]−1 ∑
l≥i−4

2(l−i)εφ(2−l)
[
M

(
gλl

)]1/λ
+ gk

 12B j , k > i,[
φ(2−k)

]−1 ∑
l≥i−4

2(l−i)εφ(2−l)
[
M

(
gλl

)]1/λ
12B j , k ≤ i

(27)

=: h̃k, j.
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Define the sequence {hk}k∈Z by setting, for any k ∈ Z,

hk :=


2i−k 2−iε

[
φ(2−k)

]−1 ∑
l≥i−4

2lεφ(2−l)
[
M

(
gλl

)]1/λ
+ gk, k > i,

2−iε
[
φ(2−k)

]−1 ∑
l≥i−4

2lεφ(2−l)
[
M

(
gλl

)]1/λ
, k ≤ i.

(28)

Then, by (26), (27), and
∑

j∈J 12B j . 1, we conclude that, for almost every x, y ∈ X,∣∣∣(u − u2−i)(x) − (u − u2−i)(y)
∣∣∣ . φ(d(x, y))

∑
j∈J , 2B j∩{x,y},∅

[
h̃k, j(x) + h̃k, j(y)

]
. φ(d(x, y))[hk(x) + hk(y)],

which implies that {hk}k∈Z is a positive constant multiple of an element in Dφ(u − u2−i).
Let λ ∈ (n/[n − log2 αφ], min{p, q}). Using the Hölder inequality, the fact that αφ < 2−ε ,

and Lemma 1, we have

∑
l≥i−4

2lεφ(2−l)
[
M

(
gλl

)]1/λ
.

[
2iεφ(2−i)

](q−1)/q
 ∑

l≥i−4

2lεφ(2−l)
[
M

(
gλl

)]q/λ


1/q

(29)

with the implicit positive constant independent of i. Notice that, by (10) and β−φ < 2,

∑
k>i

{
2i−k 2−iε

[
φ(2−k)

]−1
}q


1/q

= 2−i(ε−1)

∑
k>i

[
2−k

φ(2−k)

]q
1/q

.
2−iε

φ(2−i)
(30)

and, by (9) and αφ < 1, ∑
k≤i

{
2−iε

[
φ(2−k)

]−1
}q


1/q

.
2−iε

φ(2−i)
. (31)

Thus, by (29)–(31), Lemma 1, and the Fefferman–Stein vector-valued maximal inequal-
ity in Lp/λ(X, lq/λ) (see ([56], Theorem 1.2) or ([57], Theorem 1.3)), we obtain

‖{hk}k∈Z‖Lp(X,lq) .

∥∥∥∥∥∥∥∥
 ∑

l≥i−4

2(l−i)ε φ(2
−l)

φ(2−i)

[
M(gλl )

]q/λ


1/q
∥∥∥∥∥∥∥∥

Lp(X)

+

∥∥∥∥∥∥∥∥
∑

k>i

gq
k

1/q
∥∥∥∥∥∥∥∥

Lp(X)

.

∥∥∥∥∥∥∥∥
 ∑

l≥i−4

[
M(gλl )

]q/λ


1/q
∥∥∥∥∥∥∥∥

Lp(X)

+

∥∥∥∥∥∥∥∥
∑

k>i

gq
k

1/q
∥∥∥∥∥∥∥∥

Lp(X)

(32)

.

∥∥∥∥∥∥∥∥
 ∑

l≥i−4

gq
l

1/q
∥∥∥∥∥∥∥∥

Lp(X)

+

∥∥∥∥∥∥∥∥
∑

k>i

gq
k

1/q
∥∥∥∥∥∥∥∥

Lp(X)

.

∥∥∥∥∥∥∥∥
 ∑

k≥i−4

gq
k

1/q
∥∥∥∥∥∥∥∥

Lp(X)

,

which, combined with ‖{gk}k∈Z‖Lp(X,lq) < ∞, implies that

∥∥∥u − u2−i

∥∥∥
Ṁφ

p,q(X)
.

∥∥∥∥∥∥∥∥
 ∑

k≥i−4

gq
k

1/q
∥∥∥∥∥∥∥∥

Lp(X)

→ 0 as i→ ∞.
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On the other hand, from (25), Lemmas 5(iii), and 1(ii) with ε ∈ (0,− log2 αφ), the
properties of {ϕ j} j∈J , the Fefferman–Stein vector-valued maximal inequality, and φ(0) = 0,
it follows that

∥∥∥u − u2−i

∥∥∥
Lp(X)

=

∥∥∥∥∥∥∥∥
∑
j∈J

(
u − uB j

)
ϕ j

∥∥∥∥∥∥∥∥
Lp(X)

.

∥∥∥∥∥∥∥∥
∑
j∈J

 ∑
l≥i−4

2(l−i)εφ(2−l)
[
M

(
gλl

)]1/λ
ϕ j

∥∥∥∥∥∥∥∥
Lp(X)

. φ(2−i)

∥∥∥∥∥∥∥ ∑
l≥i−4

2(l−i)ε φ(2
−l)

φ(2−i)

[
M(gλl )

]1/λ
∥∥∥∥∥∥∥

Lp(X)

. φ(2−i)

∥∥∥∥∥∥∥ ∑
l≥i−4

[
M(gλl )

]1/λ
∥∥∥∥∥∥∥

Lp(X)

. φ(2−i)

∥∥∥∥∥∥∥∥
 ∑

l≥i−4

gq
l

1/q
∥∥∥∥∥∥∥∥

Lp(X)

→ 0 as i→ ∞. (33)

This finishes the proof of Theorem 1. �

Recall that, when q = ∞, Mφ
p,∞(X) = Mφ,p(X) (see Remark 1(i)). Even in the classical

case φ(t) := t for any t ∈ [0,∞), Theorem 1 is not true for q = ∞; we refer the reader to ([41],
Example 3.5) with mγ

u(B j) therein replaced by uB j for any j ∈ N for a counterexample.
For any given Hajłasz–Sobolev function, to find a convergent sequence consisting of
continuous functions to this given Hajłasz–Sobolev function in Hajłasz–Sobolev spaces,
instead of Theorem 1, we turn to find a dense subspace of Mφ

p,∞(X), which consists of some
generalized Lipschitz continuous functions.

Definition 12. Let φ ∈ A. A function u on X is said to be in the φ-Lipschitz class Lip φ(X) if
there exists a positive constant C such that, for any x, y ∈ X,∣∣∣u(x) − u(y)

∣∣∣ ≤ C φ(d(x, y)).

Observe that Lip φ(X) is just the classical Hölder space of order s ∈ (0, 1] when
φ(t) := ts for any t ∈ [0,∞).

Recall that a function φ : [0,∞) → [0,∞) is called a modulus of continuity if it is
increasing, the function φ̃, defined by setting, for any t ∈ [0,∞), φ̃(t) := φ(t)/t, is decreasing,
φ(0) = 0, and, for any t ∈ (0,∞), φ(t) > 0; see [58]. Obviously, the collection of all moduli
of continuity is contained inA∞. It is well known that, if φ is a modulus of continuity, then,
for any x, y ∈ [0,∞),

φ(x + y) ≤ φ(x) + φ(y).

Borrowing some ideas similar to that used in the proof of ([48], Theorem 5.19) (see
also ([59], Proposition 4.5)), we can prove the following conclusion.

Theorem 2. Let φ be a modulus of continuity, and p ∈ (0,∞). Then Lip φ(X) ∩ Mφ,p(X) is a
dense subspace of Mφ,p(X).

Proof. Let p ∈ (0,∞), u ∈ Mφ,p(X), g ∈ Dφ(u) ∩ Lp(X), and E be the exceptional zero-
measure set such that (13) holds true. For any λ ∈ (0,∞), let

Eλ :=
{
x ∈ X \ E : g(x) ≤ λ, |u(x)| ≤ λ

}
. (34)
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Then, the facts that u ∈ Lp(X) and g ∈ Lp(X) imply that, for any λ ∈ (0,∞),

µ(X \ Eλ) < ∞. (35)

Moreover, by the definitions ofDφ(u) and Eλ, we know that, for any x, y ∈ Eλ,

|u(x) − u(y)| ≤ φ(d(x, y))[g(x) + g(y)] ≤ 2λφ(d(x, y)).

Thus, u|Eλ is φ-Lipschitz continuous on Eλ. By ([60], Theorem 2) with the function ω

therein replaced by 2λφ, we find that uλ, defined by setting, for any x ∈ X,

uλ(x) := sup
{
u(y) − 2λφ(d(x, y)) : y ∈ Eλ

}
,

is a φ-Lipschitz continuous extension of u|Eλ from Eλ to X and, furthermore, for any x1, x2 ∈ X,∣∣∣uλ(x1) − uλ(x2)
∣∣∣ ≤ 2λφ(d(x1, x2)). (36)

Define vλ := sgn (uλ)min{|uλ|, λ}. By uλ|Eλ = u|Eλ , (34), and the definition of vλ, we
find that

vλ|Eλ = uλ|Eλ = u|Eλ . (37)

By the definition of vλ and (36), we find that, for any x, y ∈ X,∣∣∣vλ(x) − vλ(y)
∣∣∣ ≤ |uλ(x) − uλ(y)| ≤ 2λφ(d(x, y)), (38)

which means that vλ is still φ-Lipschitz continuous on X.
We now show vλ ∈ Mφ,p(X). If x, y ∈ Eλ, then, by (37) and the definition of Dφ(u),

we have

|vλ(x) − vλ(y)| = |u(x) − u(y)|

≤ φ(d(x, y))[g(x) + g(y)]. (39)

Otherwise, if at least one of x and y lies in X \ Eλ, then, by (38), we find that∣∣∣vλ(x) − vλ(y)
∣∣∣ ≤ 2λφ(d(x, y)),

which, combined with (39) and the definition ofDφ(vλ), implies that

gλ := g 1Eλ + 2λ 1X\Eλ ∈ D
φ(vλ).

By the definitions of vλ and gλ, (37), |vλ| ≤ λ, and (35), we conclude that

‖vλ‖Lp(X) . ‖vλ1Eλ‖Lp(X) + ‖vλ1X\Eλ‖Lp(X)

. ‖u‖Lp(X) + λ[µ(X \ Eλ)]
1/p

< ∞

and
‖gλ‖Lp(X) . ‖g‖Lp(X) + 2λ[µ(X \ Eλ)]

1/p
< ∞,

which, combined with the definition of ‖ · ‖Mφ,p(X), implies that vλ ∈ Mφ,p(X).
Now, we consider vλ − u. Let x, y ∈ X \ E. If x, y ∈ Eλ, then, by (37), it is obvious that∣∣∣(vλ − u)(x) − (vλ − u)(y)

∣∣∣ = 0.

If x, y ∈ X \ (Eλ ∪ E), then, by (38) and the definition ofDφ(u), we obtain∣∣∣(vλ − u)(x) − (vλ − u)(y)
∣∣∣ ≤ ∣∣∣vλ(x) − vλ(y)

∣∣∣+ ∣∣∣u(x) − u(y)
∣∣∣

≤ φ(d(x, y))[2λ+ g(x) + g(y)].



Mathematics 2021, 9, 2724 23 of 46

If x ∈ Eλ and y ∈ X \ (Eλ ∪ E), then, by (38) and the definitions of Dφ(u) and Eλ, we
conclude that ∣∣∣(vλ − u)(x) − (vλ − u)(y)

∣∣∣ ≤ ∣∣∣vλ(x) − vλ(y)
∣∣∣+ ∣∣∣u(x) − u(y)

∣∣∣
≤ φ(d(x, y))[2λ+ g(x) + g(y)]

≤ φ(d(x, y))[3λ+ g(y)]

and, similarly, if x ∈ X \ (Eλ ∪ E) and y ∈ Eλ, by (38) and the definitions of Dφ(u) and Eλ
again, we find that ∣∣∣(vλ − u)(x) − (vλ − u)(y)

∣∣∣ ≤ φ(d(x, y))[3λ+ g(x)].

Altogether, from the definition ofDφ(vλ − u) and µ(E) = 0, we deduce that

g̃λ := (3λ+ g) 1X\Eλ ∈ D
φ(vλ − u).

Moreover, by |vλ| ≤ λ and the definitions of g̃λ and Eλ, we have∥∥∥(vλ − u)1X\Eλ
∥∥∥

Lp(X)
.

∥∥∥(g + u)1X\Eλ
∥∥∥

Lp(X)

. ‖g‖Lp(X) + ‖u‖Lp(X) < ∞

and ∥∥∥̃gλ1X\Eλ
∥∥∥

Lp(X)
.

∥∥∥(3λ+ g)1X\Eλ
∥∥∥

Lp(X)

. ‖u‖Lp(X) + ‖g‖Lp(X) < ∞.

Then, using this, (37), the dominated convergence theorem with respect to µ, and
µ(X \ Eλ)→ 0 as λ→ ∞, we conclude that

lim
λ→∞
‖vλ − u‖Lp(X) = lim

λ→∞

∥∥∥(vλ − u)1X\Eλ
∥∥∥

Lp(X)
= 0

and
lim
λ→∞
‖̃gλ‖Lp(X) = lim

λ→∞

∥∥∥̃gλ1X\Eλ
∥∥∥

Lp(X)
= 0,

which imply limλ→∞ ‖vλ − u‖Mφ,p(X) = 0. This finishes the proof of Theorem 2. �

Now, we state the main result of this section, which generalizes ([41], Theorem 8.1)
from fractional Hajłasz-type spaces to those with generalized smoothness.

Theorem 3. Let φ ∈ A and F be one of the following cases:

(i) F = Mφ
p,∞(X) = Mφ,p(X) with φ being a modulus of continuity and p ∈ (1,∞);

(ii) F = Mφ
p,∞(X) = Mφ,p(X) with φ being a modulus of continuity, αφ ∈ (0, 1), and p ∈

(D/(D − log2 αφ), 1];
(iii) F = Mφ

p,q(X) with αφ ∈ (0, 1), βφ ∈ (0, 2), and p, q ∈ (D/(D − log2 αφ),∞);
(iv) F = Nφ

p,q(X) with αφ ∈ (0, 1), βφ ∈ (0, 2), p ∈ (D/(D − log2 αφ),∞), and q ∈ (0,∞),

where D is as in (1). If u ∈ Ḟ , then there exist a set E with Cap F (E) = 0 and an F -quasi-
continuous function u∗ on X such that, for any x ∈ X \ E,

u∗(x) = lim
r→0+

uB(x,r). (40)

To prove Theorem 3, we need a weak-type estimate of the F -capacity. To this end, we
need several technical lemmas. The first one is on the Hajłasz gradient ofM∗u for any u in
which the integral on any ball is finite. Recall that, for any u ∈ L1

loc (X), eitherM∗u ≡ ∞ or
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M∗u < ∞ almost everywhere (see ([54], (3.1) and Lemma 4.8) or ([61], Remark 2.2)), where
M∗ is as in Definition 9(ii).

Lemma 8. (i) Let φ ∈ A∞. Then, for any u ∈ L1
loc (X) satisfying that its integral on any ball of

X is finite andM∗u . ∞ and for any g ∈ Dφ(u),M(g) is an element ofDφ(M∗u) modulo a
positive constant independent of u and g, whereM is the classical Hardy–Littlewood maximal
operator andM∗ as in Definition 9(ii).

(ii) Let φ ∈ A∞ with αφ ∈ (0, 1). Then, for any λ ∈ (D/[D − log2 αφ],∞), any u ∈ L1
loc (X)

satisfying that its integral on any ball of X is finite andM∗u . ∞, and for any g ∈ Dφ(u),
[M(gλ)]1/λ is an element ofDφ(M∗u) modulo a positive constant independent of u and g.

Proof. Due to similarity, we only prove (ii). For any given r ∈ (0,∞), let {B j} j∈J be any
given sequence of balls as in the definition of M∗ with the radius r, and {ϕ j} j∈J be a
partition of unity with respect to {B j} j∈J as in Definition 8, where J is an index set. Let
u and g be as in the present lemma. From the definition ofM∗ and the observation that
Dφ(u) ⊂ Dφ(|u|), without loss of generality, we may assume that u ≥ 0.

Let ur be as in Definition 9(i). By
∑

j∈J ϕ j ≡ 1, we have

ur = u +
∑
j∈J

(
uB j − u

)
ϕ j. (41)

Therefore, for any j ∈ J , using Lemma 7(ii) with u, E, and L−1 therein replaced,
respectively, by u − uB j , 2B j, and r, and the properties of ϕ j, we find that, for any j ∈ J ,

g̃( j) :=
{
g + [φ(r)]−1∣∣∣u − uB j

∣∣∣}12B j

is a positive constant multiple of an element inDφ([u− uB j ]ϕ j), where the positive constant
is independent of r, u, and g. Let λ ∈ (D/[D − log2 αφ],∞). Notice that, for any j ∈ J , by
Lemma 5(ii) with B(y, 2−i) and 2−i therein replaced, respectively, by B j and r, we have, for
any x ∈ 2B j, ∣∣∣u(x) − uB j

∣∣∣ . φ(r)[M(
gλ

)
(x)

]1/λ

with the implicit positive constant independent of u, g, x, j, and r. From this; the proven

conclusion that, for any j ∈ J , g̃( j) is a positive constant multiple of an element inDφ([u −

uB j ]ϕ j); the definition of g̃( j),
∑

j∈J 12B j . 1; and g ≤ [M(gλ)]1/λ, we deduce that, for almost
every x, y ∈ X,∣∣∣∣∣∣∣∣

∑
j∈J

[
uB j − u(x)

]
ϕ j(x) −

∑
j∈J

[
uB j − u(y)

]
ϕ j(y)

∣∣∣∣∣∣∣∣
. φ(d(x, y))

∑
j∈J

[
g̃( j)(x) + g̃( j)(y)

]
. φ(d(x, y))

∑
j∈J

[{
g(x) +

[
M

(
gλ

)
(x)

]1/λ
}
12B j(x) +

{
g(y) +

[
M

(
gλ

)
(y)

]1/λ
}
12B j(y)

]
. φ(d(x, y))

{
g(x) +

[
M

(
gλ

)
(x)

]1/λ
+ g(y) +

[
M

(
gλ

)
(y)

]1/λ
}

. φ(d(x, y))
{[
M

(
gλ

)
(x)

]1/λ
+

[
M

(
gλ

)
(y)

]1/λ
}
,

which implies that [M(gλ)]1/λ is a positive constant multiple of an element ofDφ(
∑

j∈J [uB j −

u]ϕ j). By this, (41), the definition of Dφ(ur), g ∈ Dφ(u), and g ≤ [M(gλ)]1/λ, we further
conclude that [M(gλ)]1/λ is a positive constant multiple of an element inDφ(ur) with the
positive constant independent of u, g, and r. Moreover, ifM∗u . ∞, then by the definition
ofM∗ and Lemma 2(ii), we conclude that [M(gλ)]1/λ is an element of Dφ(M∗u) modulo
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a positive constant independent of u and g. This finishes the proof of (ii) and hence of
Lemma 8. �

Borrowing some ideas from the proof of ([41], Lemma 7.1), we can prove the following
lemma on the Hajłasz gradient sequence ofM∗u for any u ∈ L1

loc (X) with its integral on
any ball being finite.

Lemma 9. Let φ ∈ A0 with β+φ ∈ (0, 2), ε ∈ (0,− log2 αφ), and

δ ∈
(
0, min

{
1 − log2 βφ,− log2 αφ − ε

})
.

Then, for any λ ∈ (D/[D + ε],∞), any u ∈ L1
loc (X) such that its integral on any ball in X is

finite andM∗u . ∞, and any ~g := {gk}k∈Z ∈ Dφ(u), the sequence {g̃k}k∈Z of functions, defined by
setting, for any k ∈ Z,

g̃k :=
∑
l∈Z

2−|l−k|δ
[
M

(
gλl

)]1/λ
, (42)

is a positive constant multiple of an element in Dφ(M∗u), where the positive constant is independent
of u and ~g, D as in (1), andM∗ as in Definition 9(ii).

Proof. Let all of the symbols be as in the present lemma. By the definition ofM∗u and the
observation that Dφ(u) ⊂ Dφ(|u|), without loss of generality, we may assume that u ≥ 0.
Moreover, by Lemma 2 and the definition ofM∗, to prove the present lemma, it suffices to
show that, for any i ∈ Z, {g̃k}k∈Z is a positive constant multiple of an element in Dφ(u2−i)
with the positive constant independent of i, where u2−i is as in Definition 9(i).

To this end, we first recall that, in the proof of Theorem 1, we have shown that, for any
i ∈ Z, {hk}k∈Z, defined as in (28), is a positive constant multiple of an element in Dφ(u− u2−i).
From this, ~g ∈ Dφ(u), the definitions of Dφ(u) and Dφ(u − u2−i), and, for any x, y ∈ X,∣∣∣u2−i(x) − u2−i(y)

∣∣∣
≤ |u(x) − u(y)|+

∣∣∣(u − u2−i)(x) − (u − u2−i)(y)
∣∣∣,

it follows that, for any i ∈ Z, {gk + hk}k∈Z is a positive constant multiple of an element in
Dφ(u2−i), where the positive constant is independent of i, u, and ~g. Thus, to prove that
{g̃k}k∈Z is a positive constant multiple of an element in Dφ(u2−i) for any i ∈ Z, it suffices to
show that

gk + hk . g̃k, ∀ k ∈ Z. (43)

Indeed, by the definition of g̃k and the fact that, for almost every x ∈ X, gk(x) ≤
[M(gλk )(x)]1/λ, we have gk ≤ g̃k for any k ∈ Z almost everywhere. Then, to show (43), it
suffices to prove that, for any k ∈ Z, hk . g̃k almost everywhere. Let ε and δ be as in the
present lemma. By 1 − δ > log2 βφ, ε + δ < − log2 αφ, and Lemma 1(ii) with δ and ε therein
replaced, respectively, by 1 − δ and ε + δ, we find that, for any k, l ∈ Z with l ≤ k,

2l−kφ(2−l)
[
φ(2−k)

]−1
. 2(l−k)δ (44)

and, for any k, l ∈ Z with l ≥ k − 4,

2(l−k)εφ(2−l)
[
φ(2−k)

]−1
. 2−(l−k)δ. (45)

Let i ∈ Z. Observe that, for any l ≥ i − 4, 2(i−l)(1−ε) . 1 and, for any k ≤ i, 2(k−i)ε . 1. By
this, (44) and (45), we obtain, for any x ∈ X and k > i,

2i−k 2−iε

φ(2−k)

∑
i−4≤l≤k

2lεφ(2−l)
[
M

(
[gl(x)]λ

)]1/λ
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.
∑

i−4≤l≤k

2(i−l)(1−ε)2(l−k)δ
[
M

(
[gl(x)]λ

)]1/λ

.
∑

i−4≤l≤k

2(l−k)δ
[
M

(
[gl(x)]λ

)]1/λ

and

2i−k 2−iε

φ(2−k)

∑
l>k

2lεφ(2−l)
[
M

(
[gl(x)]λ

)]1/λ

.
∑
l>k

2(i−k)(1−ε)2−(l−k)δ
[
M

(
[gl(x)]λ

)]1/λ

.
∑
l>k

2−(l−k)δ
[
M

(
[gl(x)]λ

)]1/λ

and, for any x ∈ X and k ≤ i,

2−iε

φ(2−k)

∑
l≥i−4

2lεφ(2−l)
[
M

(
[gl(x)]λ

)]1/λ

.
∑

l≥i−4

2(k−i)ε2−(l−k)δ
[
M

(
[gl(x)]λ

)]1/λ

.
∑

l≥i−4

2−(l−k)δ
[
M

(
[gl(x)]λ

)]1/λ
,

which, combined with the proved conclusion that, for any k ∈ Z, gk ≤ g̃k almost everywhere,
implies that, for any k ∈ Z, hk . g̃k almost everywhere. Thus, for any k ∈ Z, gk + hk . g̃k
almost everywhere. Furthermore, noticing that {gk + hk}k∈Z is a positive constant multiple
of an element in Dφ(u2−i), from the definition of Dφ(u2−i), we deduce that {g̃k}k∈Z is also
a positive constant multiple of an element in Dφ(u2−i), where the positive constant is
independent of u, ~g, and i. Thus, by Lemma 2 and the definition ofM∗, we conclude that
{g̃k}k∈Z is a positive constant multiple of an element in Dφ(M∗u), which completes the proof
of Lemma 9. �

The next two lemmas are used to show the boundedness of the discrete maximal
operator M∗ on φ-Hajłasz-type spaces, which is a generalization of ([61], Theorem 4.7)
and ([41], Lemma 8.3), respectively.

Lemma 10. With the assumptions same as in Theorem 3, there exists a positive constant C,
independent of u, such that, for any u ∈ Ḟ withM∗u . ∞,∥∥∥M∗u∥∥∥

Ḟ
≤ C‖u‖Ḟ , (46)

whereM∗ is as in Definition 9(ii).

Proof. If F belongs to the case (i) of Theorem 3, then (46) follows from Lemma 8(i) and the
boundedness of the Hardy–Littlewood maximal operator on Lp(X).

If F belongs to the case (ii) of Theorem 3, then (46) follows from Lemma 8(ii) and
the boundedness of the classical Hardy–Littlewood maximal operatorM on Lp/λ(X) with
λ ∈ (D/[D − log2 αφ], p).

Now, let F belong to the case (iii) of Theorem 3. Let u ∈ Ṁφ
p,q(X), {gk}k∈Z ∈ Dφ(u) with

‖{gk}k∈Z‖Lp(X,lq) . ‖u‖Ṁφ
p,q(X)

, and r := min{p, q}. Let D be as in (1), λ ∈ (D/[D − log2 αφ], r),

and ε′ ∈ (0,− log2 αφ) be such that λ = D/(D + ε′). We also choose ε := (ε′ − log2 αφ)/2.
From αφ < 1, it follows that 0 < ε′ < ε < − log2 αφ and hence λ ∈ (D/[D + ε], r).
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Let {g̃k}k∈Z be as in (42) with δ ∈ (0, min{1 − log2 βφ,− log2 αφ − ε}). Then, by the defi-
nition of {g̃k}k∈Z and the Fefferman–Stein vector-valued maximal inequality on L

p
λ (X, l

q
λ )

(see ([56], Theorem 1.2) or ([57], Theorem 1.3)), we have∥∥∥{g̃k}k∈Z
∥∥∥

Lp(X,lq) ≤

∥∥∥∥∥{[M(
gλk

)]1/λ
}

k∈Z

∥∥∥∥∥
Lp(X,lq)

.
∥∥∥{gk}k∈Z

∥∥∥
Lp(X,lq).

Thus, using this, the definition of ‖ · ‖Ṁφ
p,q(X)

, Lemma 9, and ‖{gk}k∈Z‖Lp(X,lq) . ‖u‖Ṁφ
p,q(X)

,
we obtain ∥∥∥M∗u∥∥∥Ṁφ

p,q(X)
.

∥∥∥{g̃k}k∈Z
∥∥∥

Lp(X,lq) .
∥∥∥{gk}k∈Z

∥∥∥
Lp(X,lq) . ‖u‖Ṁφ

p,q(X)
.

This finishes the proof of Lemma 10. �

Lemma 11. Let x0 ∈ X, r ∈ (0,∞), B0 := B(x0, r), φ ∈ A, and

F ∈
{
Mφ

p,q(X), Nφ
p,q(X) : p, q ∈ (0,∞]

}
.

If {y ∈ X : d(x0, y) = τr} for some τ ∈ (2,∞) is not empty, then there exists a positive
constant C, depending only on τ, φ, and Cµ, such that, for any u ∈ Ḟ supported in B0,

‖u‖F ≤ C[1 + φ(r)]‖u‖Ḟ ,

where Cµ is as in (1).

Proof. By similarity, we only prove the case F = Mφ
p,q(X). Let B0 := B(x0, r); τ, Cµ, and

u be as in the present lemma; E be the exceptional zero-measure set such that (13) holds
true; and {gk}k∈Z ∈ Dφ(u) with ‖{gk}k∈Z‖Lp(X,lq) . ‖u‖Ṁφ

p,q(X)
. Notice that, for any x ∈ B0 and

y ∈ 2τB0 \ 2B0, we have d(x, y) ∈ (r, [1 + 2τ]r). From this, the fact that u|2τB0\2B0 ≡ 0, and the
definitions of bothA and Dφ(u), we deduce that, for any x ∈ B0 \ E,∣∣∣u(x)

∣∣∣ = inf
y∈2τB0\(2B0∪E)

∣∣∣u(x) − u(y)
∣∣∣

. φ([1 + 2τ]r)
[
g(x) + inf

y∈2τB0\(2B0∪E)
g(y)

]
, (47)

where g := sup{k: r≤2−k≤(1+2τ)r} gk and g ≥ 0.
Let z ∈ X be such that d(x0, z) = τr. Then, by a geometrical observation, we have

B0 ⊂ B(z, [1 + τ]r) and B(z, [τ − 2]r/2) ⊂ (2τB0 \ 2B0),

which, together with the doubling property of µ, implies that

µ(B0) ≤ µ(B(z, [1 + τ]r)) . µ(B(z, [τ − 2]r/2)) . µ(2τB0 \ 2B0), (48)

where the implicit positive constants depend only on τ and Cµ. Thus, from uX\B0 ≡ 0,
µ(E) = 0, (47), (48), and the definitions of g andA, we deduce that

‖u‖Lp(X) = ‖u‖Lp(B0)

. φ([1 + 2τ]r)
{
‖g‖Lp(B0) + [µ(B0)]

1/p inf
y∈2τB0\(2B0∪E)

g(y)
}

. φ([1 + 2τ]r)
{
‖g‖Lp(B0) + [µ(2τB0 \ 2B0)]

1/p inf
y∈2τB0\(2B0∪E)

g(y)
}

. φ([1 + 2τ]r)‖g‖Lp(2τB0) . φ(r)‖{gk}‖Lp(X,lq)



Mathematics 2021, 9, 2724 28 of 46

with the usual modification made when p = ∞, which, together with the assumption of
{gk}k∈Z, implies that

‖u‖Mφ
p,q(X)

≤ ‖u‖Lp(X) + ‖{gk}k∈Z‖Lp(X,lq)

. φ(r)‖{gk}‖Lp(X,lq) + ‖u‖Ṁφ
p,q(X)

. [1 + φ(r)]‖u‖Ṁφ
p,q(X)

.

This finishes the proof of Lemma 11. �

Based on the above lemmas, we can obtain the following localized weak-type capaci-
tary estimate for the restricted maximal operatorMR, where R ∈ (0,∞]. Recall that there
exists a positive constant c, depending only on Cµ, such that, for any u ∈ L0(X),

c−1MR/cu ≤ M∗Ru ≤ cMcRu (49)

(see, for instance, [41], [(8.1)]), whereMR is as in (14),M∗R as in Definition 9(iii), and Cµ as
in (1).

Lemma 12. With the same assumptions as in Theorem 3, let x0 ∈ X, R ∈ (0,∞), and B :=
B(x0, R). If τB \ 10B for some τ ∈ (10,∞) is not empty, then there exist positive constants
c = c(Cµ) and C = C(F ,R,τ,Cµ) such that, for any u ∈ F and κ ∈ (0,∞),

Cap F
({

x ∈ B : MR/cu(x) > κ
})
≤ Cκ−p‖u‖p

F
,

whereMR is as in (14) and Cµ as in (1).

Proof. Let all of the symbols be as in the present lemma,M∗R as in Definition 9(iii), and
u ∈ F . Let ϕ be a Lipschitz function supported in 4B such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on
3B. By the definition ofM∗R and the assumption of ϕ, we haveM∗Ru =M∗R(uϕ) on B and
M∗R(uϕ) ≡ 0 on X \ 5B. Then, from (49), we deduce that{

x ∈ B : MR/cu(x) > κ
}
⊂

{
x ∈ B : cM∗Ru(x) > κ

}
⊂

{
x ∈ X : cM∗R(uϕ)(x) > κ

}
=

{
x ∈ X : cκ−1M∗R(uϕ)(x) > 1

}
=: Q, (50)

where c = c(Cµ) is just the positive constant as in (49).
By the lower semi-continuity ofM∗R(uϕ) (see [54], p. 376), we conclude that, for any

x ∈ Q, there exists a δx ∈ (0, 1) such that, for any y ∈ B(x, δx), cκ−1M∗R(uϕ)(y) > 1. Thus,
Q′ :=

⋃
x∈Q B(x, δx) is a neighborhood of Q and cκ−1M∗R(uϕ) > 1 on Q′. By this; (50);

Remark 4(iii); Definition 10; Lemma 11 with u and B0 therein replaced, respectively, by
M∗R(uϕ) and 5B; Lemma 10; and Corollary 2, we obtain

Cap F
({

x ∈ B : MR/cu(x) > κ
})
≤ Cap F (Q)

≤
∥∥∥cκ−1M∗R(uϕ)

∥∥∥p
F
. κ−p

∥∥∥M∗R(uϕ)∥∥∥p
Ḟ

. κ−p
∥∥∥M∗(uϕ)∥∥∥p

Ḟ
. κ−p‖uϕ‖p

Ḟ

. κ−p‖u‖p
F

,

where the implicit positive constants depend on F , R, τ, and Cµ. This finishes the proof of
Lemma 12. �

Now, we show Theorem 3.
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Proof of Theorem 3. Again, by similarity, we only consider the caseF = Mφ
p,q(X). Without

loss of generality, we may assume that X contains at least two points. By this, we easily
know that there exist balls {B(xl, rl)}l∈I with I ⊂ N being an index set such that X ⊂⋃

l∈I B(xl, rl) and, for any l ∈ I, 5B(xl, rl) \ 4B(xl, rl) is not empty.
Let F be any given function space as in (i), (ii), or (iii) of the present theorem, and

u ∈ F . Then, from Theorem 2 when F is as in either (i) or (ii), or from Theorem 1 when
F is as in case (iii), we deduce that there exists a sequence {vi}i∈N of continuous functions
such that, for any i ∈ N,

‖u − vi‖
p
F
< 2−i(1+p). (51)

Let {B(xl, rl)}l∈I be a ball covering of X as above and c = c(Cµ) the positive constant
as in Lemma 12. For any l ∈ I, any i, j ∈ N, and any u ∈ F , let

Al,i :=
{
x ∈ B(xl, rl) : Mrl/c(u − vi)(x) > 2−i

}
and

Bl, j :=
⋃
i≥ j

Al,i.

Then, by Lemma 12 and (51), we have

Cap F (Al,i) . 2ip‖u − vi‖
p
F
. 2−i

and, furthermore, by Lemma 6, we obtain

Cap F (Bl, j) .

∑i≥ j

[Cap F (Al,i)]
θ


1/θ

. 2− j,

where θ := min{1, q/p}. Thus, the set Fl :=
⋂

j∈N Bl, j is of zero F -capacity.
Let l ∈ I. For any i ∈ N, using the continuity of vi and the Lebesgue differentiation

theorem, we conclude that, for any x ∈ X,

lim
r→0+

?
B(x,r)

∣∣∣vi(y) − vi(x)
∣∣∣ dµ(y) = 0. (52)

Since u is locally integrable (see Remark 3(i)), then, for any i ∈ N, from (52) and the
definition of Al,i, we deduce that, for any x ∈ B(xl, rl) \ Al,i,

lim sup
r→0+

∣∣∣∣vi(x) − uB(x,r)

∣∣∣∣ ≤ lim sup
r→0+

?
B(x,r)

∣∣∣vi(x) − u(y)
∣∣∣ dµ(y)

≤ lim sup
r→0+

?
B(x,r)

∣∣∣vi(y) − u(y)
∣∣∣ dµ(y) (53)

≤ Mrl/c(u − vi)(x) ≤ 2−i.

Therefore, by (53), we find that, for any j ∈ N, i1, i2 ∈ N with i1, i2 ≥ j and
x ∈ B(xl, rl) \ Bl, j =

⋂
i≥ j[B(xl, rl) \ Al,i],∣∣∣vi1(x) − vi2(x)

∣∣∣ ≤ lim sup
r→0+

∣∣∣∣vi1(x) − uB(x,r)

∣∣∣∣+ lim sup
r→0+

∣∣∣∣vi2(x) − uB(x,r)

∣∣∣∣
≤ 2−i1 + 2−i2 ,

which means that, for any given j ∈ N, {vi|B(xl,rl)\Bl, j
}i∈N is a Cauchy sequence uniformly in

B(xl, rl) \ Bl, j. Thus, for any j ∈ N, {vi|B(xl,rl)\Bl, j
}i∈N converge to some continuous function
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vl, j uniformly in B(xl, rl) \ Bl, j as i→ ∞. Due to the observation that B(xl, rl) \ Bl, j increases
on j and the uniqueness of the limit, we conclude that, for any j1, j2 ∈ N with j1 ≤ j2,

vl, j2 |B(xl,rl)\Bl, j1
= vl, j1 .

Therefore, the function v∗l , defined by setting, for any x ∈ B(xl, rl) \ Fl,

v∗l (x) := lim
j→∞

vl, j(x),

exists and, for any given j ∈ N, v∗l |B(xl,rl)\Bl, j
= vl, j. Since vl, j is continuous in B(xl, rl) \ Bl, j,

we deduce that, for any given j ∈ N, v∗l is continuous in B(xl, rl) \ Bl, j. By the definitions of
v∗l and vl, j, and (53) with i→ ∞, we conclude that, for any x ∈ B(xl, rl) \ Fl =

⋃
j∈N[B(xl, rl) \

Bl, j] =
⋃

j∈N
⋂

i≥ j[B(xl, rl) \ Al,i],

v∗l (x) = lim
j→∞

vl, j(x) = lim
j→∞

lim
i→∞

vi|B(xl,rl)\Bl, j
(x) = lim

r→0+
uB(x,r).

Altogether, we find a function v∗l and a set Fl with Cap F (Fl) = 0 such that

v∗l (·) = lim
r→0+

uB(·,r)

in B(xl, rl) \ Fl and, for any ε ∈ (0,∞), there exist a j ∈ N and a set Bl, j with Cap F (Bl, j) < ε
such that v∗l is continuous in B(xl, rl) \ Bl, j.

Next, let u ∈ Ḟ . For any given x̃ ∈ X and k ∈ N, let ϕk be a Lipschitz function
such that ϕk1B(x̃,2k) = 1 and ϕk1X\B(x̃,3k) = 0. By the boundedness of the support of ϕk
and Corollary 3, we find that uϕk ∈ F . Thus, from the conclusion proved in the above
paragraph, we deduce that, for any k ∈ N, there exist a set El,k with Cap F (El,k) = 0 and a
function ul,k defined on B(xl, rl) \ El,k such that, for any x ∈ B(xl, rl) \ El,k,

ul,k(x) = lim
r→0+

(uϕk)B(x,r)

and, for any ε ∈ (0,∞), there exists a set Ul,k with Cap F (Ul,k) < 2−k−lε such that ul,k is
continuous in B(xl, rl) \Ul,k.

Define El :=
⋃

k∈N El,k and Ul :=
⋃

k∈N Ul,k. Then, by Lemma 6, we have Cap F (El) = 0
and, for the above given ε ∈ (0,∞), Cap F (Ul) ≤ 2−lε and, moreover, Cap F (El ∪Ul) ≤ 2−lε.
For any x ∈ B(xl, rl) \ El =

⋂
k∈N B(xl, rl) \ El,k and any kx ∈ N big enough such that

x ∈ B(x̃, kx), since, for any r ∈ (0, kx], we have B(x, r) ⊂ B(x̃, 2kx), then, from the fact that
ϕkx 1B(x̃,2kx) = 1, we deduce that

lim
r→0+

(uϕkx)B(x,r) = lim
r→0+ , r∈(0,kx]

?
B(x,r)

uϕkx dµ

= lim
r→0+ , r∈(0,kx]

?
B(x,r)

u dµ (54)

= lim
r→0+

uB(x,r).

Define ul by setting, for any x ∈ B(xl, rl) \ El, ul(x) := limr→0+ uB(x,r). Then, by (54) and
the definition of ul,k, we conclude that, for any k ∈ N, ul = ul,k in [B(xl, rl) ∩ B(x̃, k)] \ El.
From this, the fact that ul,k is continuous in B(xl, rl) \ Ul,k, and the definition of Ul, we
deduce that, for any k ∈ N, ul is continuous in [B(xl, rl) ∩ B(x̃, k)] \ (El ∪Ul). Therefore, ul is
continuous in B(xl, rl) \ (El ∪Ul).

Finally, we turn to the whole space X using the covering X ⊂
⋃

l∈I B(xl, rl). Let u ∈ Ḟ .
On the one hand, we have shown that, for any l ∈ I, there exists a set El with Cap F (El) = 0
such that ul(·) := limr→0+ uB(·,r) exists on B(xl, rl) \ El. Define E :=

⋃
l∈I El and, for any

x ∈ X \ E, ũ(x) := limr→0+ uB(x,r). Then, for any l ∈ I, ũ = ul in B(xl, rl) \ E.
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On the other hand, by the above proof, we conclude that, for any given ε ∈ (0,∞)
and any l ∈ I, there exists a set Ũl with Cap F (Ũl) ≤ 2−lε such that ul is continuous in
B(xl, rl) \ Ũl. Define U :=

⋃
l∈I Ũl. Then, for any l ∈ I, ul is continuous in B(xl, rl) \U. From

this and the fact that, for any l ∈ I, ũ = ul in B(xl, rl) \ E, we deduce that ũ is continuous in
B(xl, rl) \ (E ∪U) for any l ∈ I and hence in X \ (E ∪U).

By Lemma 6, we have Cap F (E) = 0 and Cap F (U) ≤ ε and, furthermore,

Cap F (E ∪U) ≤ ε.

Let u∗ be any function defined in X such that u∗ = ũ in X \ E. Then, u∗ is continuous
in X \ (E ∪U). Thus, u∗ is one of the desired F -quasi-continuous functions on X, which
completes the proof of Theorem 3. �

Remark 5. With the same assumptions as in Theorem 3, by (40), the local integrability of u
(see [28], Remark 3.8), Remark 4(ii), and the Lebesgue differentiation theorem, we have the following
two obvious observations:

(i) u∗ = u almost everywhere;
(ii) every point outside E is a Lebesgue point of u∗.

In this sense, u∗ is called an F -quasi-continuous representative of u. Furthermore, from
the conclusion in (ii) of the present remark and ([45], Lemma 17), we deduce that, for any given
F -quasi-continuous function u in F , there exists a set of zero F -capacity such that all the outside
points are Lebesgue points of u. Observe that, by Remark 4(ii), any set of zero F -capacity is of
zero measure. This implies that, for any F -quasi-continuous function, compared with only locally
integrable functions, there exist more Lebesgue points.

4. Generalized Lebesgue Points of φ-Hajłasz-Type Functions

If a function fails to be locally integrable, which may happen, for instance, when the
index p of the φ-Hajłasz-type space is close to zero, the γ-median serves as a reasonable
substitute of the integral average (see, for instance [41,45,46]). That is because the γ-median
is defined, instead of integrals, only by the distribution sets of functions and their measures,
which removes the necessity for the local integrability of functions. Due to the similarity
between the behavior of the γ-median and that of the integral average, the Lebesgue point
can naturally be generalized to the γ-median case; see (56). In this section, we still use
the capacity to measure the set of such generalized Lebesgue points of φ-Hajłasz-type
functions. We first recall the notion of the γ-median and some of its basic properties;
see ([41], Section 2.4) (see also ([46], Section 1) for a different definition).

Definition 13. Let u ∈ L0(X) and γ ∈ (0, 1/2]. The γ-median mγ
u(E) of u over a set E ⊂ X of

finite measure is defined by setting

mγ
u(E) := inf

{
λ ∈ R : µ({x ∈ E : u(x) > λ}) < γµ(E)

}
.

Observe that, if E ⊂ X, µ(E) ∈ (0,∞) and u ∈ L0(E), then mγ
u(E) is finite.

Lemma 13. Let E, E1, E2 ⊂ X be sets of finite measure, γ, γ1, γ2 ∈ (0, 1/2], and u, v ∈ L0(X).
The following statements hold true:

(i) If γ1 ≤ γ2, then mγ1
u (E) ≥ mγ2

u (E).
(ii) If u ≤ v almost everywhere, then mγ

u(E) ≤ mγ
v (E).

(iii) If E1 ⊂ E2 and, for some positive constant c, µ(E2) ≤ cµ(E1), then

mγ
u(E1) ≤ mγ/c

u (E2).

(iv) For any c ∈ R, mγ
u(E) + c = mγ

u+c(E).
(v) For any c ∈ (0,∞), mγ

cu(E) = cmγ
u(E).
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(vi)
∣∣∣mγ

u(E)
∣∣∣ ≤ mγ

|u|(E).

(vii) mγ
u+v(E) ≤ mγ/2

u (E) + mγ/2
v (E).

(viii) For any t ∈ (0,∞),

mγ
|u|(E) ≤

(
γ−1
?

E
|u|t dµ

)1/t

. (55)

The following lemma (see, for instance, ([46], Theorem 2.1)) implies that the γ-median
over small balls can behave similar to the classical integral average of locally integrable
functions at Lebesgue points and becomes a reasonable substitute of the classical Lebesgue
differentiation theorem when the function fails to be locally integrable.

Lemma 14. Let u ∈ L0(X). Then, there exists a set E ⊂ X with µ(E) = 0 such that, for any
γ ∈ (0, 1/2] and x ∈ X \ E,

lim
r→0+

mγ
u(B(x, r)) = u(x). (56)

In particular, (56) holds true at every continuous point x of u.

Let u ∈ L0(X). Recall that a point x ∈ X is called a generalized Lebesgue point of u if (56)
holds true for x and any γ ∈ (0, 1/2]; see, for instance [41,44,45]. If u is locally integrable,
as was pointed by ([46], p. 231), any Lebesgue point of u is a generalized Lebesgue point
of u. This means that the generalized Lebesgue point is a more extensive notion than the
Lebesgue point.

Next, we recall the variants of both M and M∗ in the γ-median version (see, for
instance [41,45]), whereM =M∞ is as in (14), andM∗ as in Definition 9(ii).

Definition 14. Let γ ∈ (0, 1/2] and u ∈ L0(X). The γ-median maximal functionMγ(u) of u is
defined by setting, for any x ∈ X,

Mγ(u)(x) := sup
r∈(0,∞)

mγ
|u|(B(x, r)).

Definition 15. Let γ ∈ (0, 1/2] and u ∈ L0(X).

(i) The discrete γ-median convolution uγr of u at scale r ∈ (0,∞) is defined by setting, for any
x ∈ X,

uγr (x) :=
∑
j∈J

mγ
u(B j) ϕ j(x),

whereJ is an index set, {B j} j∈J is a ball covering ofXwith the radius r such that
∑

j∈J 12B j .
1, and {ϕ j} j∈J is a partition of unity with respect to {B j} j∈J as in Definition 8.

(ii) The discrete γ-median maximal functionMγ,∗u of u is defined by setting, for any x ∈ X,

Mγ,∗u(x) := sup
k∈Z
|u|γ

2−k (x),

where |u|γ
2−k is as in (i) with u and r replaced, respectively, by |u| and 2−k.

Remark 6. LetMγ andMγ,∗ be as in Definitions 14 and 15. Recall that there exists a positive
constant c such that, for any u ∈ L0(X),

Mγu ≤ cMγ/c,∗u ≤ c2Mγ/c2
u; (57)

see ([41], (2.10)). Additionally, recall that eitherMγu ≡ ∞ orMγu < ∞ almost everywhere in
X and either Mγ,∗u ≡ ∞ or Mγ,∗u < ∞ almost everywhere in X; see ([41], (2.10)) and ([41],
Remark 2.11).
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The following two lemmas are the variants of Poincaré-type inequalities, respectively,
in Lemma 3, (18), and (17), where the second lemma is a generalization of ([41], Lemma 3.2).

Lemma 15. Let γ ∈ (0, 1/2], φ ∈ A, and Cµ be as in (1).

(i) Then, there exists a positive constant C = C(φ,Cµ) such that, for any k ∈ Z, u ∈ L0(X),
g ∈ Dφ(u), and x ∈ X,

inf
c∈R

mγ
|u−c|(B(x, 2−k)) ≤ Cγ−1φ(2−k)

?
B (x,2−k)

g(y) dµ(y).

(ii) If αφ ∈ (0, 1), then, for any given λ ∈ (0,∞), there exists a positive constant C = C(γ,λ,φ,Cµ)

such that, for any k ∈ Z, u ∈ L0(X), g ∈ Dφ(u), and x ∈ X,

inf
c∈R

mγ
|u−c|(B(x, 2−k)) ≤ Cφ(2−k)

{?
B (x,2−k+1)

[g(y)]λ dµ(y)
}1/λ

.

Proof. We first prove (i). For any k ∈ Z, u ∈ L0(X), g ∈ Dφ(u), x ∈ X, and c ∈ R, from (55)
with t = 1, and E and u therein replaced, respectively, by B(x, 2−k) and u− c, we deduce that

mγ
|u−c|(B(x, 2−k)) ≤ γ−1

?
B (x,2−k)

|u(y) − c| dµ(y). (58)

Taking the infimum of c ∈ R in (58), and using Lemma 3, we obtain (i) of the
present lemma.

Now we prove (ii). By αφ < 1, we choose ε := −(log2 αφ)/2 > 0. For any k ∈ Z, λ ∈
(0, D/ε), u ∈ L0(X), g ∈ Dφ(u), x ∈ X, and c ∈ R, applying (55) with t = (Dλ)/(D − ελ) ∈
(0,∞), and E and u therein replaced, respectively, by B(x, 2−k) and u − c, we conclude that

mγ
|u−c|(B(x, 2−k))

≤

{
γ−1
?

B (x,2−k)
[u(y) − c](Dλ)/(D−ελ) dµ(y)

}(D−ελ)/(Dλ)
. (59)

Taking the infimum of c ∈ R in (59) and using (16) with p = λ, we obtain the
conclusion of (ii) when λ ∈ (0, D/ε). From this and the Hölder inequality, we deduce that
the conclusion of (ii) also holds true when λ ∈ [D/ε,∞), which completes the proof of
Lemma 15. �

Lemma 16. Let γ ∈ (0, 1/2], φ ∈ A with αφ ∈ (0, 1), and Cµ be as in (1). Then, for any given
λ ∈ (0,∞) and ε ∈ (0,− log2 αφ), there exists a positive constant C = C(γ,φ,ε,λ,Cµ) such that, for
any k ∈ Z, u ∈ L0(X), {gk}k∈Z ∈ Dφ(u), and x ∈ X,

inf
c∈R

mγ
|u−c|(B(x, 2−k))

≤ C2−kε
∑

l≥k−2

2lεφ(2−l)

{?
B(x,2−k+1)

[gl(y)]
λ dµ(y)

}1/λ

. (60)

Proof. Let λ ∈ (0,∞) and ν ∈ (0, ε), where ε is given as in Lemma 16. When λ ∈ (0, D/ν),
(60) follows from (55) with t = (Dλ)/(D − νλ) ∈ (0,∞), E and u therein replaced, respec-
tively, by B(x, 2−k) and u − c for arbitrary c ∈ R, and from Lemma 4 with p and ε′ therein
replaced, respectively, by λ and ε. This, combined with the Hölder inequality, further
implies (60) when λ ∈ [D/ν,∞). This finishes the proof of Lemma 16. �

The following lemma is a variant of Lemma 5 in the γ-median version.
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Lemma 17. Let γ ∈ (0, 1/2], φ ∈ A, Cµ be as in (1), and M the classical Hardy–Littlewood
maximal operator.

(i) Then, there exists a positive constant C = C(φ,Cµ) such that, for any k ∈ Z, u ∈ L0(X), g ∈
Dφ(u), y ∈ X, and almost every x ∈ B (y, 2−k+1),∣∣∣u(x) −mγ

u(B(y, 2−k))
∣∣∣ ≤ Cγ−1φ(2−k)M(g)(x).

(ii) Let αφ ∈ (0, 1). Then, for any given λ ∈ (0,∞), there exists a positive constant C = C(γ,φ,λ,Cµ)

such that, for any k ∈ Z, u ∈ L0(X), g ∈ Dφ(u), y ∈ X, and any generalized Lebesgue point
x ∈ B (y, 2−k+1), ∣∣∣u(x) −mγ

u(B(y, 2−k))
∣∣∣ ≤ Cφ(2−k)

[
M

(
gλ

)
(x)

]1/λ
.

(iii) Let αφ ∈ (0, 1). Then, for any given λ ∈ (0,∞) and ε ∈ (0,− log2 αφ), there exists a positive
constant C = C(γ,φ,λ,ε,Cµ) such that, for any k ∈ Z, u ∈ L0(X), {gl}l∈Z ∈ Dφ(u), y ∈ X, and
any generalized Lebesgue point x ∈ B(y, 2−k+1),∣∣∣u(x) −mγ

u(B(y, 2−k))
∣∣∣ ≤ C2−kε

∑
l≥k−4

2lεφ(2−l)
[
M

(
gλl

)
(x)

]1/λ
.

Proof. Let all of the symbols be as in the present lemma. We first prove (i). For any
k ∈ Z, y ∈ X and almost every x ∈ B (y, 2−k+1), by (iv) and (vi) of Lemma 13; (55) with
t = 1; and E and u therein replaced, respectively, by B(y, 2−k) and u − u(x); the geometric
observation that, for any x ∈ B(y, 2−k+1), B(y, 2−k) ⊂ B(x, 2−k+2); the doubling property of
µ; the definitions ofDφ(u) andA; and g ≤ M(g) almost everywhere, we have, for almost
every x ∈ B(y, 2−k+1) \ E,∣∣∣u(x) −mγ

u(B(y, 2−k))
∣∣∣

=
∣∣∣∣mγ

u−u(x)
(B(y, 2−k))

∣∣∣∣ ≤ mγ

|u−u(x)|
(B(y, 2−k))

≤ γ−1
?

B(y,2−k)
|u(z) − u(x)| dµ(z) . γ−1

?
B(x,2−k+2)

|u(z) − u(x)| dµ(z)

. γ−1φ(2−k)

[
g(x) +

?
B(x,2−k+2)

g(z) dµ(z)
]
. γ−1φ(2−k)M(g)(x),

which completes the proof of (i).
Now, we prove (ii) and (iii). Let λ and ε be as in (ii) and (iii) of the present lemma.

Similar to ([41] (3.3)), by (ii), (iv), and (vi) of Lemma 13, we have, for any γ, γ′ ∈ (0, 1/2]
and any ball B,

mγ′

|u−mγ
u(B)|

(B) ≤ inf
c∈R

mγ′

|u−c|+|c−mγ
u(B)|

(B)

= inf
c∈R

[
mγ′

|u−c|(B) + |c −mγ
u(B)|

]
≤ inf

c∈R

[
mγ′

|u−c|(B) + mγ
|u−c|(B)

]
. (61)

Moreover, by the geometrical observation that, for any k ∈ Z, y ∈ X, and x ∈ B(y, 2−k+1);
B(x, 2−k) ⊂ B (y, 2−k+2); and the doubling property of µ, we obtain

µ
(
B(x, 2−k+2)

)
≤ C2

µµ
(
B(x, 2−k)

)
≤ C2

µµ
(
B(y, 2−k+2)

)
≤ C4

µµ
(
B(y, 2−k)

)
.
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Therefore, from this, the definition of generalized Lebesgue points; the doubling
property of µ; (i), (iii), (iv), and (vi) of Lemma 13; Cµ ∈ [1,∞); and (61) with γ′ = γ/C4

µ and
B replaced by B(x, 2− j), we deduce that, for any generalized Lebesgue point x ∈ B(y, 2−k+1),∣∣∣u(x) −mγ

u(B(y, 2−k))
∣∣∣

≤
∣∣∣u(x) −mγ

u(B(x, 2−k+2))
∣∣∣+ ∣∣∣mγ

u(B(x, 2−k+2)) −mγ
u(B(y, 2−k))

∣∣∣
≤

∑
j≥k−2

∣∣∣mγ
u(B(x, 2− j−1)) −mγ

u(B(x, 2− j))
∣∣∣+ ∣∣∣mγ

u(B(y, 2−k)) −mγ
u(B(x, 2−k+2))

∣∣∣
≤

∑
j≥k−2

mγ

|u−mγ
u(B(x,2− j))|

(B(x, 2− j−1)) + mγ

|u−mγ
u(B(x,2−k+2))|

(B(y, 2−k)) (62)

≤
∑

j≥k−2

mγ/Cµ

|u−mγ
u(B(x,2− j))|

(B(x, 2− j)) + m
γ/C4

µ

|u−mγ
u(B(x,2−k+2))|

(B(x, 2−k+2))

.
∑

j≥k−2

m
γ/C4

µ

|u−mγ
u(B(x,2− j))|

(B(x, 2− j))

.
∑

j≥k−2

inf
c∈R

[
m
γ/C4

µ

|u−c| (B(x, 2− j)) + mγ
|u−c|(B(x, 2− j))

]
.

On the one hand, (62), combined with Lemma 15(ii) with k therein replaced by j, (9)
with k and k0 therein replaced, respectively, by − j and −k + 2 and the definitions ofM and
A, implies (ii) of the present lemma. On the other hand, (62), combined with Lemma 16, the
definition ofM, and

∑
j≥k−2 2− jε . 2−kε , implies (iii) of the present lemma, which completes

the proof of Lemma 17. �

We now establish the convergence of approximations by discrete γ-median convolu-
tions as below, which is a generalization of ([41], Theorem 1.1) from fractional Hajłasz-type
spaces to those with generalized smoothness.

Theorem 4. Let γ ∈ (0, 1/2], F ∈ {Mφ
p,q(X), Nφ

p,q(X)} with φ ∈ A0 and p, q ∈ (0,∞), and
u ∈ Ḟ . Then, ‖u − uγ

2−i‖F → 0 as i→ ∞, where {uγ
2−i }i≥0 are the discrete γ-median convolutions as

in Definition 15(i).

Proof. By similarity, we only consider the case F = Mφ
p,q(X). Let γ ∈ (0, 1/2], i ∈ Z+, uγ

2−i

be as in Definition 15(i), u ∈ Ṁφ
p,q(X), and {gk}k∈Z ∈ Dφ(u) ∩ Lp(X, lq).

Let λ ∈ (0, min(p, q)), ε ∈ (0,− log2 αφ), {B j} j∈J be any given ball covering of X with
the radius 2−i such that

∑
j∈J 12B j . 1, and {ϕ j} j∈J , consisting of a sequence of c2i-Lipschitz

functions, a partition of unity with respect to {B j} j∈J as in Definition 8. For any j ∈ J , let
mγ

u(B j) be as in Definition 13. Then, by the properties of {ϕ j} j∈J , we have

u − uγ
2−i =

∑
j∈J

(
u −mγ

u(B j)
)
ϕ j. (63)

Using Lemma 7 with u and L−1 therein replaced, respectively, by u −mγ
u(B j) and c2i,

we conclude that, for any j ∈ J , {h∗k, j}k∈Z, defined by setting, for any k ∈ Z,

h∗k, j :=


{
2i−k

[
φ(2−k)

]−1∣∣∣u −mγ
u(B j)

∣∣∣+ gk

}
12B j , k > i,[

φ(2−k)
]−1∣∣∣u −mγ

u(B j)
∣∣∣ 12B j , k ≤ i,

is a positive constant multiple of an element of Dφ([u − mγ
u(B j)]ϕ j). From this, (63), an

argument similar to that used in the estimation of (26) with u2−i , uB j , and hk, j therein
replaced, respectively, by uγ

2−i , mγ
u(B j), and h∗k, j, Lemma 17(iii), (27), and

∑
j∈J 12B j . 1, we
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deduce that {hk}k∈Z, defined as in (28) with the above λ and ε, is also a positive constant
multiple of an element in Dφ(u − uγ

2−i). By this, (32),∥∥∥∥∥∥∥∥
 ∑

k≥i−4

gq
k

1/q
∥∥∥∥∥∥∥∥

Lp(X)

≤ ‖{gk}k∈Z‖Lp(X,lq) < ∞

with i ∈ Z+, and the dominated convergence theorem with respect to µ, we obtain

∥∥∥∥u − uγ
2−i

∥∥∥∥
Ṁφ

p,q(X)
. ‖hk‖Lp(X,lq) .

∥∥∥∥∥∥∥∥
 ∑

k≥i−4

gq
k

1/q
∥∥∥∥∥∥∥∥

Lp(X)

→ 0

as i→ ∞. Then, using (63), Lemma 17(iii) instead of Lemma 5(iii), the properties of {ϕ j} j∈J ,
Lemma 1(ii) with ε ∈ (0,− log2 αφ), the Fefferman–Stein vector-valued maximal inequality
on Lp/λ(X, lq/λ) (see ([56], Theorem 1.2) or ([57], Theorem 1.3)), φ(0) = 0, and an argument
similar to that used in the estimation of (33), we conclude that

∥∥∥∥u − uγ
2−i

∥∥∥∥
Lp(X)

. φ(2−i)

∥∥∥∥∥∥∥∥
 ∑

l≥i−4

gq
l

1/q
∥∥∥∥∥∥∥∥

Lp(X)

→ 0

as i→ ∞. This finishes the proof of Theorem 4. �

Now, we state the following variant of Theorem 3 for γ-medians.

Theorem 5. Let γ ∈ (0, 1/2], φ ∈ A, and F be one of the following cases:

(i) F = Mφ
p,∞(X) = Mφ,p(X) with φ being a modulus of continuity and p ∈ (1,∞);

(ii) F = Mφ
p,∞(X) = Mφ,p(X) with φ being a modulus of continuity, αφ ∈ (0, 1), and p ∈ (0, 1];

(iii) F ∈ {Mφ
p,q(X), Nφ

p,q(X)} with αφ ∈ (0, 1), βφ ∈ (0, 2), and p, q ∈ (0,∞).

Then, for any u ∈ Ḟ , there exists a set E with Cap F (E) = 0 satisfying that, for any
γ ∈ (0, 1/2], there exists an F -quasi-continuous function u∗ on X such that, for any x ∈ X \ E,

u∗(x) = lim
r→0

mγ
u(B(x, r)). (64)

To show Theorem 5, similar to the proof of Theorem 3, we need a weak-type capacitary
estimate with respect toMγ. To this end, we first prove an auxiliary lemma as below, which is
about the boundedness ofMγ,∗ in φ-Hajłasz-type spaces and generalizes ([41], Theorem 7.6).
Here and thereafter,Mγ andMγ,∗ are as in Definitions 14 and 15(ii), respectively.

Lemma 18. With the same assumptions as in Theorem 5, there exists a positive constant C =
C(F ,γ,Cµ) such that, for any u ∈ F , ∥∥∥Mγ,∗u

∥∥∥
F
≤ C‖u‖F , (65)

whereMγ,∗ is as in Definition 15.

Proof. Let all of the symbols be as in the present lemma. Without loss of generality, by the
definition ofMγ,∗,Dφ(u) ⊂ Dφ(|u|), and Dφ(u) ⊂ Dφ(|u|), we may assume that u ≥ 0.

Let i ∈ Z, {B j} j∈J be any given ball covering of Xwith the radius 2−i such that∑
j∈J

12B j . 1,
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{ϕ j} j∈J be a partition of unity with respect to {B j} j∈J as in Definition 8, uγ
2−i be as in

Definition 15, andMγ be as in Definition 14. Then, by (57) and ([41], (2.7)), we have, for
any given p ∈ (0,∞), ∥∥∥Mγ,∗u

∥∥∥
Lp(X)

.
∥∥∥∥Mγ/cu

∥∥∥∥
Lp(X)

. ‖u‖Lp(X) < ∞, (66)

where c is the same positive constant as in (57). From this and Remark 6, we deduce that
Mγ,∗u < ∞ almost everywhere.

Let F = Mφ,p(X) and g ∈ Dφ(u). Using (i) and (ii) of Lemma 17 instead of (i) and (ii)
of Lemma 5, andMγ,∗u < ∞ almost everywhere, from an argument similar to that used in
the proof of Lemma 8 with {uB j } j∈J and u2−i therein replaced, respectively, by {mγ

u(B j)} j∈J
and uγ

2−i , we deduce thatM(g) is a positive constant multiple of an element inDφ(Mγ,∗u)

and, if αφ ∈ (0, 1), then for any λ ∈ (0,∞), [M(gλ)]1/λ is a positive constant multiple of an
element in Dφ(Mγ,∗u), where both of the positive constants are independent of u and g.
Below, we let λ ∈ (0, min(p, q)). Thus, by the boundedness ofM on Lp(X) when p ∈ (1,∞),
and on Lp/λ(X) with λ ∈ (0, p) when p ∈ (0, 1], we obtain, when p ∈ (1,∞),∥∥∥Mγ,∗u

∥∥∥
Ṁφ,p(X)

.
∥∥∥M(g)

∥∥∥
Lp(X)

. ‖g‖Lp(X)

and, when αφ ∈ (0, 1) and p ∈ (0, 1],∥∥∥Mγ,∗u
∥∥∥

Ṁφ,p(X)
.

∥∥∥∥[M(gλ)]1/λ
∥∥∥∥

Lp(X)
. ‖g‖Lp(X).

This, combined with (66), proves (65) when F belongs to either (i) or (ii) of the
assumptions of Theorem 5.

Next, we prove (65) when F belongs to the case (iii) of Theorem 5. By similarity, we
only consider the case F = Mφ

p,q(X) with αφ ∈ (0, 1), βφ ∈ (0, 2), and p, q ∈ (0,∞). To
prove (65), by (66), it suffices to show∥∥∥Mγ,∗u

∥∥∥
Ṁφ

p,q(X)
. ‖u‖Ṁφ

p,q(X)
.

Let {gk}k∈Z ∈ Dφ(u) be such that ‖{gk}k∈Z‖Lp(X,lq) . ‖u‖Ṁφ
p,q(X)

, and ε ∈ (0,− log2 αφ).
Recall that we have proved in the proof of Theorem 4 that {hk}k∈Z, defined as in (28) with
the above λ and ε, is a positive constant multiple of an element in Dφ(u − uγ

2−i). Thus, by
{gk}k∈Z ∈ Dφ(u), we conclude that {gk + hk}k∈Z is a positive constant multiple of an element
in Dφ(uγ

2−i).
Let δ ∈ (0, min{1 − log2 βφ,− log2 αφ − ε}) and {g̃k}k∈Z be as in (42) with the above λ

and δ. Similar to the proof of Lemma 9, we know that, for any k ∈ Z, gk + hk . g̃k
almost everywhere. By this and the proved conclusion that {gk + hk}k∈Z is a positive
constant multiple of an element in Dφ(uγ

2−i), we conclude that {g̃k}k∈Z is also a positive
constant multiple of an element in Dφ(uγ

2−i) with the positive constant independent of
i. Furthermore, using the fact thatMγ,∗u < ∞ almost everywhere and Lemma 2(ii), we
find that {g̃k}k∈Z is a positive constant multiple of an element in Dφ(Mγ,∗u). From this, the
Fefferman–Stein vector-valued maximal inequality on Lp/λ(X, lq/λ) (see ([56], Theorem 1.2)
or ([57], Theorem 1.3)), and the choice of {gk}k∈Z, we deduce that∥∥∥Mγ,∗u

∥∥∥
Ṁφ

p,q(X)
. ‖{g̃k}k∈Z‖Lp(X,lq)

.

∥∥∥∥∥∥∥∥
∑

l∈Z

[
M(gλl )

]q/λ

λ/q

∥∥∥∥∥∥∥∥
1/λ

Lp/λ(X)

. ‖{gl}l∈Z‖Lp(X,lq) . ‖u‖Ṁφ
p,q(X)

.
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Thus, by (66), we conclude that (65) holds true for F = Mφ
p,q(X) with αφ ∈ (0, 1),

βφ ∈ (0, 2), and p, q ∈ (0,∞). This finishes the proof of Lemma 18. �

The following weak-type capacitary estimate plays a crucial role in the proof of
Theorem 5. Since it is just a generalization of ([41], Theorem 7.7), and a straight corollary
of both Lemma 18 and the lower semi-continuity of Mγ,∗u for any u ∈ L0(X), we omit
its proof.

Lemma 19. With the assumptions same as in Theorem 5, there exists a positive constant C,
depending only on F , γ, and Cµ, such that, for any u ∈ F and κ ∈ (0,∞),

Cap F (
{
x ∈ X : Mγu(x) > κ

}
) ≤ Cκ−p‖u‖p

F
,

whereMγ is as in Definition 14 and Cµ as in (1).

Now, we turn to prove Theorem 5. Since the proof of Theorem 5 is quite similar to
that of Theorem 3, we only sketch the main steps.

Proof of Theorem 5. Let F be any given function space as in (i), (ii), or (iii) of the present
theorem, and p ∈ (0,∞). We first let u ∈ F . By Theorems 2 and 4, we find that, in any case
as above, there always exists a sequence {ui}i∈N of continuous functions such that, for any
i ∈ N,

‖u − ui‖
p
F
< 2−i(1+p).

For any k, i ∈ N, define

Ak,i :=
{
x ∈ X : M1/(2k)(u − ui)(x) > 2−i

}
and

E :=
⋃
k≥2

Ek :=
⋃
k≥2

⋂
j∈N

Bk, j :=
⋃
k≥2

⋂
j∈N

⋃
i≥ j

Ak,i.

Then, by Lemma 19, we have, for any given k ∈ N, Cap F (Ak,i) . 2−i and, by Lemma 6,
for any j ∈ N, Cap F (Bk, j) . 2− j, which implies that, for any given k ∈ N, Cap F (Ek) = 0
and hence Cap F (E) = 0.

For any given k ∈ N \ {1} and any i ∈ N, by the continuity of ui and (55) with t = 1, we
find that, for any x ∈ X,

lim sup
r→0+

m1/k
|ui−ui(x)|

(B(x, r)) ≤ k lim
r→0+

?
B(x,r)

∣∣∣u(y) − u(x)
∣∣∣dy

= 0.

From this, (i), (iv), (vi), and (vii) of Lemma 13 and the definitions ofM1/(2k) and Ak,i,
we deduce that, for any given k ∈ N \ {1}, any γ ∈ [1/k, 1/2], i ∈ N, and x ∈ X \ Ak,i,

lim sup
r→0+

∣∣∣ui(x) −mγ
u(B(x, r))

∣∣∣ ≤ lim sup
r→0+

mγ

|u−ui(x)|
(B(x, r))

≤ lim sup
r→0+

[
m1/(2k)
|u−ui |

(B(x, r)) + m1/(2k)
|ui−ui(x)|

(B(x, r))
]

(67)

≤ M1/(2k)(u − ui)(x) ≤ 2−i.

By an argument similar to that used in the proof of Theorem 3, with (53) replaced
by (67), we conclude that, for any given k ∈ N \ {1}, there exists a function vk on X \ Ek such
that, for any γ ∈ [1/k, 1/2] and x ∈ X \ Ek,

vk(x) = lim
r→0+

mγ
u(B(x, r))
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and, moreover, for any j ∈ N, vk is continuous on X \ Bk, j.
For any given γ ∈ (0, 1/2], define v∗γ by setting, for any x ∈ X \ E,

v∗γ(x) := lim
r→0+

mγ
u(B(x, r)).

Then, for any k ∈ N with k ≥ 2, v∗γ = vk in X \ E and hence v∗γ is continuous in
X \ (E ∪ Bk, j) for any j ∈ N. Notice that, by Lemma 6, for any j ∈ N,

Cap F (E ∪ Bk, j) . 2− j.

By choosing j big enough, we conclude that any function u∗ satisfying u∗ = v∗γ in X \ E
is F -quasi-continuous in X and hence the desired function in the present theorem.

Similar to the proof of Theorem 3, by Corollary 3, the proved conclusion for the case
u ∈ F , and Lemma 6, via choosing a sequence of Lipschitz continuous functions supported
in balls, we obtain the desired conclusion of the present theorem when u ∈ Ḟ . This finishes
the proof of Theorem 5. �

Remark 7. With the same assumptions as in Theorem 5, by Lemma 14, (64), and Remark 4(ii), we
have the following two observations:

(i) u∗ = u almost everywhere;
(ii) every point outside E is a generalized Lebesgue point of u.

From (ii) and ([45], Lemma 17), we further deduce that, if u ∈ F is F -quasi-continuous, then there
exists a set E with Cap F (E) = 0 such that every point outside E is a generalized Lebesgue point of
u. This means that F -quasi-continuous functions may have more Lebesgue points, compared with
the functions that are only locally integrable.

In the following, we consider another technical tool, the generalized Hausdorff mea-
sure, which can also be applied to measure the exceptional set of (generalized) Lebesgue
points. To see this, we study the comparison between the capacity and the above gen-
eralized Hausdorff measure. We refer the reader to [55,62,63] for more studies on the
comparison between the capacity and the generalized Hausdorff measure, and to [64] for a
study on measuring the exceptional set of Lebesgue points via the generalized Hausdorff
measure straightly.

Let h ∈ A, θ ∈ (0, 1], and R ∈ (0,∞]. The Netrusov–Hausdorff cocontentHh,θ
R , related to h,

θ, and R, is defined by setting, for any E ⊂ X,

H
h,θ
R (E) := inf


∑

i∈I

{
µ(B(xi, ri))

h(ri)

}θ1/θ

: E ⊂
⋃
i∈I

B(xi, ri), ri ≤ R

, (68)

where the infimum is taken over all coverings {B(xi, ri)}i∈I of E, and I ⊂ N an index set.
Then, the generalized Hausdorff measureHh,θ(E), related to h and θ, is defined by setting, for
any E ⊂ X,

Hh,θ(E) := lim sup
R→0+

H
h,θ
R (E). (69)

Recall that the Netrusov–Hausdorff content on Rn defined via the powers of the radius
was first considered by Netrusov [65] and generalized to metric spaces via an increasing
function h by Nuutinen ([55], Definition 5.1).

Observe that some lower bound and upper bound estimates for the N s
p,q-capacity

and the Ms
p,q-capacity with p, q ∈ (0,∞), in terms of the related Netrusov–Hausdorff

contents, have been established, respectively, in ([55], Theorems 5.4 and 5.5) and ([63],
Theorems 3.6 and 3.7) where N s

p,q and Ms
p,q denote the classical fractional Hajłasz–Besov

and Hajłasz–Triebel–Lizorkin spaces, respectively. By some arguments similar to those
used in the proofs of ([55], Theorems 5.4 and 5.5) and ([63], Theorems 3.6 and 3.7), we
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have the following conclusions (Theorems 6 and 7) on the generalized spaces Mφ
p,q(X) and

Nφ
p,q(X); we omit the details of their proofs.

Theorem 6. Let φ ∈ A0, p ∈ (0,∞), q ∈ (0,∞], θ := min{1, q/p}, F ∈ {Mφ
p,q(X), Nφ

p,q(X)}, and
Cµ be as in (1). Then, there exists a positive constant C = C(F ) such that, for any E ⊂ X and
R ∈ (0,∞),

Cap F (E) ≤ CHh,θ
R (E), (70)

whereHh,θ
R is as in (68).

Remark 8. Let φ(r) := rs with s ∈ (0, 1) for any r ∈ [0,∞). In this case, (70) with F = Nφ
p,q(X)

becomes
Cap Nφ

p,q(X)
(E) . Hh,θ

R (E)

with the implicit positive constant independent of E, which is just ([55] Theorem 5.4); moreover,
taking F = Mφ

p,q(X) and letting R→ 0+ in (70), we obtain

Cap Mφ
p,q(X)

(E) . Hh,θ(E)

with the implicit positive constant independent of E, which is just ([63] Theorem 3.6), whereHh,θ

is as in (69).

Theorem 7. Let φ ∈ A0 , p, q ∈ (0,∞) , F ∈ {Mφ
p,q(X), Nφ

p,q(X)} , ω be any given function of
admissible growth such that, for any L ∈ Z+,∑

k≥L

1
ω(2−k)

< ∞;

and Cµ as in (1). Let x0 ∈ X, R ∈ (0, 1), and B0 := B(x0, R). If there exist two positive constants
κ1 ∈ (2,∞) and κ2 ∈ (κ1,∞) such that κ2B0 \ κ1B0 , ∅, then there exist two positive constants τ
and C = C(κ1,κ2,R,ω,F ,Cµ) such that, for any compact set E ⊂ B0,

H
hω,1
τR (E) ≤ C Cap F (E),

where, for any r ∈ (0, R], hω(r) := [φ(r)ω(r)]p, andHhε ,1
τR (E) is as in (68) with θ = 1.

Remark 9. Let φ(r) := rs with s ∈ (0, 1) for any r ∈ [0,∞). When F = Nφ
p,q(X), if hω, as in

Theorem 7, satisfies that, for any N ∈ Z,∫ 2N

0
[hω(t)]

−1/pts−1 dt < ∞

(which is just the assumption in ([55], Theorem 5.5)), then, for any L ∈ Z+,

∑
k≥L

1
ω(2−k)

∼
∑
k≥L

∫ 2−k

2−k−1
[ω(t)]−1t−1 dt

∼

∫ 2−L

0
[ω(t)]−1t−1 dt

∼

∫ 2−L

0
[hω(t)]

−1/pts−1 dt < ∞.

Thus, Theorem 7 implies ([55], Theorem 5.5) with κ1 = 4 and κ2 = 8.
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When F = Nφ
p,q(X), for any given ε ∈ (0,∞), let ω(r) := [log(1/r)]−1−ε/p for any

r ∈ [0,∞). Obviously, we have ∑
k≥L

[log(2k)]−1−ε/p < ∞.

Moreover, if Cap F (E) = 0, then, by (71), we obtain Hhω,1
∞ (E) = 0, which implies ([63],

Theorem 3.7) with κ1 = 4 and κ2 = 8, whereHhω,1
∞ (E) is as in (68) with R = ∞.

Finally, we concentrate on the space Mφ,p(X) with αφ ∈ (0, 1) and p ∈ (D/(− log2 αφ),∞),
where D is as in (1). We point out that, similarly to ([55], Theorems 5.4 and 5.5) and ([63],
Theorems 3.6 and 3.7), the proofs of Theorems 6 and 7 rely on some equivalent character-
izations of the related capacities Cap Nφ

p,q(X)
and Cap Mφ

p,q(X)
, in which the counterpart for

the capacity Cap Mφ,p(X) is unknown. Instead, we use Lemma 14 and the doubling property
of the measure to obtain the following result.

Theorem 8. Let F = Mφ
p,∞(X) = Mφ,p(X) with φ ∈ A∞, αφ ∈ (0, 1), p ∈ (D/(− log2 αφ),∞),

and D and Cµ be as in (1). Let B0 be a ball with the radius R̃0 ∈ (0,∞). If there exist an R0 ∈ (0, R̃0]
and a τ ∈ (2,∞) such that, for any ball B ⊂ 2B0 with the radius no more than R0, τB \ 2B , ∅,
then, for any compact set E ⊂ B0,

Cap F (E) = 0 ⇐⇒ Hh,1(E) = 0, (71)

where, for any r ∈ (0, R0], h(r) := [φ(r)]p, andHh,1(E) is as in (69) with θ = 1.

Proof. Let all the symbols be as in the present theorem and L ∈ Z such that R0 ∈ (2L−1, 2L].
We first proveHh,1(E) = 0 =⇒ Cap F (E) = 0. To this end, let R ∈ (0, min{1, R0}] and

{B(xi, ri) : ri ≤ R}i∈I be a ball covering of E, where I is an index set. For any i ∈ I, we let ϕi
be an r−1

i -Lipschitz function supported in 2B(xi, ri) such that 0 ≤ ϕi ≤ 1 and ϕi|B(xi,ri) ≡ 1.
The existence of such {ϕi}i∈I can be found in the proof of ([63], Theorem 3.6). For any
i ∈ I, by Definition 10; the continuity of ϕi; Corollary 4 with L−1 and E therein replaced,
respectively, by ri and 2B(xi, ri); the doubling property of µ; the definition ofA; and ri ≤ 1,
we have

Cap F (B(xi, ri)) ≤ ‖2ϕ‖
p
F

.
{
1 + [φ(ri)]

−1}p
µ(2B(xi, ri))

. [φ(ri)]
−p
µ(B(xi, ri))

with the implicit positive constants independent of xi and ri. From this, Remark 4(iii), and
Lemma 6 with θ = 1 and Ei replaced by B(xi, ri), we deduce that

Cap F (E) ≤ Cap F

⋃
i∈I

B(xi, ri)

 .∑
i∈I

µ(B(xi, ri))

[φ(ri)]
p ∼

∑
i∈I

µ(B(xi, ri))

h(ri)
,

which, combined with (68) with θ = 1, implies that Cap F (E) . H
h,1
R (E) with the implicit

positive constant independent of R and E. Letting R→ 0+, we obtain Cap F (E) . H
h,1(E),

which implies that, ifHh,1(E) = 0, then Cap F (E) = 0.
Conversely, if Cap F (E) = 0, then by the definition of Cap F (E), we find that, for any

given ε ∈ (0,∞), there exists a function v such that v ≥ 1 in a neighborhood of E and

‖v‖p
Mφ,p(X)

< Cap F (E) + ε = ε. (72)

For any given generalized Lebesgue point x ∈ E and any given k ∈ Z with k ≥ −L + 1,
take B := B(x, 2−k). Then B ⊂ 2B0, which together with the assumption of the present
theorem, means that τB \ 2B , ∅. Let ϕ be a Lipschitz function such that ϕ|B ≡ 1 and
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ϕ|X\2B ≡ 0. Define u := vϕ. Then, by Lemma 7(ii) with E and u therein replaced, respectively,
by 2B and v, we conclude that there exists a g ∈ Dφ(u), supported in 2B, such that

‖g‖Lp(X) . ‖v‖Mφ,p(2B), (73)

where the implicit positive constant depends only on φ, p, and K.
Since τB \ 2B , ∅, it follows that there always exists a point z ∈ τB \ 2B. Observe that,

for any y ∈ 2B, we have d(y, z) < (τ+ 2)2−k, u(z) = 0, and g(z) = 0. Then, by the definition
ofDφ(u) and φ ∈ A, we conclude that, for almost every y ∈ 2B,∣∣∣u(y)∣∣∣ = inf

z∈τB\2B

∣∣∣u(y) − u(z)
∣∣∣ ≤ inf

z∈τB\2B
φ(d(y, z))[g(y) + g(z)] . φ(2−k)g(y),

which combined with (ii), (v), and (vi) of Lemma 13 and the doubling property of µ, implies
that ∣∣∣mγ

u(B)
∣∣∣ ≤ mγ

|u|(B) . φ(2−k)mγ
g(B).

From this; the definition of the generalized Lebesgue point; the doubling property of
µ; (iii), (iv), and (vi) of Lemma 13; (61); Lemma 15(ii) with λ = p; and (55) with t = p and
E = B, we deduce that, for the above given x,∣∣∣u(x)

∣∣∣ ≤ ∣∣∣u(x) −mγ
u(B)

∣∣∣+ ∣∣∣mγ
u(B)

∣∣∣
≤

∑
j≥k−2

∣∣∣mγ
u(B(x, 2− j−1)) −mγ

u(B(x, 2− j))
∣∣∣+ ∣∣∣mγ

u(B)
∣∣∣

≤
∑

j≥k−2

mγ/Cµ

|u−mγ
u(B(x,2− j))|

(B(x, 2− j)) +
∣∣∣mγ

u(B)
∣∣∣

.
∑

j≥k−2

inf
c∈R

[
mγ/Cµ

|u−c| (B(x, 2− j)) + mγ
|u−c|(B(x, 2− j))

]
+ φ(2−K)mγ

g(B)

.
∑

j≥k−2

φ(2− j)

{?
B(x,2− j+1)

[g(y)]p dµ(y)
}1/p

+ φ(2−K)

{?
B
[g(y)]p dµ(y)

}1/p

.
∑

j≥k−2

φ(2− j)

{?
B(x,2− j+1)

[g(y)]p dµ(y)
}1/p

∼
∑

j≥k−2

φ(2− j)
[
µ(B(x, 2− j+1))

]−1/p
‖g‖Lp(B(x,2− j+1)).

Using this and u|E∩B ≥ 1, we conclude that, for this x,

1 .
∑

j≥k−2

φ(2− j)
[
µ(B(x, 2− j+1))

]−1/p
‖g‖Lp(B(x,2− j+1)), (74)

where the implicit positive constant is independent of x and k. Moreover, by the doubling
property of µ, we find that, for any j ≥ k − 2,[

µ
(
B(x, 2− j+1)

)]−1
. 2( j−k)D

[
µ
(
B(x, 2−k+2)

)]−1
,

where the implicit positive constant depends only on Cµ. From this, (74), the fact that g is
supported in 2B, the doubling property of µ, p ∈ (D/(− log2 αφ),∞), and Lemma 1(i) with
ε = D/p, it follows that, for x and k as above,

1 .
∑

j≥k−2

2( j−k)D/pφ(2− j)
[
µ(B(x, 2−k+2))

]−1/p
‖g‖Lp(B(x,2−k+1))
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. φ(2−k)
[
µ(B(x, 2−k))

]−1/p
‖g‖Lp(B(x,2−k+1)), (75)

where the implicit positive constant is independent of x and k. By (73), (75), and the
definition of h, we conclude that, for any given k ∈ Z with k ≥ −L + 1 and any generalized
Lebesgue point x ∈ E,

µ(B(x, 2−k))

h(2−k)
.

[φ(2−k)]p

h(2−k)
‖g‖p

Lp(B(x,2−k+1))

.
[φ(2−k)]p

h(2−k)
‖v‖p

Mφ,p(B(x,2−k+1))

∼ ‖v‖p
Mφ,p(B(x,2−k+1))

, (76)

where the implicit positive constants depend only on k, γ, φ, p, and Cµ.
Recall that, for any ball B′ with the radius r ∈ (0,∞), µ(B′) ∈ (0,∞). Then, by

Lemma 14, we have that, for any k ∈ Z with k ≥ −L + 1 and x′ ∈ E, there always exists a
generalized Lebesgue point y in B(x′, 2−k). Thus, B(x′, 2−k) ⊂ B(y, 2−k+1) and B(y, 2−k) ⊂
B(x′, 2−k+1). Using this, (76) with x therein replaced by y, the definition of h, φ ∈ A, and the
doubling property of µ, we further conclude that, for any given k ∈ Z with k ≥ −L + 1 and
any x′ ∈ E,

µ(B(x′, 2−k))

h(2−k)
≤
µ(B(y, 2−k+1))

h(2−k)

.
µ(B(y, 2−k−1))

h(2−k−1)
. ‖v‖p

Mφ,p(B(y,2−k))
. ‖v‖p

Mφ,p(B(x′,2−k+1))
. (77)

For any given R ∈ (0, 2L−1], let k0 ∈ Z be such that 2−k0 ≤ R < 2−k0+1. Obviously,
{B(x, 2−k0) : x ∈ E} is a covering, consisting of balls with uniformly bounded diameter,
of E. Thus, by a covering lemma for doubling metric spaces (see, for instance, ([66],
Theorem 3.1.3) and ([67], Lemma 2.9)), we obtain a countable subfamily {B(xi, 2−k0) : xi ∈

E, i ∈ I} of disjoint balls with the radius no more than R such that

E ⊂
⋃
i∈I

5B(xi, 2−k0),

where I is an index set. From this, (68) with θ = 1 and R replaced by 5R, the doubling
property of µ, φ ∈ A, (77) with k = k0 + 1, the property of {B(xi, 2−k0) : xi ∈ E, i ∈ I},
and (72), we deduce that

H
h,1
5R (E) ≤

∑
i∈I

µ(5B(xi, 2−k0))

h(5 · 2−k0)

.
∑
i∈I

µ(B(xi, 2−k0−1))

h(2−k0−1)
.

∑
i∈I

‖v‖p
Mφ,p(B(xi,2−k0 ))

. ‖v‖p
Mφ,p(X)

. ε,

where the implicit positive constants depend only on φ, p, Cµ, and R. Letting ε→ 0+, we
then conclude that, for any R ∈ (0, 2L−1],Hh,1

5R (E) = 0, which further implies that

Hh,1(E) = lim sup
R→0+

H
h,1
5R (E) = 0.

This finishes the proof of Theorem 8. �
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Remark 10. Let F and h be as in Theorem 8, and D and Cµ be as in (1). We point out that, by the
proof of Theorem 8, the implication

Cap F (E) = 0 =⇒ Hh,1(E) = 0

holds true for any set E ⊂ X.
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