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Abstract: Swarm intelligence techniques have been created to respond to theoretical and practical
global optimization problems. This paper puts forward an enhanced version of the firefly algorithm
that corrects the acknowledged drawbacks of the original method, by an explicit exploration mecha-
nism and a chaotic local search strategy. The resulting augmented approach was theoretically tested
on two sets of bound-constrained benchmark functions from the CEC suites and practically validated
for automatically selecting the optimal dropout rate for the regularization of deep neural networks.
Despite their successful applications in a wide spectrum of different fields, one important problem
that deep learning algorithms face is overfitting. The traditional way of preventing overfitting
is to apply regularization; the first option in this sense is the choice of an adequate value for the
dropout parameter. In order to demonstrate its ability in finding an optimal dropout rate, the boosted
version of the firefly algorithm has been validated for the deep learning subfield of convolutional
neural networks, with respect to five standard benchmark datasets for image processing: MNIST,
Fashion-MNIST, Semeion, USPS and CIFAR-10. The performance of the proposed approach in both
types of experiments was compared with other recent state-of-the-art methods. To prove that there
are significant improvements in results, statistical tests were conducted. Based on the experimental
data, it can be concluded that the proposed algorithm clearly outperforms other approaches.

Keywords: convolutional neural networks; dropout; regularization; metaheuristics; swarm intelli-
gence; optimization; firefly algorithm

1. Introduction

Swarm intelligence is popular in the field of optimization. However, as the “no
free lunch” theorem infers, no single algorithm is universally the best performing al-
gorithm for all problems. Hence, many techniques inspired by the behaviors of living
organisms have been developed and applied for theoretical and practical tasks, including
function optimization, parameter and method calibration, and efficiency improvement in
industrial scenarios.

The current paper introduces a modified version of the firefly algorithm (FA) and
verifies its boosted abilities on global optimization tasks. The FA [1] is a well-known SI
algorithm that has shown great promise in the field of optimization based on metaheuristics.
The proposed method is theoretically tested on two bound-constrained benchmark sets:
(i) with chosen functions from the CEC test suite, with 10, 30, and 100 dimensions; and
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(ii) with challenging CEC2017 bound-constrained problems. Finally, from the practical
perspective, the proposed approach was applied for dropout approximation.

The FA was chosen as the base for augmentation as it has been successfully vali-
dated for various NP-hard challenges in the machine learning domain [2–4], including
the dropout estimation problem [5], and it shows great potential. However, it was also
established that the basic FA suffers from some deficiencies and it is assumed that its
potential can be further improved by performing modification of its original version. Fur-
thermore, the performance of SI algorithms for a dropout regularization challenge was not
investigated enough.

The field of machine learning suffers from overfitting, otherwise known as high
variance, and it appears along every model. The question is not if the model will overfit,
but rather about how much it will overfit. While the variance is high, the value of the bias
is at its lowest, which is the deviation from the predicted value. The trade-off between
these two parameters has to be made without any of the two gravitating towards their
extreme values. The difficulty arises when the data set is modest in size, which leaves less
space for adjusting. Convolutional neural networks (CNN) tackle this problem with the
method of dropout regularization, which has proven to be efficient in solving these types
of scenarios. In this process, random neurons are selected for exclusion from the layers
during the training phase. This results in a higher bias, which translates to a more precise
model, but the key is moderation, because of the previously mentioned trade-off.

Dropout is estimated manually and tested by trial and error, which is unsustainable in
cases where the model is complex. Dropout estimation by swarm intelligence algorithms
can help solve this problem. Algorithms that are considered swarm-like heuristics have
had success with solving NP-hard problems, including dropout estimation. CNN and SI
algorithms are metaheuristics; they are influenced by concepts from nature. CNNs take
inspiration from the human visual cortex and SI algorithms take inspiration from animals
that move, live, and gather resources in large groups, called swarms. Recent research
shows that the hybrid solutions between machine learning and swarm intelligence provide
better results [6–8]. These types of hybrid solutions are more optimized and scalable.

The observed results indicate improvement from the original algorithm on the tested
CEC benchmarks and better results with the CNN. As mentioned before, overfitting is
unavoidable. One of the solutions is regularization—this is the process of preventing
overfitting. The complexity of the model is controlled through regularization techniques.
Models with a larger number of features result in a large number of weights, considering
that every feature is assigned a certain weight. The loss function returns the difference
between the predicted and the actual label. Different techniques of regularization exist,
among which, the most popular are L1, L2, and dropout regularization. The dropout
method carries significant importance because of the high accuracy of the model, while
the loss is very low. The other techniques perform well in established scenarios; however,
there is a certain lack of evidence of stable performance.

The main objective behind the approach proposed in this study is to further improve
the FA, from the theoretical side, increase the classification performance of CNNs, and
avoid the overfitting issue by proper establishment of the dropout regularization param-
eter, from a practical scope. Furthermore, since the potential of metaheuristics for this
type of challenge was not investigated enough, 10 other well-known swarm intelligence
approaches were also implemented and tested for this problem. The contribution of this
research is three-fold:

• A novel modified FA algorithm was implemented by specifically targeting the known
flaws of the basic implementation of the FA approach;

• The devised algorithm was later utilized to help establish the proper dropout value
and enhancing the CNN accuracy;

• Other well-known swarm intelligence metaheuristics for CNN dropout regularization
challenge were further investigated.
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The rest of the paper is organized in the following manner. Section 2 describes the
fundamental technologies used (swarm intelligence and CNN). Section 3 introduces the
modified version of the algorithm, as well as the original one. Section 4 provides the results
of the experiments. Section 5 deals with the optimization of the dropout parameter, and
the final observations are given in Section 6.

2. Preliminaries and Related Works

Improving an existing solution by modifying an algorithm, i.e., via another meta-
heuristic approach, yields good results in this field. Metaheuristic solutions are stochastic,
and for an algorithm to be categorized as metaheuristic, it must be inspired by a certain
process in the nature. These processes come from group animal behaviors, in which animals
work towards a common goal, unachievable by solely working alone. This type of behavior
exhibits group intelligence. The intellectual potential of a single unit of a species is not
very high. On the contrary, while in large groups, even simple organisms perform complex
tasks successfully. The solutions inspired by these kinds of animals are metaheuristic and
belong to the field of swarm intelligence, which has proven successful in solving NP-hard
problems. This has been exploited in algorithm hybridization for improving machine
learning algorithms; this type of combination is referred to as learnheuristics.

In this work, dropout regularization improvement was achieved by the previously
mentioned methods. Swarm intelligence is a metaheuristic field that adapts animal be-
havior, specifically in animals that move in swarms, in regard to algorithms used in the
field of artificial intelligence [9,10]. The field of SI has a wide application because it ef-
ficient in solving NP-hard problems. SI methods have been frequently used to address
different optimization tasks, both theoretical [11] and from various practical fields, in-
cluding wireless sensor networks (WSNs) [12–15], task scheduling in the cloud, and edge
computing [16,17]. Recently, one of the most important fields of interest has been the
hybrid approach with SI and machine learning. The number of publications in this domain
increased drastically in recent years; some of the most prominent works include hyperpa-
rameter optimization [3,18,19], feature selection problems [2], time series prediction tasks,
e.g., estimation of COVID-19 cases [6,20], and neural network training [21,22].

Hybridization of these algorithms yields the most benefits. With this approach, it
is possible to significantly improve convergence times. SI algorithms apply a stochastic
approach in the search of global optima, making them heavily reliant on the number of
iterations. This process is divided into two phases, exploration and exploitation, similar
to the training and testing phases in machine learning. In exploration, the focus is on
exploring the local search area, while the latter phase is global. These phases must be
balanced out, again, similar to the training and testing phases in machine learning. The SI
goal is not to achieve the best solution, but rather to quickly provide a sub-optimal one.
The search for the best solution can be greatly enhanced by adding evolutionary principles
to the algorithm. The evolutionary algorithms implement a mechanism that transfers
the knowledge from the previous population to the next one. This is achieved through
mutation, crossover, and selection. Mutation can be translated into the algorithm, keeping
a unit from the previous generation, but with the modification of the value it carries.
Crossover is the combination of two neurons, and selection is the process of selecting
the best units. This is a different approach compared to the random generation of a hive
population. Evolution-based swarms are prone to provide faster convergence compared to
the classic population-based swarm algorithms, but are less sensitive in terms of finding
local optima, as they can get more easily stuck in them.

The SI method proposed in this paper regards an augmentation of the FA algorithm.
The improved version was tested on several benchmark theoretical functions, before it is
applied to dropout optimization in CNN.

Humans are highly visual creatures and rely heavily on this sense. This translates
to limitations of input that can be used for machine learning. While the field yielded
tremendous results in big data and prediction-based insights, most of the ideas that em-
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ploy AI required visual input. For the majority of adopters, which are non-professional
individuals, the only contact with AI is by using certain software that manipulates the
visual input. While these tasks are trivial, in regard to changing one’s appearance, the
true importance of this adoption lies in the previously mentioned nature of our species.
Humans are not computational beings. Therefore, the human species does not process any
of the information absorbed by labeling, tagging, and placing into tables. This creates a
limitation for the accurate representation of the information obtained in the computational
form. It is inefficient and too complex of a process for an individual to translate the obtained
information from a photograph into words (in a way that a program can process them). As a
result, CNNs have been widely applied because they excel in these types of tasks, including
speech recognition, natural language processing, and computer vision. These models must
be ‘modeled’, such as the human nervous system [23–25]. The most recent applications
include facial recognition [26–29], document analysis [30–32], image classification tasks in
medicine as support for diagnostic processing and faster illness detection [33–35], analysis
of climate change and extreme weather prediction [36,37], and many others. The meta-
heuristic approach in CNN comes from the animal visual cortex. The visual cortex is built
from layers that receive, segment, and integrate visual input. The output of each layer is
the input for the next layer. During this process, the data get cleaner as they get deeper.
This means that data are simplified, making it easier to process further, while retaining all
of the important features. An example of this behavior is edge forming on the first layer,
the set of edges and corners on the second layer, sets of corners and contours and parts of
objects on the third layer and, finally, the full object on the last layer. The convolution layer,
pooling layer, and the fully connected layer, in that order, represent the anatomy of a CNN.

Firstly, the convolution layers apply the corresponding operations, which filter the
data. It is important to emphasize that the filters are always smaller in size from the input.
Widely used sizes are 3 × 3, 5 × 5, and 7 × 7. The convolution operation of the input
vector is:

z[l]i,j,k = w[l]
k x[l]i,j + b[l]k (1)

The symbols from the equation bear the following meaning: z[l]i,j,k denotes the output
feature value of the k-th feature map at location i, j, the input is x at the location i, j, w
represents filters, and bias is b.

The activation operation is:
g[l]i,j,k = g(z[l]i,j,k), (2)

where g(·) denotes the non-linear function exploiting the output.
There are two types of pooling layers: global and local. The most widely used method

is the max and average pooling.
The resolution is reduced through the pooling function:

y[l]i,j,k = pooling(g[l]i,j,k) (3)

Classification is performed by the fully connected layers. The softmax layer performs
multi-classification. In the case of binary classification, the logistic layer is used.

As stated in Section 1, several techniques are used to avoid the overfitting issue; one of
them is dropout regularization. This research focuses on optimizing the dropout probability
(dp); hence, the dropout regularization is explained in the following paragraphs.

In light of the proposed CNN model, the dropout technique can be considered a
new CNN layer. With this in mind, r denotes the activation or dropout of M nodes in
the observed layer. Every variable rj is assigned the value of 1 with probability 1− p,
independently. If the observed rj contains the value 1, then that unit remains in the
network, and if not, then that particular unit is removed from the network with all of
its connections.
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The probability p is unconstrained from other cells in the network, and it is obtained
from the Bernoulli distribution, described with the Equation (4).

rj ∼ Bernoulli(p), ∀j = 1, 2, . . . , M (4)

With this in mind, it is possible to denote the outputs vector of a layer L with y(L)

during the network training. After applying the dropout, the new outputs vector ỹ(L) can
be defined by Equation (5):

ỹ(L) = ry(L) (5)

At the end, during the network testing, the weight matrix W is required to be scaled by
ratio p for averaging all 2M possible networks that have dropped out. This step summarizes
the main contributions of the regularization method, because it is needed to test a single
network, as shown in Equation (6).

W(L)
test = pW(L) (6)

where W(L) denotes the weight matrix at layer L.

3. Proposed Method

This beginning section introduces the basic implementation of the FA metaheuristics,
followed by the discussion about the known and observed flaws and drawbacks of the
original version. At the end, a detailed description of the proposed modified method that
is devised to specifically overcome these flaws of the original algorithm is provided.

3.1. The Original Firefly Algorithm

The FA metaheuristics, introduced by Yang [1], is motivated by flashing and social
characteristics of fireflies. Since, in the ‘real-world’, the natural system is relatively complex
and sophisticated, the FA models it by using several approximation rules [1].

Brightness and attractiveness of fireflies are used for modeling fitness functions;
attractiveness, in most typical FA implementations, depend on the brightness, which is in
turn determined by the objective function value. In the case of minimization problems, it is
formulated as [1]:

I(x) =


1

f (x)
, if f (x) > 0

1+ | f (x) | , otherwise
(7)

where I(x) represents attractiveness and f (x) denotes the value of objective function at
location x.

Light intensity; hence, the attractiveness of the individual decreases, as the distance
from the light source increases [1]:

I(r) =
I0

1 + γr2 (8)

where I(r) represents light intensity at the distance r, while I0 stands for the light intensity
at the source. Furthermore, for modeling real natural systems, where the light is partially
absorbed by its surroundings, the FA makes use of the γ parameter, which represents
the light absorption coefficient. In most FA versions, the combined effect of the inverse
square law for distance and the γ coefficient is approximated with the following Gaussian
form [1]:

I(r) = I0 · e−γr2
(9)

Moreover, each firefly individual utilizes attractiveness β, which is directly propor-
tional to the light intensity of a given firefly and also depends on the distance, as shown in
Equation (10).



Mathematics 2021, 9, 2705 6 of 33

β(r) = β0 · e−γr2
(10)

where parameter β0 designates attractiveness at distance r = 0. It should be noted that, in
practice, Equation (10) is often replaced by Equation (11) [1]:

β(r) =
β0

1 + γr2 (11)

Based on the above, the basic FA search equation for a random individual i, which
moves in iteration t + 1 to a new location xi towards individual j with greater fitness, is
given as [1]:

xt+1
i = xt

i + β0 · e
−γr2

i,j(xt
j − xt

i ) + αt(κ − 0.5) (12)

where α stands for the randomization parameter, the random number drawn from Gaussian
or a uniform distribution is denoted as κ, and ri,j represents the distance between two
observed fireflies i and j. Typical values that establish satisfying results for most problems
for β0 and α are 1 and [0, 1], respectively.

The ri,j is the Cartesian distance, which is calculated by using Equation (13).

ri,j = ||xi − xj|| =

√√√√ D

∑
k=1

(xi,k − xj,k)2 (13)

where D marks the number specific problem parameters.

3.2. Motivation for Improvements

Notwithstanding the outstanding performance of original FA for many benchmarks [38]
and practical challenges [39], findings of previous studies suggest that the basic FA shows
some deficiencies in terms of insufficient exploration and inadequate intensification-
diversification balance [40–42]. The lack of diversification is particularly emphasized
in early iterations, when, in some runs, the algorithm is not able to converge to optimal
search space regions, and ultimately worse mean values are obtained. In such scenarios, a
basic FA search procedure (Equation (12)), which primarily conducts exploitation, is not
able to guide the search towards optimum domains. Conversely, when in the initialization
phase, random solutions are generated by chance in the optimal or near-optimal regions,
the FA manages to obtain satisfying results.

Further, by analyzing a fundamental FA search equation (Equation (12)), it can be
observed that it does not encompass an explicit exploration procedure. To address this
issue, some FA implementations utilize the dynamic randomization parameter α, where this
parameter is gradually decreased from its initial value α0 towards the predefined threshold
αmin, as shown in Equation (14). In this way, at the beginning of a run, exploration is more
emphasized, while in later iterations, the balance between intensification and diversification
moves towards exploitation [43]. However, based on the extensive empirical simulations,
it is deduced that the application of dynamic α is not enough to enhance FA exploration
abilities and the proposed mechanism only slightly eliminates this issue.

αt+1 = αt ·
(

1− t
T

)
, (14)

where t and t + 1 denote current and next iteration, respectively, while the T is the maxi-
mum iteration number in one run of an algorithm.

It is also worth noting that the previous studies show that FA exploitation abilities are
efficient in tackling various kinds of tasks, and FA is known as metaheuristic, with robust
exploitation capabilities [40–42].
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3.3. Novel FA Metaheuristics

A novel FA approach proposed in this study addresses issues of the basic FA by
assimilating the following procedures:

• Explicit exploration mechanism based on the solution’s exhaustiveness;
• gBest chaotic local search (CLS) strategy.

No matter what the outstanding exploitation capabilities of the original FA are, by
using the CLS mechanism, intensification can further improve, as shown in the empirical
section of this manuscript.

Motivated by proposed enhancements, a novel FA is named chaotic FA with enhanced
exploration (CFAEE).

3.3.1. Explicit Exploration Mechanism

The goal of the explicit exploration procedure is to assure that the algorithm converges
to the optimum part of the search space in early iteration, while in late phases of execution,
it facilitates exploration around the parameter boundaries of the current best individual
x∗. To incorporate this behavior, each solution is modeled by using additional attributes
trial, which is incremented every time when the solution cannot be improved by the basic
FA search (Equation (12)). When the trial parameter for a particular solution reaches a
predetermined limit value, the individual is replaced with the random solution drawn
from within the boundaries of the search space by utilizing the same procedure as in the
initialization phase:

xi,j = lj + (uj − lj) · rand, (15)

where xi,j represents j-th component of i-th individual, uj and lj denote upper and lower
search boundaries of the j-th parameter, and rand is a uniformly distributed random
number from the interval [0, 1].

The solution, which trial exceeds the limit, is said to become exhaustive. This idea, as
well as terminology, was adapted from the well-known ABC metaheuristics [44], which are
known to have efficient exploration mechanisms [45].

Replacement of the exhausted solution, with a pseudo-random individual, stirs up
search performances in early iterations, when the algorithm does not identify proper parts
of the search region. However, in later iterations, following the reasonable assumption that
the optimal region has been found, this kind of replacement wastes function evaluations.
For that reason, in later iterations, the random replacement procedure is changed with
the guided replacement mechanism around the lower and upper parameter values of all
solutions in the population:

xi,j = Plj + (Puj − Plj) · rand, (16)

where Plj and Puj represent the lowest and highest values of the j-th component from the
entire population P.

3.3.2. The gBest CLS Strategy

The chaos as random phenomenon exists in non-linear and deterministic systems and
is highly responsive to its initial condition [46]. From the mathematical perspective, chaotic
search is more efficient than the ergodic one [47], because a vast number of sequences can
be generated by only tweaking its initial values.

Notwithstanding that, in modern literature, many chaotic maps exist, after conducting
empirical experiments, it was concluded that, in case of the proposed novel FA, the logistic
map obtains the most promising results. We should note that the logistic map has been
utilized in many swarm intelligence approaches [48–50].



Mathematics 2021, 9, 2705 8 of 33

The logistic map that the proposed method utilizes executes in K steps and it is
defined as:

σk+1
i,j = µσk

i,j(1− σi,j), k = 1, 2, ...K, (17)

where σk
i,j and σk+1

i,j represent chaotic variable for j-th component of the i-th solution in
steps k and k + 1, respectively, and µ is control variable. The σi,j 6= 0.25, 0.5 and 0.75,
σi,j ∈ (0, 1) and µ is set to 4, since this value was previously determined empirically [50].

The proposed method incorporates the global best (gBest) CLS strategy because the
chaotic search is performed around the x∗ solution. In each step k, new x∗, denoted as x′∗,
is generated with the Equations (18) and (19), which are applied for to component j of x∗:

x′∗j = (1− λ)x∗j + λSj (18)

Sj = lj + σk
j (uj − lj) (19)

where σk
j is determined by Equation (17) and λ is the dynamic shrinkage parameter that

depends on the current fitness function evaluation (FFE) and on the maximum number of
fitness function evaluations (maxFFE) in the run:

λ =
maxFFE− FFE + 1

maxFFE
(20)

By using dynamic λ, better exploitation–exploration equilibrium around the x∗ is
established. In earlier phases of the execution, a wider search radius around the x∗ was
explored, while in the later phases, a fine-tuned exploitation was performed. The FFE and
maxFFE can be replaced with t and T when the maximum number of iterations is taken as
the termination condition.

In this way, by using the CLS strategy, x∗ is (attempted to be) improved in K steps,
and if the x′∗ obtains better fitness than the x∗, the CLS procedure is terminated, and the x∗

is replaced with x′∗. However, if in K steps the x∗ could not be improved, it is retained in
the population.

3.3.3. Chaotic FA with Enhanced Exploration Pseudo-Code

In order to efficiently incorporate the exploration mechanism and gBest CLS strat-
egy in the original FA, a few things should be considered. First, as already suggested in
Section 3.3.1, in the early phases of the execution, the random replacement mechanism
should be conducted, while in latter phases, the guided one would generate better results.
Second, the gBest CLS strategy, in early iterations, would not generate significant improve-
ments because the x∗ likely still did not converge to the optimum region, and it would just
waste FFEs.

To control the above mentioned behavior, the additional control parameter ψ is in-
cluded in the following way: if t < ψ, the exhausted solutions from the population are
replaced with the random ones (Equation (15)) and the gBest CLS will not be executed; if
t ≥ ψ, the guided replacement mechanism will be executed (Equation (16)) and the gBest
CLS will be triggered.

Moreover, to fine-tune, the basic FA search proposed method utilizes dynamic α,
according to Equation (14).

Taking all of the above, the pseudo-code of the proposed CFAEE is summarized in
Algorithm 1.
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Algorithm 1 The CFAEE pseudo-code

Initialize main metaheuristics control parameters N and T
Initialize search space parameters D, uj and lj
Initialize CFAEE control parameters γ, β0, α0, αmin, K and φ
Generate initial random population Pinit = {xi,j}, i = 1, 2, 3..., N; j = 1, 2, , ...D using Equation (15)
in the search space
while t < T do

for i = 1 to N do
for z = 1 to i do

if Iz < Ii then
Move solution z in the direction of individual i in D dimensions (Equation (12))
Attractiveness changes with distance r as exp[−γr] (Equation (10))
Evaluate new solution, replace the worse individual with better one and update intensity
of light (fitness)

end if
end for

end for
if t < φ then

Replace all solutions for which trial = limit with random ones using Equation (15)
else

Replace all solutions for which trial = limit with guided replacement using Equation (16)
for k = 1 to K do

Perform gBest CLS around the x∗ using Equations (17)–(19) and generate x′∗
Retain better solution between x∗ and x′∗

end for
end if
Update α and λ according to Equations (14) and (20), respectively

end while
Return the best individual x∗ from the population
Post-process results and perform visualization

3.3.4. The CFAEE Complexity and Drawbacks

The number of FFEs can be taken as a metric to determine the complexity of the swarm
intelligence algorithm because the most computationally expensive part is the objective
evaluation [38]. The basic FA evaluates objective functions in the initialization and in the
solution updating phases. While updating solutions, according to the Equation (12), the FA
employs one main loop for T iterations and two inner loops going through N solutions [38].

Thus, including the initialization phase, the worst case complexity of basic FA meta-
heuristics is O(N) + O(N2 · T). However, if N is relatively large, it is possible to use
one inner loop by ranking the attractiveness or brightness of all fireflies using sorting
algorithms, and in this case, complexity is O(N) + O(N · T · log (N)) [38].

The complexity of the proposed CFAEE is higher than the original FA due to the
application of the explicit exploration mechanism and gBest CLS strategy. In the worst case
scenario, if the limit = 0, all solutions will be replaced in every iteration, and the gBest CLS
strategy will be triggered throughout the whole run if φ = 0. Assuming that the value of K
is set to 4, then the worst case CFAEE complexity is given as: O(N) + O(T · N2) + O(T ·
N) + O(4 · T). However, in practice, the complexity is much better because of limit and ψ
control parameter adjustments.

Drawbacks of the proposed CFAEE over the original version involve utilization of
additional control parameters limit and ψ. However, conducting empirical simulations,
values of these parameters can be relatively easy determined. Moreover, the employment
of these two parameters is justified because the CFAEE exhibits substantial performance
improvements over the original FA for benchmark challenges and for the dropout regular-
ization challenge from the machine learning domain, as shown in Sections 4 and 5.
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4. Bound-Constrained Benchmark Simulations

The proposed novel FA was first rigorously tested on a set of standard bound-
constrained benchmarks that encompass functions from the well-known Congress on
Evolutionary Computation (CEC) benchmark suite and other notable instances. The
first benchmark set consists of 18 carefully chosen complex uni-modal, multi-modal, and
two-dimensional functions, with the goal of determining convergence speed and explo-
ration ability of the proposed method. Comparative analysis was performed with another
state-of-the-art FA version. The purpose of the second benchmark set, which includes
challenging CEC2017 unconstrained functions, is to measure the robustness and efficiency
of the proposed CFAEE over other the state-of-the-art swarm intelligence metaheuristics.

4.1. Experimental Setup

Due to the stochastic nature of metaheuristics, the only way to determine proper
control parameter values is by performing a “trial and error” approach on a wider set of
theoretical problems, such as extensively utilized bound-constrained benchmarks. After-
wards, the results for a set of independent runs are averaged, and control parameters that
obtain the best mean performances are utilized in further experiments. This is usual practice
for establishing proper control parameter values for novel and improved implementations
of existing metaheuristics approaches [1,51–53].

Following the above-mentioned firmly established practice, the optimal (or near-
optimal) CFAEE control parameter setup was determined by conducting extensive sim-
ulations on classical unconstrained benchmarks. The goal was to find control parameter
values that would, on average, for all test instances, accomplish satisfying results.

The CFAEE control parameter values that were utilized in both bound-constrained
simulations are shown in Table 1. Since the CFAEE may utilize different number of FFE
in each run, the maxFFE is used as termination criteria instead of T. Expressions for
calculating values of limit and φ parameters are also determined empirically.

Table 1. Setup of CFAEE control parameters.

Parameter and Notation Value

Number of solution N 20 (benchmark1), 30 (benchmark2)
Maximum number of FFE (maxFFE) 160,000 (benchmark1), 15,030 (benchmark2)
Absorption coefficient γ 1.0
Attractiveness at r = 0 β0 1.0
Randomization (step) α changes according to Equation (14)
Initial value of step α0 0.5
Minimum value of step αmin 0.1
Solutions’ exhaustiveness limit maxFFE/N · 2
CLS strategy step number K 4
CLS strategy λ changes according to Equation (20)
Parameter φ maxFFE/2

Both bound-constrained experiments were executed in 50 independent runs and all
methods included in the comparative analysis were implemented for the purpose of this
research. All algorithms were implemented in Python by using core (built-in), as well
as specific data science and machine learning Python libraries: NumPy, SciPy, pandas,
scikit-learn, pyplot, and seaborn.

All experiments were conducted on Intel® CoreTM i7-8700K CPU and 32 GB of RAM
running, using a Windows 10 × 64-bit operating system computer platform.

4.2. Benchmark Problem Set 1

The goal of the first bound-constrained simulation was to validate convergence
speed and exploration ability of the proposed method against other state-of-the-art FA
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approaches. The same ‘opponent’ algorithms and the same test beds as in [54] are included
in the analysis.

Table 2 provides details of carefully chosen unconstrained benchmark instances that
were used in experiments. Tests f 1, f 3, f 4, f 5, f 6, f 7, f 14, and f 15 are provided by the
benchmark suite of the CEC. Remaining functions represent basic tests used to evaluate the
convergence of algorithms and quality of solutions. In addition, all test functions possess
diverse characteristics. Firstly, the complex uni-modal functions that only have the global
optimum are f 1, f 2, f 5, f 7, f 8, f 12, and f 14. These functions are used for the purpose of
convergence speed testing. Secondly, the multi-modal functions that have a variety of local
optima are f 3, f 4, f 6, f 9, f 10, f 11, f 13, and f 15 and their purpose is to test the ability of an
algorithm to pull through from local solutions, which is the measure of exploration ability.
Finally, the highly complex two-dimensional functions with various local minima are also
included f 16, f 17, and f 18.

State-of-the-art FA versions that were included in he comparative analysis are the
following: dynamic adaptive weight firefly algorithm (WFA) [55], chaotic FA based on
logistic map (CLFA) [56], Levy flights FA (LFA) [57], variable step size firefly algorithm for
numerical optimization (VSSFA) [58], and the dynamically adaptive firefly algorithm with
global orientation (GDAFA) [54].

In [54], all of the above-mentioned FA approaches were tested with N = 20 and
T = 1000 per run, which, in the worst case, yielded a total of 400,040 FFE (please refer
to Section 3.3.4). However, empirically, it was determined that not all N · N evaluations
were executed in each iteration and the best approximation would be FFE/2.5, which is
around 160,000. Thus, in this research, experiments provided in [54] were recreated with
FFE = 160,000 for all methods in order to establish fair comparative analysis because the
proposed CFAEE utilizes more FFE in each iteration than other opponent methods. Basic
control parameter setups for all FA versions are the same, as shown in Table 1; for their
other specific parameters, please refer to [54].

It should be noted that, for all methods, except for the basic FA, similar results as in [54]
were obtained. In the conducted experiments, basic FA with dynamic parameter alpha
(Equation (14)) was used, and much better results than reported in [54] were obtained.
Authors in [54] implemented a static FA approach, and other proposed improved FA
methods established better performance.

All simulations were conducted with 10, 30, and 100 dimensions (D = [10, 30, 100])
for benchmark function instances from f 1 to f 15 and comparative analysis results were
summarized in Tables 3–5, respectively. Comparative analysis results with two-dimensional
functions ( f 16− f 18) are provided in Table 6. In all simulations, best, worst, and mean
values averaged over 50 runs are reported. The results in bold and slightly larger font
denote the algorithm that showed the best results for that performance metric.

The overall conclusion from all presented results is that the best two methods are
proposed—CFAEE and GDAFA. Benchmark instance with D = 10 are relativity easy for
optimization and both methods in each run for all benchmarks obtained optimum results.
The most significant performance difference between the original FA and other methods
can be observed in the f 14 test, where the basic version completely failed to converge to
the optimum region. On the other hand, the basic FA showed very competitive results for
the f 3 benchmark.

When the benchmarks with D = 30 were considered, the proposed CFAEE again
obtained superior results, leaving the GDAFA approach in second place. The superiority
of CFAEE can be seen in f 5, f 7, f 8, and f 13 benchmarks, where the difference between
CFAEE (first), followed by GDAFA (second), and all other observed algorithms, were the
most significant. It is also worth noting that the basic FA implementation again performed
well, and exhibited competitive performances for the test instances f 1, f 2, f 5, f 9, and f 10,
where it outperformed several other enhanced FA implementations.

When the most complex benchmarks (D = 100) are observed, the superiority of the
proposed CFAEE can be seen once more. This is most obvious in the test instances f 7, f 8,
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and f 13, where performance of the CFAEE (first), followed closely by GDAFA (second),
were by far the best when compared to all other algorithms, with the most significant
difference. The GDAFA, on the other hand, performed very well in test instances f 6, f 9,
and f 14, finishing in the first place, in front of the proposed CFAEE. Again, similar as to
the D = 10 and D = 30 benchmarks, the basic FA implementation performances were
very competitive, which can be easily seen for f 1 and f 6 benchmarks, where the basic
FA performances were close to CFAEE and GDAFA, while leaving other enhanced FA
implementations behind.

Finally, for instances with only two dimensions (Table 6), all methods, except FA and
WFA, managed to reach optimum in all runs. These complex functions exhibit many local
optima and FA and WFA did not show satisfactory exploration ability in all runs. This
issue of basic FA is described in Section 3.2.

For making performance differences more clear for the readers—the number of times
that each algorithm outperformed the benchmark, as well as each performance indicator,
are counted in Table 7.

Further, to see if there is a statistically significant difference in the results, we applied
the Wilcoxon signed rank-test to perform the pair-wise results comparisons between the
proposed CFAEE and other improved FA versions, and the original FA algorithm, for 100-
dimensional simulations (Table 5). Following the usual practice for determining whether
the results came from different distributions, a significance level of α = 0.05 was taken.
It should be noted that the results for D = 10 and D = 30 do not exhibit statistically
significant differences since low-dimensional and medium-dimensional problems are easy
tasks for all methods included in the analysis.

Results of the Wilcoxon signed-rank test are summarized in Table 8. As can be seen
from the presented table, the calculated p-value is lesser than the critical level α = 0.05
in all cases, and it can be concluded that the proposed CFAEE, on average, significantly
outperforms all other approaches.

Table 2. Function details for benchmarks problem set I.

ID Name Search Range Formulation Optimum

f1 Sphere [−100, 100]D min f (x) = ∑D
i=1 x2

i 0

f2 Moved Axis Function [−5.12, 5.12]D min f (x) = ∑D
i=2 5ix2

i 0

f3 Griewank [−100, 100]D min f (x) = ∑D
i=1

x2
i

4000 −∏D
i=1 cos( xi√

i
) + 1 0

f4 Rastrigin [−5.12, 5.12]D min f (x) = 10n + ∑D
i=1[x

2
i − 10 cos(2πxi)] 0

f5 The Schwefel’s Problem 1.2 [−100, 100]D min f (x) = ∑D
i=1 ∑i

j=1 x2
j 0

f6 Ackley [−32, 32]D min f (x) = −a× exp(−b
√

1
n ∑n

i=1 x2
i )− exp( 1

D ∑n
i=1 cos(cxi)) + a + exp(1) , where a = 20, b = 0.2 0

f7 Powell Sum [−1, 1]D min f (x) = ∑D
i=1|xi|i+1 0

f8 Sum Squares [−10, 10]D min f (x) = ∑D
i=1 ix2

i 0

f9 Schwefel 2.22 [−100, 100]D min f (x) = ∑D
i=1 |xi|+ ∏n

i=1 |xi| 0

f10 Powell Singular [−4, 5]D min f (x) = ∑D/4
i=1 [(x4i−3 + 10x4i−2)

2 + 5(x4i−1 − xxi)
2 + (x4i−2 − 2x4i−1)

4 + 10(x4i−3 + x4i)
4] 0

f11 Alpine [−10, 10]D min f (x) = ∑D
i=1|xi sin(xi + 0.1xi)| 0

f12 Inverse Cosine-Wave Function [−100, 100]D min f (x) = ∑D−1
i=1 (exp(− x2

i +x2
i+1+0.5xixi+1

8 )× cos(4
√

x2
i + x2

i+1 + 0.5xixi+1)) −D+1

f13 Pathological [−100, 100]D min f (x) = ∑D−1
i=1

(
0.5 +

sin2
(√

100x2
i +x2

i+1

)
−0.5

1+0.001(x2
i −2xixi+1+x2

i+1)
2

)2

0

f14 Discus [−100, 100]D min f (x) = 106x2
1 + ∑D

i=1 x2
i 0

f15 Happy Cat [−2, 2]D min f (x) =
[
(||x2

i || − D)2]α
+

1
D
(0.5||x2

i ||+ ∑D
i=1 xi) + 0.5, where α =

1
4

0

f16 Drop-Wave Function [−5.2, 5.2]D min f (x) = −
1 + cos(12

√
x2

1 + x2
2)

(0.5(x2
1 + x2

2) + 2)
−1

f17 Schaffer 2 [−100, 100]D min f (x) = 0.5 +
sin2(x2

1 − x2
2)

2 − 0.5
1 + 0.001(x2

1 + x2
2)

2
0

f18 Camel Function-Three Hump [−5, 5]D min f (x) = 2x2
1 − 1.05x4

1 +
x6

1
6

+ x1x2 + x2
2 0
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Table 3. Comparative analysis among CFAEE, original FA, and five other FA implementations for benchmarks with
10 dimensions.

Function Algorithm Best Value Worst Value Mean Value Function Algorithm Best Value Worst Value Mean Value

f1(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

0
0
0
0

5.019× 10−3

0
0

2.91× 10−5

0
0.531452

0
0.116521

0
0

6.07× 10−7

0
0.151967

0
0.067858

0
0

f9(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

0
0
0
0

5.18× 10−2

0
0

1.00× 10−3

0
0.735625

0
0.79956

0
0

2.00× 10−5

0
0.327158

0
0.431151

0
0

f2(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

0
0
0
0

1.64× 10−3

0
0

5.15× 10−7

0
5.74765

0
4.005821

0
0

1.06× 10−8

0
1.32645

0
1.003456

0
0

f10(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

1.25× 10−6

0
0
0

4.82× 10−2

0
0

3.29× 10−6

0
14.95923

0
9.18410

0
0

2.28× 10−6

0
2.736795

0
3.381069

0
0

f3(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

9.60× 10−4

0
0
0

8.63× 10−5

0
0

9.60× 10−4

0
5.32× 10−2

0
1.65× 10−2

0
0

9.60× 10−4

0
7.45× 10−3

0
7.32× 10−3

0
0

f11(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

0
0
0
0

1.96× 10−2

0
0

3.02× 10−7

0
0.451043

0
0.224532

0
0

6.30× 10−9

0
0.145892

0
0.131779

0
0

f4(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

5.969720
1.12073

0
0

2.537912
2.142703

0

5.969720
16.96541
4.352192

0
22.243001
27.135292

0

5.969720
7.962931
2.160021

0
10.984211
11.528380

0

f12(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

−3.007700
−7.416352
−9
−9
−9

−7.982860
−9

−3.007700
−6.100051
−8.154811
−9

−6.738521
−5.318621
−9

−3.007740
−6.821470
−8.837092
−9

−7.182860
−6.730021
−9

f5(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

0
0
0
0

1.15× 10−2

0
0

1.35× 10−5

0
1.216521

0
0.668310

0
0

2.81× 10−7

0
0.371654

0
0.315237

0
0

f13(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

0.502000
1.35× 10−3

0
0

8.63× 10−4

1.64× 10−4

0

0.502000
2.51× 10−2

8.69× 10−3

0
8.29× 10−2

2.52× 10−2

0

0.502000
7.95× 10−3

1.72× 10−3

0
1.82× 10−2

8.44× 10−3

0

f6(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

1.46× 10−14

8.88× 10−16

8.88× 10−16

8.88× 10−16

7.63× 10−2

8.88× 10−16

8.88× 10−16

1.90× 10−3

8.88× 10−16

1.156728
8.88× 10−16

1.197652
8.88× 10−16

8.88× 10−16

3.8× 10−5

8.88× 10−16

0.363197
8.88× 10−16

0.569403
8.88× 10−16

8.88× 10−16

f14(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

643.025312
0
0
0

2.63× 10−3

0
0

697.974622
0

0.634750
0

0.177280
0
0

644.124100
0

6.42× 10−2

0
7.34× 10−2

0
0

f7(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

1.61× 10−7

0
0
0

4.65× 10−13

0
0

1.83× 10−7

0
1.05× 10−2

0
2.55× 10−3

0
0

1.62× 10−7

0
1.52× 10−3

0
8.15× 10−9

0
0

f15(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

1.753800
0
0
0

0.622315
0
0

1.753800
0.432198
0.453921

0
0.978813
0.635291

0

1.753800
4.62× 10−2

0.168663
0

0.860170
0.160825

0

f8(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

0
0
0
0

1.69× 10−2

0
0

1.08× 10−6

0
1.413521

0
0.727350

0
0

2.24× 10−8

0
0.237733

0
0.355913

0
0
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Table 4. Comparative analysis among CFAEE, original FA, and five other FA implementations for benchmarks with
30 dimensions.

Function Algorithm Best Value Worst Value Mean Value Function Algorithm Best Value Worst Value Mean Value

f1(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

0
13.62752
9.542603

0
0.143725

8.69× 10−2

0

3.30× 10−4

20.168334
17.455290

3.71× 10−4

0.329325
0.335712

6.25×10−6

8.47× 10−6

17.05007
14.08179

1.61× 10−5

0.237264
0.194190

1.41×10−6

f9(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

0
15.668320
7.896512

0
0.759455
0.663490

0

7.15× 10−3

18.532451
13.652705
4.84×10−3

1.652710
2.0693

5.17× 10−3

7.43× 10−4

17.168332
11.634482

6.22× 10−4

1.444582
1.444582

6.09×10−4

f2(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

0
952.735293
495.234239

0
9.0823

8.458129
0

5.73× 10−4

1292.759201
932.959210
5.31× 10−4

27.288553
35.736666

3.52×10−5

1.19× 10−5

1151.53123
831.976505
4.63× 10−5

15.382611
19.345189

4.52×10−6

f10(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

5.52× 10−4

740.533299
1297.755023

0
3.545252

5.3022
0

1.48× 10−3

4352.542059
3675.442951
1.53× 10−2

33.82541
28.982541

1.13×10−3

8.79× 10−4

2953.135592
2626.920051
1.30× 10−3

23.710392
17.315642

4.44×10−4

f3(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

9.86× 10−3

0.453243
0.331970

0
5.43× 10−3

5.45× 10−3

0

9.87× 10−3

0.573032
0.511440

1.84×10−5

3.65× 10−2

1.76× 10−2

5.79× 10−5

9.86× 10−3

0.516954
0.446482

4.65× 10−6

1.23× 10−2

9.97× 10−3

2.33×10−6

f11(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

1.66× 10−2

13.115620
6.718345

0
0.245052
0.133675

0

1.86× 10−2

16.344592
13.539203

3.34× 10−3

0.731462
0.475093

8.54×10−4

1.66× 10−2

14.957239
10.529380

4.69× 10−4

0.417792
0.312399

1.03×10−4

f4(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

53.728352
91.368000
26.842502

0
10.562432
48.503233

0

53.728352
145.032962
47.888361
0.293775

70.887502
118.455291
0.163325

53.728352
131.851977
37.948270

6.33× 10−2

52.398675
89.757932

2.31×10−2

f12(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

−2.745302
−14.281512
−19.773059
−29

−27.135292
−19.932444
−29

−2.738143
−10.236442
−14.387294
−28.981153
−23.462555
−13.572562
−28.975432

−2.741055
−12.601748
−17.381692
−28.995732
−25.463931
−16.488942
−28.997240

f5(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

0
188.932905
175.893044

0
1.363823
1.167251

0

8.10× 10−4

249.742592
248.643292
1.33× 10−4

5.757921
7.374155

7.35×10−5

1.69× 10−5

229.451399
218.334752
1.51× 10−5

3.464743
3.888032

5.65×10−6

f13(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

4.821110
4.86× 10−2

5.92× 10−2

2.48× 10−32

4.28× 10−2

3.85× 10−2

4.34×10−34

4.854329
9.37× 10−2

0.135155
8.75× 10−6

0.131320
9.92× 10−2

3.13×10−6

4.831800
7.24× 10−2

8.63× 10−2

1.08× 10−6

7.60× 10−1

6.16× 10−2

7.09×10−7

f6(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

3.95× 10−12

4.340823
3.011800

8.88× 10−16

0.433632
0.447690

8.88× 10−16

4.08× 10−1

4.530665
3.725154

2.51× 10−2

0.855143
2.853752

1.05×10−2

8.17× 10−2

4.493832
3.383214

2.87×10−3

0.688177
1.1317517

4.65× 10−3

f14(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

1.26× 10+4

16.331
12.645

0
3.54× 10−2

0.10623
0

1.29× 10+4

22.498
20.226

3.01× 10−4

0.50956
0.42646

1.15×10−4

1.26× 10+4

19.8985
16.6886

4.50× 10−5

0.261277
0.244281

2.29×10−5

f7(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

6.16e-05
123.295565
21.954921

0
4.57E-11
3.52e-08

0

6.18e-05
1158.432456
4319.824940

3.17e-38
1.38e-03
9.83e-03

4.91×10−39

6.17× 10−5

541.478399
1345.324915
7.91× 10−40

9.67× 10−5

1.25× 10−5

3.12×10−41

f15(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

2.3302
2.262251
0.723335

0
1.175841
1.307425

0

2.3302
2.348725
1.466781
0.637052
1.371513
1.743721

0.592563

2.3302
2.305134
1.060788

9.92×10−2

1.294690
1.524977

9.98× 10−2

f8(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

0
152.832522
103.285692

0
1.534341

1.561
0

3.17e-04
275.964302
214.365219
5.93× 10−4

4.781903
5.175238

2.22×10−4

8.12× 10−5

235.952315
173.448925
4.62× 10−5

3.255770
3.270697

9.29×10−6
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Table 5. Comparative analysis among CFAEE, original FA, and five other FA implementations for benchmarks with
100 dimensions.

Function Algorithm Best Value Worst Value Mean Value Function Algorithm Best Value Worst Value Mean Value

f1(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

0
86.457552
84.743562

0
0.776975
6.0074

0

5.08× 10−3

94.965352
101.550299
5.33× 10−3

1.343821
9.086351

3.35×10−3

3.06× 10−4

91.851742
95.331892

1.67× 10−3

1.123621
7.397248

2.12×10−4

f9(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

7.270000
75.261423
61.271532

0
4.667233

19.453222
0

7.345340
79.183492
69.287492
0.282980
7.217744
29.786432
0.253300

7.272472
76.237822
65.957970

6.75×10−2

5.953690
24.393170

8.03× 10−2

f2(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

6.45× 10−2

20,155.732954
20,134.629495

0
183.584823

1439.319025
0

0.861329
23,097.569290
23,511.452949

2.732509
326.044592

2483.724942
0.525656

0.296353
21,435.685432
22,061.730052

0.263728
246.343291

1955.372492
0.255429

f10(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

0.113550
24,876.459003
24,626.324592

0
95.657422
688.787853

0

0.754291
29,942.359392
33,338.728942

0.769235
143.859235

1431.750099
0.621509

0.212700
27,295.176529
29,210.135929
6.36× 10−2

116.538544
1058.681232
5.31×10−2

f3(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

1.11× 10−1

0.783852
0.746025

0
1.16× 10−2

0.167315
0

0.354451
0.850443
0.837694

1.25×10−4

2.35× 10−2

0.186983
1.38× 10−4

0.195824
0.811365
0.799866

3.55× 10−5

9.38× 10−5

0.166489
2.13×10−5

f11(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

14.775500
68.413502
58.357421

0
1.295332
7.397541

0

15.145392
73.163592
65.772001

2.27×10−2

2.282315
11.648522

2.48× 10−2

14.950132
70.657632
61.465342

4.53× 10−3

1.686960
9.200357

3.02×10−3

f4(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

436.882200
638.513205
223.195002

0
113.543829
476.735252

0

551.395213
706.697495
263.465402
1.653533

213.352932
613.530234
1.293298

484.606492
668.543402
243.792502
0.589842

178.416452
558.464329
0.539520

f12(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

-4.445052
−23.0423521
−44.356992
−99

−87.920501
−40.345210
−99

−8.728848
−19.167452
−34.123586
−98.835492
−79.465202
−27.446501
−98.872555

−6.178500
−21.911352
−37.588482
−98.947900
−83.891430
−36.452653
−98.962902

f5(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

2428.940492
4012.652903
3888.542030

0
33.682005
293.459724

0

2592.352049
4633.727049
4683.634029
0.418092
72.436405

518.965567
0.435304

2433.183441
4315.743555
4365.895902
8.25× 10−2

53.696570
385.652334

4.67×10−2

f13(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

20.651103
0.162015
0.147652

1.53× 10−32

0.142465
0.117900

3.65×10−33

20.770492
0.187683
0.191543

8.75× 10−5

0.186110
0.169890

3.33×10−5

20.659945
0.169435
0.175026

1.30× 10−5

0.163519
0.154551

9.66×10−6

f6(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

1.11× 10−13

4.924155
4.140800

8.88× 10−16

0.635644
3.269543

8.88× 10−16

9.43× 10−2

5.442632
4.543301

3.59× 10−2

1.108742
4.236500

2.75×10−2

1.89× 10−2

5.032945
4.412393

1.03×10−2

0.845798
3.732709

1.26× 10−2

f14(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

1.70× 10+5

93.691550
95.931103

0
0.880193
8.075650

0

1.72× 10+5

105.629021
109.031902
3.28× 10−3

1.358399
14.832029

2.83×10−3

1.71× 10+5

100.355603
103.562900
6.53×10−4

1.099707
11.357613

6.85× 10−4

f7(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

7.30× 10−4

1.31× 10+15

1.75× 10+18

0
3.17× 10−9

21978.054329
0

7.38× 10−4

6.49× 10+17

1.41× 10+22

2.35× 10−31

5.56× 10−3

2.27× 10+11

3.45×10−32

7.33× 10−4

1.38× 10+16

1.76× 10+21

5.16× 10−33

4.27× 10−4

9.45× 10+9

6.65×10−34

f15(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

3.158222
3.186900
2.271819

0
1.756300
2.569432

0

3.158339
3.256833
2.492549
0.786523
1.896942
2.835301

0.725431

3.158275
3.225253
2.405293
0.451663
1.8131570
2.704312

0.417902

f8(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

0.185455
4.10× 10+3

3.54× 10+3

0
36.945444
293.842003

0

0.499821
4.63× 10+3

4.79× 10+3

0.567650
73.345992

486.513050
0.475325

0.289011
4.23× 10+3

4.25× 10+3

5.12× 10−2

53.455374
375.451515

3.19×10−2
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Table 6. Comparative analysis among CFAEE, original FA, and five other FA implementations for benchmarks with
2 dimensions.

Function Algorithm Best Value Worst Value Mean Value Function Algorithm Best Value Worst Value Mean Value

f16(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

−1
−1
−1
−1
−1
−1
−1

−1
−1
−1
−1

−0.95357
−1
−1

−1
−1
−1
−1

−0.997534
−1
−1

f17(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

0
0
0
0
0
0
0

9.65× 10−13

0
0
0
0
0
0

1.96× 10−14

0
0
0
0
0
0

f18(x)

FA
VSSFA

LFA
GDAFA

WFA
CLFA

CFAEE

0
0
0
0
0
0
0

3.02× 10−12

0
0
0

3.52× 10−5

0
0

6.29× 10−14

0
0
0

1.86× 10−7

0
0

Table 7. Summary of benchmark problem set 1 scores.

FA VSSFA LFA WFA CLFA GDAFA CFAEE

Best 10 dim 0 0 0 0 0 0 0
Mean 10 dim 0 0 0 0 0 0 0
Worst 10 dim 0 0 0 0 0 0 0
Total 10 dim 0 0 0 0 0 0 0

Best 30 dim 0 0 0 0 0 0 1
Mean 30 dim 0 0 0 0 0 2 13
Worst 30 dim 0 0 0 0 0 3 12
Total 30 dim 0 0 0 0 0 5 26

Best 100 dim 0 0 0 0 0 0 1
Mean 100 dim 0 0 0 0 0 3 12
Worst 100 dim 0 0 0 0 0 3 12
Total 100 dim 0 0 0 0 0 6 25

GRAND TOTAL 0 0 0 0 0 11 51

Table 8. Statistical comparison of results obtained by CFAEE for 100-dimensional benchmarks with other approaches by the
Wilcoxon Signed-Rank Test at α = 0.05.

Function CFAEE GDAFA FA VSSFA LFA WFA CLFA

f1 2.12× 10−4 1.66× 10−3 3.06× 10−4 9.16× 10+1 9.42× 10+1 1.02 7.50
f2 2.554× 10−1 2.63× 10−1 2.96× 10−1 2.14× 10+4 2.21× 10+4 2.47× 10+2 1.96× 10+3

f3 2.13× 10−5 3.50× 10−5 5.97× 10−5 8.11× 10−1 8.00× 10−1 2.10× 10−2 1.66× 10−1

f4 5.395× 10−1 5.68× 10−1 4.85× 10+2 6.69× 10+2 2.42× 10+2 1.79× 10+2 5.56× 10+2

f5 4.67× 10−2 8.17× 10−2 2.43× 10+3 4.31× 10+3 4.36× 10+3 5.06× 10+1 3.85× 10+2

f6 1.26× 10−2 1.08× 10−2 1.89× 10−2 5.05 4.41 8.38× 10−1 3.61
f7 6.65× 10−34 8.11× 10−33 7.35× 10−5 1.29× 10+17 1.88× 10+21 1.17× 10−4 9.54× 10+9

f8 3.19× 10−2 5.42× 10−2 1.89× 10−1 4.33× 10+3 4.33× 10+3 5.15× 10+1 3.70× 10+2

f9 8.03× 10−2 6.85× 10−2 7.27 7.62× 10+1 6.58× 10+1 5.95 2.44× 10+1

f10 5.31× 10−2 6.21× 10−2 2.13× 10−1 2.73× 10+4 2.92× 10+4 1.18× 10+2 1.06× 10+3

f11 3.02× 10−3 4.53× 10−3 1.48× 10+1 7.06× 10+1 6.25× 10+1 1.68 9.20
f12 −9.89× 10+1 −9.89× 10+1 −6.18 −2.09× 10+1 −3.65× 10+1 −8.28× 10+1 −3.64× 10+1

f13 9.66× 10−6 1.30× 10−5 2.07× 10+1 1.54× 10−1 1.75× 10−1 1.56× 10−1 1.53× 10−1

f14 6.85× 10−4 6.23× 10−4 1.70× 10+5 9.93× 10+1 1.02× 10+2 1.10 1.12× 10+1

f15 4.17× 10−1 4.42× 10−1 3.16 3.22 2.41 1.81 2.71

p-value 3.125×10−2 4.39×10−2 2.13×10−4 3.05×10−5 3.05×10−5 3.05×10−5 3.05×10−5



Mathematics 2021, 9, 2705 17 of 33

Convergence speed graphs of some functions, averaged over 50 runs for all meta-
heuristics taken for comparative analysis in Table 5, are shown in Figure 1.
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Figure 1. Mean convergence speed graphs for some benchmark instances (Benchmark set 1).

4.3. Benchmark Problem Set 2

The second bound-constrained validation of the proposed CFAEE was conducted on a
very challenging CEC 2017 benchmark suite [59]. The suite is composed of 30 benchmarks
divided into 4 groups: F1–F3 are uni-modal, F4–F10 are multi-modal, F11–F20 belong to
the class of hybrid functions, while tests F21–F30 are very challenging composite functions.
The last group contains properties of all uni-modal, multi-modal, and hybrid functions;
moreover, they are shifted and rotated.

Test instance F2 was deleted from the test suite due to unstable behavior [60], and
these results are not reported. Basic details of CEC 2017 instances are given in Table 9.
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Table 9. CEC 2017 function details.

ID Name of the function Class Search Range Optimum

F1 Shifted and Rotated Bent Cigar Function Unimodal [−100, 100] 100
F2 Shifted and Rotated Sum of Different Power Function Unimodal [−100, 100] 200
F3 Shifted and Rotated Zakharov Function Unimodal [−100, 100] 300
F4 Shifted and Rotated Rosenbrock’s Function Multimodal [−100, 100] 400
F5 Shifted and Rotated Rastrigin’s Function Multimodal [−100, 100] 500
F6 Shifted and Rotated Expanded Scaffer’s Function Multimodal [−100, 100] 600
F7 Shifted and Rotated Lunacek Bi-Rastrigin Function Multimodal [−100, 100] 700
F8 Shifted and Rotated Non-Continuous Rastrigin’s Function Multimodal [−100, 100] 800
F9 Shifted and Rotated Lévy Function Multimodal [−100, 100] 900

F10 Shifted and Rotated Schwefel’s Function Multimodal [−100, 100] 1000
F11 Hybrid Function 1 (N = 3) Hybrid [−100, 100] 1100
F12 Hybrid Function 2 (N = 3) Hybrid [−100, 100] 1200
F13 Hybrid Function 3 (N = 3) Hybrid [−100, 100] 1300
F14 Hybrid Function 4 (N = 4) Hybrid [−100, 100] 1400
F15 Hybrid Function 5 (N = 4) Hybrid [−100, 100] 1500
F16 Hybrid Function 6 (N = 4) Hybrid [−100, 100] 1600
F17 Hybrid Function 6 (N = 5) Hybrid [−100, 100] 1700
F18 Hybrid Function 6 (N = 5) Hybrid [−100, 100] 1800
F19 Hybrid Function 6 (N = 5) Hybrid [−100, 100] 1900
F20 Hybrid Function 6 (N = 6) Hybrid [−100, 100] 2000
F21 Composition Function 1 (N = 3) Composition [−100, 100] 2100
F22 Composition Function 2 (N = 3) Composition [−100, 100] 2200
F23 Composition Function 3 (N = 4) Composition [−100, 100] 2300
F24 Composition Function 4 (N = 4) Composition [−100, 100] 2400
F25 Composition Function 5 (N = 5) Composition [−100, 100] 2500
F26 Composition Function 6 (N = 5) Composition [−100, 100] 2600
F27 Composition Function 7 (N = 6) Composition [−100, 100] 2700
F28 Composition Function 8 (N = 6) Composition [−100, 100] 2800
F29 Composition Function 9 (N = 3) Composition [−100, 100] 2900
F30 Composition Function 10 (N = 3) Composition [−100, 100] 3000

Simulations are executed with 30-dimensional instances (D = 30) and mean (average)
and standard deviation (std) results for 50 runs are reported. The proposed CFAEE is
compared against the basic FA with dynamic α , state-of-the-art improved Harris hawks
optimization (IHHO) presented in [61], and other well-known efficient nature-inspired
metaheuristics: HHO, DE, GOA, GWO, MFO, MVO, PSO, WOA, and SCA.

In this study, the same experimental setup as in [61] was recreated. The study shown
in [61] reports results with N = 30 and T = 500. However, as in the case of the first uncon-
strained experiment, since the CFAEE utilizes more FFE in each run, the maxFFE is used
as the termination criteria. All approaches included in the comparative analysis employ
one FFE per solution in the initialization and update phases, and to conduct an unbiased
comparison, maxFFE was set to 15,030 (N + N · T). Control parameter adjustments of
opponent methods can be retrieved from [61].

Comparative analysis results for the CEC 2017 benchmark suite are reported in
Table 10. The best results for each performance indicator and instance are marked bold.
Moreover, if two or more algorithms obtained the same performance, which are the best at
the same time, these results are also underlined. Very similar results as in [54] are obtained,
but with subtle discrepancies due to the stochastic nature metaheuristics.

The Table 10 shows that the CFAEE had the best results over 21 functions; those were
F1, F3, F5, F6, F7, F8, F11, F12, F13, F15, F17, F19, F20, F21, F22, F23, F25, F26, F28, F29,
and F30. In some cases, these case algorithms had the best results, but they were tied with
results from another algorithm. In these cases, both results are in bold. The algorithm
outperformed every other algorithm in these cases and the IHHO.
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Table 10. CEC 2017 comparative analysis results.

Algorithm
F1 F2 F3 F4 F5

Mean STD Mean STD Mean STD Mean STD Mean STD

IHHO 1.86× 10+2 26.921 n/a n/a 3.02×10+2 52.152 4.03×10+2 2.607 5.05× 10+2 3.251
HHO 1.75× 10+6 4.29× 10+5 n/a n/a 6.71× 10+2 3.24× 10+2 4.37× 10+2 53.631 5.35× 10+2 24.927

DE 7.54× 10+7 1.71× 10+7 n/a n/a 4.59× 10+3 1.35× 10+3 4.29× 10+2 8.530 5.52× 10+2 6.232
GOA 1.56× 10+5 5.24× 10+4 n/a n/a 3.05× 10+2 61.300 4.15× 10+2 19.48 5.25× 10+2 16.803
GWO 1.53× 10+7 4.85× 10+6 n/a n/a 3.57× 10+3 2.77× 10+3 4.09× 10+2 10.705 5.19× 10+2 8.543
MFO 7.17× 10+6 2.18× 10+7 n/a n/a 9.04× 10+3 9.31× 10+3 4.20× 10+2 27.727 5.31× 10+2 12.860
MVO 1.79× 10+4 7.99× 10+3 n/a n/a 3.05× 10+2 46.451 4.06× 10+2 1.392 5.17× 10+2 9.888
PSO 9.49× 10+4 8.42× 10+2 n/a n/a 3.49× 10+2 65.409 4.07× 10+2 10.318 5.26× 10+2 7.305

WOA 4.27× 10+7 3.81× 10+6 n/a n/a 5.16× 10+3 4.22× 10+2 4.61× 10+2 69.033 5.51× 10+2 17.46
SCA 1.15× 10+8 5.91× 10+7 n/a n/a 4.03× 10+3 8.42× 10+2 4.85× 10+2 47.271 5.59× 10+2 9.352
FA 1.61× 10+5 3.77× 10+4 n/a n/a 3.09× 10+2 54.991 4.17× 10+2 18.858 5.28× 10+2 19.302

CFAEE 1.31×10+2 14.353 n/a n/a 3.02×10+2 28.131 4.04× 10+2 2.372 5.01×10+2 3.285

Algorithm
F6 F7 F8 F9 F10

Mean STD Mean STD Mean STD Mean STD Mean STD

IHHO 6.00×10+2 0.082 7.49× 10+2 10.041 8.11× 10+2 6.526 1.13× 10+3 85.42 1.69× 10+3 1.31× 10+2

HHO 6.38× 10+2 12.320 7.96× 10+2 18.921 8.29× 10+2 5.700 1.44× 10+3 1.24× 10+2 2.03× 10+3 3.42× 10+2

DE 6.28× 10+2 4.744 8.01× 10+2 10.373 8.62× 10+2 6.873 1.76× 10+3 1.48× 10+2 2.09× 10+3 2.01× 10+2

GOA 6.08× 10+2 10.295 7.32× 10+2 11.375 8.31× 10+2 14.512 9.97× 10+2 93.212 1.96× 10+3 3.17× 10+2

GWO 6.01× 10+2 1.909 7.35× 10+2 16.343 8.16× 10+2 5.053 9.14× 10+2 12.11 1.76× 10+3 3.10× 10+2

MFO 6.02× 10+2 2.411 7.46× 10+2 22.655 8.29× 10+2 13.786 1.23× 10+3 2.76× 10+2 2.02× 10+3 3.27× 10+2

MVO 6.03× 10+2 4.365 7.30× 10+2 11.278 8.25× 10+2 12.216 9.00×10+2 0.012 1.82× 10+3 3.60× 10+2

PSO 6.10× 10+2 3.539 7.26× 10+2 9.008 8.19× 10+2 5.982 9.00×10+2 0.003 1.50×10+3 2.84× 10+2

WOA 6.36× 10+2 13.695 7.82× 10+2 23.692 8.45× 10+2 17.470 1.54× 10+3 3.94× 10+2 2.19× 10+3 3.16× 10+2

SCA 6.24× 10+2 4.105 7.84× 10+2 13.299 8.47× 10+2 7.577 1.03× 10+3 85.98 2.51× 10+3 2.18× 10+2

FA 6.71× 10+2 11.393 7.35× 10+2 11.55 8.33× 10+2 13.914 9.97× 10+2 81.44 1.93× 10+3 2.96× 10+2

CFAEE 6.00×10+2 0.051 7.23×10+2 11.391 8.08×10+2 5.422 9.87× 10+2 42.11 1.58× 10+3 1.25×10+2

Algorithm
F11 F12 F13 F14 F15

Mean STD Mean STD Mean STD Mean STD Mean STD

IHHO 1.12× 10+3 13.523 4.25× 10+5 3.05× 10+5 4.42× 10+3 2.18× 10+3 1.42×10+3 1.651 2.15× 10+3 5.65× 10+2

HHO 1.16× 10+3 45.729 2.56× 10+6 1.13× 10+6 1.92× 10+4 1.16× 10+4 1.83× 10+3 2.41× 10+2 8.63× 10+3 5.55× 10+2

DE 1.14× 10+3 36.317 9.15× 10+4 6.58× 10+4 1.35×10+3 78.355 1.46× 10+3 11.826 1.51×10+3 18.454
GOA 1.17× 10+3 58.009 2.24× 10+6 1.15× 10+6 1.65× 10+4 1.13× 10+4 2.93× 10+3 1.15× 10+3 6.48× 10+3 4.32× 10+3

GWO 1.34× 10+3 183.524 1.31× 10+6 1.54× 10+6 1.26× 10+4 7.82× 10+3 3.19× 10+3 1.82× 10+3 5.63× 10+3 3.16× 10+3

MFO 1.23× 10+3 107.133 2.23× 10+6 4.81× 10+6 1.61× 10+4 1.39× 10+4 8.42× 10+3 5.42× 10+3 1.25× 10+4 1.02× 10+4

MVO 1.14× 10+3 27.331 1.52× 10+6 1.41× 10+6 9.89× 10+3 2.55× 10+3 2.15× 10+3 1.03× 10+3 4.05× 10+3 2.45× 10+3

PSO 1.10×10+3 3.727 4.35× 10+4 1.26× 10+4 1.01× 10+4 7.23× 10+3 1.49× 10+3 88.291 1.81× 10+3 3.75× 10+2

WOA 1.22× 10+3 82.415 4.85× 10+6 5.12× 10+6 1.57× 10+4 1.38× 10+4 3.42× 10+3 9.82× 10+2 1.42× 10+4 9.88× 10+3

SCA 1.24× 10+3 96.535 2.41× 10+7 2.05× 10+7 6.43× 10+4 4.69× 10+4 1.99× 10+3 4.31× 10+2 3.21× 10+3 1.41× 10+3

FA 1.16× 10+3 39.705 2.32× 10+6 1.21× 10+6 1.21× 10+4 1.05× 10+4 1.88× 10+3 3.21× 10+2 3.67× 10+3 2.13× 10+3

CFAEE 1.10×10+3 1.503 3.18×10+4 2.29×10+4 1.35×10+3 20.499 1.43× 10+3 21.350 1.51×10+3 10.217

Algorithm
F16 F17 F18 F19 F20

Mean STD Mean STD Mean STD Mean STD Mean STD

IHHO 1.73× 10+3 59.44 1.73× 10+3 7.519 4.79× 10+3 1.68× 10+3 1.90×10+3 6.993 2.02× 10+3 19.561
HHO 1.89× 10+3 1.47× 10+2 1.79× 10+3 65.751 2.02× 10+4 1.41× 10+4 1.71× 10+4 1.21× 10+4 2.23× 10+3 86.017

DE 1.69× 10+3 41.15 1.77× 10+3 19.514 1.84×10+3 23.298 2.75× 10+3 8.35× 10+2 2.05× 10+3 23.711
GOA 1.78× 10+3 1.76× 10+2 1.83× 10+3 1.21× 10+2 1.63× 10+4 1.31× 10+4 3.25× 10+3 1.95× 10+3 2.15× 10+3 74.824
GWO 1.79× 10+3 1.11× 10+2 1.77× 10+3 38.759 2.55× 10+4 1.84× 10+4 2.75× 10+4 2.38× 10+4 2.09× 10+3 73.994
MFO 1.85× 10+3 15.23× 10+2 1.78× 10+3 65.311 2.21× 10+4 1.39× 10+4 7.81× 10+3 6.15× 10+3 2.13× 10+3 72.321
MVO 1.80× 10+3 1.44× 10+2 1.80× 10+3 46.126 2.03× 10+4 1.25× 10+4 4.63× 10+3 2.62× 10+3 2.12× 10+3 86.303
PSO 1.65×10+3 65.364 1.72× 10+3 16.123 7.63× 10+3 4.46× 10+3 3.13× 10+3 2.05× 10+3 2.06× 10+3 35.410

WOA 1.96× 10+3 14.92× 10+2 1.82× 10+3 73.459 2.13× 10+4 1.95× 10+2 2.07× 10+5 1.16× 10+5 2.19× 10+3 1.11× 10+2

SCA 1.73× 10+3 95.425 1.80× 10+3 25.30× 103 8.77× 10+4 9.23× 10+2 1.15× 10+4 1.44× 10+3 2.14× 10+3 46.855
FA 1.79× 10+3 1.73× 10+2 1.82× 10+3 1.15× 10+2 1.67× 10+4 1.45× 10+4 3.18× 10+3 1.59× 10+3 2.12× 10+3 71.303

CFAEE 1.70× 10+3 86.359 1.71×10+3 8.442 1.86× 10+3 21.565 1.90×10+3 8.717 2.01×10+3 9.443

Algorithm
F21 F22 F23 F24 F25

Mean STD Mean STD Mean STD Mean STD Mean STD

IHHO 2.20×10+3 4.615 2.28× 10+3 17.820 2.59× 10+3 14.213 2.68× 10+3 1.31× 10+2 2.87× 10+3 85.338
HHO 2.35× 10+3 53.711 2.32× 10+3 25.234 2.69× 10+3 35.522 2.82× 10+3 93.623 2.95× 10+3 49.573

DE 2.25× 10+3 78.104 2.29× 10+3 17.513 2.63× 10+3 15.163 2.66×10+3 69.502 2.91× 10+3 15.543
GOA 2.30× 10+3 56.877 2.38× 10+3 1.08× 10+2 2.64× 10+3 23.536 2.73× 10+3 57.833 2.93× 10+3 32.598
GWO 2.30× 10+3 32.884 2.31× 10+3 57.573 2.62× 10+3 13.862 2.74× 10+3 25.132 2.94× 10+3 28.256
MFO 2.32× 10+3 29.255 2.35× 10+3 93.557 2.63× 10+3 11.327 2.75× 10+3 76.435 2.96× 10+3 37.776
MVO 2.32× 10+3 11.839 2.33× 10+3 1.11× 10+2 2.65× 10+3 10.445 2.74× 10+3 18.246 2.92× 10+3 84.256
PSO 2.27× 10+3 49.783 2.33× 10+3 1.03× 10+2 2.60× 10+3 72.300 2.70× 10+3 76.143 2.90× 10+3 33.735

WOA 2.34× 10+3 60.021 2.48× 10+3 2.45× 10+2 2.66× 10+3 29.838 2.77× 10+3 85.902 2.98× 10+3 1.03× 10+2

SCA 2.29× 10+3 65.229 2.41× 10+3 66.636 2.67× 10+3 45.449 2.78× 10+3 11.548 2.98× 10+3 37.291
FA 2.29× 10+3 34.701 2.36× 10+3 1.10× 10+2 2.62× 10+3 17.452 2.72× 10+3 1.05× 10+2 2.93× 10+3 47.019

CFAEE 2.20×10+3 48.552 2.26×10+3 13.040 2.55×10+3 21.929 2.67× 10+3 1.72× 10+2 2.81×10+3 95.429

Algorithm
F26 F27 F28 F29 F30

Mean STD Mean STD Mean STD Mean STD Mean STD

IHHO 2.93× 10+3 1.66× 10+2 3.19× 10+3 33.657 3.30× 10+3 48.694 3.20×10+3 28.982 2.30× 10+4 1.45× 10+4

HHO 3.62× 10+3 5.39× 10+2 3.18× 10+3 51.306 3.41× 10+3 1.02× 10+2 3.39× 10+3 85.653 1.43× 10+6 1.31× 10+6

DE 2.95× 10+3 95.929 3.07×10+3 2.558 3.28× 10+3 27.035 3.21× 10+3 35.216 3.65× 10+5 2.31× 10+5

GOA 3.01× 10+3 3.65× 10+2 3.11× 10+3 25.326 3.31× 10+3 1.53× 10+2 3.27× 10+3 75.411 5.29× 10+5 3.89× 10+5

GWO 3.36× 10+3 5.05× 10+2 3.10× 10+3 13.541 3.42× 10+3 1.33× 10+2 3.22× 10+3 49.822 6.17× 10+5 4.88× 10+5

MFO 3.05× 10+3 1.13× 10+2 3.09× 10+3 5.722 3.21× 10+3 93.459 3.26× 10+3 55.593 6.36× 10+5 5.93× 10+5

MVO 3.15× 10+3 2.77× 10+2 3.10× 10+3 21.875 3.36× 10+3 1.23× 10+2 3.26× 10+3 75.139 4.62× 10+5 4.07× 10+5

PSO 2.95× 10+3 2.55× 10+2 3.12× 10+3 31.830 3.32× 10+3 1.35× 10+2 3.21× 10+3 62.374 1.13× 10+6 1.09× 10+6

WOA 3.37× 10+3 2.92× 10+2 3.17× 10+3 48.124 3.46× 10+3 1.65× 10+2 3.46× 10+3 1.21× 10+2 1.29× 10+6 7.53× 10+5

SCA 3.15× 10+3 1.82× 10+2 3.13× 10+3 13.152 3.38× 10+3 89.259 3.25× 10+3 48.339 1.49× 10+6 9.77× 10+5

FA 3.02× 10+3 2.03× 10+2 3.10× 10+3 27.015 3.32× 10+3 1.17× 10+2 3.26× 10+3 31.117 4.71× 10+5 4.02× 10+5

CFAEE 2.86×10+3 2.45× 10+2 3.08× 10+3 48.690 3.13×10+3 2.51× 10+2 3.20×10+3 27.914 2.22×10+4 1.44×10+4
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With some functions from the previously mentioned set, the CFAEE had the same
results as the IHHO, and in those situations, they were tied as having the best results. Such
cases are F3, F6, F19, F21, and F29. These results are underlined and in bold. It can be
observed that, not only CFAEE and IHHO were tied with their results, from some functions;
these results are also underlined and in bold. For function F9, the two best algorithms were
MVO and PSO. The results of CFAEE and PSO were also tied (for function F11) as having
the best results. Finally, with functions F13 and F15, the CFAEE was tied with the DE as
having the best results.

In the minority of cases, the CFAEE was outperformed by the IHHO and other
algorithms. The IHHO algorithm was only better for functions F4 and F14. The alternative
best solutions only came from PSO, MVO, and DE. The previously mentioned case of PSO
and MVO, being tied as having the best result with function F9, is one of them; two other
cases where PSO was best were with functions F10 and F16. The only other algorithm that
was better is the DE, in cases of F18, F24, and F27.

It is important to note that, in no case, was the original FA better than the improved
version CFAEE. For some functions, the CFAEE achieved vastly improved results, as much
as more than 1000 times better, as seen in F1. Large differences can be seen with other
functions as well, such as F12, F13, F18, and F30.

Considering all of the mentioned cases, there is no doubt that the proposed solution,
CFAEE, is superior to the original solution, FA, but also to every other algorithm tested.
Furthermore, the improvement is justified.

The Friedman test [62,63] and the two-way variance analysis, by ranks, were per-
formed for the determination of the difference significance between the novel CFAEE and
the alternative methods used for comparison. This was conducted to further establish
the statistical significance of enhancements, not only by comparing the results. Tables 11
and 12 present the results achieved by 12 different algorithms over the 30 functions from
the CEC2017 set for Friedman test ranks and the aligned Friedman test ranks, respectively.

Table 11. Friedman test ranks for the compared algorithms over 30 CEC2017 functions.

Function IHHO HHO DE GOA GWO MFO MVO PSO WOA SCA FA CFAEE

F1 2 7 11 5 9 8 3 4 10 12 6 1
F3 1.5 7 10 3.5 8 12 3.5 6 11 9 5 1.5
F4 1 10 9 6 5 8 3 4 11 12 7 2
F5 2 9 11 5 4 8 3 6 10 12 7 1
F6 1.5 11 9 6 3 4 5 7 10 8 12 1.5
F7 8 11 12 4 5.5 7 3 2 9 10 5.5 1
F8 2 6.5 12 8 3 6.5 5 4 10 11 9 1
F9 8 10 12 5.5 3 9 1.5 1.5 11 7 5.5 4

F10 3 9 10 7 4 8 5 1 11 12 6 2
F11 3 6.5 4.5 8 12 10 4.5 1.5 9 11 6.5 1.5
F12 4 10 3 8 5 7 6 2 11 12 9 1
F13 3 11 1.5 10 7 9 4 5 8 12 6 1.5
F14 1 5 3 9 10 12 8 4 11 7 6 2
F15 4 10 1.5 9 8 11 7 3 12 5 6 1.5
F16 5.5 11 3 1 7.5 10 9 2 12 5.5 7.5 4
F17 3 7 4.5 12 4.5 6 8.5 2 10.5 8.5 10.5 1
F18 3 7 1 5 11 10 8 4 9 12 6 2
F19 1.5 10 3 6 11 8 7 4 12 9 5 1.5
F20 2 12 3 10 5 8 6.5 4 11 9 6.5 1
F21 1.5 12 3 7.5 7.5 9.5 9.5 4 11 5.5 5.5 1.5
F22 2 5 3 10 4 8 6.5 6.5 12 11 9 1
F23 2 12 6.5 8 4.5 6.5 9 3 10 11 4.5 1
F24 3 12 1 6 7.5 9 7.5 4 10 11 5 2
F25 2 9 4 6.5 8 10 5 3 11.5 11.5 6.5 1
F26 2 12 3.5 5 10 7 8.5 3.5 11 8.5 6 1
F27 12 11 1 7 5 3 5 8 10 9 5 2
F28 4 10 3 5 11 2 8 6.5 12 9 6.5 1
F29 1.5 11 3.5 10 5 8 8 3.5 12 6 8 1.5
F30 2 11 3 6 7 8 4 9 10 12 5 1

Average Ranking 3.138 9.483 5.362 6.862 6.724 8.017 5.914 4.069 10.621 9.603 6.655 1.552
Rank 2 10 4 8 7 9 5 3 12 11 6 1
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Table 12. Aligned Friedman test ranks for the compared algorithms over 30 CEC2017 functions.

Function IHHO HHO DE GOA GWO MFO MVO PSO WOA SCA FA CFAEE

F1 2 7 347 5 9 8 3 4 346 348 6 1
F3 56.5 63 327 58.5 323 334 58.5 61 328 326 60 56.5
F4 144 226 211 177 164 192 152 157 255 278 183 146
F5 138 213 242 194 174 206 169 196 241 245 197 135
F6 153.5 235 218 173 158 161 165 180 232 212 270 153.5
F7 193 264 266 145 155.5 184 140 136 244 246 155.5 131
F8 151 198.5 251 204 167 198.5 191 172 229 231 207 143
F9 141 310 318 89.5 80 285 78.5 78.5 313 91 89.5 87

F10 81 293 301 257 88 290 95 74 309 317 216 75
F11 114 159.5 127.5 185 300 271 127.5 103.5 265 280 159.5 103.5
F12 13 19 12 17 14 16 15 11 344 345 18 10
F13 43 331 39.5 324 54 321 45 46 314 337 53 39.5
F14 66 70 68 311 316 333 73 69 320 72 71 67
F15 52 329 48.5 322 303 335 65 51 336 55 62 48.5
F16 291.5 308 276 64 298.5 305 302 233 312 291.5 298.5 282
F17 122 225 181.5 269 181.5 205 239.5 113 262.5 239.5 262.5 107
F18 38 76 35 47 332 325 82 41 319 338 50 36
F19 28.5 44 30 33 330 37 34 31 339 42 32 28.5
F20 98 294 112 260.5 150 237.5 223 121 286 247.5 223 96
F21 99.5 281 129 227.5 227.5 252.5 252.5 162.5 272 209 209 99.5
F22 110 142 118 258 130 217 170.5 170.5 297 283 234 101
F23 126 279 202.5 223 178.5 202.5 237.5 134 247.5 260.5 178.5 102
F24 119.5 288 105 200.5 220 236 220 132.5 259 267.5 175.5 111
F25 117 243 168 214.5 230 256 195 139 274.5 274.5 214.5 93
F26 84 315 85.5 94 306 106 249.5 85.5 307 249.5 97 77
F27 284 277 119.5 175.5 148 132.5 148 200.5 267.5 220 148 125
F28 137 287 124 166 289 92 254 189.5 296 273 189.5 83
F29 108.5 295 115.5 209 123 187 187 115.5 304 162.5 187 108.5
F30 21 342 22 25 26 27 23 340 341 343 24 20

Average Ranking 108.017 221.172 158.621 169.948 188.810 205.259 144.655 122.328 291.724 244.276 147.259 91.931
Rank 2 10 6 7 8 9 4 3 12 11 5 1

As seen in Table 11, one could conclude that the proposed method, CFAEE, achieves
better performance than the 10 other algorithms, as well as the original FA. The original
HHO algorithm had an average ranking of 9.483. The modified version of HHO, the IHHO,
had 3.138. The original FA had 6.655. The improved CFAEE was more than twice better
than the previous best solution of IHHO with the average ranking of 1.551.

Additionally, the Iman and Davenport test [64] was also performed because the
research [65] proves that the test could possibly provide better results in terms of precision
than the χ2. Summary of the results from Friedman and Iman and Davenport’s test can be
seen in Table 13.

Upon completion of the calculations, the result of the Iman and Davenport test is 36.95
and put into comparison against the F-distribution critical value (F(9, 9× 10) = 1.820)
shows that the Iman and Davenport test returns a significantly higher result. This test also
rejects H0. Furthermore, the Friedman statistics (χ2

r = 181.50) are larger than the χ2 critical
value with 10 degrees of freedom (1.82), while at the significance level of α = 0.05.

Consequentially, it is possible to reject the null hypothesis (H0); it could be suggested
that CFAEE performed vastly better than the rest of the algorithms that were tested.

Table 13. Friedman and Iman–Davenport statistical test results summary (α = 0.05).

Friedman Value χ2 Critical Value p-Value Iman–Davenport Value F Critical Value

1.815× 10+2 1.968× 10+1 1.110× 10−16 3.695× 10+1 1.820

Since the null hypothesis was rejected by both performed statistical tests, the non-
parametric post-hoc procedure, the Holm step-down procedure, was also conducted and
presented in Table 14. By using this procedure, all methods were sorted according to their
p value and compared with α/(k− i), where k and i represent the degree of freedom and
the algorithm number, respectively. In this study, the α was set to 0.05 and 0.1. Moreover, it
should be noted that the p-value results are provided in scientific notation.
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Table 14. Results of the Holm step-down procedure.

Comparison p_VALUES Ranking alpha = 0.05 alpha = 0.1 H1 H2

CFAEE vs. HHO 0 0 0.00455 0.00909 TRUE TRUE
CFAEE vs. WOA 0 1 0.00500 0.01000 TRUE TRUE
CFAEE vs. SCA 0 2 0.00556 0.01111 TRUE TRUE
CFAEE vs. MFO 4.29× 10−12 3 0.00625 0.01250 TRUE TRUE
CFAEE vs. GOA 1.02× 10−8 4 0.00714 0.01429 TRUE TRUE
CFAEE vs. GWO 2.35× 10−8 5 0.00833 0.01667 TRUE TRUE

CFAEE vs. FA 3.53× 10−8 6 0.01000 0.02000 TRUE TRUE
CFAEE vs. MVO 2.04× 10−6 7 0.01250 0.02500 TRUE TRUE

CFAEE vs. DE 2.86× 10−5 8 0.01667 0.03333 TRUE TRUE
CFAEE vs. PSO 3.92× 10−3 9 0.02500 0.05000 TRUE TRUE

CFAEE vs. IHHO 4.69× 10−2 10 0.05000 0.10000 FALSE FALSE

The results given in the Table 14 suggest that the proposed algorithm significantly
outperformed all opponent algorithms at both significance levels.

Finally, to establish a visual difference between methods included in the comparison,
dispersion of results over 50 runs for some benchmark instances, and better performing
methods using box and whiskers diagrams, are shown in Figures 2 and 3.
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Figure 2. Dispersion of best results over runs for functions F4, F5, F7, F9, F10, F12 (Benchmark set 2).
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Figure 3. Dispersion of best results over runs for functions F15, F18, F20, F22, F26, F30 (Benchmark set 2).

5. Dropout Estimation Simulations

In this section, an empirical study of the proposed CFAEE for a practical problem
of dropout regularization in CNN is presented. A basic experimental setup (problem
modeling, control parameter setup, and dataset details) is shown first, followed by a
presentation of the obtained results, comparative analysis with other metaheuristics-based
methods, and a discussion.

For experimental purposes, two CNN structures with default values provided by
the Caffe library, which obtained modest performances for employed datasets, were used.
The purpose of the experiment was to further investigate the performance of metaheuris-
tics for optimizing dropout probability dp. The same experimental conditions as in [5]
were utilized.

All metaheuristics, as well as the CNN framework, were developed in Python using
its core and data science libraries (scikit-learn, NumPy, SciPy, along with pandas and
matplotlib for visualization) and Keras API. Experiments are conducted on Intel® CoreTM
i7-8700K CPU, 64 GB RAM, and Windows 10 OS with 6 × NVIDIA GTX 1080 GPUs.

5.1. Basic Experimental Setup

The study proposed in this manuscript utilizes a similar research setup as shown
in [5]. Four parameters that influence the CNN learning process, which were taken into
consideration in this study, are: the learning rate η, L1 regularization (penalty, momentum)
α, L2 regularization (weight decay) λ, and the dropout probability dp. However, in all
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experiments, tuple (η, α, λ) was fixed, while the metaheuristics approaches attempted to
optimize only the dp parameter. Therefore, this problem belongs to the group of global
optimization challenges, with only one parameter that is being optimized.

In the conducted simulations, two CNN architectures, provided by the well-known
Caffe library [66] examples (https://caffe.berkeleyvision.org/, accessed on 10 October
2021), as in [5], were utilized. First, CNN architecture was used for performing classification
tasks for MNIST, Fashion-MNIST, Semeion, and USPS datasets, while the second was
employed for CIFAR-10 challenge. The only differences in CNN design over the proposed
Caffe CNNs are the following: an extra dropout layer was added, and for Semeion and
USPS simulations, the kernel size was set to 3× 3 instead of 5× 5 (as provided in Caffe),
due to the lower image resolutions.

Graphical representation of the utilized CNN structures generated by the plot_model
Keras function is shown in Figure 4.

Figure 4. Example instance of MNIST/Fashion-MNIST/Semeion/USPS models (left) and example
instance of CIFAR-10 model (right).

Method was tested on five well-known image classification datasets:

https://caffe.berkeleyvision.org/
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1. MNIST—consists of images of handwritten digits “0–9”; it is divided into 60,000
training and 10,000 testing observations; image size 28× 28 pixels gray-scale (http:
//yann.lecun.com/exdb/mnist/, accessed on 10 October 2021);

2. Fashion-MNIST—dataset of Zalando’s article images; it is comprised of different
clothing images divided into 10 classes; it is split into 60,000 and 10,000 images used
for training and testing, respectively; image size 28× 28 pixels (https://github.com/
zalandoresearch/fashion-mnist, accessed on 10 October 2021);

3. Semeion—includes a total of 1593 handwritten digits “0–9” images collected from 80 per-
sons; digits are written accurately (normal way) and inaccurately (fast way); the original
dataset is not split into training and testing; image size 16× 16 grayscale and each pixel
is binarized (https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit,
accessed on 10 October 2021);

4. USPS—contains handwritten digits “0–9” images obtained from the envelopes of the
United States Postal Service; dataset is split into 7291 training and 2007 testing images;
image size 16 × 16 gray-scale (http://statweb.stanford.edu/tibs/ElemStatLearn/
datasets/zip.info.txt, accessed on 10 October 2021);

5. CIFAR-10—consists of various images from 10 classes; subset of 80 million tiny images
retrieved and collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton; divided
into 50,000 images for training and 10,000 images for testing; image size 32× 32 color-
scale (http://www.cs.toronto.edu/kriz/cifar.html, accessed on 10 October 2021).

The total number of instances per each class in the training and testing sets, for all
datasets employed in the simulations, is shown in Figure 5. Nevertheless, some datasets are
unbalanced (does not have the same number of observations for each class) in the original
train and test sets; the original split was used in experiments and all metaheuristics were
tested under the same experimental conditions. The only dataset that was not originally
split into training and testing sets was Semeion; for the purpose of this study, it was
manually divided into 400 and 993 observations used for training and testing, respectively,
as suggested in [5].

The training set for each database was further divided into train and validation, while
the same proportion of the number of instances for each class was maintained. Data
preprocessing was not applied. The dataset details, in terms of the split, along with the
training batch size (provided in parentheses), are shown in Table 15. The same configuration
was employed in [5].

The values for η, α, and λ parameters, as well as the number of training epochs, were
set to default values, provided by the Caffe library with only an exception for the Semeion
dataset. In this case, the η was set to 0.001 (not Caffe default) due to fewer images in the
dataset. The dp, which is subject to optimization, can take any continuous value from the
range [0, 1]. The parameter setup is summarized in Table 16.

Table 15. Datasets split into training, validation, and testing, along with the batch size.

Dataset Train Set Validation Set Testing Set

MNIST 20.000 (64) 40.000 (100) 10.000 (100)

Fashion-MNIST 20.000 (64) 40.000 (100) 10.000 (100)

Semeion 200 (2) 400 (400) 993 (993)

USPS 2.406 (32) 4.885 (977) 2.007 (2.007)

CIFAR-10 20.000 (100) 30.000 (100) 10.000 (100)

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit
http://statweb.stanford.edu/tibs/ElemStatLearn/datasets/zip.info.txt
http://statweb.stanford.edu/tibs/ElemStatLearn/datasets/zip.info.txt
http://www.cs.toronto.edu/kriz/cifar.html
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Table 16. Employed CNNs parameters summary.

Dataset η α λ dp Epochs

MNIST 0.01 0.9 0.0005 [0, 1] 10.000

Fashion-MNIST 0.01 0.9 0.0005 [0, 1] 10.000

Semeion 0.001 0,9 0.0005 [0, 1] 10.000

USPS 0.01 0.9 0.0005 [0, 1] 10.000

CIFAR-10 0.001 0.9 0.004 [0, 1] 4.000
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Figure 5. Number of instances per each class in the training and testing sets for MNIST, Fashion-MNIST, Semeion, USPS,
and CIFAR-10 datasets.
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Each solution in the population represents one possible dp value. The fitness of
solution is calculated in the following way: the CNN with dp is generated and trained on
the training set and validated on the validation set with early stopping conditions (the
early stopping is adjusted as 5% of the total number of training epochs); afterwards, trained
CNN is evaluated for the test set and classification error rate Er is return. The fitness is
reversed, proportional to the Er: f it = 1/Er.

All metaheuristics were tested with a total number of 77 FFEs.The sStudy proposed
in [5] evaluated methods with N = 7 and T = 10, which also yielded a total of 77 FFEs (7 +
7 × 10).

With the goal of visualizing the CNN dropout regularization experiment flow and
design, the general CFAEE flowchart and the flowchart for fitness calculation are sown in
Figure 6.

(a) CFAEE flowchart

(b) Fitness calculation

Figure 6. (a) General CFAEE flowchart (left); (b) flowchart for fitness calculation (right).

5.2. Results, Comparative Analysis, and Discussion

For the purpose of the study proposed in [5], the bat algorithm (BA) [67], cuckoo
search (CS) [68], FA [1], and particle swarm optimization (PSO) [69] metaheuristics were
implemented and tested. However, to compare the performance of metaheuristics-defined
dp, results of the standard Caffe CNN with dropout (Dropout Caffe) and without dropout
(Caffe) are also provided.
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In the study proposed in this paper, all above metaheuristics were also implemented
and tested to validate results provided in [5]. Additionally, besides the CFAEE method
proposed in this manuscript, the following approaches were also included in the analysis:
elephant herding optimization (EHO) [70], whale optimization algorithm (WOA) [53],
sine cosine algorithm (SCA) [51], salp swarm algorithm (SSA), grasshopper optimization
algorithm (GOA) [52], and biogeography-based optimization (BBO) [71].

The CFAEE was tested with the same control parameter adjustments as in bound-
constrained experiments (Table 1). Summary of control parameters for other metaheuristics
methods included in the analysis are summarized in Table 17.

Table 17. Control parameter setup for metaheuristics included in the analysis.

Algorithm Parameters

BA [67] fmin = 0, fmax = 2, A = 0.5, r = 0.5
CS [68] β = 1.5, p = 0.25, α = 0.8
PSO [69] c1 = 1.7, c2 = 1.7, ω = 0.7
EHO [70] noclan = 5, α = 0.5, β = 0.1, noelite = 2
WOA [53] a1 linearly decreasing from 2 to 0, a2 linearly decreasing from −1 to −2, b=1
SCA [51] a = 2, r1 linearly decreasing from 2 to 0
SSA [72] c1 non-linearly decreasing from 2 to 0, c2 and c3 rand from [0,1]
GOA [52] c linearly decreasing from 1 to 0
BBO [71] hmp = 1, imp = 0.1, nbhk = 2
FA [1] α = 0.2, β0 = 1.0, γ = 1.0

All metaheuristics methods were tested in 20 separate runs and the average reported
accuracy was used as comparison metrics. Moreover,the mean obtained dp value was also
shown in the comparison table. Comparative analysis results are shown in Table 18.

Table 18. Comparative results between the proposed CFAEE and other metaheuristics in terms of
mean classification accuracy.

Method MNIST Fashion-MNIST Semeion USPS CIFAR-10
acc. dp acc. dp acc. dp acc. dp acc. dp

Caffe 99.07 0 91.71 0 97.62 0 95.80 0 71.47 0

Dropout Caffe 99.18 0.5 92.53 0.5 98.14 0.5 96.21 0.5 72.08 0.5

BA 99.14 0.491 92.56 0.505 98.35 0.692 96.45 0.762 71.49 0.633

CS 99.14 0.489 92.41 0.491 98.21 0.544 96.31 0.715 71.21 0.669

PSO 99.16 0.493 92.38 0.481 97.79 0.371 96.33 0.725 71.51 0.621

EHO 99.13 0.475 92.36 0.470 98.11 0.481 96.24 0.682 71.15 0.705

WOA 99.15 0.489 92.43 0.493 98.23 0.561 96.32 0.722 71.23 0.685

SCA 99.17 0.496 92.53 0.501 98.25 0.580 96.29 0.705 71.54 0.597

SSA 99.19 0.499 92.63 0.527 98.31 0.642 96.41 0.753 71.58 0.529

GOA 99.16 0.492 92.44 0.494 98.15 0.513 96.15 0.481 70.95 0.849

BBO 99.13 0.474 92.35 0.468 98.16 0.515 96.17 0.483 71.08 0.768

FA 99.18 0.495 92.58 0.511 98.29 0.619 96.42 0.758 71.55 0.583

CFAEE 99.26 0.529 92.73 0.570 98.46 0.719 96.88 0.845 72.32 0.388

The results from Table 18 clearly indicate superior performance of the proposed
CFAEE method regarding the dp value that was subjected to the optimization process. On
the MNIST dataset, the proposed CFAEE method obtained superior accuracy of 99.23%
with the determined dp value of 0.516. All other metaheuristics approaches obtained the
dp value below the standard Dropout Caffe value dp = 0.5. In this particular case, the
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results obviously show that the dp value should be slightly greater than 0.5 in order to
achieve better accuracy, and the proposed CFAEE method was the only one that was able
to achieve it.

A similar conclusion can be derived for the Fashion-MNIST experiment. Most methods
included in the analysis generated dp, which is lower than 0.5, and worse results than
those achieved by the Dropout Caffe were reported. However, BA, SSA SSA, FA, and the
proposed CFAEE obtained better accuracy than Dropout Caffe with dp > 0.5.

In the Semeion dataset, again, the proposed CFAEE obtained the best accuracy result
of 98.46%, with the dp value of 0.719. It is clear that the accuracy increases with the values
of dp, higher than the standard Dropout Caffe value 0.5 in this particular dataset. The
second best method was BA, which achieved an accuracy of 98.35% with dp = 0.692. The
simple Caffe that does not employ the dropout (dp = 0) achieved 97.62% in this dataset,
while the Dropout Caffe approach (dp = 0.5) achieved an accuracy of 98.14%.

A similar pattern can be seen in the USPS dataset as well. The proposed CFAEE
again achieved the best accuracy of 96.8% with the obtained dp value of 0.845. Similar
to the previous datasets, the increase of dp value leads to better accuracy values. The
second best method in this dataset was BA, which achieved 96.45 % with the dp = 0.762.
The improvement of the accuracy over the standard Caffe and Dropout Caffe methods is
significant, as the proposed CFAEE achieved accuracy approximately 1% greater than the
Caffe, and about 0.6% greater than the Dropout Caffe.

Finally, the results on the CIFAR-10 dataset show a different pattern, as they indicate
that, if the dp is larger than the standard Dropout Caffe (dp = 0.5), the performance start to
drop and accuracy decreases. In this particular case, the model drops out neurons, and it is
not able to generalize well. At the same time, if the dp is too small, again, the performances
will drop (similar to the standard Caffe that utilizes dp = 0). It can be concluded that,
on the CIFAR-10 dataset, the best performances are achieved for the dp values slightly
below 0.5. The proposed CFAEE method achieved the best accuracy of 72.32% with the
dp = 0.388, and it was the only method that found the dp value below 0.5, as all other
metaheuristics determined the dp values in range [0.5, 1].

Finally, the original FA method showed an average performance and the proposed
CFAEE in all tests managed to substantially outscore its basic version. Therefore, similar to
the case of unconstrained benchmarks, the improvements over the original approach were
also validated against the practical challenge of dropout regularization.

Similarly, as it was performed for unconstrained benchmark problem set 1 (Section 4.2),
to establish if there were significant result differences between the proposed CFAEE and
other methods, a Wilcoxon signed rank-test was conducted. A mean classification error
rate generated over 20 independent runs and critical level α = 0.05 were taken for the test.

Results of the Wilcoxon signed-rank test are shown in Table 19. The calculated p-
values in all cases are lesser than critical values α = 0.05, which implies that the proposed
CFAEE, on average, substantially outperformed all other approaches.

Table 19. Statistical comparison of classification error rate metrics obtained by CFAEE for CNN experiments, with other
approaches by Wilcoxon Signed-Rank Test at α = 0.05.

Function CFAEE Caffe DropoutCaffe BA CS PSO EHO WOA SCA SSA GOA BBO FA

MNIST 0.74 0.9 0.82 0.86 0.86 0.8 0.87 0.85 0.83 0.81 0.84 0.87 0.82
Fashion-MNIST 7.27 8.29 7.47 7.44 7.59 7.62 7.64 7.57 7.47 7.37 7.56 7.65 7.42

Semeion 1.54 2.38 1.86 1.65 1.79 2.21 1.89 1.77 1.75 1.69 1.85 1.84 1.71
USPS 3.12 4.2 3.79 3.55 3.69 3.67 3.76 3.68 3.71 3.59 3.85 3.83 3.58

CIFAR-10 27.68 28.53 27.92 28.51 28.79 28.5 28.85 28.77 28.46 28.42 29.05 28.92 28.45

p-value 3.125×10−2 3.125×10−2 3.125×10−2 3.125×10−2 3.125×10−2 3.125×10−2 3.125×10−2 3.125×10−2 3.125×10−2 3.125×10−2 3.125×10−2 3.125×10−2 3.125×10−2

6. Conclusions

The proposed manuscript introduced a novel FA approach that further enhanced both
exploration and exploitation processes of the original method. The CFAEE incorporates an
explicit exploration mechanism and CLS, and in this way, the observed deficiencies of the
original FA were suppressed.
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Following the recent practices in the optimization process—the introduced CFAEE
algorithm was first tested on the recent CEC benchmark functions set, and the obtained
results were compared with other modern metaheuristic methods, which were tested under
the same experimental environment. Additionally, the statistical tests were executed and
delivered the proofs that the enhanced FA algorithm outscored other methods, significantly.
Furthermore, the proposed CFAEE outperforms the original FA.

The second part of the experiment focused on applying the proposed CFAEE to the
practical CNN problem-optimization of the dropout probability value. Dropout is crucial
in overfitting prevention, and it is an important challenge in the machine learning domain.
The CFAEE driven CNN was tested on five standard datasets: MNIST, Fashion-MNIST,
Semeion, USPS, and CIFAR-10. Furthermore, since the potential of metaheuristics for this
type of challenge was not investigated enough, 10 other well-known swarm intelligence
approaches were also implemented and tested for this problem. The achieved accuracies
on those datasets indicate that the CFAEE has superior performance over other methods,
as well as a promising future in this area.

Accordingly, future work will focus on applying the proposed CFAEE method on
other machine learning problems. Due to its promising performances, CFAEE will be
adapted and used in tackling other NP-hard problems, including challenges in wireless
sensor networks and cloud computing. Finally, regularization in CNNs can be further
addressed by utilizing CFAEE and fine-tuning α and λ parameters, with a goal to obtain
even better classification accuracy. Moreover, the variables of the convolutional layers,
such as the size and depth of the filters, can be parameterized through the CFAEE, instead
of the more classical metaheuristic algorithms [73].
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