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Abstract: We are proposing Tulczyjew’s triple for contact dynamics. The most important ingredients
of the triple, namely symplectic diffeomorphisms, special symplectic manifolds, and Morse families,
are generalized to the contact framework. These geometries permit us to determine so-called generat-
ing family (obtained by merging a special contact manifold and a Morse family) for a Legendrian
submanifold. Contact Hamiltonian and Lagrangian Dynamics are recast as Legendrian submanifolds
of the tangent contact manifold. In this picture, the Legendre transformation is determined to be a
passage between two different generators of the same Legendrian submanifold. A variant of contact
Tulczyjew’s triple is constructed for evolution contact dynamics.

Keywords: Tulczyjew’s triple; contact dynamics; evolution contact dynamics; Legendrian submanifold;
Lagrangian submanifold

1. Introduction

Lagrangian dynamics are generated by a Lagrangian function defined on the tangent
bundle TQ of the configuration space of a physical system, whereas Hamiltonian dynamics
are governed by a Hamiltonian function on the cotangent bundle T∗Q, which is canonically
symplectic [1–4]. If a Lagrangian function is regular, that is, if it satisfies the Hessian
condition, then the fiber derivative becomes a fibered local diffeomorphism from the
tangent bundle to the cotangent bundle. In this case, the fiber derivative turns out to be the
Legendre transformation linking the Lagrangian and the Hamiltonian realizations of the
physical system.

If a Lagrangian function happens to be degenerate, then the fiber derivative fails to be
a local diffeomorphism since its image space turns out only to be, in the best of cases, a
proper submanifold of the cotangent bundle T∗Q. That is, one only arrives at a presym-
plectic picture determined by some constraint functions. To deal with these constraints,
Dirac proposed an algorithm, nowadays called the Dirac–Bergmann algorithm [5,6]. This
algorithm proposes a method to arrive at a submanifold (possibly smaller than the image
space of the Legendre transformation) of the cotangent bundle where the Hamilton’s equa-
tions becomes well-defined. In the final stage of the algorithm, one obtains the so-called
Dirac bracket. There also exists a more geometric version of this approach called the
Gotay–Nester–Hinds algorithm [7]. Inspired the tools introduced in [7], the Skinner–Rusk
unified theory [8] is establishing a unification of Lagrangian and Hamiltonian formalisms
on the Whitney sum of tangent and cotangent bundles. In this paper, we shall focus on the
Tulczyjew approach for the Legendre transformations of singular Lagrangians.

The Classical Tulczyjew’s Triple. Tulczyjew’s triple is a commutative diagram link-
ing three symplectic bundles, namely, TT∗Q, T∗T∗Q and T∗TQ via symplectic diffeomor-
phisms [9]. This geometrization enables one to recast Lagrangian and Hamiltonian dynam-
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ical equations as Lagrangian submanifolds of the Tulczyjew symplectic space TT∗Q [10].
Referring to this geometry, the Legendre transformation is defined as a passage between
two different generators of the same Lagrangian submanifold [11,12]. This definition is
free from the non-degeneracy requirement that is the Hessian condition. Evidently, this
approach is in harmony with the creed by Weinstein “everything is a Lagrangian subman-
ifold” [13]. We reserve Section 2 for a brief summary of the Tulczyjew’s triple and the
Legendre transformation in this picture.

Tulczyjew’s triple is modified for many physical systems and it is carried to several
geometric frameworks. For higher order Lagrangian dynamics, the triple is upgraded
in [14,15]. For physical theories where the configuration space is a Lie group, the triple is
examined in a series of works [16–19]. The triple is examined for principal fiber bundles
in [20,21]. It is written for the vector bundle of n-vectors in [22]. For the case of the field
theories, we refer to an extensive, but incomplete list [23–32], and for the higher order field
theories see, for example, [33].

Contact Hamiltonian Dynamics. A symplectic manifold must be even dimensional.
An odd dimensional generalization of symplectic geometry is contact geometry [34]. Hamil-
tonian dynamics are available on this generalization as well [35–38]. In the present work,
as a generic model of contact manifold, we consider the extended cotangent bundle

T ∗Q = T∗Q×R (1)

with the contact one-form ηQ = dz− θQ. Here, z is the real variable, and θQ is the pull-back
of the canonical one-form on the cotangent bundle T∗Q. In a coordinate free formulation,
contact Hamiltonian dynamics generated by a Hamiltonian function H are defined as

ιXc
H

ηQ = −H, ιXc
H

dηQ = dH −R(H)ηQ, (2)

where R is the Reeb field associated with the contact form ηQ, and ιXc
H

is the interior
product. In Darboux’ coordinates (qi, pi, z), the contact Hamilton’s equations are computed
to be

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi − pi

∂H
∂z

, ż = pi
∂H
∂pi
− H. (3)

Contact Hamiltonian dynamics have different features from classical Hamiltonian
dynamics. One interesting characteristic of contact Hamiltonian dynamics is the loss of
conservation of Hamiltonian function along the motion [39,40]. Even, the canonical contact
volume form is not preserved under the action of the contact Hamiltonian dynamics
(see [41]). The dissipative nature of contact Hamiltonian dynamics makes them proper for
dissipative dynamical systems. We present here an incomplete list of some recent works
along this direction: [37,39,40,42]. Additionally, we can argue that contact framework looks
proper for thermodynamics, see, for example, the following incomplete list: [35,43–45].
Accordingly, we also wish to cite [46–49] for the use of contact geometry for qualitative
analysis of reversible–irreversible dynamics under GENERIC (an acronym for General
Equation for Non-equilibrium Reversible-Irreversible Coupling) formalism. At the end
of this paper, we shall provide some applications of our results on thermodynamics. We
cite [50,51] for some recent studies on variational aspects of contact Hamiltonian dynamics.

There is evolution contact Hamiltonian formalism on the extended cotangent bundle.
In this case, for a Hamiltonian function H, evolution contact Hamilton’s equation is defined
to be

ιεH ηQ = 0, LεH ηQ = dH +R(H)ηQ. (4)

Here, LεH is the Lie derivative. According to the Cartan’s formula, it is computed to
be LεH = dιεH + ιεH d. In Darboux’s coordinates, the local picture of the evolution contact
Hamilton’s Equation (4) is computed to be
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q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi − pi

∂H
∂z

, ż = pi
∂H
∂pi

. (5)

Note that if 0 is a regular value of H, then the evolutionary vector field εH is tangent to
the hypersurface H−1(0) and, thus, to every Legendrian submanifold contained in H−1(0).
Therefore, the integral curves of εH may be interpreted as thermodynamical processes for a
system with thermodynamical phase space in the extended cotangent bundle. This fact
was used in [52] to discuss the relation between evolution contact dynamics and simple
thermodynamical systems with friction.

Contact Lagrangian Dynamics. Corresponding Lagrangian formalism for contact
Hamiltonian dynamics is also available in the literature under the name of Herglotz (or
generalized Euler–Lagrange) formalism [53]. See also [38]. In this paper, as the geometric
framework, we consider the extended tangent bundle

T Q = TQ×R. (6)

A Lagrangian function L = L(q, q̇, z) on T Q determines the Herglotz (generalized
Euler–Lagrange) equations as

∂L
∂qi −

d
dt

( ∂L
∂q̇i

)
+

∂L
∂z

∂L
∂q̇i = 0. (7)

Here, z is the real variable appearing in TQ×R. Evidently, if the Lagrangian function
L is independent of z, then Equation (7) reduces to the classical Euler–Lagrange equations.
If the Lagrangian function L is non-degenerate, that is, if the rank of the Hessian matrix[

∂2L
∂q̇i∂q̇i

]
(8)

is maximum, then the fiber derivative

FLc : T Q −→ T ∗Q, (qi, q̇i, z) 7→ (qi,
∂L
∂q̇i , z) (9)

turns out to be a local diffeomorphism. In this case, a direct calculation shows that the fiber
derivative (9) maps the Herglotz equations in (7) to the contact Hamilton’s Equation (3)
once the Hamiltonian function is taken to be

H(qi, pi, z) = q̇i pi − L(q, q̇, z). (10)

If a Lagrangian function fails to be non-degenerate then, as in the symplectic case,
the transformation (9) fails to be a local isomorphism. Then the image space of FLc can
only be, in the best of the cases, a proper submanifold of the extended cotangent bundle.
One way to deal with the constraints defining the image space is to employ a version
of Dirac algorithm. This is recently studied in [54]. Another way is to generalize the
unified formalism for contact dynamics as presented in a recent study [55]. In this paper,
our interest is to study the Legendre transformation for contact dynamics following the
understanding of Tulczyjew.

Goal of the Present Work. The aim of this work is to define Legendre transformation
between the Herglotz Equation (7) and the contact Hamilton’s Equation (3) by properly
constructing a Tulczyjew’s triple for the case of contact manifolds. We shall call this as
contact Tulczyjew’s triple. Such an attempt involves modifications of the ingredients of
the classical Tulczyjew’s triple to the contact geometry. Here, in the contact case, the role
of Tulczyjew’s symplectic space TT∗Q will be played by the extended tangent bundle
T T ∗Q of the extended cotangent bundle. Accordingly, Tulczyjew’s triple will consist of
the iterated extended bundles T ∗T Q, T T ∗Q, T ∗T ∗Q as well as contact transformation
between them. Maybe, the most vital object in this picture is the introduction of the notion
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of special contact manifolds. This novel framework permits one to recast both the contact
Lagrangian and the contact Hamiltonian dynamics as a Legendrian submanifold of T T ∗Q.
This enables us to realize that Lagrangian and Hamiltonian functions as generating ob-
jects of the same Legendrian submanifold. Thus, by merging special contact geometry
with Morse family theory, the Legendre transformation for contact dynamics is defined
to be a passage between two different generators of the same Legendrian submanifold.
In addition, there is an (evolution) Hamiltonian flow on contact geometry preserving the
energy, but not the kernel of the contact form. There is also Lagrangian counterpart of this
theory called evolution Herglotz equations. By properly modifying contact Tulczyjew’s
triple, the Legendre transformation for the evolution Herglotz equations and the evolution
contact Hamilton’s equations are obtained. In this theory, contact manifolds and Legen-
drian submanifolds are replaced by symplectic manifolds and Legendrian submanifolds,
respectively. We call this geometry the evolution contact Tulczyjew’s triple.

The content of this work is as follows. The main body of the paper consists of three
sections. In Section 2, for the sake of the completeness of the manuscript and in order to fix
the notation, a brief summary of classical Tulczyjew’s triple is given. Section 3 is reserved
for the basics on contact dynamics in both Hamiltonian and Lagrangian formulations.
Section 4 is the one containing the novel results of the paper where the Tulczyjew’s triple is
constructed for the contact and evolution contact dynamics.

2. The Classical Tulczyjew’s Triple
2.1. (Special) Symplectic Manifolds

A manifold P is said to be symplectic if it is equipped with a non-degenerate closed
two-form ω [1,3,56]. In this case, ω is called a symplectic two-form. A diffeomorphism
between two symplectic manifold is called a symplectic diffeomorphism if it respects the
symplectic two-forms.

Submanifolds. Let (P , ω) be a symplectic manifold, and S be a submanifold of P .
We define the symplectic orthogonal complement of TS as the vector subbundle of TP

TS⊥ = {X ∈ TP : ω(X, Y) = 0, ∀Y ∈ TS}. (11)

The rank of the tangent bundle TP is the sum of the ranks of the tangent bundle TS
and its symplectic orthogonal complement TS⊥. We list some of the important cases.

• S is called an isotropic submanifold if TS ⊂ TS⊥. In this case, the dimension of S is
less or equal to the half of the dimension of P .

• S is called a coisotropic submanifold if TS⊥ ⊂ TS . In this case, the dimension of S is
greater or equal to the half of the dimension of P .

• S is called a Lagrangian submanifold if TS = TS⊥. In this case, the dimension of S is
equal to the half of the dimension of P .

Under a symplectic diffeomorphism, the image of a Lagrangian (isotropic, coisotropic)
submanifold is a Lagrangian (resp. isotropic, coisotropic) submanifold.

The Cotangent Bundle. The generic examples of symplectic manifolds are cotangent
bundles. To see this, consider a manifold Q, and its cotangent bundle T∗Q. The canonical
(Liouville) one-form θQ on T∗Q is defined, on a vector X over T∗Q as

θQ(X) = 〈τT∗Q(X), TπQ(X)〉. (12)

Here, τT∗Q is the projection from the tangent bundle TT∗Q to its base manifold T∗Q,
whereas TπQ is the tangent lift of the cotangent projection πQ. To be more precise, we
present the following commutative diagram,
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TT∗Q

TQ T∗Q

Q

τT∗QTπQ

τQ πQ

(13)

Minus of the exterior derivative of the canonical one-form θQ, that is, ωQ := −dθQ, is
the canonical symplectic two-form on the cotangent bundle T∗Q.

Hamiltonian Vector Fields. Let X be a vector field on the symplectic manifold
(T∗Q, ωQ). It is called a local Hamiltonian vector field if it preserves the symplectic
two-form

LXωQ = 0. (14)

Poincaré Lemma assures us the existence of a local function H satisfying the so-called
Hamilton’s equation

ιXH ωQ = dH. (15)

Notice that, in this realization, we denote the Hamiltonian vector field by XH . If there
exists a global Hamiltonian function H then XH is called a (global) Hamiltonian vector
field.

If the dimension of Q is n then the cotangent bundle T∗Q turns out to be a 2n
dimensional manifold. In this case, the n-th power ωn

Q of the symplectic two-form is
a non-vanishing top-form on T∗Q. So that, it determines a volume form, the so-called
symplectic volume. The identity (14) gives that a Hamiltonian vector field preserves the
symplectic volume. Further, the skew-symmetry of the symplectic two-form manifests the
conservation of the Hamiltonian function H. If H is the total energy, then this is called the
conservation of energy.

A set of natural bundle coordinates (qi, pi) on T∗Q are Darboux coordinates, meaning
that the canonical one-form θQ and the symplectic two-form ωQ are written as

θQ = pidqi, ωQ = dqi ∧ dpi, (16)

respectively. In this realization, the Hamilton’s Equation (15) is computed to be

dqi

dt
=

∂H
∂pi

,
dpi
dt

= −∂H
∂qi . (17)

Special Symplectic Structures. Let P be a symplectic manifold carrying an exact
symplectic two-form ω = −dθ, with θ is being a potential one-form. Assume also that,
P is the total space of a fiber bundle (P , π,Q). Here, Q is the base space, and π is the
projection. A special symplectic structure is a quintuple

(P , π,Q, θ, φ) (18)

where φ is a fiber preserving symplectic diffeomorphism from P to the cotangent bundle
T∗Q (see [57,58]). The symplectic diffeomorphism φ relating canonical symplectic two-form
ωQ = −dθQ on T∗Q and the symplectic two-form ω = −dθ satisfies both

φ∗θQ = θ, φ∗ωQ = ω. (19)

Here, θQ is the canonical one-form defined in (12). Accordingly, the symplectic
diffeomorphism φ can be characterized by the following pairing

〈φ(x), Tπ ◦ X(x)〉 = 〈θ(x), X(x)〉 (20)
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for a vector field X on P , for any point x in P . To see this definition, simply evaluate X
with the pull-back one form φ∗θQ that is,

〈φ∗θQ, X〉(x) = 〈θQ(φ(x)), Tφ ◦ X(x)〉
= 〈τT∗Q ◦ Tφ ◦ X(x), TπQ ◦ Tφ ◦ X(x)〉
= 〈φ(x), Tπ ◦ X(x)〉,

(21)

where we have employed the definition (12) of the canonical one-form in the second line
whereas the identities τT∗Q ◦ Tφ ◦ X = φ and πQ ◦ φ = π in the third line. We exhibit a
special symplectic manifold (P , π,Q, θ, φ) with the following commutative diagram

T∗Q

πQ !!

P
φoo

π��
Q

(22)

The two-tuple (P , ω) is called underlying symplectic manifold of the special symplec-
tic structure.

2.2. Morse Families

First of all, we will review the definition of a special kind of Lagrangian submanifolds
of a cotangent bundle endowed with the canonical symplectic structure (for more details,
see [4,59]). Let N be a submanifold of a smooth manifold Q and Θ|N be a closed one-form
defined on N . Then, we can consider a Lagrangian submanifold SΘ|N of T∗Q given by

SΘ|N = {γ ∈ T∗Q | πQ(γ) ∈ N ,
(
T∗πQ(γ)

)
ι(γ) = Θ|N (πQ(γ))} (23)

where ι : N ↪→ Q is the canonical inclusion. Note that for every point q in N , there exists
an open subset U ⊆ N including q, and a real valued smooth function ∆ : U 7→ R such
that Θ|N = d∆. In this case, ∆ is called the (local) generating function of SΘ|N . Next, we
will review the definition of Morse families and the Lagrangian submanifolds associated
with them.

Consider a fiber bundle (W , τ,Q) where W is the total space of dimension n + K,
whereas Q is the base manifold of dimension n. Here, τ is the bundle projection. The
vertical bundle Vτ over the manifoldW is a vector sub-bundle of TW containing vectors
that belong to the kernel of the tangent mapping Tτ that is,

Vτ = {X ∈ TW : Tτ ◦ X = 0}. (24)

The co-normal bundle V0τ is the space of co-vectors in T∗W annihilating vectors
in the vertical bundle Vτ. A real-valued function E on the total space of a fiber bundle
(W , τ,Q) is called Morse family (or generating family) [4,58] if

Tγim(dE) + TγV0τ = TγT∗W , (25)

for all γ in the intersection im(dE) ∩V0τ.
Generating Lagrangian Submanifolds. A Morse family E defined on (W , τ,Q) gen-

erates an immersed Lagrangian submanifold of the cotangent bundle T∗Q as

S =
{

z ∈ T∗Q : T∗τ(z) = dE(w), ∀w ∈ W , τ(w) = πQ(z)
}

. (26)

The inverse of this statement is also true. Thus, we state the following theorem, which
is generalizing the well-known Poincaré Lemma for non-horizontal Lagrangian subman-
ifolds. Accordingly, it is called as generalized Poincaré Lemma or Maslov-Hörmander
Theorem [4,60,61].



Mathematics 2021, 9, 2704 7 of 41

Theorem 1. For a Lagrangian submanifold of a cotangent bundle T∗Q, there always exists, at
least locally, a Morse family E generating S .

We picture the Lagrangian submanifold S generated by a Morse family E on (W , τ,Q)
as follows.

R W

τ

��

E
oo T∗Q

S

��

πQ
��

Q Q

(27)

Given a Lagrangian submanifold, its Morse family generator is far from being unique.
For example, one may find a Morse family with less number of fiber variables generating
the same Lagrangian submanifold. This procedure is called reduction of Morse family.
See [60] for further discussions on this subject.

We merge a Morse family E defined on (W , τ,Q) and a special symplectic structure
(P , π,Q, θ, φ) depicted diagrammaticality in (22). This permits us to define a Lagrangian
submanifold of the symplectic manifold (P , ω) [9]. Here is the diagram,

R W

τ

��

E
oo T∗Q

S

��

πQ !!

P
φoo

π��

SE

��

Q Q

(28)

Here, S is the Lagrangian submanifold of T∗Q given in (26), and the inverse of the
symplectic diffeomorphism φ maps S to a Lagrangian submanifold SE of P . That is,
φ(SE) = S .

Local Picture. Now, we present local realization of these discussions. Let (qi) be
local coordinates on Q and we consider the induced local coordinates (qi, εa) on the the
total space W . In this image, a function E is called a Morse family if the rank of the
following matrix (

∂2E
∂qi∂εa ,

∂2E
∂εa∂εb

)
(29)

is equal to K. In this case, the Lagrangian submanifold (26) generated by E is viewed
locally as

S =

{(
qi,

∂E
∂qj (x, ε)

)
∈ T∗Q :

∂E
∂εa (x, ε) = 0

}
. (30)

Note that the dimension of the submanifold S is half of the dimension of the cotangent
bundle T∗Q and the canonical symplectic two-form ωQ vanishes on S .

2.3. Merging Two Special Symplectic Structures

Let (P , ω) be an exact symplectic manifold. Assume that P admits two different
fiber bundle structures denoted by (P , π,Q) and (P , π′,Q′). Further, let these fibra-
tions lead to two special symplectic symplectic structures denoted by (P , π,Q, θ, φ) and
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(P , π′,Q′, θ′, φ′), respectively. We merge these two special symplectic structures in one
diagram as follows:

T∗Q P T∗Q′

Q Q′

πQ

φ φ′

π′π πQ′ (31)

This is the most abstract realization of classical Tulczyjew’s triple. Notice that, in this
geometry, the symplectic two-form ω on P admits two different potential one forms θ′ and
θ so that

ω = −dθ′ = −dθ. (32)

Further, by employing the canonical symplectic two-forms ωQ = −dθQ and ωQ′ =
−dθQ′ over the corresponding cotangent bundles T∗Q and T∗Q′, the following proper-
ties hold

φ∗(θQ) = θ, φ∗(ωQ) = ω, φ′∗(θQ′) = θ′, φ′∗(ωQ′) = ω. (33)

Consider the product manifold Q×Q′ and let π and π′ be the maps defined in (31).
Assume that the image space of

χ : P −→ Q×Q′, p 7→ (π(p), π′(p)) (34)

is an embedded submanifold imχ = N of Q × Q′. Further, we assume that the map
χ : P 7→ N is a surjective submersion. The equalities (32) show that the difference θ′ − θ is
a closed one-form. Using Poincaré Lemma, we have that for every point p in P there exists
an open subset Up ⊆ P containing p and a smooth function ∆p on Up such that

d∆p = (θ′ − θ)
∣∣
Up

. (35)

The vertical bundle with respect to the fibration χ is precisely the intersection of the
vertical bundles with respect to π and π′, that is, Vχ = Vπ ∩ Vπ′. Notice that θ′ − θ
is a χ-basic one-form. In fact, due to the fiber preserving character of the symplectic
diffeomorphisms φ and φ′, the potential one-forms θ and θ′ are taking values in the co-
normal bundles V0π and V0π′, respectively. We deduce that the difference of potential
one-forms takes values in the co-normal bundle V0χ since

θ′ − θ ∈ Γ(V0π′) + Γ(V0π) = Γ(V0π′ + V0π) = Γ(Vπ′ ∩Vπ)0 = Γ(V0χ), (36)

where χ is the fibration in (34). So, there exists a unique closed one-form Θ|N such that
χ∗Θ|N = θ′ − θ. In fact, ∆p given in (35) is a χ-basic function and, therefore, there exists a
smooth function ∆ on χ(Up) satisfying d∆ = θ

∣∣
Up

. The following diagram illustrates the
above situation.

Up ⊆ P

R

χ(Up)

∆p

χ

∆

(37)
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Next, we consider the following Lagrangian submanifold of the canonical symplectic
manifold (T∗(Q′ ×Q), ωQ′×Q) given by

S̄ =
{

γ̄ ∈ T∗(Q′ ×Q) : πQ′×Q(γ̄) = (q′, q) ∈ N , γ̄
∣∣
T(q′ ,q)N

= Θ|N (q′, q)
}

. (38)

Consider the symplectic diffeomorphism

Ψ :
(
T∗(Q′ ×Q), ωQ′×Q

)
−→

(
T∗Q′ × T∗Q, ωQ′ 	ωQ

)
, (µq′ , µq) 7→ (µq′ ,−µq) (39)

where ωQ′×Q is the canonical form on the cotangent bundle, whereas

ωQ′ 	ωQ = pr∗2(ωQ′)− pr∗1(ωQ).

Referring to (39), we map the Lagrangian submanifold S̄ in (38) to a Lagrangian
submanifold S = Ψ(S̄) of T∗Q′ × T∗Q. Then, we will prove the following result.

Theorem 2. The graph(φ ◦ (φ′)−1) of the symplectic diffeomorphism

φ ◦ (φ′)−1 : T∗Q′ 7→ T∗Q (40)

pictured in (31) is an open subset of the Lagrangian submanifold S = Ψ(S̄).

Proof. Evidently, graph(φ ◦ (φ′)−1) is a Lagrangian submanifold of T∗Q′ × T∗Q so that it
is enough to show that graph(φ ◦ (φ′)−1) is a subset of S . In fact, we will see that

graph(φ ◦ (φ′)−1) =
{
(µq′ ,−µq) ∈ T∗Q′ × T∗Q : q = π((φ′)−1(µq′)),

(µq′ ,−µq)
∣∣
T(q′ ,q)N

= Θ|N (q′, q)
}

which implies the result. Suppose that (µq′ ,−µq) be an element of graph(φ ◦ (φ′)−1), then
we have that φ ◦ (φ′)−1(µq′) is precisely µq. Assume that (φ′)−1(µq′) = p in P so that
φ(p) = −µq. This gives

πQ′(φ(p)) = q ⇒ π(p) = q ⇒ π ◦ (φ′)−1(µq′) = q. (41)

Next, we will see that (µq′ ,−µq)
∣∣
T(q′ ,q)N

= Θ|N (q′, q). Using (20), it follows that

φ′(p) = µq′ ⇒ θ′(p) = T∗p π′(µq′)

φ(p) = −µq ⇒ −θ(p) = T∗p π(µq)
(42)

therefore, one has that

θ′(p)− θ(p) = T∗p χ ◦ T∗(q′ ,q)ι(µq′ , µq). (43)

However, since
T∗p χ ◦Θ|N (q′, q) = θ′(p)− θ(p) (44)

we conclude that

T∗p χ ◦Θ|N (q′, q)) = T∗p χ ◦ T∗(q′ ,q)ι(µq′ , µq),

Θ|N (q′, q) = T∗(y′ ,y)ι(µq′ , µq) = (µq′ , µq)
∣∣
T(q′ ,q)N

.
(45)

Conversely, suppose that γ = (µq′ ,−µq) in T∗Q′ × T∗Q and q = π((φ′)−1(µq′)),
(µq′ ,−µq)

∣∣
T(q′ ,q)N

= Θ|N (q′, q). If p = (φ′)−1(µq′), we will see that φ(p) = −µq, which
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implies that (µq′ ,−µq) in graph(φ ◦ (φ′)−1). We see that φ′(p) = µq′ which gives θ′(p) =
T∗p π′(µq′). On the other hand,

T∗(q′ ,q)ι(µq′ , µq) = Θ|N (q′, q)

T∗p χ ◦ T∗(q′ ,q)ι(µq′ , µq) = θ′(p)− θ(p)

T∗(ι ◦ χ)(µq′ , µq) = θ′(p)− θ(p)

T∗p π′(µq′) + T∗p π(µq) = θ′(p)− θ(p).

(46)

Thus, as T∗p π′(µq′) = θ′(p), we conclude that

T∗p π(−µq) = θ(p) ⇒ π(p) = −µq. (47)

To illustrate the Legendre transformation in this geometry, we present the following
discussion. Assume the existence of the triple in (31). Start with the left wing of the triple
by considering a real valued function F on Q. This determines a Lagrangian subman-
ifold im(dF) of T∗Q. By employing the inverse of the symplectic diffeomorphism φ to
im(dF), one arrives at a Lagrangian submanifold SF of the symplectic manifold P . This
submanifold can also be defined in terms of the potential one-form θ as

SF = {p ∈ P : d(F ◦ π)(p) = θ(p)}.

The Legendre transformation in terms of Tulczyjew [9,12] is to determine a generating
family for SF referring to the right wing of the triple (31). To have that, first map SF to
a Lagrangian submanifold of T∗Q′ by means of the symplectic diffeomorphism φ′. As a
manifestation of the generalized Poincaré lemma, there exits a Morse family E′ on a fiber
bundle (W , τ,Q) generating φ(SF).

2.4. The Classical Tulczyjew’s Triple

In this subsection, we draw Tulczyjew’s triple for classical dynamics assuming a
configuration manifold Q. This is to construct the triple (31) by replacing Q′ with the
tangent bundle TQ, whereas replacing Q with the cotangent bundle T∗Q. On the upper
level of (31), this results with the iterated bundles T∗TQ, TT∗Q and T∗T∗Q in order. See
that, being cotangent bundles, both T∗TQ and T∗T∗Q are symplectic. We now establish
the symplectic structure on TT∗Q admitting two potential one forms.

Symplectic structure on TT∗Q. Consider the canonical symplectic manifold T∗Q
equipped with the exact symplectic two-form ωQ = −dθQ. The derivation iT takes the
symplectic two-form ωQ on T∗Q to a one-form on TT∗Q as

iTωQ(Y) = ωQ(τTT∗Q(Y), TτT∗Q(Y)),

for any tangent vector Y on TT∗Q. Here, τTT∗Q is the tangent bundle projection TTT∗Q to
TT∗Qwhereas TτT∗Q is the tangent mapping of the bundle projection τT∗Q : TT∗Q 7→ T∗Q.
We define two one-forms on TT∗Q as

ϑ1 = −iTωQ, ϑ2 = dTθQ = iTdθQ + diTθQ. (48)

where the derivation dT is the commutator iTd + diT . The exterior derivatives of these
one-forms results with a symplectic two-form on TT∗Q defined to be

dTωQ = −dϑ1 = −dϑ2. (49)

We record this in the following theorem [12].
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Theorem 3. The tangent bundle TT∗Q is a symplectic manifold with the symplectic two-form
dTωQ in (49) admitting two potential one-forms given in (48).

Consider the Darboux’s coordinates (qi, pi) on the cotangent bundle T∗Q. In terms of
the induced local coordinate chart (qi, pi; q̇i, ṗi) on the tangent bundle TT∗Q, the potential
one-forms in (48) are computed to be

ϑ1 = −iTωQ = ṗidqi − q̇idpi, ϑ2 = dTθQ = ṗidqi + pidq̇i. (50)

Notice that, in this case, the symplectic two-form turns out to be

dTωQ = dqi ∧ dṗi + dq̇i ∧ dpi. (51)

Note that, the value ϑ2 − ϑ1 is an exact one-form. Actually, it is the exterior derivative
of coupling function iTθQ : TT∗Q 7→ R.

One can arrive at the tangent bundle symplectic two-form dTωQ on TT∗Q as the
complete lift of the canonical symplectic two-form ωQ on T∗Q. To have this, from [3,62]
we recall the definition of the complete lift of a differential form. The complete lift of the
canonical one-form θQ = pidqi is computed to be

θC
Q = ṗidqi + pidq̇i. (52)

Complete lift of forms commutes with exterior derivative. Thus, we compute

ωC
Q = (−dθQ)

C = dqi ∧ dṗi + dq̇i ∧ dpi = dTωQ. (53)

As manifested in the display, we conclude that ωC
Q = dTωQ.

By recalling Diagram (13), notice that TT∗Q admits two bundle structures. It is a
vector bundle over TQ with respect to the vector bundle projection TπQ, and it is a vector
bundle over T∗Q with vector bundle projection τT∗Q. Thus, we can consider the projection

σ : TT∗Q −→ N = TQ×Q T∗Q, Z 7→ (TπQ(Z), τT∗Q(Z)) (54)

from TT∗Q to the Whitney sum N = TQ×Q T∗Q. The function iTθQ is σ-basic and it
induces a smooth function ∆ on N, which is just the coupling function

∆ = q̇i pi. (55)

In addition, N is a submanifold of the product manifold TQ× T∗Q. Thus, we can
consider the Lagrangian submanifold SθN induced by the exact one-form θN = d∆ as in
Section 2.2. Moreover, using the construction presented in Section 2.3, we deduce that SθN
is the graph of a symplectic diffeomorphism ψ between T∗TQ and T∗T∗Q. In terms of the
Darboux’ coordinates (qi, q̇i, ai, ȧi) on T∗TQ, it is computed to be

ψ : T∗TQ −→ T∗T∗Q, (qi, q̇i, ai, ȧi) 7→ (qi, ȧi, ai,−q̇i). (56)

The canonical involution on TTQ. The iterated tangent bundle TTQ is a tangent
bundle with the base manifold TQ along with the tangent bundle projection τTQ. It is
possible to show that TTQ can be written as a vector bundle over TQ apart from the
canonical tangent bundle fibration. This fibration is achieved by the tangent mapping TτQ
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of the projection τQ. To manifest this, we plot here the double vector bundle structure of
the iterated tangent bundle TTQ in the following commutative diagram

TTQ

TQ TQ

Q

τTQ TτQ

τQ τQ

(57)

Referring to this double bundle structure [1,63,64], consider a differential mapping
Γ = Γ(t, s) from an open domain of R2 to Q. The differential of Γ with respect to t, at t = 0,
results with a curve γ(s) lying in the tangent bundle TQ depending on the free variable s.
If one further takes the differential of the curve γ(s) ⊂ TQ with respect to s, at s = 0, then
arrives at a vector in TTQ. Accordingly, the canonical involution κQ on TTQ is defined by
changing the order of differentiations

κ : TTQ −→ TTQ :
d
dt

∣∣∣∣
t=0

d
ds

∣∣∣∣
s=0

Γ(t, s) −→ d
ds

∣∣∣∣
s=0

d
dt

∣∣∣∣
t=0

Γ(t, s). (58)

An observation gives that the involution κ is changing the order of the fibrations

τTQ ◦ κ = TτQ, TτQ ◦ κ = τTQ. (59)

Pairing between TT∗Q and TTQ. We now establish a pairing between an element Z
in TT∗Q and an element W in TTQ such that TπQ(Z) = TτQ(W) and that πQ ◦ z = τQ ◦ v.
Recall that, there is a curve z(t) in T∗Q so that Z = ż(0) and, there is a curve v(t) in TQ so
that W = v̇(0). In this framework, the pairing is defined as

〈•, •〉̃ : TT∗Q× TTQ −→ R, 〈Z, W 〉̃ = d
dt
〈z(t), v(t)〉

∣∣∣∣
t=0

. (60)

Here, the pairing on the right hand side is the one between T∗Q and TQ.
In the induced coordinates (qi, q̇i, q′i, q̇′i) on the iterated tangent bundle TTQ, the

fibration in (57) read

τTQ(qi, q̇i, q′i, q̇′i) = (qi, q̇i), TτQ(qi, q̇i, q′i, q̇′i) = (qi, q′i), (61)

whereas the canonical involution κ in (59) is computed to be

κ(qi, q̇i, q′i, q̇′i) = (qi, q′i, q̇i, q̇′i).

Coordinate expression of the pairing (60) is as follows. Let us choose coordinates on
TT∗Q as Z = (qi, pi, q̇i, ṗi), and coordinates W = (qi, q′i, q̇i, q̇′i) on TTQ then,

〈Z, W 〉̃ =
〈
(qi, pi, q̇i, ṗi), (qi, q′i, q̇i, q̇′i)

〉̃
= pi q̇′i + q′i ṗi.

Now, we define two special symplectic structures for the symplectic manifold
(TT∗Q, dTωQ). One is to T∗TQ and the other is to T∗T∗Q. We assume that, being
cotangent bundles, T∗TQ and T∗T∗Q are equipped with the canonical symplectic forms
ωTQ = −dθTQ and ωT∗Q = −dθT∗Q, respectively.

Left Wing of the Tulczyjew’s triple. Start with defining the vector fibration morphism

α : TT∗Q −→ T∗TQ, 〈α(Z), W〉 = 〈Z, κ(W)〉̃, (62)
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where κ is the canonical involution defined in (59), whereas the pairing on the right hand
side is the one given in (60). Here, the pairing of the left hand side is the canonical pairing
between T∗TQ and TTQ. Locally, one has that

α(qi, pi, q̇i, ṗi) = (qi, q̇i, ṗi, pi). (63)

See that, α is a symplectic diffeomorphism by satisfying α∗ωTQ = dTωQ. Here,
ωTQ is the canonical symplectic two-form on T∗TQ, and dTωQ is the lifted symplectic
two-form (49) on TT∗Q. So that we arrive at a special symplectic structure

(TT∗Q, TπQ, TQ, ϑ2, α) (64)

where ϑ2 is the one-form in (50), and TπQ is the tangent lift of the cotangent bundle
projection πQ. We include this in the following diagram for future reference

T∗TQ TT∗Q

TQ
πTQ

α

TπQ
(65)

Right Wing of the Tulczyjew’s triple. The nondegeneracy of the canonical symplectic
two-form ωQ leads to the existence of a (musical) diffeomorphism

β : TT∗Q −→ T∗T∗Q, Z 7→ −ω[
Q(Z) = −ωQ(Z, •). (66)

Locally, one has that

β(qi, pi, q̇i, ṗi) = (qi, pi, ṗi,−q̇i). (67)

Note that, β is a symplectomorphism by satisfying β∗ωT∗Q = dTωQ. Here, ωT∗Q is
the canonical symplectic two-form on T∗T∗Q. So that we arrive at the following special
symplectic structure

(TT∗Q, τT∗Q, T∗Q, ϑ1, β). (68)

Here, ϑ1 is the potential one-form in (48) and that τT∗Q is the tangent bundle projection.
The diagram is for the future reference.

TT∗Q T∗T∗Q

T∗Q
τT∗Q

β

πT∗Q
(69)

The Tulczyjew’s triple for classical mechanics is the following commutative diagram
merging the two special symplectic structures (65) and (69) in one picture

T∗TQ

πTQ ##

TT∗Q

TπQ{{

β //

τT∗Q ##

αoo T∗T∗Q

πT∗Qzz
TQ

τQ ##

T∗Q

πQ
{{

Q

(70)

where β and α are symplectomorphisms such that

β∗ωT∗Q = ωC
Q = −dϑ1, α∗ωTQ = ωC

Q = −dϑ2.
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By employing the composition of two symplectic diffeomorphisms α−1 and β, we
arrive at a symplectic diffeomorphism ψ = β ◦ α−1. This is exactly the one in (56).

2.5. The Legendre Transformation

Let us now realized Euler–Lagrange equations generated by a Lagrangian function L
on the tangent TQ as a Lagrangian submanifold of TT∗Q using the left side of Tulczyjew’s
triple (70). The image space of the exterior derivative dL is a Lagrangian submanifold of the
manifold T∗TQ. By employing the inverse of α, we transfer this Lagrangian submanifold
to a Lagrangian submanifold SL of the manifold TT∗Q. In terms of the local coordinates
(qi, pi, q̇i, ṗi) on TT∗Q, S is computed to be

SL = α(imdL) =
{(

qi,
∂L
∂q̇i , q̇i,

∂L
∂qi

)
∈ TT∗Q : L = L(qi, q̇i)

}
⊂ TT∗Q. (71)

Dynamics determined by the Lagrangian submanifold SL is computed simply by tak-
ing the time derivatives of the base coordinates

(
qi, ∂L/∂q̇i) and equate them to the fiber co-

ordinates given by (q̇i, ∂L/∂qi), respectively. By this, we arrive at the Euler–Lagrange equa-
tions

dqi

dt
= q̇i,

d
dt

( ∂L
∂q̇i

)
=

∂L
∂qi . (72)

Notice that, for this realization, we have not asked any regularity conditions for the
Lagrangian function. That is, this theory is valid for singular Lagrangians as well.

The Legendre Transformation of Euler–Lagrange Equations. We now generate the
Lagrangian submanifold SL given in (71) referring to the right wing of the Tulczyjew’s
triple (70). Let us remark once more that this is the Legendre transformation in the
understanding of Tulczyjew. To have that, at first consider the Morse family over the
Pontryagin bundle as

E : TQ×Q T∗Q −→ R, (u, ς) 7→ 〈ς, u〉 − L(u) (73)

where 〈•, •〉 is the canonical pairing between T∗Q and TQ. In coordinates, we write the
Morse family as

E(qi, q̇i, pi) = pi q̇i − L(q, q̇). (74)

We remark that the matrix(
∂2E

∂q̇i∂qj ,
∂2E

∂q̇i∂pj
,

∂2E
∂q̇i∂q̇j

)
(75)

has maximal rank. For the choice of sign conventions, we consider the minus of the Morse
family, that is, −E. So, according to the definition in (30), the minus of the Morse family
−E generates a Lagrangian submanifold of the cotangent bundle T∗T∗Q as

S =

{(
qi, pi,−

∂E
∂qi ,− ∂E

∂pi

)
∈ T∗T∗Q :

∂E
∂q̇i = 0

}
⊂ T∗T∗Q. (76)

In order to transfer this Lagrangian submanifold to TT∗Q, we merge the Pontryagin
bundle with the right wing of the Tulczyjew’s triple (70) as follows

TT∗Q
β //

τT∗Q ##

T∗T∗Q

πT∗Qzz

TQ×Q T∗Q
pr2
��

−E // R

T∗Q T∗Q

(77)
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This permits us to arrive at the following Lagrangian submanifold of TT∗Q

S−E = β−1(S) =
{(

qi, pi,
∂E
∂pi

,− ∂E
∂qi

)
∈ TT∗Q :

∂E
∂q̇i = 0

}
⊂ TT∗Q. (78)

A direct computation proves that the Lagrangian submanifold S−E in (78) and the
Lagrangian submanifold SL in (71) are the same. So that the Legendre transformation is
achieved. If the Lagrangian function is non-degenerate, then from the equation

∂E
∂q̇i (q, q̇, p) = pi −

∂L
∂q̇i (q, q̇) = 0 (79)

one can explicitly determine the velocity q̇i in terms of the momenta (qi, pi). In other words,
for a non-degenerate Lagrangian function L = L(q, q̇) the fiber derivative

FL : TQ −→ T∗Q, (qi, q̇j) −→
(
qi,

∂L
∂q̇i (q, q̇)

)
(80)

is a local diffeomorphism. In this case, the Morse family E can be reduced to a well-defined
Hamiltonian function

H(qi, pi) = pi q̇i(q, p)− L
(
q, q̇(q, p)

)
(81)

on T∗Q.
Inverse Legendre Transformation. The inverse Legendre transformation is also pos-

sible in a similar way. This time, one starts with a Hamiltonian system (T∗Q, ωQ, H) where
H is a Hamiltonian function. See that, in this notation Hamiltonian vector field XH defined
in (15) is determined through

β ◦ XH = −dH. (82)

Notice that the Lagrangian submanifold determined by the equality (82) is written in
coordinates as

S−H =

{(
qi, pi,

∂H
∂pi

,−∂H
∂qi

)
∈ TT∗Q

}
⊂ TT∗Q. (83)

Evidently, this Lagrangian submanifold is precisely determining the Hamilton’s
Equation (17). In the present picture, the inverse Legendre transformation is to gener-
ate the Lagrangian submanifold (83) by referring to the right wing of the triple. If the
Hamiltonian function is not regular then one needs to employ a Morse family

F : TQ×Q T∗Q −→ R, (u, ς) 7→ 〈ς, u〉 − H(ς). (84)

So, if we consider the Pontryagin bundle over TQ and we proceed as in the previous
subsection, we will obtain the inverse Legendre transformation.

3. Contact Dynamics
3.1. Contact Manifolds

A (2n + 1)—dimensional manifoldM is called contact manifold if it is equipped with
a contact one-form η satisfying dηn ∧ η 6= 0 [4,34]. We denote a contact manifold by a
two-tuple (M, η). The Reeb vector fieldR is the unique vector field satisfying

ιRη = 1, ιRdη = 0. (85)

At each point of the manifoldM, the kernel of the contact form η determines the
contact structure HM. The complement of this structure, denoted by VM, is determined
by the kernel of the exact two-form dη. These give the following decomposition of the
tangent bundle

TM = HM⊕VM, HM = ker η, VM = ker dη. (86)
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Here, HM is a vector sub-bundle of rank 2n. The restriction of dη to HM is non-
degenerate so that (HM, dη) is a symplectic vector bundle overM. The rank of VM is 1,
and it is generated by the Reeb fieldR.

Contactization. It is possible to arrive at a contact manifold starting from a symplectic
manifold. To have this, consider a symplectic manifold P admitting an integer symplectic
two form ω. Introduce the principal circle (quantization) bundle

S1  (M, η)
pr−→ (P , ω). (87)

The contact one-form onM is the connection one-form associated with a principal
connection on the principal S1-bundle pr :M 7→ P with curvature ω. This procedure is
called contactization.

Another example of a contact manifold can be obtained from an exact symplectic
manifold as follows. Consider a trivial line bundle over a manifold given by Q×R 7→ Q.
The first jet bundle, denoted by T ∗Q is diffeomorphic to the product space T∗Q×R that is,

T ∗Q = T∗Q×R. (88)

We call this space the extended cotangent bundle. There exist two projections

π1
Q : T ∗Q = T∗Q×R −→ T∗Q, (ζ, z) 7→ ζ

π0
Q : T ∗Q = T∗Q×R −→ Q, (ζ, z) 7→ πQ(ζ),

(89)

where πQ is the cotangent bundle projection whereas z is the standard coordinate on R. Re-
ferring to the fibration defined by π1

Q, we have the following globally trivial contactization
of the canonical symplectic manifold

R (T ∗Q, ηQ)
π1
Q−→ (T∗Q, ωQ). (90)

Here, the contact one-form on the jet bundle T ∗Q is defined to be

ηQ := dz− θQ (91)

where θQ is the canonical one-form (12) on the cotangent bundle T∗Q. Notice that, we
have employed abuse of notation by identifying z and θQ with their pull-backs on the
total space T ∗Q. The previous construction also works if we replace T∗Q by an arbitrary
exact symplectic manifold P and, in such a case, we obtain a contact structure on the
product manifold P ×R. There exist Darboux’ coordinates (qi, pi, z) on T ∗Q, where i is
running from 1 to n. In these coordinates, the contact one-form and the Reeb vector field
are computed to be

ηQ = dz− pidqi, R =
∂

∂z
, (92)

respectively. Notice that, in this realization, the horizontal bundle is generated by the
vector fields

HT ∗Q = span{ξi, ξ i}, ξi =
∂

∂qi + pi
∂

∂z
, ξ i =

∂

∂pi
. (93)

It is important to note that these generators are not closed under the Jacobi–Lie bracket
that is,

[ξ i, ξ j] = δi
jR, (94)

where δi
j stands for the Kronecker delta. The Darboux’s theorem manifests that local picture

presented in this subsection is generic for all contact manifolds of dimension 2n + 1.
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Musical Mappings. For a contact manifold (M, η), there is a musical isomorphism [
from the tangent bundle TM to the cotangent bundle T∗M defined to be

[ : TM−→ T∗M, v 7→ ιvdη + η(v)η. (95)

This mapping takes the Reeb fieldR to the contact one-form η. We denote the inverse
of this mapping by ]. Referring to this, we define a bi-vector field Λ onM as

Λ(α, β) = −dη(]α, ]β). (96)

The couple (Λ,−R) induces a Jacobi structure [59,65,66]. This is a manifestation of
the equalities

[Λ, Λ] = −2R∧Λ, [R, Λ] = 0, (97)

where the bracket is the Schouten–Nijenhuis bracket. We cite [4,66–68] for more details on
the Jacobi structure associated with a contact one-form. Referring to the bi-vector field Λ
we introduce the following musical mapping

]Λ : T∗M−→ TM, α 7→ Λ(α, •) = ]α− α(R)R. (98)

Evidently, the mapping ]Λ fails to be an isomorphism. Notice that the kernel is
spanned by the contact one-form η. So that, the image space of ]Λ is precisely the horizontal
bundle HM exhibited in (93).

In terms of the Darboux coordinates (qi, pi, z), we compute the image of a one-form in
T∗M by ]Λ as

]Λ : αidqi + αidpi + udz 7→ αi ∂

∂qi − (αi + piu)
∂

∂pi
+ αi pi

∂

∂z
. (99)

Symplectization. The symplectization of a contact manifold (M, η) is the symplectic
manifold (M×R, d(etη)), where t denotes the standard coordinate on R factor. In this
case, M× R is said to be the symplectification of M. The inverse of this assertion is
also true. That is, if (M×R, d(etη)) is a symplectic manifold, then (M, η) turns out to
be contact.

3.2. Submanifolds of Contact Manifolds

Let (M, η) be a contact manifold. Recall the associated bi-vector field Λ defined
in (96). Consider a linear subbundle Ξ of the tangent bundle TM (that is, a distribution on
M). We define the contact complement of Ξ as

Ξ⊥ := ]Λ(Ξo), (100)

where the sharp map on the right hand side is the one in (98) and Ξo is the annihilator of Ξ.
Let N be a submanifold ofM. We say that N is:

• Isotropic if TN ⊆ TN⊥.
• Coisotropic if TN ⊇ TN⊥.
• Legendrian if TN = TN⊥.

Assume that a submanifold N of a contact manifoldM is defined to be the zero level
set of k real smooth functions φa : U → R. We determine k vector fields Za = ]Λ(dφa). The
image space of these vector fields are spanning the contact complement

TN⊥ = span{Za | a = 1, . . . , k}. (101)
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In this geometry, N is coisotropic if and only if, Za(φb) = 0 for all a, b. According to
the local computation in (99), we have that N is co-isotropic if and only if

∂φa

∂pi

(∂φb

∂qi + pi
∂φb
∂z
)
− (

∂φa

∂qi + pi
∂φa

∂z
)

∂φb
∂pi

= 0. (102)

Referring to this local observation, one can easily prove that a submanifold N ofM
is Legendrian if and only if it is a maximal integral manifold of ker η. In this case, the
dimension of N must be n (see [4,37,69]).

Generating Functions. Consider the first order jet bundle T ∗Q endowed with the
contact structure given in (91). Let F be a real valued function on the base manifold Q. Its
first prolongation is a section of the bundle π0

Q displayed in (89) that is,

T ∗F : Q −→ T ∗Q = T∗Q×R, q 7→ (dF(q), F(q)). (103)

The image space of the first prolongation T ∗F is a Legendrian submanifold of T ∗Q.
The converse of this assertion is also true, that is, if the image space of a section σ of π0

Q is
a Legendrian submanifold, then it is the first prolongation of a function F. Evidently, this is
not the only way to obtain a Legendrian submanifold.

Consider, for example, a Morse family E defined on a smooth bundle (W , τ,Q)
according to Section 2.2. Then, referring to the definition (26), we define a Lagrangian
submanifold S of the cotangent bundle T∗Q. In the light of the first jet prolongation
in (103), we lift this Lagrangian submanifold to a Legendrian submanifold of the contact
manifold T ∗Q. To see this, consider a local system of coordinates (qi) on the base manifold
Q, and the induced coordinates (qi, εa) on the total space W . Then, referring to the
Darboux’s coordinates on T ∗Q, the Legendrian submanifold N generated by a Morse
family E = E(q, ε) is computed to be

N =

{(
qi,

∂E
∂qi (q, ε), E(q, ε)

)
∈ T ∗Q :

∂E
∂εa = 0

}
⊂ T ∗Q. (104)

On the other hand, the lift of a Legendrian submanifold to the symplectification is a
Lagrangian submanifold. In fact, N is a Legendrian submanifold of a contact manifold
(M, η) if and only if N × R is a Lagrangian submanifold of the symplectic manifold
(M×R, d(etη)), see [70].

3.3. Contact Diffeomorphisms and Contact Hamiltonian Systems

Let (M1, η1) and (M2, η2) be two contact manifolds. A diffeomorphism ϕ fromM1
toM2 is said to be a contact diffeomorphism (or contactomorphism) if it preserves the
contact structures that is, Tϕ(ker η1) = ker η2. In terms of the contact forms, a contact
diffeomorphism ϕ is the one satisfying

ϕ∗η2 = µη1. (105)

where µ is a non-zero conformal factor. To manifest the existence of this conformal factor,
a mapping ϕ satisfying (105) is also called as conformal contact diffeomorphism. In this
understanding, the contact mapping is denoted by a two-tuple (ϕ, µ).

For a contact manifold (M, η), we denote the group of contact diffeomorphisms [71] by

Diffcon(M) = {ϕ ∈ Diff(M) : ϕ∗η = µη, µ ∈ F (M)}. (106)

Here, Diff(M) is standing for the group of all diffeomorphism onM. A vector field on
the contact manifold (M, η) is a contact vector field (called also as infinitesimal conformal
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contactomorphism) if it generates one-parameter group of contact diffeomorphisms. We
have that the space of contact vector fields is given by

Xcon(M) = {X ∈ X(M) : LXη = −λη, λ ∈ F (M)}. (107)

Sometimes a contact vector field is denoted by a two-tuple (X, λ) in order to manifest
the existence of the conformal factor λ. In order to discuss the geometry of λ, we perform
the following observation. This permits us to introduce Hamiltonian dynamics on the
present framework as well (for more details, see [35–37,72]).

(Contact) Hamiltonian Vector Fields. For a real valued function H on a contact
manifold (M, η), there is a corresponding contact vector field Xc

H , defined as follows:

ιXc
H

η = −H, ιXc
H

dη = dH −R(H)η, (108)

where R is the Reeb vector field. Here, H is called the (contact) Hamiltonian function
and Xc

H is called the (contact) Hamiltonian vector field. We denote a contact Hamiltonian
system as a three-tuple (M, η, H) where (M, η) is a contact manifold and H is a smooth
real function on M. A direct computation determines the conformal factor for a given
Hamiltonian vector fields as

LXc
H

η = dιXc
H

η + ιXc
H

dη = −R(H)η. (109)

That is, λ = R(H).
In this realization, the contact Jacobi bracket of two smooth functions onM is de-

fined by
{F, H}c = ι[Xc

F ,Xc
H ]η, (110)

where XF and XH are Hamiltonian vectors fields determined through (108). Here, [•, •] is
the Lie bracket of vector fields. Then, the identity

− [Xc
K, Xc

H ] = Xc
{K,H}c (111)

establishes the isomorphism

(Xcon(M),−[•, •])←→
(
F (M), {•, •}c) (112)

between the Lie algebras of real smooth functions and contact vector fields.
According to (109), the flow of a contact Hamiltonian system preserves the contact

structure, but it does not preserve neither the contact one-form nor the Hamiltonian
function. Instead, we obtain

LXc
H

H = −R(H)H. (113)

Being a non-vanishing top-form we can consider dηn ∧ η as a volume form onM.
Hamiltonian motion does not preserve the volume form since

LXc
H
(dηn ∧ η) = −(n + 1)R(H)dηn ∧ η. (114)

However, it is immediate to see that, for a nowhere vanishing Hamiltonian function
H, the quantity H−(n+1)(dη)n ∧ η is preserved along the motion (see [41]).

Referring to the Darboux’s coordinates (qi, pi, z), for a Hamiltonian function H, the
Hamiltonian vector field, determined in (108), is computed to be

Xc
H =

∂H
∂pi

∂

∂qi −
(∂H

∂qi +
∂H
∂z

pi
) ∂

∂pi
+ (pi

∂H
∂pi
− H)

∂

∂z
, (115)
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whereas the contact Jacobi bracket (110) is

{F, H}c =
∂F
∂qi

∂H
∂pi
− ∂F

∂pi

∂H
∂qi +

(
F− pi

∂F
∂pi

)∂H
∂z
−
(

H − pi
∂H
∂pi

)∂F
∂z

. (116)

Thus, we obtain that the Hamilton’s equations for H as

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi − pi

∂H
∂z

, ż = pi
∂H
∂pi
− H. (117)

Evolution vector fields Another vector field can be defined from a Hamiltonian
function H on a contact manifold (M,≡): the evolution vector field of H [52], denoted as εH ,
which is the one that satisfies

LεH η = dH −R(H)η, η(εH) = 0. (118)

In local coordinates, it is given by

εH =
∂H
∂pi

∂

∂qi −
(∂H

∂qi +
∂H
∂z

pi
) ∂

∂pi
+ pi

∂H
∂pi

∂

∂z
, (119)

so that the integral curves satisfy the evolution equations

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi − pi

∂H
∂z

, ż = pi
∂H
∂pi

. (120)

The evolution and Hamiltonian vector fields are related by

εH = Xc
H + HR. (121)

Quantomorphisms. By asking the conformal factor µ in the definition (105) to be the
unity, one arrives the conservation of the contact forms

ϕ∗η2 = η1. (122)

We call such a mapping as a strict contact diffeomorphism (or quantomorphism). For
a contact manifold (M, η) we denote the space of all strict contact transformations as

Diffst
con(M) = {ϕ ∈ Diff(M) : ϕ∗η = η} ⊂ Diffcon(M). (123)

The Lie algebra of this group is consisting of the infinitesimal quantomorphisms

Xst
con(M) =

{
X ∈ Xcon(M) : LXH η = 0

}
. (124)

If the contact vector field is determined through a smooth function H as in (108), then
XH falls into the subspace Xst

con(M) if and only if λ = −dH(R) = 0. This reads that, to
generate an infinitesimal quantomorphism, a function H must not depend on the fiber
variable z.

Now, consider the canonical contact manifold (T ∗Q, ηQ). For two functions, those
that are not dependent on the fiber variable z, the contact Jacobi bracket {•, •}c in (116)
locally turns out to be equal to the canonical Poisson bracket on T∗Q, therefore we find that[

Xst
H , Xst

F
]
= −Xst

{H,F}, (125)

where Xst
H is the infinitesimal quantomorphism generated by H. Accordingly, one arrives

at an isomorphism

Xham(T∗Q) −→ Xst
con(T ∗Q), XH 7→ XH − H

∂

∂z
(126)
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from the Lie algebra of Hamiltonian vector fields Xham(T∗Q) into the canonical cotan-
gent bundle T∗Q to the Lie algebra of infinitesimal quantomorphisms Xst

con(T ∗Q) on the
extended cotangent bundle.

3.4. Contact Lagrangian Dynamics

Once more, we consider the extended configuration space Q×R, but this time take it
as the total space of the standard fibration from Q×R to R. In this bundle structure, the
base manifold is R and the fibration is simply the projection to the second factor. The first
jet manifold is diffeomorphic to

T Q = TQ×R. (127)

We call this space the extended tangent bundle.
Suppose that L : T Q 7→ R is a Lagrangian function. In order to arrive at the dynamical

equations governed by such a Lagrangian function, one needs to employ the Herglotz
principle, which is defined by an action functional [38,53,73].

The value of the functional attains its extremum if q(t) is a solution of the Herglotz
equations (also known as the generalized Euler–Lagrange equations):

q̇i =
dqi

dt
,

∂L
∂qi −

d
dt

( ∂L
∂q̇i

)
+

∂L
∂z

∂L
∂q̇i = 0, (128)

and z is a solution of the Cauchy problem

ż = L(t, qi, q̇i, z), 0 ≤ t ≤ τ. (129)

It is important to notice that (128) represents a family of differential equations, since
for each function q(t), a different differential equation arises, hence z(t) depends on q(t).
Without the explicit dependence of z, this problem reduces to a problem of the classical
calculus of variations. If the functional z defined in (129) is invariant with respect to
translation in time, then the quantity

I = exp
(
−
∫ t ∂L

∂z
dθ
)(

L(q, q̇, z)− ∂L
∂q̇i q̇i

)
(130)

is conserved on solutions of the Herglotz equations for regular Lagrangians.
For a regular Lagrangian function L, the fiber derivative determines a diffeomorphism

from the extended tangent bundle T Q to the extended cotangent bundle T ∗Q as

FLc : T Q −→ T ∗Q, (qi, q̇i, z) 7→ (qi,
∂L
∂q̇j , z) (131)

A direct calculation shows that the Legendre transformation (131) maps the Herglotz
equations in (128) to the contact Hamilton’s equations (117) if the Hamiltonian function is
defined to be

H(qi, pi, z) = q̇i pi − L(q, q̇, z). (132)

The evolution-Herglotz equations. One can obtain the Lagrangian formalism for the
evolution vector field by using a nonlinear nonholonomic action principle, as shown in [74].
The resulting equations are the evolution Herglotz equations

∂L
∂qi −

d
dt

( ∂L
∂q̇i

)
+

∂L
∂z

∂L
∂q̇i = 0,

ż = q̇i ∂L
∂q̇i .

(133)

The Legendre transformation (131) maps the evolution Herglotz equations in (133) to
the evolution contact Hamiltonian dynamics in (120).
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4. Tulczyjew’s triple for Contact Geometry
4.1. Special Contact Structures

Let (M, η) be a contact manifold and the total space of a fibre bundle (M, ρ,Q). We
introduce a special contact structure as a quintuple

(M, ρ,Q, η, Φ), (134)

where Φ is a fiber preserving contact diffeomorphism fromM to the canonical contact
manifold (T ∗Q, ηQ). The two-tuple (M, η) is said to be the underlying contact manifold of
the special contact structure. Here, we have a diagram exhibiting a special contact structure
in a pictorial way

T ∗Q

π0
Q

��

M

ρ

��

Φoo

Q

(135)

where π0
Q is the fibration given in (89).

It is possible to define a special contact space starting with a special symplectic
space defined in Section 2.1. For this, suppose that (P , ω = −dθ) is an exact symplectic
manifold and in the product manifold P ×R we consider the standard contact structure
η = dz− θ (that is, the contactization of the exact symplectic structure ω = −dθ). Assume
also that P admits a special symplectic structure (P , π,Q, θ, φ) as pictured in (22). Then,
M admits a special contact structure (M, ρ,Q, η, Φ), where Φ(p, z) = (φ(p), z), and the
following diagram

T ∗Q

π1
Q

��

M = P ×RΦoo

pr

��
T∗Q

πQ

��

P
φ

oo

π

��
Q

(136)

is commutative, with π1
Q the fibration given in (89). Here, it is considered that ρ = π ◦ pr.

This construction is the contactization of the special symplectic structure.
We now merge a Morse family E defined on a fiber bundle (W , τ,Q) and a special

contact space (M, ρ,Q, η, Φ) in order to arrive at a Legendrian submanifold of (M, η). For
this, consider the following commutative diagram

R W

τ

��

E
oo T ∗Q

N

��

π0
Q

��

M

NE

��Φoo

ρ

��
Q Q

(137)
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Referring to the definition in (104), we obtain a Legendrian submanifold N of the jet
bundle T ∗Q. Then, by employing the inverse of the contact diffeomorphism Φ, we arrive
at a Legendrian submanifold NE ofM. Referring to this realization, we shall exhibit both
the contact Hamiltonian and contact Lagrangian dynamics as Legendrian submanifolds of
the same contact manifold in the following subsection.

4.2. Tangent Contact Manifold

We start by lifting a contact structure η on a contact manifoldM a contact structure on
the extended tangent bundle T M. This lifting is in introduced in [70] to characterize the
contact vector fields onM (in particular, the Hamiltonian vector fields inM) in terms of
Legendrian submanifolds of the contact manifold T M. In fact, more later, in this direction,
we shall use some other results those available in [70].

Theorem 4. For a contact manifold (M, η), the extended tangen bundle T M ' TM×R is a
contact manifold by admitting a contact one-form

ηT := uηV + ηC (138)

where u is coordinate on R whereas ηC and ηV are the complete and vertical lifts of η, respectively.

The one-form ηT is said to be the tangent contact structure and we will denote the
tangent contact manifold as a two-tuple

(T M, ηT ) = (TM×R, uηV + ηC). (139)

Contact Hamiltonian Dynamics as a Legendrian Submanifold. Let (M, η) be a
contact manifold. Consider a vector field X, a real valued function λ onM, hence a section

(X, λ) :M−→ TM = TM×R, m 7→ (X(m), λ(m)). (140)

of the fibration τ0
M : T M 7→ M. We plot the following commutative diagram to see this

T M
τ1
M

))τ0
M

��

TM
τM

||
M

(X,λ)

QQ

X

JJ

(141)

Using Theorem 3.13 in [70] and the comments at the beginning of this subsection, we
deduce that the pair (X, λ) is a contact vector field (an infinitesimal conformal contacto-
morphism), that is, an element of Xcon(M) in (107) if and only if the image space of (X, λ)
is a Legendrian submanifold of the tangent contact manifold (T M, ηT ). This result states
that the image of a contact Hamiltonian vector field Xc

H , after suitably included in the
contactified tangent bundle, turns out to be a Legendrian submanifold. As discussed in the
previous section, the conformal factor λ in the present case isR(H). So that, the image of
the mapping

(Xc
H ,R(H)) :M−→ TM = TM×R, m 7→ (Xc

H(m),R(H)(m)) (142)

is a Legendrian submanifold of the tangent contact manifold T M. To see this more clearly,
let us discuss this geometry in the realm of special contact spaces.

Consider a contact manifold (M, η). Its extended tangent bundle T M is a contact
manifold endowed with the contact structure given by (139) and T ∗M, as an extended
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cotangent bundle, is also a contact manifold. Between these two extended spaces, we
introduce a fiber preserving contact diffeomorphism βc as follows

βc : T M −→ T ∗M, (V, u) 7→
(
− ιVdη − uη, η(V)

)
(143)

where η is the contact one-form onM. It is a direct computation to see that

(βc)∗ηT ∗M = ηT (144)

where ηT ∗M is the contact one-form on the canonical contact manifold T ∗M and ηT is the
lifted contact one-form on T M given in (138). This observation permits us to determine a
special contact space and following the order given in (134), we write this special contact
manifold as

(T M, τ0
M,M, ηT , βc). (145)

Accordingly, following the picture in (135), we plot the following diagram

T M

τ0
M

��

βc
// T ∗M

π0
M

��
M

(Xc
H ,R(H))

QQ

−T ∗H

LL (146)

where we have employed the projections π0
M : T ∗M 7→ M and τ0

M : T M 7→ M. This
diagram also manifests how one can transfer the Legendrian submanifolds one onto the
other. If H is a Hamiltonian function on the contact manifoldM, then the image space of
−T ∗H, as defined in (103), is a Legendrian submanifold of T ∗M. Thus, since βc is a contact
diffeomorphism, by pulling back the image space of −T ∗H, we arrive at a Legendrian
submanifold of the tangent contact manifold T M. However, using (143), we have that

βc ◦ (Xc
H ,R(H)) = −T ∗H = −(dH, H). (147)

This is the contact version of the identity (82). Notice that, this observation can be
considered as an indirect proof of the assertion that the image space of a contact vector
field is a Legendrian submanifold.

Local Picture. Consider Darboux’s coordinates (qi, pi, z) onM then we assume the
induced coordinates on T M ' TM×R as (qi, pi, z, q̇i, ṗi, ż, u). In this local realization,
the lifted contact one-form ηT defined in (138) is computed to be

ηT = uηV + ηC = u(dz− pidqi) + (dż− ṗidqi − pidq̇i)

= dż + udz− ( ṗi + upi)dqi − pidq̇i,
(148)

and the Reeb vector field isRT = ∂/∂ż. In this realization, the contact mapping βc in (143)
turns out to be

βc(qi, pi, z, q̇i, ṗi, ż, u) = (qi, pi, z, upi + ṗi,−q̇i,−u, ż− pi q̇i). (149)

The fact that βc is a contactomorphism, that is the identity (144), follows from a direct
calculation in coordinates. Observe that,

(βc)∗(ηT ∗M) = d(ż− pi q̇i)− (upi + ṗi)qi + q̇idpi + udz

= u(dz− pidqi) + (dż− ṗidqi − pidq̇i) = ηT .
(150)
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Consider now a Hamiltonian function H on the contact manifoldM. Minus of its first
prolongation defines a Legendrian submanifold of T ∗M given by

im(−T ∗H) =
{
(qi, pi, z,−∂H

∂qi ,−∂H
∂pi

,−∂H
∂z

,−H) ∈ T ∗M : H = H(q, p, z)
}

. (151)

Referring to the inverse of the contact diffeomorphism βc we compute a Legendrian
submanifold of T M as

N−H = (βc)−1(im(−T ∗H)
)

=
{
(qi, pi, z,

∂H
∂pi

,−∂H
∂z

pi −
∂H
∂qi , pi

∂H
∂pi
− H,

∂H
∂z

) ∈ T M : H = H(q, p, z)
}

.
(152)

It is immediate to see that the Legendrian submanifold can be alternatively obtained by

N−H = im(Xc
H ,R(H)). (153)

So, the contact Hamiltonian dynamics are determined by the Legendrian submanifold
N−H as follows. Let σ : I 7→ M be a smooth curve onM and consider the lift of σ to T M
defined by

σT = (σ̇(t),R(H)(σ(t)), ∀t ∈ I, (154)

where σ̇ is the tangent lift to TM. Then, σ is a solution of the contact Hamilton’s equations
for H if and only if its lift σT to T M is contained in the Legendrian submanifold N−H . In
fact, if the local expression of σ is

σ(t) = (qi(t), pi(t), z(t)) (155)

then, from (152), it follows that σT ∈ N−H for every t ∈ I, if and only if σ satisfies the
following equations

dqi

dt
=

∂H
∂pi

,
dpi
dt

= −∂H
∂z

pi −
∂H
∂qi ,

dz
dt

= pi
∂H
∂pi
− H. (156)

They are precisely the contact Hamilton’s equations in (117).

4.3. Contact Tulczyjew’s Triple

Classical Tulczyjew’s triple is obtained by properly merging two special symplectic
structures. Following the same understanding, we introduce Tulczyjew’s triple for contact
dynamics by properly merging two special contact structures.

Contact Lift of Diffeomorphism ψ in (56). Recall the symplectic diffeomorphism ψ,
defined in (56), from the cotangent bundle T∗TQ to the cotangent bundle T∗T∗Q. We
extend this mapping to the level of contact manifolds

T ∗T ∗Q ' T∗(T∗Q×R)×R, T ∗T Q ' T∗(TQ×R)×R (157)

by assuming that extension is the identity on TR and it vanishes on the zero section.
Accordingly, we recall the mapping ψ in (56), consider a local chart (qi, q̇i, z, ai, ȧi, v, u) on
T ∗T Q then we have an arbitrary extension

ψc : T ∗T Q −→ T ∗T ∗Q, (qi, q̇i, z, ai, ȧi, v, u) 7→ (qi, ȧi, z, ai,−q̇i, v, w).

To determine w, we compute

(ψc)∗ηT ∗Q = dw− ψ∗θT∗Q − vs.dz = dw− du + d(q̇i ȧi) + ηT Q, (158)

where ηT ∗Q and ηT Q are the canonical contact one-forms on T ∗T ∗Q and T ∗T Q, respec-
tively. Hence, ψc is a contact mapping if and only if dw = d(u− q̇i ȧi). Since we ask w to



Mathematics 2021, 9, 2704 26 of 41

vanish on the zero section, necessarily w = u− q̇i ȧi. Therefore, the unique extension is,
locally, computed to be

ψc : T ∗T Q −→ T ∗T ∗Q, (qi, q̇i, z, ai, ȧi, v, u) 7→ (qi, ȧi, z, ai,−q̇i, v, u− ȧi q̇i). (159)

Next, we will present an intrinsic definition of ψc. For this purpose, we will use the
following identifications

T ∗T Q ∼= (T∗TQ× T∗R)×R, T ∗T ∗Q ∼= (T∗T∗Q× T∗R)×R. (160)

Then, we have that

ψc((γ, vdz), u) =
(
ψ(γ), vdz, u− 〈(πT∗Q(ψ(γ)), πTQ(γ)〉

)
(161)

where 〈•, •〉 is the canonical pairing between T∗Q and TQ.
The Left Wing of the triple. Now, using the contact mapping ψc in (159), we define a

contact diffeomorphism

αc : T T ∗Q −→ T ∗T Q, V 7→ (ψc)−1 ◦ βc(V)

(qi, pi, z, q̇i, ṗi, ż, u) 7→ (qi, q̇i, z, upi + ṗi, pi,−u, ż).
(162)

Indeed, it is immediate to show that

(αc)∗ηT Q = ηTQ , (163)

where ηTQ is the lifted contact one-form on T T ∗Q given in (148). Then, we define the
following special contact structure

(T T ∗Q, T π0
Q, T Q, ηTQ , αc) (164)

which is diagrammatically given by

T ∗T Q

π0
T Q

��

T T ∗Q

T π0
Q

��

αc
oo

T Q

T ∗L

SS (165)

with the projections

π0
T Q : T ∗T Q ' T∗T Q×R −→ T Q, (W, u) 7→ πT Q(W)

T π0
Q : T T ∗Q ' TT ∗Q×R −→ T Q, (V, s) 7→ (TπQ(U), z).

(166)

Here, we have employed the following global trivialization V = (U, z, ż) in TT∗Q× TR.
Generalized Euler–Lagrange Equations as a Lagrangian Submanifold. Consider a

Lagrangian function L on T Q = TQ×R. The image space of its first prolongation, that is,
im(T ∗L), is a Legendrian submanifold of T ∗T Q computed to be

im(T ∗L) =
{
(qi, q̇i, z,

∂L
∂qi ,

∂L
∂q̇i ,

∂L
∂z

, L) ∈ T ∗T Q : L = L(q, q̇, z)
}
⊂ T ∗T Q (167)
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Referring to the left wing of the contact triple (176), that is by applying the inverse of
the mapping αc, we arrive at a Legendrian submanifold of T T ∗Q as

NL = (αc)−1(im(T ∗L))

=
{
(qi,

∂L
∂q̇i , z, q̇i,

∂L
∂z

∂L
∂q̇i +

∂L
∂qi , L,−∂L

∂z
) ∈ T T ∗Q : L = L(q, q̇, z)

}
⊂ T T ∗Q.

(168)

The Lagrangian dynamics are determined by the Legendrian submanifold NL as
follows. First of all, we consider the transformation FL : T Q 7→ T ∗Q induced by L
given by

FL(u, z) = (FL1(u, z), z), (169)

with FL1(u, z) defined by

〈FL1(u, z), u′〉 = d
dt

∣∣∣
t=0

L(u + tu′, z). (170)

Then, a smooth curve c : I 7→ T Q is a solution of the dynamics if and only if the lift
(FL ◦ c)T : I 7→ T T ∗Q of the curve FL ◦ c : I 7→ T ∗Q given by

(FL ◦ c)T (t) =
( ˙FL ◦ c(t),

∂L
∂z

(c(t))
)
, ∀t ∈ I (171)

is contained in the Legendrian submanifold NL. In fact, if the local expression of c is

c(t) = (qi(t), q̇i(t), z(t)) (172)

then, using (168), it follows that (FL ◦ c)T (t) ∈ NL, ∀t ∈ I, if and only if c satisfies

dqi

dt
= q̇i,

d
dt
( ∂L

∂q̇i

)
=

∂L
∂z

∂L
∂q̇i +

∂L
∂qi ,

dz
dt

= L(q, q̇, z) (173)

where the first two equations are the Herglotz equations in (128) and the latter is the
Herglotz’s differential principle in (129). We remark that this theory does not require any
regularity conditions on the Lagrangian function.

The Right Wing of the triple. To have the right wing, we simply replace the arbitrary
contact manifold (M, η) with the canonical contact manifold (T ∗Q, ηQ) in the special
contact manifold (145). In this case, the total spaces become T ∗T ∗Q and T T ∗Q with
the fibrations

τ0
T ∗Q : T T ∗Q ' TT ∗Q×R −→ T ∗Q, (V, u) 7→ τT ∗Q(V),

π0
T ∗Q : T ∗T ∗Q ' T∗T ∗Q×R −→ T ∗Q, (Z, u) 7→ πT ∗Q(Z).

(174)

We denote this special contact manifold as

(T T ∗Q, τ0
T ∗Q, T ∗Q, ηTQ , βc). (175)

Since Darboux’s coordinates are employed in Section 4.2, all the local formulations
available in that subsection hold also in the present case.
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Contact triple. We now merge the special contact spaces (164) and (175) in order
to construct a Tulzyjew’s triple for the contact geometry. Accordingly, we couple the
commutative diagrams in (146) and (165) and arrive at the following diagram

T ∗T Q

π0
T Q

��

T T ∗Q

T π0
Q

��

αc
oo βc

//

τ0
T ∗Q

��

T ∗T ∗Q

π0
T ∗Q

��
T Q

τ0
Q

��

T ∗Q

π0
Q

��
Q

(176)

where the contact diffeomorphisms βc and αc are those defined in (143) and (162), respec-
tively. Here, the projections τ0

T ∗Q and π0
T ∗Q (respectively π0

T Q and T π0
Q) are given by (174)

(respectively, (166)).

4.4. Evolution Contact Tulczyjew’s Triple

We will analyze how the Tulczyjew’s triple can be used to understand the evolution
dynamics. First of all, we notice that there is not, a natural way, to describe an evolution
vector field on a contact manifoldM as a Legendrian submanifold of T M. However, we
will see that such a vector field may be considered as a Lagrangian submanifold of an exact
symplectic submanifold of T M.

Consider a contact manifold (M, η). In (86), we have realized the kernel of the contact
one-form as a symplectic vector bundle H(M) of the tangent bundle TM. Consider now
the inclusion mapping

j = (i, IdR) : HM×R ↪→ TM = TM×R (177)

where i is the inclusion of HM into TM. Consider now the one-form θη = j∗ηT on
HM×R, and the two-form ωη = dθη . In the following proposition, we state that ωη is a
symplectic two-form on H(M)×R

Proposition 1. The exact two-form ωη = dθη induces a symplectic structure on HM×R.

Proof. Let (qi, pi, z) be the Darboux’s coordinates on M, so that (qi, pi, z, q̇i, ṗi, ż, u) are
the induced coordinates for T M. In the light of the inclusion (177), we can employ
(qi, pi, z, q̇i, ṗi, u) as a local coordinate chart on HM×R since

j(qi, pi, z, q̇i, ṗi, u) = (qi, pi, z, q̇i, ṗi, pi q̇i, u). (178)

In other words,

HM×R =
{
(qi, pi, z, q̇i, ṗi, ż, u) ∈ T M×R : ż− pi q̇i = 0

}
. (179)

Thus, the Reeb vector fieldRT = ∂/∂ż of the contact manifold (T M, ηT ) is transverse
to the manifold of codimension one HM× R. This implies that the exact two-form
ωη = dθη = d(j∗ηT ) induces a symplectic structure on HM×R.
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Note that, from (148) and (178), it follows that

θη = udz− ( ṗi + upi)dqi + q̇idpi,

ωη = du ∧ dz− dṗi ∧ dqi − pidu ∧ dqi − udpi ∧ dqi + dq̇i ∧ dpi.
(180)

Lagrangian submanifolds and evolution vector fields. Given a vector field X onM
and a real smooth function f :M→ R, one can construct a section (X, f ) :M→ TM of
the extended tangent bundle T M.

Theorem 5. Let (M, η) be a contact manifold. The map (X, f ) :M 7→ TM defines a Lagrangian
submanifold of the exact symplectic manifold (HM× R, ωη) if and only if η(X) = 0 and
LXη + f η is closed.

Proof. First of all, note that the image of X lies on HM×R if and only if η(X) = 0. For the
second condition, we use well-known properties of complete and vertical lifts (see [62]);

(X, f )∗ηT = (X, f )∗(uηV + ηC) = f X∗ηV + X∗ηC = f η + LXη. (181)

Thus, the image of (X, f ) is Lagrangian if and only if

(X, f )∗ωη = d(X, f )∗ηT = d( f η + LX(η)) = 0. (182)

Looking at the definition of the evolution vector field (118), we obtain the following
result.

Corollary 1. The map (X, f ) : M 7→ TM defines a Lagrangian submanifold of the exact
symplectic manifold (HM×R, ωη) if and only if, locally, X = εH and f = R(H) for a (local)
smooth function H :M→R.

Proof. Since the evolution vector field satisfies

LεH η = dH −R(H)η, η(εH) = 0, (183)

one arrives that LXη + f η = dH is closed. Conversely, if η(X) = 0 and LXη + f η is closed,
in a local chart U, one has that

LXη + f η|U = ιXdη + f η|U = dH (184)

for a local smooth function H. By contracting the equality with the Reeb vector field, we
obtain that f = R(H). Thus, X = εH .

We start by presenting the following commutative diagram:

(T M, ηT ) (T ∗M, ηM)

(HM×R, ωη) (T∗M, ωM).

βc

j

β0

(IdTM,0) (185)
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Here, βc is the contact mapping in (143), the mapping (IdTM, 0) is the canonical
inclusion of the cotangent bundle into the extended cotangent bundle as a zero section and
the smooth map β0 is given by

β0 : HM×R −→ T∗M, (V, u) 7→ −ιVdη − uη. (186)

In coordinates,

β0(qi, pi, z, q̇i, ṗi, u) = (qi, pi, z, upi + ṗi,−q̇i,−u). (187)

Now, we are ready to plot the right wing of Tulczyjew’s triple for the evolution contact
dynamics. For this, we replace the contact manifoldMwith the extended cotangent bundle
T ∗Q. Note that, in this case, we have

HT ∗Q×R T∗T ∗Q

T ∗Q

β0

τ̂T ∗Q πT ∗Q

(εH ,R(H)) −dH

(188)

where τ̂T ∗Q is the projection taking a two-tuple (V, u) mapping to τT ∗Q(V), that is,

τ̂T ∗Q : HT ∗Q×R −→ T ∗Q, (V, u) 7→ τT ∗Q(V) (189)

using that HT ∗Q is a vector subbundle of TT ∗Q. In order to see that the triangle commutes,
we compute that

β0 ◦ (εH ,R(H)) = −ιεH dηQ −R(H)ηQ = −LεH ηQ −R(H)ηQ = −dH, (190)

where we have used (118) and the Cartan’s formula. Following notation presented in (18),
we write that the quintuple

(HT ∗Q×R, τ̂T ∗Q, T ∗Q,−θηQ , β0) (191)

determines a special symplectic structure. Since β0 is a symplectic diffeomorphism, we can
realize one more time that the image space im(εH ,R(H)) as a Lagrangian submanifold of
HT ∗Q×R. Moreover, if σe : I 7→ T ∗Q is a smooth curve on T ∗Q and we consider the lift
(σe)T : I 7→ T T ∗Q of the curve σe given by (154), then one may prove that σe is a solution
of the contact evolution equations for H if and only if (σe)T (t) ∈ im(εH ,R(H)), for every
t ∈ I.

Recall the mapping αc given in (162). Consider the following commutative diagram

(T T ∗Q, ηT ) (T ∗T Q, ηT Q)

(HT ∗Q×R, ωηQ) (T∗T Q, ωT Q)

αc

prj

α0

(192)

where j is the inclusion mapping in (178), pr is the natural projection from the extended
cotangent bundle T ∗T Q = T∗T Q × R to the first factor that is the cotangent bundle
T∗T Q. Using (162) and (178), we deduce that the local expression of α0 is

α0 : HT ∗Q×R −→ T∗T Q, (qi, pi, z, q̇i, ṗi, u) 7→ (qi, q̇i, z, upi + ṗi, pi,−u). (193)
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A direct calculation proves that (α0)∗ωT Q = ωηQ that is α0 is a symplectic diffeo-
morphism. Further, we can determine another potential one-form θ′ηQ for the symplectic
two-form ωηQ given in (180) as follows

θ′ηQ := (α0)∗θT Q = upidqi + ṗidq̇i − udz, (194)

where θT Q is the canonical one-form on the cotangent bundle T∗T Q. We now construct
the left wing of evolution contact Tulczyjew’s triple as follows

HT ∗Q×R T∗T Q

T Q

α0

T̃ π0
Q πT Q

dL

(195)

where T̃ π0
Q is the projection defined by T̃ π0

Q = T π0
Q ◦ j = πT Q ◦ α0. The local expression

of T̃ π0
Q is

T̃ π0
Q : HT ∗Q×R −→ T Q, (qi, pi, z, q̇i, ṗi, u) 7→ (qi, q̇i, z). (196)

Note that, following the notation in (18), we have that the quintuple

(HT ∗Q×R, T̃ π0
Q, T Q,−θ′ηQ , α0) (197)

is a special symplectic structure.
For a given Lagrangian function L : T Q 7→ R, α0 pulls the Lagrangian submanifold

im(dL) to a Lagrangian submanifold (α0)−1(im(dL)) of the symplectic manifold HT ∗Q×
R. This Lagrangian submanifold is the realization of the evolution Herglotz equations.
In fact,

(α0)−1(im(dL)) =
{
(qi,

∂L
∂q̇i , z, q̇i,

∂L
∂z

∂L
∂q̇i +

∂L
∂qi , ż,−∂L

∂z
) ∈ T T ∗Q : ż = q̇i ∂L

∂q̇i

}
. (198)

Thus, a curve ce : I 7→ T Q is a solution of the evolution Herglotz equations for L if
and only if (FL ◦ ce)T (t) ∈ (α0)−1(im(dL)), for every t ∈ I, where (FL ◦ ce)T : I 7→ T T ∗Q
is the lift of the curve FL ◦ ce : I 7→ T ∗Q given by (154).

We merge the right and left wings of triple given in (188) and (195), respectively. Thus,
we have the evolution contact Tulczyjew’s triple:

T∗T Q HT ∗Q×R T∗T ∗Q

T Q T ∗Q

Q

πT Q T̃ π0
Q

α0 β0

τ̂T ∗Q πT ∗Q

τ0
Q π0

Q

(199)

Note that this triple is consisting of two special symplectic structures.
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4.5. The Legendre Transformation

At first we introduce the following Whitney product

T Q×Q×R T ∗Q = {(u, ζ, z) ∈ TQ× T∗Q×R : τQ(u) = πQ(ζ)} (200)

over the extended manifold Q×R. This is an 3n + 1 dimensional manifold which we call
extended Pontryagin bundle. We introduce the local coordinates (qi, q̇i, pi, z) on T Q×Q×R
T ∗Q. We now generate the Legendrian submanifold NL on T T ∗Q given in (168) referring
to the right wing of the contact Tulczyjew’s triple (176). This is the Legendre transformation
in the understanding of Tulczyjew. To have that, define the following Morse family

E : T Q×Q×R T ∗Q −→ R, (qi, q̇i, pi, z) 7→ pi q̇i − L(q, q̇, z). (201)

To represent the minus of the Morse family −E, we are drawing the right side of the
Tulczyjew’s triple (176) by equipping it with the Whitney product (200) as follows

T T ∗Q
βc

//

τ0
T ∗Q

��

T ∗T ∗Q

π0
T ∗Q

��

T Q×Q×R T ∗Q

pr2

��

−E // R

T ∗Q T ∗Q

. (202)

This geometry fits well in the general picture in (137). Recalling (104), a direct com-
putation determines the Legendrian submanifold of T ∗T ∗Q generated by minus of the
Morse family −E as

N−E =
{
(qi, pi, z,− ∂E

∂qi ,− ∂E
∂pi

,−∂E
∂z

,−E) ∈ T ∗T ∗Q :
∂E
∂q̇i = 0

}
=
{
(qi, pi, z,

∂L
∂qi ,−q̇i,

∂L
∂z

,−pi q̇i + L) ∈ T ∗T ∗Q : pi −
∂L
∂q̇i = 0

}
.

(203)

Using the inverse of the contact diffeomorphism βc, we map the Legendrian submani-
fold N−E to a Legendrian submanifold of the contact manifold T T ∗Q as

(βc)−1(N−E) =
{(

qi, pi, z, q̇i, pi
∂L
∂z

+
∂L
∂qi , L,−∂L

∂z
)
∈ T T ∗Q : pi −

∂L
∂q̇i = 0

}
(204)

See that, this Legendrian submanifold is exactly the Legendrian submanifold NL
in (168) realizing the Herglotz Equations (128) and (129). This completes the Legendre
transformation of the Herglotz equations to the contact Hamiltonian formalism.

If, further, the Lagrangian function L = L(q, q̇, z) is non-degenerate, then from the equation

∂E
∂q̇i (q, q̇, p, z) = pi −

∂L
∂q̇i (q, q̇, z) = 0 (205)

one can explicitly determine the velocity q̇i in terms of (qi, pi, z). This gives

FL : T Q −→ T ∗Q, (qi, q̇j, z) −→
(
qi,

∂L
∂q̇j (q, q̇, z), z

)
(206)

as a local diffeomorphism relating T Q and T ∗Q. In this case, the Morse family E can be
reduced to a well-defined contact Hamiltonian function

H(q, p, z) = pi q̇i(q, p, z)− L
(
q, q̇(q, p, z), z

)
(207)
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on T ∗Q.
It is possible to perform the inverse Legendre transformation of the contact Hamilto-

nian dynamics as well. This time, one needs to generate the Legendrian submanifold N−H
in (152) realizing the contact Hamilton’s equations (156) referring to the left wing of the
contact triple (176).

The Legendre Transformation for Evolution Dynamics. Recall the Tulczyjew’s triple (199)
exhibited for the case of evolution contact dynamics. We consider the Lagrangian sub-
manifold (α0)∗(im(dL)) of HT ∗Q×R generated by a Lagrangian L = L(q, q̇, z) on T Q
referring to the left wing (195) of the triple. Once more, consider the total space given
in (200), and the energy function E given in (201). In this evolution case, we plot the
following diagram merging the right wing (188) of the evolution Tulczyjew’s triple and the
Morse family determined by −E that is

HT ∗Q×R
β0

//

τ̂T ∗Q

��

T∗T ∗Q

πT ∗Q

��

T Q×Q×R T ∗Q

pr2

��

−E // R

T ∗Q T ∗Q

. (208)

From (30), we deduce that the Lagrangian submanifold S−E of the cotangent bundle
T∗T ∗Q generated by −E is computed to be

S−E =
{
(qi, pi, z,− ∂E

∂qi ,− ∂E
∂pi

,−∂E
∂z

) ∈ T∗T ∗Q :
∂E
∂q̇i = 0

}
=
{
(qi, pi, z,

∂L
∂qi ,−q̇i,

∂L
∂z

) ∈ T ∗T ∗Q : pi −
∂L
∂q̇i = 0

}
.

(209)

Using the inverse of the symplectic diffeomorphism β0, we transfer the Lagrangian
submanifold S−E to a Lagrangian submanifold of HT ∗Q×R as follows

(β0)−1(S−E) =
{(

qi, pi, z, q̇i, pi
∂L
∂z

+
∂L
∂qi , ż,−∂L

∂z
)
∈ HT ∗Q×R :

pi −
∂L
∂q̇i = 0, ż− q̇i ∂L

∂q̇i = 0
}

.

This is exactly the Lagrangian submanifold (α0)−1(im(dL)) realizing the evolution
Herglotz equations. In a similar way, one may obtain the inverse Legendre transformation
of the contact evolution dynamics for a Hamiltonian function H : T ∗Q 7→ R.

5. Example: The Ideal Gas
5.1. A Quantomorphism on the Euclidean Space

Thermodynamics have been studied extensively in the framework of contact geometry.
For some recent work directly related with the present discussions, we cite [35,43–45]. In
this section, we shall be applying the theoretical results obtained in the previous sections
to some thermodynamical models.

We start this subsection by providing the following theorem realizing a strict con-
tact diffeomorphism (quantomorphism) on the extended cotangent bundle T ∗Rm of the
Euclidean space, see also [43]. The proof follows by a direct calculation.

Theorem 6. Consider a disjoint partition I ∪ J of the set of indices {1, . . . , m} so that the coordi-
nates on Rm is given as (xa, xρ), where a ∈ I and ρ ∈ J. Then the following mapping

φ : T ∗Rm −→ T ∗Rm, (xa, xρ, ya, yρ, u) 7→ (xa, yρ, ya,−xρ, u− xρyρ) (210)
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preserves the canonical contact one-form ηRm = du− yadxa − yρdxρ. Here, (xa, xρ, ya, yρ, u) are
the Darboux’s coordinates on the extended cotangent bundle T ∗Rm.

In Section 3.2, we have stated that the image of the first prolongation of a smooth
function on the base manifold is a Legendrian submanifold of the extended cotangent
bundle. Accordingly, consider a smooth function U = U(xa, xρ) on Rm so that its first pro-
longation T ∗U to the extended cotangent bundle turns out to be a Legendrian submanifold
of T ∗Rm as given in (103). Under the quantomorphism φ in (210), we have a Legendrian
submanifold on the image space as

φ(xa, xρ,
∂U
∂xa ,

∂U
∂xρ , U) = (xa,

∂U
∂xρ ,

∂U
∂xa ,−xρ, U − xρ ∂U

∂xρ ). (211)

This alternative realization of the Legendrian submanifold is important for geometric
characterization of reversible thermodynamics.

Remark 1. If Q = Rn then the extended cotangent and the extended tangent bundles turn
out to be isomorphic that is T ∗Q ' T Q ' R2n+1. In this particular instance, by assuming
m = 2n + 1, the mapping ψc in (159) can be regarded as a particular case of φ in (210) if the
canonical coordinates (qi, pi, z) are decomposed as (xa) = (qi, z) where a = 1, . . . , n + 1, and
(xρ) = (pi) where ρ = 1, . . . , n.

5.2. Equilibrium Thermodynamics

Obeying the geometry exhibited in the previous section, we take m = 3 with coor-
dinates (S, V, N) ∈ R3. Here, S stands for the entropy, V is the volume, and N is the
mole number of classical ideal gas. The conjugate variables (T,−P, µ) ∈ (R3)∗ are the
temperature, the pressure, and the chemical potential, respectively. By employing the
internal energy U as the fiber coordinate, we complete the following realization of the
extended cotangent bundle (S, V, N, T,−P, µ, U) ∈ T ∗R3. Consider the contact one-form

ηR3 = dU − TdS + PdV − µdN. (212)

As a particular instance, we choose the internal energy

U(S, V, N) = U0V−1/cN(c+1)/c exp(
S

cNR
), (213)

as a function depending on the base coordinates (S, V, N) ∈ R3. Here, U0 is a positive
constant, c is the heat capacity and R is the universal gas constant. The first prolongation
T ∗U is a Legendrian submanifold N of the contact manifold (T ∗R3, ηR3). By considering
that the temperature T = ∂U/∂S and the pressure P = −∂U/∂V, we have the following
set of equations

cV1/cRT = U0N1/c exp(
S

cNR
), PV = NRT, µ = (c + 1)RT − TS/N (214)

those realizing N .
The Legendre Transformations. In the light of Theorem 6, and the transforma-

tion (211), we now present the Legendre transformation between the internal energy,
the enthalpy, the Helmholtz function, and the Gibbs function. For a similar discussion,
but in the framework of symplectic geometry, see [12]. We start with the Legendrian
submanifold determined by the internal energy U in (213).

(1) We decompose the base variables as (S, N) and V and apply Theorem 6 to the
volume variable. This results with a quantomorphism computed to be

φ1 : T ∗R3 −→ T ∗R3, (S, V, N, T,−P, µ, U) 7→ (S,−P, N, T,−V, µ, U + PV). (215)
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Note that, on the image space, the fiber component is the enthalpy function B =
U + PV. If we solve the pressure from the equation P = −∂U/∂V, the enthalpy function
can be written as a function of the new base variables (S, P, N), that is

B(S, P, N) = c̄ U(c+1)/c
0 P1/(1+c)N exp(

S
(c + 1)NR

), (216)

where c̄ is a constant defined to be c1/(1+c) + c−c/(1+c). So that, the enthalpy function is
another generator of the same Legendrian submanifold. Indeed, the first prolongation of
T ∗B is given the system of equations in (214) so that φ1 ◦ T ∗B = N .

(2) We start once more with the internal energy, but this time we perform the transfor-
mation to the entropy variable S. For this case, we have the quantomorphism

φ2 : T ∗R3 −→ T ∗R3, (S, V, N, T,−P, µ, U) 7→ (T, V, N,−S,−P, µ, U − ST). (217)

In this case, the fiber term F = U − ST is the Helmholtz function. Using the identity
T = ∂U/∂S, we write the Helmholtz function as a function of the base components
(T, V, N) of the image space, that is

F(T, V, N) = cNRT
(
1 +

1
c

log N − 1
c

log V + log(
U0

cRT
)
)
. (218)

Thus, F is another generator of the same Legendrian submanifold determined by the
equations (214), that is φ2 ◦ T ∗F = N .

(3) This time, we consider the Helmholtz function F in (218) and apply the transfor-
mation given in Theorem 6 to the volume variable, that is

φ3 : T ∗R3 −→ T ∗R3, (T, V, N,−S,−P, µ, F) 7→ (T,−P, N,−S,−V, µ, F + PV).
(219)

The fiber term G = F + PV is the Gibbs function. By taking P = −∂F/∂V, we write
the Gibbs function as a function of the base variables, that is

G(T, P, N) = NRT
(
1 + c + log N − log

NRT
P

+ c log(
U0

cRT
)
)
. (220)

We have that φ3 ◦ T ∗G = N is the Legendrian submanifold determined by Equation (214).
Evidently, by iteratively applying φ2 in (217) and φ3 in (219), one can define a quantomor-
phism from the internal energy setting to the Gibbs function setting. In this case, the
quantomorphism is determined as

φ3 ◦ φ2 : T ∗R3 −→ T ∗R3,

(S, V, N, T,−P, U) 7→ (T,−P, N,−S,−V, µ, U − TS + PV).
(221)

This gives a direct passage from the internal energy to the Gibbs function.
(4) To complete the Legendre transformations, we consider the Gibbs function in (220)

and define the quantomorphism to the chemical potential variable µ, that is

φ4 : T ∗R3 −→ T ∗R3,

(T,−P, N,−S,−V, µ, G) 7→ (T,−P, µ,−S,−V,−N, G− µN).
(222)

The fiber variable W = G − µN determines a new generator of the Legendrian
submanifold N depending on the base variables of the image space. In this case, we
have that
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W(T, P, µ) =NRT
(
1 + c + log

ST
(c + 1)RT − µ

− log
NRT

P
+ c log(

U0

cRT
)
)

− µST
(c + 1)RT − µ

.
(223)

Composing the quantomorphism φ3 ◦ φ2 in (221) with φ4 in (222), one can derive a
Legendre transformation from the internal energy U setting to W as

φ : T ∗R3 −→ T ∗R3,

(S, V, N, T,−P, µ, U) 7→ (T,−P, µ,−S,−V,−N, U − TS + PV − µN).
(224)

This is the full Legendre transformation of the ideal gas. If we insist that the dynamics
of the gas stays in the Legendrian submanifold N determined through the equations (214),
we can consider the fiber variable U − TS + PV − µN for an arbitrary internal energy U as
a Hamiltonian function of the dynamics for the ideal case. Let us discuss this motion in the
following subsection.

5.3. Hamiltonian Flow and Its Legendrian Realization

We consider the quantomorphism in (224), but instead of a specific internal energy,
we let U be an independent variable. Consider the Hamiltonian function

H(S, V, N, T,−P, µ, U) = TS− NRT + µN −U (225)

on the extended cotangent bundle T ∗R3. Note that we determine the Hamiltonian func-
tion (225) by substituting the ideal gas equation PV = NRT (that is the second equation
in (214)) into the minus of the generator function U − TS + PV − µN of the quantomor-
phism. The minus sign is to fit physical intuition, for example, to be sure that the entropy S
is increasing along the motion. In fact, while computing the Hamiltonian dynamics, the
minus sign will be compensated with the minus sign appearing in the formulation given
in (147). According to (151), the image space of the first prolongation of the Hamiltonian
function (225)

im(−T ∗H) ={
(S, V, N, T,−P, µ, U,−T, 0, RT − µ,−S + NR, 0,−N, 1,−H) ∈ T ∗T ∗R3} (226)

is a Legendrian submanifold of the iterated extended cotangent bundle T ∗T ∗R3. On
the other hand, the contact Hamiltonian vector field associated with the Hamiltonian
function (225) is

Xc
H = (S− NR)

∂

∂S
+ N

∂

∂N
+ P

∂

∂P
+ RT

∂

∂µ
+ U

∂

∂U
. (227)

Notice that, the coefficients of ∂/∂T and ∂/∂V are zero. This gives that the Hamiltonian
dynamics is isothermal and isochoric.

We consider the induced coordinates on the extended tangent bundle T T ∗R3 as
follows. For the base manifold we use (S, V, N, T,−P, µ, U), for the fibers of the tangent
bundle TT ∗R3 we refer (Ṡ, V̇, Ṅ, Ṫ,−Ṗ, µ̇, U̇) and for the extension R we use u as the stan-
dard coordinate on R. Accordingly, for the present case, the lifted contact one-form (148) is
computed to be

ηT = dU̇ + udU − (Ṫ + uT)dS + (Ṗ + uP)dV − (µ̇ + uµ)dN − TdṠ + PdV̇ − µdṄ. (228)

The Reeb field on T ∗R3 is ∂/∂U, and the directional derivative of the Hamiltonian
function (225) isR(H) = −1. The image space of the coupling of the Hamiltonian vector
field and R(H) determines a Legendrian submanifold, of the extended tangent bundle
T T ∗R3, given by
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N−H = im(Xc
H ,R(H))

=
{
(S, V, N, T,−P, µ, U; S− NR, 0, N, 0,−P, RT, U;−1) ∈ T T ∗R3}.

(229)

Evidently, the Legendrian submanifolds in (226) and (229) are related with the contac-
tomorphism βc : T T ∗R3 7→ T ∗T ∗R3 by satisfying the relation βc ◦ N−H = im(−T ∗H) as
we have proven in (147).

Now, we wish to generate the Legendrian submanifold in (229) referring to the left
wing of the contact Tulczyjew’s triple (176), that is to generate it via a Lagrangian function
(probably as a Morse family) defined on the extended tangent bundle T R3. In the light of
Section 4.5, we now apply the inverse Legendre transformation. The first step is to apply
αc in (162) to the Legendrian submanifold N−H in (229). The image space is

αc(N−H) =
{
(S, V, N, S− NR, 0, N, U;−T, 0, RT − µ, T,−P, µ, 1; U) ∈ T ∗T R3} (230)

which is a Legendrian submanifold of T ∗T R3.
We assume the coordinates (S, V, N, Ṡ, V̇, Ṅ, U) on the extended tangent bundle T R3

and define the Whitney sum of the extended tangent and the extended cotangent bundles
T R3×R3×R T ∗R3 with coordinates (S, V, N, Ṡ, V̇, Ṅ, T,−P, µ, U). Note that, in the Whitney
sum, we fix the base coordinates (S, V, N) in R3 and the extension U in R. The subscript
R3 × R in the notation of Whitney sum manifests these choices. A calculation gives
that the Legendrian submanifold αc(N−H) in (230) is generated by a Morse family on
T R3 ×R3×R T ∗R3. In other words, the Lagrangian function

L(S, V, N, Ṡ, V̇, Ṅ, U; T,−P, µ) = T(Ṡ− S + NR) + µ(Ṅ − N) + PV̇ + U. (231)

can be understood as defined on the extended tangent bundle T R3, but depending on the
auxiliary variables (T,−P, µ). By merging the Lagrangian function with the left wing of
the contact Tulzyjew’s triple (176), we get the following diagram:

R T R3 ×R3×R T ∗R3Loo

��

T ∗T R3

π0
T R3

��

αc(N−H)

��
T T ∗R3αc

oo

T π0
R3

��

N−H

��

T R3 T R3

(232)

According to the local realization of the generating family in (104), it is a direct
calculation to show that the Legendrian submanifold αc(N−H) is generated by the Morse
family L in (231).

We remark that in this formalism of thermodynamics, Hamiltonians are usually
singular, as in the case above, so there is no Lagrangian formulation in the classical sense.
Hence, we think that Tulcyzjew triples might be a useful tool in this situation.

5.4. Evolutionary Flow and Its Lagrangian Realization

We once more consider the Hamiltonian function H exhibited in (225) and defined
on the extended cotangent bundle T ∗R3. The evolutionary vector field εH is defined
in (119). A direct calculation determines the evolutionary vector field for the Hamiltonian
function (225) as

εH = (S− NR)
∂

∂S
+ N

∂

∂N
+ P

∂

∂P
+ RT

∂

∂µ
+ (TS− NRT + µN)

∂

∂U
(233)

on T ∗R3. By referring to Corollary 1, we establish that the image space
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im(εH ,R(H)) =
{
(S, V, N, T,−P, µ, U;

S− NR, 0, N, 0,−P, RT, TS− NRT + µN;−1) ∈ T T ∗R3} (234)

turns out to be a Lagrangian submanifold of HT ∗R3 ×R defined in (179). Via α0 in (193),
we map the Lagrangian submanifold (234) to a Lagrangian submanifold

α0( im(εH ,R(H))
)
=
{
(S, V, N, S− NR, 0, N, U;−T, 0, RT − µ, T,−P, µ, 1) ∈ T∗T R3} (235)

in the cotangent bundle T∗T R3. According to (30), it is immediate to see that the La-
grangian function L given in (231) defined on the Whitney sum of the extended tangent
and the extended cotangent bundles T R3 ×R3×R T ∗R3 generates the Lagrangian subman-
ifold in (235). In order to visualize the Lagrangian submanifold, we draw the following
diagram by merging the Morse family (231) and the left wing of the evolution contact
Tulczyjew’s triple (199)

R T R3 ×R3×R T ∗R3Loo

��

T∗T R3

πT R3

��

α0
(

im(εH ,R(H))
)

		
HT ∗R3 ×Rα0

oo

T̃ π0
R3

��

im(εH ,R(H))

		

T R3 T R3

(236)

where T̃ π0
R3 is the mapping given in (196).

6. Discussion

In this paper, we have used the tangent contact structure, on the extended tangent
bundle T T ∗Q, which was introduced in [70]. Referring to this, and by introducing the
notion of special contact structure, we have constructed a Tulcyzjew’s triple for contact
manifolds, see Diagram (176). This permits us to describe both the contact Lagrangian and
the contact Hamiltonian dynamics as Legendrian submanifolds of T T ∗Q. In this formula-
tion, the Legendre transformation is defined as a passage between two generators of the
same Legendrian submanifold. Note that, this approach is free from the Hessian condition.
That means, it is applicable for degenerate theories as well. We, further, present Tulcyzjew’s
triple for evolutionary dynamics, see Diagram (199). Instead of contact structures, the
evolution triple (199) consists of special symplectic structures. In this construction, the
contact manifold T T ∗Q is substituted by the extended horizontal bundle HT ∗Q × R,
which is symplectic. We have concluded the paper by applications of the theoretical results
to geometrical foundations of some thermodynamical models.

Here are some further questions we wish to pursue:

• In Section 4.2, we have established that the image space of a contact Hamiltonian vector
field is a Legendrian submanifold of the tangent contact manifold. Evidently, not all
Legendrian submanifolds determine explicit dynamical equations. This observation
motivates us to define the notion of an implicit Hamiltonian Contact Dynamics
as a non-horizontal Legendrian submanifold of the tangent contact manifold. We
refer to [75] for a similar discussion done for the case of symplectic dynamics and
integrability of the non-horizontal Lagrangian submanifolds. We find it interesting to
elaborate the integrability of implicit Hamiltonian contact dynamics.

• Following, the first question raised in this section, we plan to write a Hamilton–
Jacobi theory for implicit Hamiltonian contact dynamics. Hamilton–Jacobi theory for
(explicit) Hamiltonian contact dynamics is recently examined in [72,76]. Hamilton–
Jacobi theory for implicit symplectic dynamics is discussed in [77,78].

• In the literature, Tulczyjew’s triple for higher order classical dynamical systems is
already available [14,15]. Higher order contact dynamics is studied in [79]. As a future
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work, we plan to extend the geometry presented in the present paper to higher order
contact framework.
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9. Tulczyjew, W.M.; Urbański, P. A Slow and Careful Legendre Transformation for Singular Lagrangians. The Infeld Centennial

Meeting (Warsaw, 1998). Acta Phys. Pol. 1999, 10, 2909–2978.
10. Tulczyjew, W.M. Les sous-variétés Lagrangiennes et la dynamique Hamiltonienne. Comptes Rendus Acad. Sci. Paris Ser. AB 1976,

283, A15–A18.
11. Tulczyjew, W.M. Hamiltonian Systems, Lagrangian Systems and the Legendre Transformation. In Symposia Mathematica;

Academic Press: London, UK, 1974; Volume XIV (Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973),
pp. 247–258.

12. Tulczyjew, W.M. The Legendre transformation. Ann. Inst. H. Poincaré Sect. A (N.S.) 1977, 27, 101–114.
13. Weinstein, A. The symplectic “category”. In Differential Geometric Methods in Mathematical Physics; Springer: Berlin/Heidelberg,

Germany; New York, NY, USA, 1982; pp. 45–51.
14. de León, M.; Lacomba, E.A. Lagrangian submanifolds and higher-order mechanical systems. J. Phys. A 1989, 22, 3809–3820.

[CrossRef]
15. Esen, O.; Guha, P. On the geometry of the Schmidt-Legendre transformation. J. Geom. Mech. 2018, 10, 251. [CrossRef]
16. Esen, O.; Gümral, H. Tulczyjew’s triplet for Lie groups I: Trivializations and reductions. J. Lie Theory 2014, 24, 1115–1160.
17. Esen, O.; Gümral, H. Tulczyjew’s triplet for Lie groups II: Dynamics. J. Lie Theory 2017, 27, 329–356.
18. Esen, O.; Gümral, H.; Sütlü, S. Tulczyew triplets for Lie groups III: Higher order dynamics and reductions for iterated bundles.

arXiv 2021, arXiv:2102.10807.
19. Grabowska, K.; Zaja̧c, M. The Tulczyjew triple in mechanics on a Lie group. J. Geom. Mech. 2016, 8, 413–435. [CrossRef]
20. García-Toraño Andrés, E.; Guzmán, E.; Marrero, J.C.; Mestdag, T. Reduced dynamics and Lagrangian submanifolds of symplectic

manifolds. J. Phys. A 2014, 47, 225203. [CrossRef]
21. Esen, O.; Kudeyt, M.; Sütlü, S. Tulczyjew’s Triplet with an Ehresmann connection I: Trivialization and Reduction. arXiv 2020,

arXiv:2007.11662.
22. Grabowski, J.; Grabowska, K.; Urbański, P. Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings. J.

Geom. Mech. 2014, 6, 503–526. [CrossRef]
23. Campos, C.M.; Guzmán, E.; Marrero, J.C. Classical field theories of first order and Lagrangian submanifolds of premultisymplectic

manifolds. J. Geom. Mech. 2012, 4, 1–26. [CrossRef]

http://doi.org/10.4153/CJM-1950-012-1
http://dx.doi.org/10.1063/1.523597
http://dx.doi.org/10.1063/1.525654
http://dx.doi.org/10.1088/0305-4470/22/18/019
http://dx.doi.org/10.3934/jgm.2018010
http://dx.doi.org/10.3934/jgm.2016014
http://dx.doi.org/10.1088/1751-8113/47/22/225203
http://dx.doi.org/10.3934/jgm.2014.6.503
http://dx.doi.org/10.3934/jgm.2012.4.1


Mathematics 2021, 9, 2704 40 of 41

24. Cantrijn, F.; Ibort, A.; de León, M. On the geometry of multisymplectic manifolds. J. Aust. Math. Soc. (Ser. A) 1999, 66, 303–330.
[CrossRef]

25. de León, M.; de Diego, D.M.; Santamarıa-Merino, A. Tulczyjew’s triples and Lagrangian submanifolds in classical field theory. In
Applied Differential Geometry and Mechanics; Academia Press: Ghent, Belgium, 2003; p. 189.

26. de León, M.; Lacomba, E.A.; Rodrigues, P.R. Special presymplectic manifolds, Lagrangian submanifolds and the Lagrangian-
Hamiltonian systems on jet bundles. In Proceedings of the First “Dr. Antonio A. R. Monteiro” Congress on Mathematics (Spanish)
(Bahía Blanca, 1991), Bahía Blanca, Argentina, 7–9 August 1991; pp. 103–122.

27. de León, M.; Salgado, M.; Vilariño, S. Methods of Differential Geometry in Classical Field Theories; World Scientific Publishing Co. Pte.
Ltd.: Hackensack, NJ, USA, 2016; p. xiii+207.

28. de León, M.; Vilariño, S. Lagrangian submanifolds in k-symplectic settings. Monatsh. Math. 2013, 170, 381–404. [CrossRef]
29. Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N. Geometry of multisymplectic Hamiltonian first-order field

theories. J. Math. Phys. 2000, 41, 7402–7444. [CrossRef]
30. Grabowska, K. A Tulczyjew triple for classical fields. J. Phys. A 2012, 45, 145207. [CrossRef]
31. Grabowska, K.; Grabowski, J. Tulczyjew triples: From statics to field theory. J. Geom. Mech. 2013, 5, 445–472. [CrossRef]
32. Román-Roy, N.; Rey, A.M.; Salgado, M.; Vilariño, S. On the k-symplectic, k-cosymplectic and multisymplectic formalisms of

classical field theories. J. Geom. Mech. 2011, 3, 113–137. [CrossRef]
33. Grabowska, K.; Vitagliano, L. Tulczyjew triples in higher derivative field theory. J. Geom. Mech. 2015, 7, 1–33. [CrossRef]
34. Arnold, V.I. Mathematical Methods of Classical Mechanics; Mathematical Methods of Classical Mechanics; Springer: New York, NY,

USA, 1989.
35. Bravetti, A. Contact Hamiltonian dynamics: The concept and its use. Entropy 2017, 19, 535. [CrossRef]
36. Bravetti, A.; Cruz, H.; Tapias, D. Contact Hamiltonian mechanics. Ann. Phys. 2017, 376, 17–39. [CrossRef]
37. de León, M.; Lainz Valcázar, M. Contact Hamiltonian systems. J. Math. Phys. 2019, 60, 102902. [CrossRef]
38. de León, M.; Lainz Valcázar, M. A review on contact Hamiltonian and Lagrangian systems. Rev. Acad. Canaria Cienc. 2019, XXXI,

1–46.
39. Gaset, J.; Gracia, X.; Munoz-Lecanda, M.C.; Rivas, X.; Román-Roy, N. New contributions to the Hamiltonian and Lagrangian

contact formalisms for dissipative mechanical systems and their symmetries. Int. J. Geom. Methods Mod. Phys. 2020, 17, 2050090.
[CrossRef]

40. de León, M.; Sardón, C. Cosymplectic and contact structures for time-dependent and dissipative Hamiltonian systems. J. Phys. A
2017, 50, 255205. [CrossRef]

41. Bravetti, A.; de León, M.; Marrero, J.C.; Padrón, E. Invariant measures for contact Hamiltonian systems: Symplectic sandwiches
with contact bread. J. Phys. A 2020, 53, 455205. [CrossRef]

42. Ciaglia, F.M.; Cruz, H.; Marmo, G. Contact manifolds and dissipation, classical and quantum. Ann. Phys. 2018, 398, 159–179.
[CrossRef]

43. Bravetti, A. Contact geometry and thermodynamics. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1940003. [CrossRef]
44. Ghosh, A.; Bhamidipati, C. Contact geometry and thermodynamics of black holes in AdS spacetimes. Phys. Rev. D 2019,

100, 126020. [CrossRef]
45. Mrugala, R.; Nulton, J.D.; Schön, J.C.; Salamon, P. Contact structure in thermodynamic theory. Rep. Math. Phys. 1991, 29, 109–121.

[CrossRef]
46. Grmela, M. Contact geometry of mesoscopic thermodynamics and dynamics. Entropy 2014, 16, 1652–1686. [CrossRef]
47. Grmela, M. Multiscale Thermodynamics. Entropy 2021, 23, 165. [CrossRef]
48. Grmela, M.; Öttinger, H.C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev.

E 1997, 56, 6620. [CrossRef]
49. Pavelka, M.; Klika, V.; Grmela, M. Multiscale Thermo-Dynamics; de Gruyter: Berlin, Germany, 2018.
50. Wang, K.; Wang, L.; Yan, J. Implicit variational principle for contact Hamiltonian systems. Nonlinearity 2017, 30, 492–515.

[CrossRef]
51. Wang, K.; Wang, L.; Yan, J. Variational principle for contact Hamiltonian systems and its applications. J. Math. Pures Appl. 2019,

123, 167–200. [CrossRef]
52. Simoes, A.A.; de León, M.; Lainz Valcázar, M.; Martín de Diego, D. Contact geometry for simple thermodynamical systems with

friction. Proc. R. Soc. A 2020, 476, 20200244. [CrossRef]
53. Herglotz, G. Berührungstransformationen, Lectures at the University of Göttingen; University of Göttingen: Göttingen, Germany,

1930.
54. de León, M.; Lainz Valcázar, M. Singular Lagrangians and precontact Hamiltonian systems. Int. J. Geom. Methods Mod. Phys.

2019, 16, 1950158. [CrossRef]
55. de León, M.; Gaset, J.; Lainz Valcázar, M.; Rivas, X.; Román-Roy, N. Unified Lagrangian-Hamiltonian formalism for contact

systems. Fortschr. Phys. 2020, 68, 2000045. [CrossRef]
56. Cannas da Silva, A. Lectures on Symplectic Geometry; Lecture Notes in Mathematics; Springe: Berlin, Germany 2001; Volume 1764,

p. xii+217. [CrossRef]
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