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Abstract: Accurate prediction methods are generally very computationally intensive, so they take a
long time. Quick prediction methods, on the other hand, are not very accurate. Is it possible to design
a prediction method that is both accurate and fast? In this paper, a new prediction method is proposed,
based on the so-called random time-delay patterns, named the RTDP method. Using these random
time-delay patterns, this method looks for the most important parts of the time series’ previous
evolution, and uses them to predict its future development. When comparing the supercomputer
infrastructure power consumption prediction with other commonly used prediction methods, this
newly proposed RTDP method proved to be the most accurate and the second fastest.

Keywords: forecasting; prediction method; time series; random time delays patterns; zeroth algo-
rithm; machine learning; statistical; supercomputer power consumption; complex system

1. Introduction

The supercomputer infrastructure is a complex system in terms of its total power
consumption. It is a system whose behavior depends on many factors, which may non-
linearly depend on each other, and where the number of such factors is so great that it is
computationally impossible to model. The individual user tasks can cause consumption
with aregular pattern, but, in combination, they generate a consumption pattern that is
much less regular and, in some places, can seem almost chaotic.

A simplified example of such a pattern-merging is shown in Figure 1. In real traffic,
more users are working on the supercomputer at the same time, so the total consumption
is then the result of the combination of many such patterns. An example of the total power
consumption of a real supercomputer infrastructure, measured over several days, is shown
in Figure 2.

Since this is not a completely chaotic time series, its development can be partially
predicted using appropriate forecasting methods. However, its complexity is so high that
not all samples of this time series can successfully be used to predict its future evolution.
Using all past values in the prediction of such a complex time series inevitably leads to
overfitting. Of course, if too few values are used, the opposite (underfitting) will be the
case, so the crucial task of any successful prediction method is to find the parts of the
previous evolution of the predicted time series that most determine its character. Every
prediction method has to deal with this problem.

Machine learning methods [1] handle this by creating a mathematical model, but this
takes some time to build, so these methods may be too slow for fast real-time predictions. It
is possible to reuse a mathematical model built on older data to save time, but this can lead
to larger prediction errors. Statistical methods [2], on the other hand, work with parameters
that describe the time series globally and are not sensitive to the possible fluctuations that
may occasionally occur during this power energy consumption.

This paper presents a new nonlinear forecasting method that was designed to find the
most significant parts of the previous time series evolution, and thus to produce forecasts
very quickly, even for a seemingly chaotic time series.
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Figure 1. A simplified example of consumption aggregation. Energy consumption of 3 nodes running
different jobs at the same time. Regular patterns merged together give a regular pattern, but the
pattern is more complex, with a smaller degree of predictability.

Figure 2. Power energy consumption time series. This is the normalized measured power from the
infrastructure of the IT4Innovations [3] supercomputer. The measured timerange is from 1:00 p.m.,
2 November to 9:00 p.m., 5 November 2017.

2. Zeroth Algorithm

The reason the zeroth algorithm method is briefly introduced here is that the new
prediction method is partly based on this simple method. This method uses the zeroth-
order approximation of the time series dynamics [4]. Therefore, it is very fast but inaccurate.
In the previous course of the predicted time series, this method looks for subsequences that
are similar to the last subsequence. The forecast is then the arithmetic mean of the values
that followed these similar subsequences in the past:

ŷt =
1

|Uε(xlast)| ∑
xk∈Uε(xlast)

xt−k , (1)
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xlast = (xt−mτ , xt−(m−1)τ , . . . , xt−2τ , xt−τ) ,

xk = (xt−k−mτ , xt−k−(m−1)τ , . . . , xt−k−2τ , xt−k−τ) ,

where xlast is the last subsequence, xk is a subsequence in the past, m is their length, τ is
the delay time, ε is the radius of Uε, and |Uε(xlast)| is number of similar subsequences in
the past (they belong to the neighborhood Uε of the last subsequence).

The principle of this method can be shown by a simple example. Suppose the predicted
time series is x = (x1, x2, . . . , x10) and its members have values:

x1 1.046794
x2 1.049179
x3 1.039641
x4 1.046794
x5 1.049179

x6 1.042025
x7 1.030103
x8 1.061101
x9 1.046794
x10 1.056332

For this example, the length of the searched similar subsequences m = 3 and the
time delay τ = 2 will be chosen. Thus, if a prediction of the value x11 is sought, the last
subsequence will be xlast = (x5, x7, x9) = (1.049179, 1.030103, 1.046794). For simplicity, the
Manhattan norm will be used to measure the distance between subsequences. Then, the dis-
tances of the previous xk subsequences (x1, x3, x5), (x2, x4, x6), (x3, x5, x7), and (x4, x6, x8)
from the last xlast subsequence will be 0.014307, 0.021460, 0.045305, and 0.028614. If the
radius of Uε is chosen to be ε = 0.025, then (x1, x3, x5) and (x2, x4, x6) will be considered as
similar subsequences. The prediction of x11 is then calculated as the arithmetic mean of
the values of the predicted time series following these similar subsequences, which, in this
case, are the values of x7 and x8. The result is therefore ŷ11 = 1.045602.

3. New Method

In brief, this new method attempts to find time delay patterns that, if used in the
zeroth algorithm method on previous data, would result in the most accurate prediction.
The structures of these patterns are randomly assembled, and the algorithm selects the
most successful ones, which are used in the final calculation of the current prediction.

The principle of the new method is, therefore, partly based on the zeroth algorithm,
but the subsequences xlast and xk are defined using the random time-delay pattern (RTDP).
The randomly generated RTDPs are then used to generate a multitude of estimated con-
tinuations of the predicted time series x. For one particular RTDP, the partial prediction
value y and its estimated error rate ε are calculated as follows:

y = xt−kmin
, ε = εmin , (2)

kmin = arg min
k
‖xlast − xk‖ , εmin = ‖xlast − xkmin

‖ ,

xlast = (xt−τm , xt−τm−1 , xt−τm−2 , . . . , xt−τ2 , xt−τ1) ,

xk = (xt−k−τm , xt−k−τm−1 , xt−k−τm−2 , . . . , xt−k−τ2 , xt−k−τ1) ,

RTDP = {τ1, τ2, τ3, . . . , τm} , τi =
i

∑
j=1

δj , δj ∈R {1, 2, . . . , δmax} ,

where y is the partial prediction (created by this particular RTDP), which is equal to the
value of the predicted time series x following subsequence xkmin

which is the subsequence
that is most similar to xlast among all xk subsequences in the past, ε is the estimated error
rate of this partial prediction, εmin is the distance norm between the last subsequence and
the most similar subsequence, RTDP is a random time-delays pattern, m is the length of
RTDPs, τi are random time delays, δj are random time intervals.
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The above procedure is repeated for Np (number of patterns) RTDPs, and the final
prediction is then calculated as the arithmetic mean of the Nmsp (number of the most
successful patterns) best partial predictions. Mathematically, it can be expressed as follows:

ŷt =
1

Nmsp

Nmsp

∑
i=1

yi , (yi, εi) ∈ Yε , Nmsp ≤ Np , (3)

Yε = {(y1, ε1) , (y2, ε2) , . . . , (yNp , εNp)} , ε j ≤ ε j+1 , j ∈ {1, 2, . . . , Np − 1} ,

where ŷt is the final prediction of the value of the predicted time series x at time t, Nmsp is
the number of the most successful RTDPs, Np is the total number of RTDPs, Yε is the set
of pairs (y, ε) created by all Np RTDPs, which are sorted in ascending order of the size of
estimated error rates ε.

It is worth mentioning that the values of Np, Nmsp, m, and δmax must be determined
in advance. These are the parameters of this new method and fundamentally affect its
accuracy and computational demand.

This new method will hereafter be referred to as the RTDP method and, for better
illustration, it is written in pseudocode in Algorithm 1.

Algorithm 1 The RTDP method in pseudocode.

Require: x, m, δmax, Np, Nmsp
Ensure: |x| > m ∗ δmax, Nmsp ≤ Np
Y← {}
for i=1 to Np do . tries Np RTDPs

δ← random vector of length m containing random integer numbers from 1 to δmax
τ ← (δ1, δ1 + δ2, δ1 + δ2 + δ3, . . . , δ1 + δ2 + · · ·+ δm)
RTDP← (τ1, τ2, τ3, . . . , τm) . RTDP is actually a cumulative sum of δ
for k=1 to |x| −m ∗ δmax do . goes through all possible subsequencies xk in x

εk ← ‖xlast − xk‖ . each distance εk between xk and xlast is stored
end for
kmin ← arg mink εk . finds the k for which xk is closest to xlast
yi ← ybest ← xt−kmin

. assumed best prediction made by this RTDP
εi ← εmin ← εkmin

. distance of the closest subsequence xkmin
Y← Y∪ (yi, εi) . adds results from this RTDP to the overall result set

end for
Yε ← sortε(Y) . ranking all RTDPs predictions by assumed accuracy ε
ŷt ← (y1 + y2 + y3 + · · ·+ yNmsp)/Nmsp . averaging the best Nmsp predictions

For a better understanding of this method, it is also useful to demonstrate its principle
with a simple example. Suppose the predicted time series is x = (x1, x2, . . . , x20) and its
members have values:

x1 1.046794
x2 1.049179
x3 1.039641
x4 1.046794
x5 1.049179

x6 1.042025
x7 1.030103
x8 1.061101
x9 1.046794
x10 1.056332

x11 1.022949
x12 1.022949
x13 1.027718
x14 1.027718
x15 1.020565

x16 0.999104
x17 1.011027
x18 1.008642
x19 1.013411
x20 1.025334

For this simple example, the following parameters will be chosen: m = 5, δmax = 3,
Np = 5, Nmsp = 2.

In Algorithm 1, the RTDPs are (for illustrative purposes) generated sequentially, one
after the other; however, as will now be seen, they can also be generated in parallel. Based
on the value of Np and δmax, five random vectors δ are generated:

(2, 2, 1, 3, 3) , (1, 1, 2, 1, 1) , (3, 1, 3, 1, 2) , (3, 3, 3, 3, 1) , (2, 2, 3, 3, 3)
and from them, five RTDPs are calculated as their cumulative sums:
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(2, 4, 5, 8, 11) , (1, 2, 4, 5, 6) , (3, 4, 7, 8, 10) , (3, 6, 9, 12, 13) , (2, 4, 7, 10, 13).
Suppose a prediction of x21 is sought, then the last subsequences based on these RTDPs is:

(x10, x13, x16, x17, x19) , (x15, x16, x17, x19, x20) , (x11, x13, x14, x17, x18) ,
(x8, x9, x12, x15, x18) , (x8, x11, x14, x17, x19) .

By iterating the values of k from 1 to 5 (|x| −m ∗ δmax), the distances εk between all xks and
xlast are now calculated for each RTDP. For simplicity, the Manhattan norm can be used
again, obtaining the following results for RTDP = (2, 4, 5, 8, 11):

k 1 2 3 4 5

yk = x21−k 1.025334 1.013411 1.008642 1.011027 0.999104
εk 0.052459 0.050074 0.114456 0.081073 0.090611

These results show that the minimum distance for this RTDP is εmin = 0.050074, so
kmin = 2 and the assumed best prediction is ybest = 1.013411. This procedure is repeated
for all RTDPs, and the best results from each are stored in Y, which, in this example, would
look like this:

RTDP (2,4,5,8,11) (1,2,4,5,6) (3,4,7,8,10) (3,6,9,12,13) (2,4,7,10,13)

y 1.013411 1.025334 1.025334 1.008642 1.013411
ε 0.050074 0.057228 0.052459 0.054843 0.059612

Finally, the Nmsp of the potential best results y (with the smallest ε) is taken and
the arithmetic mean is calculated, so, in this example, the final resulting prediction is
ŷt = (1.013411 + 1.025334)/2 = 1.0193725.

4. Comparison

The time series of power energy consumption, shown in Figure 2, was used to test the
prediction using the RTDP method. To verify the competitiveness of this RTDP method,
predictions of the same time series were also calculated using other common prediction
methods.

Machine-learning methods such as extreme gradient boosting (XGB) [5], k-nearest
neighbor (KNN) [6], random forest (RF) [7], and artificial neural networks (ANN) [8] were
used. The latter was used with two parameter settings; one faster and one more accurate.
Statistical methods are represented here by the probable best one: the auto-regressive
integrated moving average (ARIMA) [2] method, and in two parameter settings. For
an interesting comparison, the zeroth algorithm method on which the RTDP prediction
method is based was also added.

The parameters of the ARIMA(0,1,2) method were automatically determined by its
auto.arima() function and the parameters of the ARIMA(8,1,6) method were determined by
the recommended procedure using autocorrelation (ACF) and partial autocorrelation func-
tions (PACF). The optimal parameter values used for all other methods were empirically
located. For the RTDP method, this search is shown in Figure 3. Table 1 then summarizes
the parameter values of all methods used in the comparison.
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Figure 3. Results of a series of predictions designed to empirically determine the optimal parameters
of the RTDP method. The time series of power energy consumption, shown in Figure 2, was used to
calculate these results. The numbers at the nodes represent the value of δmax. The number of patterns
and the number of the most successful patterns were set to Np = 30 and Nmsp = 21 for the whole
series. The RTDP method is (in this case) most accurate when the parameters δmax = 5 and m = 25
are set.

Table 1. Summary of the used parameter values of the compared methods.

Method Parameters

ANN 1 η = 0.1, 3 layers of 15 neurons each, maxerror = 0.01
ANN 2 η = 0.1, 3 layers of 15 neurons each, maxerror = 0.02

ARIMA(0,1,2) p = 0, d = 1, q = 2
ARIMA(8,1,6) p = 8, d = 1, q = 6

KNN k = 5, N = 40
RF ntree = 13, mtry = 19

RTDP δmax = 5, m = 25, Np = 30, Nmsp = 21
XGB nrounds = 22, η = 0.23, minweight = 20, maxdepth = 1, γ = 0

Zeroth m = 31, τ = 1, ε = 0.151

5. Results

For all methods, the same number of previous samples (341) was used to predict of the
following value. A time window of 340 samples was created and each method attempted
to predict the value of the 341st sample. By sliding this time window over the entire power
energy consumption time series, the waveform of the prediction error for each method was
obtained.

The sampling rate of the predicted time series used is one sample per minute, so
340 samples represent a timespan of more than 5 hours. Over such a long period of time,
power consumption trends should already be sufficiently evident. Of course, by using a
longer time window, the predictions could be more accurate, but for the purposes of this
comparison, this level of accuracy is sufficient.

From the prediction error waveforms, the moving root mean square error (RMSE)
waveforms, using a 300-sample-width moving window, were calculated for smoothing
purposes and are shown in Figure 4. For each method, the overall RMSE was also calculated
from this prediction error waveform and a sorted summary of these total RMSEs is given
in Table 2.
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Figure 4. Comparison of the prediction accuracy waveforms of the methods used with the new
prediction method RTDP. The moving RMSE was calculated as the RMSE of a moving 300 samples
wide window.

Table 2. The ranked results are summarized here by the total RMSE and also by the total runtime
taken to calculate the predictions of the entire time series of supercomputer power consumption.

Method Total RMSE [-]

RTDP 0.02719
ARIMA(8,1,6) 0.02722
ARIMA(0,1,2) 0.02738

XGB 0.02773
RF 0.02836

Zeroth 0.03231
KNN 0.03350

ANN 1 0.03414
ANN 2 0.03841

Method Total Run-Time [s]

Zeroth 23
RTDP 42

ARIMA(0,1,2) 58
KNN 3240
XGB 4515

ARIMA(8,1,6) 4714
RF 7250

ANN 2 25,501
ANN 1 56,549

The prediction calculations of the machine-learning methods were conducted using
the software R [9] package caret [10] and the calculation of the statistical method predictions
was conducted using R package forecast [11].

In the case of the machine learning methods used (XGB, ANN, RF, KNN), the default
resampling method of the caret software package was used to split the data into training
and test sets. This is a bootstrapping method that builds a test set from 25% of the input
data. Nonlinear and statistical methods (Zeroth, RTDP, ARIMA) do not use this partitioning
in the training and test sets because they do not create a mathematical model that needs to
be trained and then tested.

All calculations were performed on the same personal computer with an Intel Core
i7-1065G7 processor (1.30–3.90 GHz) and 16 GB DDR4 RAM.

6. Conclusions and Future Work

In this paper, a new prediction method, named RTDP, was proposed. Using random
time-delays patterns, this method tries to find important parts of the previous evolution of
the time series and predicts its future evolution on this basis.

Its competitiveness was proved by comparing the accuracy of its prediction of the
supercomputer infrastructure consumption time series with the accuracy of the prediction
of the same time series when calculated with other commonly used prediction methods.
The new RTDP method is based on the old and simple zeroth algorithm method and,
thanks to the modifications, has gained in accuracy and lost a little in speed compared to
the original method.
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The comparison results, shown in Figure 4 and summarized in Table 2, show that the
new RTDP method, when used to predict the evolution of supercomputer infrastructure
consumption, was the most accurate and the second fastest. This is an excellent result, but
to more comprehensively test this method, it will be necessary to perform this comparison
on various types time series.

The development of the software package in which this method will be effectively
implemented is another appropriate future work. The advantage of this method is its easy
parallelizability, since calculations with individual RTDPs are independent of each other
and can, therefore, run on different processor cores at the same time. It is reasonable to
assume that the use of this feature will further speed up the method, which may also have
an impact on its accuracy, as more RTDPs can be tried in the same amount of time.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/math9212695/s1.
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ACF Autocorrelation function
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RTDP Random time delays pattern
XGB Extreme gradient boosting
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