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Abstract: This paper is concerned with a novel secure data transmission design based on adaptive
synchronization of master and slave unified chaotic systems. First, by introducing an augmented error
state, an adaptive continuous sliding mode control (SMC) is derived to guarantee the synchronization
of unified chaotic systems. Then, the secret message embedded in the master chaotic system can be
transmitted from transmitter to receiver. Different from previous works using discontinuous SMC,
the undesired chattering phenomenon can be fully eliminated, and it becomes possible to precisely
recover the embedded secret message at the receiver. Last, an example is given to illustrate the
success of secure data transmission with the continuous SMC developed in this paper.

Keywords: secure data transmission; chaos synchronization; adaptive sliding mode control; chattering;
unified chaotic system

1. Introduction

Nowadays, chaos responses have been found in the dynamics of various engineering
fields since the well-known Lorenz chaotic system described the dynamics of the atmo-
sphere was proposed [1]. The dynamic behavior looks random, but it is quite different from
the stochastic processes. Chaotic systems are with deterministic nonlinear dynamics to
display the chaotic behavior. And there are many characteristics for chaotic systems, such
as positive largest Lyapunov exponents, boundedness of strange attractors, sensitivity to
initial value (so-called butterfly effect), broad spectrums of Fourier transform, random-like
responses, fractal properties of states, and so forth [2,3]. Due to these characteristics of
chaotic systems and their significant advantages in various engineering fields, the research
on chaos suppression and synchronization control has attracted more and more attention.
Chaos control is mainly to suppress chaotic behavior in the dynamic systems, while chaos
synchronization introduces extra control input to force identical or different master-slave
chaotic systems to have the same chaotic behavior. So far, researchers have used various
control methods to solve the problems of chaos suppression or synchronization, such as
H-infinity stabilization [4,5], adaptive control [6–9], robust SMC [10–14], backstepping
control [15,16], optimal control [17,18], hybrid control [19], and so on. In the above research,
the SMC has received special attention mainly due to attractive advantages, such as good
performance of transient response, simple structure, easy implementation, and good ro-
bustness to external disturbances and parameter uncertainties. However, the chattering
problem which can result in high-frequency oscillations in the controlled system needs to
be well solved. An approach frequently introduced to solve the chattering phenomenon
is to modify the designed discontinuous SMC with the boundary layer method [20–23].
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However, it can only ensure the sliding motion outside a specified boundary layer, which
will decrease the control performance and it is not suitable for the application to secure
communication with high precision requirements. Zhang [24] proposed an integral sliding
mode control (ISMC) method for a class of uncertain chaotic systems to eliminate the unde-
sired chattering. However, it is necessary to use multi-dimensional inputs to complete the
synchronization, which increases the complexity of the system design. Additionally, in the
recent works [25–27], the authors utilized adaptive backstepping sliding mode control to ef-
fectively eliminate the chattering and successfully completed the actual engineering system
control. However, their methods need further research before they can be extended to di-
rectly solve the problems of chaotic synchronization and secure communication considered
in this paper.

In recent years, due to the importance of information security, many researchers
have utilized the random property of chaotic systems to complete the design of secure
communication [28–30]. The authors [28] utilized the advantages of fractional complex
chaotic synchronization to design a secure communication. However, multi-dimensional
inputs were needed to complete the synchronization. The authors [29,30] proposed the
method of chaotic masking, and the plaintext and chaotic signals are mixed into cipher
text by addition. However, this masking encryption method is insecure, because the
characteristics of the message are easily separated in the mixed encrypted signal.

Motivated by the aforementioned, this study aims to design an adaptive chattering-
free SMC to not only ensure the synchronization for master-slave unified chaotic dynamical
systems but also achieve secure data transmission. First, we embed the secret information
in the master chaotic system and ensure that its chaos dynamics are not destroyed. Then
use the adaptive chattering-free SMC design to synchronize the master and slave chaotic
systems, and precisely recover the secret information on the receiver. In the traditional
SMC, to ensure the hitting condition, the discontinuous sign function is often used to design
the controller, but this function requires an infinite switching frequency in realization, so it
will produce an undesirable chattering phenomenon. To eliminate chattering, as mentioned
in [20–23], researchers introduced continuous saturation functions or boundary layers to
replace the switching behavior of sign functions, but the accuracy performance of the
control is lost, and certain errors of synchronization will be generated. In general control
cases, this minor error due to chattering might be acceptable. However, this is a serious
problem that must be solved in secure communication or encryption systems requiring
high accuracy. Therefore, for secure communication, the continuous saturation function is
not suitable for eliminating chattering. To remove the influence of chattering and accurately
complete the secure data transmission, we introduced an augmented error state to derive
an adaptive continuous SMC to guarantee the synchronization for master and slave unified
chaotic systems without chattering. We introduce an augmented error state to construct a
new switching function that contains only partial error states and ensure the convergence
of the augmented error dynamics in the sliding manifold. Furthermore, the proposed
control method only uses a single control input to complete synchronization control, which
reduces the circuit complexity for SMC realization.

The rest of this study is organized as follows. Section 2 describes the dynamics of
unified chaotic systems and formulates the chaos synchronization and secure data trans-
mission problems. In Section 3, based on the SMC, an augmented error state is introduced,
and a switching function is firstly proposed. Then the stability of the augmented error
dynamics in the sliding manifold is discussed. In Section 4, an adaptive continuous SMC
without involving any information of the secret message is established to ensure the slid-
ing manifold with chattering. In Section 5, an illustrative example and comparisons are
provided. Conclusions are provided in Section 6.

Notations: In this paper, xT is the transpose of the matrix x; |x| denotes the absolute
value of x; sign(σ) represents the sign function of σ and sign(σ) = 1 when σ > 0; sign(σ) =
0 when σ = 0; sign(σ) = −1 when σ < 0.
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2. System Description and Problem Formulation

In this paper, we aim to design a secure data transmission with chaos synchronization
using SMC. The transmitted secure data will be firstly embedded in the master chaotic
system at the transmitter and can be safely and precisely recovered at the receiver. The
secure information will not be exposed in public channels, so the information security can
be ensured. We combine the characteristics of SMC and chaotic system synchronization
to complete this design. In the following, we will consider the synchronization between
master and slave unified chaotic systems with an adaptive chattering-free SMC. Although
we use the unified chaotic system for discussion in this article, the method obtained can
easily be extended to other types of chaotic systems.

2.1. Unified Chaotic Systems

A nonlinear unified chaotic system [31] is described by

.
x1(t) = (25α + 10)(x2(t)− x1(t)).
x2(t) = (28− 35α)x1(t) + (29α− 1)x2(t)− x1(t)x3(t).
x3(t) = x1(t)x2(t)− 8+α

3 x3(t)
(1)

where x1, x2, x3 denote the states and α is the given parameter with 0 ≤ α ≤ 1. System (1)
can bridge the Lorentz attractor with Chen attractor and Lü attractor by the parameter α.
The unified system with α ∈ [0, 0.8) belongs to the generalized Lorenz system and becomes
the original Chen system when α ∈ (0.8, 1]. While α = 0.8, system (1) is the Lü system.
The dynamics of the system (1) has been extensively researched in [28] and displays
chaotic behavior in the whole interval α ∈ [0, 1]. Figure 1 demonstrates the bounded
chaotic behaviors for α = 0.3 with initial values of

[
x10 x20 x30

]T
=
[

3 1 1
]T .

Consequently, we will conclude a definite and simple procedure to design an adaptive
chattering-free SMC to guarantee synchronization and complete the secure communication
design.
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2.2. Communication Structure and Synchronization Problem Formulation

Consider the structure of master and slave unified chaotic systems and the states of
master and slave systems are denoted with x and y, respectively.

.
x1 = (25α + 10)(x2 − x1).
x2 = (28− 35α)x1 + (29α− 1)x2 − x1x3 + m(t)
.
x3 = x1x2 − ((8 + α)/3)x3

(2)
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and .
y1 = (25α + 10)(y2 − y1).
y2 = (28− 35α)y1 + (29α− 1)y2 − y1y3 + u(t)
.
y3 = y1y2 − ((8 + α)/3)y3

(3)

where xi and yi, i = 1, 2, 3, respectively, denote the states of the master and slave systems.
m(t) is the embedded secret message and assumed that m(t) and

.
m(t) are bounded by

|m(t)| ≤ θ, and
∣∣ .
m(t)

∣∣ ≤ ρ, where θ and ρ are unknown positive constants. The u(t) ∈ R
in the slave system (3) is the introduced control input using adaptive chattering-free SMC
to synchronize systems (2) and (3) and then achieve secure data transmission. By defining
synchronization errors as follows:

ei(t) = yi(t)− xi(t), i = 1, 2, 3 (4)

then the error dynamics is obtained.

.
e1(t) = (25α + 10)(e2(t)− e1(t)).
e2(t) = (28− 35α)e1(t) + (29α− 1)e2(t)− y1(t)y3(t) + x1(t)x3(t)−m(t) + u(t)
.
e3(t) = −((8 + α)/3)e3(t) + y1(t)y2(t)− x1(t)x2(t)

(5)

In this paper, with the slave system (3), a continuous adaptive SMC will be established
without involving the unknown message m(t) to synchronize the chaos responses of the
slave system (3) with those of the master system (2) without chattering. Then the secret
message m(t) embedded in the master system (2) can be precisely recovered at the receiver
(slave system), i.e.,

lim
t→∞
‖ei(t)‖ → 0, i = 1, 2, 3 and lim

t→∞
(u(t)−m(t))→ 0 (6)

3. Switching Function Design of SMC for Synchronization

To guarantee the synchronization between systems (2) and (3) with the adaptive
chattering-free SMC, an appropriate switching function must be firstly selected to result in
lim
t→∞
‖ei(t)‖ → 0, i = 1, 2, 3 and lim

t→∞
(u(t)−m(t))→ 0 when the augmented error dynam-

ics enters into the sliding manifold. Then, an adaptive chattering-free SMC control law
must be proposed to ensure the sliding manifold. To derive the continuous chattering-free
SMC, an augmented error state is newly introduced below.

ea(t) = (28− 35α)e1(t) + (29α− 1)e2(t)− y1(t)y3(t) + x1(t)x3(t)−m(t) + u(t) (7)

From Equation (7) and Equation (5), we have

.
ea(t) = (28− 35α)

.
e1(t) + (29α− 1)

.
e2(t)− (

.
y1(t)y3(t) + y1(t)

.
y3(t))

+(
.
x1(t)x3(t) + x1(t)

.
x3(t))−

.
m(t) +

.
u(t)

= g(t)− .
m(t) +

.
u(t)

(8)

where

g(t) = (28− 35α)(25α + 10)(e2(t)− e1(t)) + (29α− 1)ea(t)
−(25α + 10)(y2(t)y3(t)− x2(t)x3(t))− y2

1(t)y2(t) + x2
1(t)x2(t)

+ 38+76α
3 (y1(t)y3(t)− x1(t)x3(t))

(9)

After introducing the augmented error state, the augmented error dynamics is rear-
ranged as

.
e1(t) = (25α + 10)(e2(t)− e1(t)).
e2(t) = ea(t).
ea(t) = g(t)− .

m(t) +
.
u(t)

.
e3(t) = −((8 + α)/3)e3(t) + y1(t)y2(t)− x1(t)x2(t)

(10)
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To complete the two major steps mentioned above for chattering-free SMC synchro-
nization, a switching function is selected as

σ(t) = ea(t) +
∫ t

0
(k1e1(τ) + k2e2(τ) + k3ea(τ))dτ (11)

where σ(t) ∈ R and ki, i = 1, 2, 3 are designed parameters described later. When the error
system (10) operates in the sliding manifold with σ(t) =

.
σ(t) = 0 [10], from (11), one has

.
ea(t) = −k1e1(t)− k2e2(t)− k3ea(t) (12)

Therefore, by Equation (10) and Equation (12), the following error dynamics in the
sliding manifold is derived as
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rank for all 0 1   and the (A, B) in Equation (13) is a controllable matrix pair. There-

The controllability matrix C =
[

B AB A2B
]
=

 0 0 25α + 10
0 1 0
1 0 0

 is with full

row rank for all 0 ≤ α ≤ 1 and the (A, B) in Equation (13) is a controllable matrix pair.
Therefore, there always exists an appropriate matrix K such that the eigenvalues λi of
the matrix (A − BK) can be arbitrarily assigned to satisfy Re(λi) < 0 , i = 1, 2, 3 and
E(t) =

[
e1(t) e2(t) ea(t)

]T can converge to zero in finite time t1. Furthermore, by
Equation (10), when time t ≥ t1, E(t) = 0 which implies y1(t)y2(t)− x1(t)x2(t) = 0 for
t ≥ t1. Consequently, the dynamics of e3(t) in Equation (13) degenerates to

.
e3(t) = −((8 + α)/3)e3(t), for t ≥ t1 (14)

Since α ∈ [0, 1] and (8 + α)/3 > 0, e3(t) also converges to zero. From the discussion
above, the augmented error dynamics (10) in the sliding manifold is stable and ensure the
synchronization.

Remark 1. From Equation (7), when ea(t) converges to zero, one has

ea(t) = (28− 35α)e1(t) + (29α− 1)e2(t)− y1(t)y3(t) + x1(t)x3(t)−m(t) + u(t) = 0 (15)

Furthermore, since all e1(t), e2(t) and e3(t) converge to zero, the secret message m(t) can be
precisely recovered with u(t) = m(t).

4. Adaptive Continuous SMC Design without Chattering

Having designed the switching function as Equation (11) and ensured the stability
of the augmented error dynamics (10) in the sliding manifold, it is still necessary to give
an adaptive continuous SMC to force the error dynamics (10) to hit and never escape the
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sliding manifold σ(t) = 0. To guarantee the system trajectory can be controlled to the
sliding manifold, the chattering-free adaptive SMC is given as

.
u(t) = −(g(t) + k1e1(t) + k2e2(t) + k3ea(t) + µρ̂(t)sign(σ(t))); µ > 1 (16)

or

u(t) = u0 −
∫ t

0
(g(τ) + k1e1(τ) + k2e2(τ) + k3ea(τ) + µρ̂(τ)sign(σ(τ)))dτ; µ > 1 (17)

where u0 is the initial condition of u(t) and the adaptive law is given as follows:

.
ρ̂(t) = |σ(t)|, ρ̂(0) = ρ̂0 (18)

where ρ̂0 is the bounded initial condition of Equation (18).

Theorem 1. Consider the augmented error dynamics (10), if the control u(t) in Equation (16) or
Equation (17) with adaptive laws (18) is introduced, then the trajectory of systems can converge to
the sliding manifold σ(t) = 0.

To prove Theorem 1, the following lemma is provided:

Lemma 1. (Barbalat lemma) [32]: If w : R→ R is a uniformly continuous function for t ≥ 0 and
lim
t→∞

∫ t
0 w(τ)dτ exists and is bounded, then lim

t→∞
w(t) = 0.

Proof of Theorem. Choose the continuous Lyapunov function V(t) = 1
2 (σ

2(t) + ψ2(t)) ≥
0 with ψ(t) = ρ̂(t)− ρ and

.
ψ(t) =

.
ρ̂(t), then

.
V(t) = σ(t)

.
σ(t) + ψ(t)

.
ψ(t)

= σ(t)(
.
ea(t) + k1e1(t) + k2e2(t) + k3ea(t)) + ψ(t)

.
ρ̂(t)

= σ(t)(g(t)− .
m(t) +

.
u(t) + k1e1(t) + k2e2(t) + k3ea(t)) + ψ(t)

.
ρ̂(t)

= −σ(t)
.

m(t)− σ(t)µρ̂(t)sign(σ(t)) + ψ(t)
.
ρ̂(t)

≤ |σ(t)|(ρ− ρ̂(t))

−ψ(t)

+ ρ̂(t)|σ(t)| − µρ̂(t)|σ(t)|+ ψ(t)
.
ρ̂(t)

(19)

where
∣∣ .
m(t)

∣∣ ≤ ρ. From Equation (19) and the adaptive law (18), we can conclude
.

V(t) ≤ (1 − µ
)

ρ̂(t)|σ(t)| = −w(t) ≤ 0, where w(t) = (µ− 1)ρ̂(t)|σ(t)|. Integrating
.

V(t) ≤ −w(t), it yields∫ t
0

.
V(τ)dτ ≤ −

∫ t
0 w(τ)dτ

⇒ V(0) ≥ V(t) +
∫ t

0 w(τ)dτ ≥
∫ t

0 w(τ)dτ
(20)

Since V(0) = 1
2 (σ

2(0) + ψ2(0)) is always positive and bounded and w(t) ≥ 0 for all
time, lim

t→∞

∫ t
0 w(τ)dτ exists and is bounded. Therefore, by Barbalat’s lemma [32], it ensures

that
lim
t→∞

w(t) = lim
t→∞

(µ− 1)ρ̂(t)|σ(t)| = 0 (21)

Furthermore, since µ > 1 and ρ̂(t) > 0, we have σ(t) = 0 as t→ ∞ . The proof is
completed.

Remark 2. The proposed adaptive SMC controller in Equations (16) and (17) demonstrates a
continuous control input and chattering will not appear.
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Remark 3. Based on the above discussion, we conclude the design procedure for the secure data
transmission based on adaptive SMC synchronization of unified chaotic systems as follows.

Step 1: Embed the secret data m(t) into the master unified system (2).
Step 2: Introduce an augmented state as Equation (7) and construct the augmented error dynamics
as Equation (10).
Step 3: Choose an appropriate matrix K to make the eigenvalues λi of (A− BK) satisfy Re(λi) <
0, i = 1, 2, 3 to result in the stable sliding manifold.
Step 4: Establish the switching function σ(t) in Equation (11).
Step 5: Construct the continuous SMC from Equation (16) or Equation (17) with the adaptive law
(18).
Step 6: Achieve the robust synchronization and precisely recover the embedded secret message at the
receiver.

5. Numerical Simulations

In this simulation, α = 0 is assigned such that system (1) becomes the original
Lorenz system. The initial conditions

[
x10 x20 x30

]T
=
[

0.3 −1 −0.2
]T and[

y10 y20 y30
]T

=
[
−0.5 1 0.5

]T are given. According to Remark 3, the design is
summarized as following steps:

Step 1: The secret data m(t) = 0.5 sin(8t) is embedded to the master system (2) with α = 0.
Step 2: With α = 0 and the augmented state in Equation (15), the augmented error dynamics
is obtained as

.
e1(t) = 10(e2(t)− e1(t)).
e2(t) = ea(t).
ea(t) = g(t)− .

m(t) +
.
u(t)

.
e3(t) = −(8/3)e3(t) + y1(t)y2(t)− x1(t)x2(t)
g(t) = (280)(e2(t)− e1(t))− ea(t)

−10(y2(t)y3(t)− x2(t)x3(t))− y2
1(t)y2(t) + x2

1(t)x2(t)
+ 38

3 (y1(t)y3(t)− x1(t)x3(t))

(22)

Step 3: Choose the matrix K =
[
−0.8 44 13

]
such that the eigenvalues of (A− BK)

are λ1 = −9, λ2 = −8, λ3 = −6 to result in a stable sliding manifold.
Step 4: Consequently, the switching function σ(t) is constructed as:

σ(t) = ea(t) +
∫ t

0
(−0.8e1(τ) + 44e2(τ) + 13ea(τ))dτ (23)

Step 5: From Equation (16) or Equation (17) with the adaptive law (18), the chattering-free
adaptive SMC scheme with µ = 1.2, u0 = 1 is obtained as

.
u(t) = −(g(t)− 0.8e1(t) + 44e2(t) + 13ea(t) + 1.2ρ̂(t)sign(σ(t))) (24)

Or

u(t) = 1−
∫ t

0
(g(τ)− 0.8e1(τ) + 44e2(τ) + 13ea(τ) + 1.2ρ̂(τ)sign(σ(τ)))dτ (25)

the adaptive law is designed as
.
ρ̂(t) = |σ(t)| , ρ̂(0) = 0.1.

The ode45 in the control toolbox of MATLAB is introduced. The short format of
data type and step size 0.001 is selected for simulation. The simulation results with the
continuous SMC (24) or (25) are given in Figures 2–4. Figure 2 shows the bounded strange
attractor of the master Lorenz system with the embedded secret message m(t) = 0.5 sin(8t).
The synchronization errors are given in Figure 3. Figure 4 shows the switching function
σ(t), the continuous control input u(t), adaptation gain ρ̂(t) and the difference between
u(t) and m(t). By observing the simulation results, the trajectories of error dynamics can
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converge to σ(t) = 0 as expected and the synchronization is achieved. Additionally, the
undesired chattering is fully eliminated due to the adaptive continuous SMC and the
secret message is precisely recovered. To demonstrate the effectiveness of the proposed
chattering-free controller, the continuous equivalent SMC proposed in Hou et al. [20] and
Lin [21] is performed with the parameters η = 2, β = 1, ψ = 0.5. To further compare with
the traditional control, the parameter σ in the equivalent controller proposed in [20,21] is
set to 0 and 0.02, respectively, and the simulation results are shown in Figures 5 and 6. In
Figure 5, the parameter σ is set to 0 and the equivalent controller becomes the traditional
discontinuous controller. Observing the simulation results in Figure 5, it can be found
that the chattering is obvious. Although there is a good performance in synchronization,
the difference between the controller and message cannot converge due to the chattering,
i.e., the transmitted secret message cannot be accurately recovered. In order to solve the
problem of chattering, we choose the parameter σ as 0.02. The simulation results in Figure 6
reveal that the chattering has been effectively eliminated, but the system cannot enter the
sliding mode completely, so the performance of the control is affected and the transmitted
message cannot be accurately recovered.
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6. Conclusions

A secure data transmission approach based on adaptive synchronization of master
and slave unified chaotic systems have been proposed. A new adaptive chattering-free
SMC has been developed to synchronize the master and slave unified chaotic systems.
According to the mathematical analysis and simulation results, we can observe that not
only the synchronization can be ensured, but also the embedded secret message can
be securely transmitted from transmitter to receiver. The numerical simulation results
demonstrate the validity of the results developed in this paper. However, because this study
only uses a single input for the synchronization control design, if one needs significantly
speed up the synchronization, multi-dimensional inputs are necessary to achieve the fast
synchronization, but it will increase the complexity of the controlled systems. Therefore,
in the near future, extending the proposed chattering-free design to obtain finite-time
synchronization is the proposed main work.
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