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Abstract: Ranking of interval-valued intuitionistic fuzzy numbers (IVIFNs) is an important task for
solving real-life Decision-Making problems. It is a potential area of research that has attracted the
researchers working in fuzzy mathematics. Researchers worldwide are looking for a unique ranking
principle that can be used to discriminate any two arbitrary IVIFNs. Various ranking functions on the
set of IVIFNs have been proposed. However, every method has some drawbacks in ranking arbitrary
IVIFNs due to the partial ordering. This paper introduces a new ranking principle for comparing
two arbitrary IVIFNs by defining a new score function based on the non-membership value of
IVIFNs. In this paper, firstly, the limitations of a few well-known and existing ranking methods
for IVIFNs have been discussed. Secondly, a new non-membership score on the class of IVIFNs
has been introduced. Thirdly, the superiority of the proposed score function in ranking arbitrary
IVIFNs over the existing methods has been demonstrated. Finally, the proposed non-membership
score function has been utilized in interval-valued intuitionistic fuzzy TOPSIS (IVIF-TOPSIS) using
numerical examples.

Keywords: interval-valued intuitionistic fuzzy number; non-membership score function; MCDM;
IVIF-TOPSIS; IVIF-MCDM; defuzzification

1. Introduction

Decision-Making problems often involve imprecise information that can be modelled
better using fuzzy sets than classical sets. The main advantage of using fuzzy sets is that
they give freedom to the decision-maker to assign membership values between 0 and
1, whereas in the case of crisp sets, decision-makers are restricted to providing a crisp
value (either 0 or 1). However, in most of the real-life problems, incompleteness occurs
in the data in addition to imprecision. Intuitionistic fuzzy set (IFS) was introduced in
the literature as a generalization of the classical fuzzy set. The main characteristics of
an IFS is that the sum of the degrees of membership and non-membership values of any
element in the IFS will be less than or equal to 1. Further, it has been generalized to
interval-valued intuitionistic fuzzy set (IVIFS) since the IVIFSs model incompleteness in
a better way than the real-valued IFSs. The ranking of IVIFSs will play an essential role
in solving any decision-making problem involving imprecision and incompleteness. A
lot of ranking procedures have been introduced in the literature for differentiating any
two arbitrary IVIFNs. Xu [1] introduced the idea of score and accuracy functions on the
set of IVIFNs. Using these two functions, he tried to compare arbitrary IVIFNs. His
“score function” was nothing but the difference between the mid-points of the membership
and non-membership functions, and the “accuracy function” was the sum of the mid-
points of the membership and non-membership functions. However, if A = ([a, b][c, d])
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and B = ([a− ε, b + ε][c− ε, d + ε]) are any two IVIFNs, then their score and accuracy
functions are equal, which shows the limitation Xu’s ranking procedure. In the year 2009,
Ye [2] pointed out few drawbacks of other existing ranking methods on the set of real-
valued IFS and proposed a novel accuracy score function on IVIFNs. The proposed score
function ([2]) was used in solving Multi-Criteria Decision-Making (MCDM) problems
modelled with IVIFNs. A non-membership score function on the set of IVIFNs was
introduced by Nayagam and Geetha [3]. They claimed that the proposed non-membership
score function overcomes the previous drawbacks. However, their score function also
ranked two different IVIFNs as equal in some cases. Further, the limitations of the non-
membership score function were identified by the same group. They improved the ranking
of IVIFNs by introducing an axiomatic set of score functions [4]. Bai [5] proposed an
improved score function for ranking IVIFNs, and claimed that the proposed method
overcomes the drawbacks of earlier methods. Unfortunately, this improved score function
was also not able to discriminate arbitrary IVIFNs. In 2016, Garg [6] proposed a new
ranking principle on the set of IVIFNs for comparing arbitrary IVIFNs by generalizing
Bai’s [5] improved score function. He claimed that his method provides better results
when it is compared with other methods [1,2,5,7]. However, his method also failed to
rank arbitrary IVIFNs and also had the same drawbacks of improved score function [5]
since it is the generalization of Bai’s [5] improved score function. Sahin [8] proposed
another score function called the improved accuracy score of an IVIFN and showed that
the improved accuracy score function ranks arbitrary IVIFNs more effectively than the
familiar ranking methods. He also utilized the improved accuracy function in improving
the Decision-Making algorithm. Fangwei and Xu [9] identified the illogicalities of Sahin’s
improved accuracy function by using illustrative examples and introduced a new ranking
principle that can overcome the drawbacks of Sahin’s ranking procedure. However, their
method also had some other disadvantages in discriminating two different IVIFNs, which
was identified by Nayagam et al. [10]. Nayagam et al. [10] proposed a non-hesitance score
on the set of IVIFNs and discussed its advantages using various illustrative examples. In
addition to that, they [10] identified the new subclass of IVIFNs where the non-hesitance
score function defines total ordering.

IVIFS can be utilized in solving many real-life problems from different domains [11–13].
Researchers have utilized IVIFNs in pattern recognition, clustering and image processing,
and so forth. Jeevaraj [11] proposed a new similarity measure on the class of IVIFS by
using the non-hesitance score function [10] and utilized the proposed similarity measure
in the field of pattern recognition. Zhang and Yu [14] introduced a new Multi-Attribute
Decision-Making (MADM) algorithm by using the idea of cross-entropy and generalized
the TOPSIS [15] method with IVIFNs.

Based on the ongoing discussion of the different ranking procedures of IVIFNs, it can
be understood that there is no reliable method that can be used to compare arbitrary IVIFNs.
This provides a pathway for introducing a new score function for comparing arbitrary
IVIFNs. In this research, a new score function is being propounded for comparing arbitrary
IVIFNs based on their non-membership value. The main aim of this work is to introduce a
new and reliable ranking principle for comparing two different IVIFNs. In this paper, we:

1. discuss the limitations of a few well-known ranking methods for IVIFNs;
2. introduce a new non-membership score on the class of IVIFNs and study its mathe-

matical properties;
3. demonstrate the superiority of the proposed score function, over the existing score

functions, in ranking arbitrary IVIFNs;
4. utilize the proposed score function in interval-valued intuitionistic fuzzy TOPSIS

(IVIF-TOPSIS);
5. explain the applicability of the proposed ranking method in solving interval-valued

intuitionistic fuzzy multi-criteria decision-making (IVIF-MCDM) problems using
numerical examples.
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The remainder of the paper is organized in the following manner. After the introduc-
tion, a few basic definitions are presented in Section 2. Section 3 discusses the various
drawbacks of existing methods in ranking arbitrary IVIFNs. Section 3 also compares
different available ranking principles of IVIFNs. Section 4 presents the new score function
based on the non-membership value of an IVIFN, along with its essential mathematical
properties. Section 4 also encompasses the comparison between the proposed score func-
tion and the available ranking procedures of IVIFNs. Section 5 presents the proposed
score function’s applicability in solving the MCDM problem modelled under an interval-
valued intuitionistic fuzzy environment. Numerical illustrations of the proposed MCDM
algorithm are also given in Section 5. Finally, conclusions are presented in Section 6.

2. Preliminaries

Some basic definitions are given in this section.

Definition 1 (Xu 2007, [1]). Let D[0, 1] be the set of all closed subintervals of the interval [0, 1].
An IVIFS on a set X 6= φ is an expression given by A = {〈x, µA(x), νA(x)〉 : x ∈ X}, where
µA : X → D[0, 1], νA : X → D[0, 1] with the condition 0 < supxµA(x) + supxνA(x) ≤ 1.

The intervals µA(x) and νA(x) denote, respectively, the degree of belongingness and
non-belongingness of the element x to the set A. Thus, for each x ∈ X, µA(x) and νA(x) are
closed intervals whose lower and upper end points are, respectively, denoted by µAL(x), µAU (x)
and νAL(x), µAU (x). We denote A =

{〈
x, [µAL(x), µAU (x)], [νAL(x), νAU (x)]

〉
: x ∈ X

}
where 0 < µAU (x) + νAU (x) ≤ 1.

For each element x ∈ X, we can compute the unknown degree (hesitance degree) of
belongingness πA(x) to A as πA(x) = 1− µA(x)− νA(x) = [1− µAU (x)− νAU (x), 1−
µAL(x) − νAL(x)]. An intuitionistic fuzzy interval number (IFIN) is denoted by
A = ([a, b], [c, d]) for convenience.

Definition 2 (Xu 2007, [1]). Let A = ([a, b], [c, d]) be an IVIFN. Then, the score function S of
A and an accuracy function H of A are defined, respectively, as follows S(A) = a+b−c−d

2 and
H(A) = a+b+c+d

2 .

Definition 3 (Ye 2009, [2]). Let A = ([a, b], [c, d]) be an IVIFN. Then the novel accuracy score
function M of A is defined as: M(A) = a−(1−a−c)+b−(1−b−d)

2 , M(A) ∈ [−1, 1].

Definition 4 (Nayagam et al. 2011, [7]). Let A = ([a, b], [c, d]) be an IVIFN. Then the accuracy
score function L of A is defined as: L(A) = a+b−d(1−b)−c(1−a)

2 , L(A) ∈ [−1, 1].

Definition 5 (Bai 2013, [5]). Let A = ([a, b], [c, d]) be an IVIFN. Then, the improved score
function I of A is defined as: I(A) = a+a(1−a−c)+b+b(1−b−d)

2 , I(A) ∈ [0, 1].

Definition 6 (Garg 2016, [6]). Let A = ([a, b], [c, d]) be an IVIFN. Then, the generalized
improved score function GIS of A is defined as: GIS(A) = a+b

2 + k1a(1− a− c)+ k2b(1− b− d)
with k1 + k2 = 1.

Definition 7. Let A = ([a1, b1], [c1, d1]) and B = ([a2, b2], [c2, d2]) be two IVIFNs. A ⊆1 B if
a1 ≤ a2, b1 ≤ b2, c1 ≥ c2 and d1 ≥ d2.

Definition 8. Let A = ([a1, b1], [c1, d1]) and B = ([a2, b2], [c2, d2]) be two IVIFNs. Then, A+ B
is defined as A + B = ([a1 + a2 − a1a2, b1 + b2 − b1b2], [c1c2, d1d2]).



Mathematics 2021, 9, 2647 4 of 11

3. Comparison between Various Existing Methods for Ranking IVIFNs

This section compares different methods for ranking arbitrary IVIFNs and discusses
the drawbacks of one method over other methods based on their limitations using numeri-
cal examples.

Here, we discuss the limitations of Generalized Improved Score function (GIS) [6] in
different cases.

1. (I1) If A1 = ([0, 0][c1, d1]) and A2 = ([0, 0][c2, d2]) are two IVIFNs with c1 ≥ c2,
d1 ≥ d2, then GIS(A1) = GIS(A2) = 0 ⇒ A1 = A2. But it is clear that A1 6= A2.
Hence the generalized improved score function introduced by Garg [6] fails to rank
arbitrary IVIFNs of this type;

2. (I2) Let α1 = ([a1, b1], [c1, d1]) be an IVIFN. If a1 = b1, c1 = d1 then GIS(α1) =
a1 + (k1 + k2)a1(1− a1 − c1) = a1(2− a1 − c1). This implies that k1 and k2 do not
have any importance in ranking arbitrary intuitionistic fuzzy numbers;

3. (I3) Let A1 = ([a1, b1], [c1, d1]) be an IVIFN. If k1 = 0, k2 = 1, then GIS(A1) =
a1+b1

2 + b1(1− b1 − d1); that is, if A1 = ([a1, b1], [c1, d1]), A2 = ([a1, b1], [c2, d1]) are
any two IVIFNs, then GIS(A1) = GIS(A2) = a1+b1

2 + b1(1− b1 − d1) ⇒ A1 = A2
which is illogical;

4. (I4) Let A1 = ([a1, b1], [c1, d1]) be an IVIFN. If k1 = 1, k2 = 0, then GIS(A1) =
a1+b1

2 + a1(1− a1 − c1); that is, if A1 = ([a1, b1], [c1, d1]), A2 = ([a1, b1], [c1, d2]) are
any two IVIFNs, then GIS(A1) = GIS(A2) = a1+b1

2 + a1(1− a1 − c1) ⇒ A1 = A2.
However, A1 6= A2. Here, both the initial assumptions contradict each other. Hence,
they cannot be considered (together) in the proof.

5. (I5) Let A1 = ([a1, b1], [c1, d1]) be an IVIFN. If a1 = k2 = 0, then GIS(A) = b1
2 . Let

A = ([0, b1], [c1, d1]), B = ([0, b1], [c2, d2]) be any two IVIFNs. Then, GIS(A) = b1
2 =

GIS(B)⇒ A = B. Here, the GIS function discriminates two arbitrary IVIFNs based
on b1 (upper value of membership function, irrespective of non-membership values
c1 and d1) alone, which is illogical;

6. (I6) For any real number r = ([r, r], [r, r]), ∀r ≤ 0.5, GIS(r) = 2r(1 − r). Let
M = ([r1, r1], [r1, r1]) and N = ([1 − r1, 1 − r1], [1 − r1, 1 − r1]), ∀r ≤ 0.5 be any
two IVIFNs. Then GIS(M) = GIS(N) = 2r1(1− r1) ⇒ M = N. This shows that
Garg’s [6] GIS score function fails to rank arbitrary real numbers.

7. Comparison of Generalized Improved score function (GIS) with Xu’s [1] score func-
tion: Let A1 = ([0, 0][0.4, 0.5]) and A2 = ([0, 0][0.5, 0.7]) be two IVIFNs. Then
GIS(A1) = 0 = GIS(A2) ⇒ A1 = A2. However A1 6= A2 because their non-
membership values are different, and they are non-zero. If Xu’s [1] score function
is applied, then we get A1 > A2. In these places, Xu’s [1] score function works
better which is happening because Garg’s method measures the membershipness of
an arbitrary IVIFNs, and hence the generalized improved score function maps the
IVIFNs with zero membership value to zero;

8. Let M = ([0, 0], [c1, d1]) and N = ([0, 0], [c2, d2]) = ([0, 0], [c1 + ε, d1 − ε]), ∀ε ∈
[0, 1], ε < c1 be any two IVIFNs. Then we get, GIS(M) = GIS(N) = 0 and S(M) =

S(N) = −c1−d1
2 , H(M) = H(N) = c1+d1

2 . This implies that M = N. This example
shows that none of these methods [1,2,6] are better to each other;

9. Comparison of GIS score function with Novel accuracy score function M in Ye [2]:
Using example 2.1. in [6], Garg has shown the inconsistency of Ye’s [2] method.
However, his method also fails to compare arbitrary IVIFNs which we can be see
from the following example.
Let A = ([0, 0], [c1, d1]) and B = ([0, 0], [c2, d2]) = ([0, 0], [c1 − ε, d1 + ε]), ∀ε ∈
[0, 1], ε < c1 be any two IVIFNs. If we apply Ye’s [2] method, then we get M(A) =

M(B) = c1+d1−2
2 ⇒ A = B. If we apply GIS to A and B, then we get A = B. However,

A and B are different. Hence, both of these methods are not better to each other in
ranking arbitrary IVIFNs;
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10. Comparison of GIS function with accuracy score function L in Nayagam et al. [7]:
Using Example 2.1. in [6], Garg has shown the inconsistency of Nayagam et al.’s
[7] method. The following example shows the illogical result of GIS and L score
functions. Let A = ([0, 0], [c1, d1]) and B = ([0, 0], [c2, d2]) = ([0, 0], [c1 − ε, d1 +
ε]), ∀ε ∈ [0, 1], ε < c1 be any two IVIFNs. If we apply Garg’s and Nayagam et al.’s [7]
method to A and B, then we get GIS(A) = GIS(B) = 0 and L(A) = L(B) = −(c1+d1)

2 ,
respectively. This implies that A = B. Hence, both the methods are illogical in
comparing arbitrary IVIFNs of the above type.

11. Comparison of GIS function with an improved score function I in Bai [5]: Since Garg’s
[6] method is the generalization of Bai’s [5] improved score function, Garg’s method
also has the same drawbacks of Bai’s [5] improved score function. The following
example shows the illogicality of both the methods. Let M = ([0, 0], [c1, d1]) and
N = ([0, 0], [c2, d2]) be any two IVIFNs. Then we get GIS(M) = GIS(N) = 0 and
I(M) = I(N) = 0. Hence, both the methods are not logical in ranking IVIFNs.

Hence, from the above examples, we may conclude that none of the familiar meth-
ods [1,2,5–7] can rank arbitrary IVIFNs, which makes the pathway for defining a new score
function on the class of IVIFNs for comparing any two IVIFNs and also GIS did not define
a total order on the set of IVIFNs, which is seen from the incorrectness of Theorem 3.1 (in
page no. 5 of [6]). In 2016, Nayagam et al. [10] have defined a non-hesitance score for
ranking arbitrary IVIFNs. The ranking principle that was introduced by Nayagam et al. [10]
has overcome all the drawbacks mentioned above.

Comparison with Nayagam et al.’s Ranking Principle

In this subsection, first we present a short review of Nayagam et al.’s [10] ranking
approach for comparing arbitrary IVIFNs and then the illogicality/limitations of different
ranking approaches introduced in [1,2,5–7] is shown by illustrative examples. Finally the
advantage of Nayagam et al.’s [10] ranking principle is shown by comparing it with the
approaches in [1,2,5–7].

Definition 9. (Nayagam et al., 2016) Let A = ([a, b], [c, d]) be an IVIFN. Then, the non-hesitance
score function of A is defined as J(A) = a+b+c−d+ab+cd

3 .

The efficiency of Nayagam et al.’s [10] approach in overcoming the Limitations I1 to
I7 and the drawbacks 1–5 are shown in the following table.

Hence, from Table 1, it is apparent that the shortcomings of all the ranking methods
introduced in [1,2,5–7] are overcome by Nayagam et al.’s [10] ranking principle. However,
Nayagam et al.’s [10] non-hesitance score function is also failed to rank arbitrary IVIFNs in
some places, which can be seen from the following example.

Table 1. Comparison of some existing score functions with Nayagam et al.’s [10] approach.

Numerical Example Shortcomings of Existing Methods Nayagam et al.’s Ranking Principle

A1 = ([0, 0][0.4, 0.5]), GIS(A1) = GIS(A2)⇒ A1 = A2 J(A1) = 0.033 < J(A2) = 0.05⇒ A1 < A2A2 = ([0, 0][0.5, 0.7])

A1 = ([0, 0][0.5, 0.6]), GIS(A1) = 0 = GIS(A2)⇒ A1 = A2 J(A1) = 0.067 < J(A2) = 0.101⇒ A1 < A2

A2 = ([0, 0][0.55, 0.55]) S(A1) = S(A2) = −0.55, H(A1) = H(A2) =
0.55⇒ A1 = A2

M(A1) = M(A2) = −0.45⇒ A1 = A2

A = ([0, 0], [0.2, 0.4]), GIS(A) = 0 = GIS(B)⇒ A = B J(A) = −0.04 < J(B) = −0.017⇒ A < BB = ([0, 0], [0.3, 0.5]),

A1 = ([0, 0], [0.1, 0.5]), GIS(A1) = 0 = GIS(A2)⇒ A1 = A2 J(A1) = −0.117 < J(A2) = −0.063⇒ A1 < A2A2 = ([0, 0], [0.3, 0.7]), I(A1) = I(A2) = 0⇒ A1 = A2
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Example 1. Let A = 〈[0.1, 0.4], [0.1, 0.2]〉, B = 〈[0.2, 0.25], [0.2, 0.3]〉 ∈ IVIFN. Now J(A) =
0.15333 and J(B) = 0.15333⇒ A = B. But A 6= B.

Hence, there is a need for another parameter for ranking IVIFNs. In the following sec-
tion, a new score function has been introduced, which measures the non-membershipness
of an IVIFN for ranking arbitrary IVIFNs.

4. A New Non-Membership Score of IVIFNs

This section proposes a non-membership score function for ranking arbitrary IVIFNs
and examines some of its properties using illustrative examples.

Definition 10. Let A = ([a1, b1], [c1, d1]), B = ([a2, b2], [c2, d2]) ∈ IVIFN. A ⊆2 B if a1 ≥
a2, b1 ≤ b2, c1 ≥ c2 and d1 ≥ d2.

Definition 11. Let A = 〈[a1, b1], [c1, d1]〉 ∈ IVIFN. Then the non-membership score function
for A is defined as NM(A) = a1−b1+c1+d1+a1b1+c1d1

3 .

Proofs of the following propositions are immediate from the Definition 11. Hence,
they are omitted.

Proposition 1. For any real number r ∈ [0, 1/2], NM(r) = 2r(1+r)
3 .

Proposition 2. If A = (a1, 1− a1) is a fuzzy number, then NM(A) = 1− 2a1(2−a1)
3 .

Proposition 3. If A = (a1, c1) is an intuitionistic fuzzy number, then NM(A) =
a2

1+2c1+c2
1

3 .

Proposition 4. Let A = ([a1, b1], [1 − b1, 1 − a1]) be an interval-valued fuzzy number then
NM(A) = 3(1−b1)−a1(1−2b1)

3 .

Definition 12. Let A, B ∈ IVIFN. If NM(A) ≥ NM(B) then A ≤ B.

Theorem 1. Let A, B ∈ IVIFN. If A ⊆2 B, then NM(A) ≥ NM(B).

Proof. Let A, B ∈ IVIFN. Assume: A ⊆2 B⇒ a1 ≥ a2, b1 ≤ b2, c1 ≥ c2, d1 ≥ d2 . . . (1)
We claim that NM(A) ≥ NM(B)⇒ NM(A)− NM(B) ≥ 0.
2(NM(A)− NM(B)) = (a1 − b1 + c1 + d1 + a1b1 + c1d1)− (a2 − b2 + c2 + d2 + a2b2 +

c2d2) = (a1 − a2) + (b2 − b1) + (c1 − c2) + (d1 − d2) + (a1b1 − a2b2) + (c1d1 − c2d2) . . . (2)
Add and subtract a1b2 from (2), we get, 2(NM(A) − NM(B)) = (a1 − a2) + (b2 −

b1) + (c1 − c2) + (d1 − d2) + (a1b1 − a1b2 + a1b2 − a2b2) + (c1d1 − c2d2) ⇒ 2(NM(A) −
NM(B)) = (a1− a2)(1+ b2) + (b2− b1)(1− a1) + (c1− c2) + (d1− d2) + (c1d1− c2d2) ≥ 0,
from (1).

Hence, (NM(A)− NM(B)) ≥ 0. Hence the proof.

Theorem 2. Let A, B, C ∈ IVIFN and A ⊆2 B. If NM(A) ≥ NM(B), then NM(A + C) ≥
NM(B + C).

Proof. Let A = ([a1, b1], [c1, d1]), B = ([a2, b2], [c2, d2]) and C = ([a, b], [c, d]) be any three
IVIFNs. A ⊆2 B⇒ a1 ≥ a2, b1 ≤ b2, c1 ≥ c2, d1 ≥ d2. . . .(3)

Using Definition 8, we get, A + C = ([a1 + a− aa1, b1 + b− bb1], [cc1, dd1]) and B +
C = ([a2 + a− aa2, b2 + b− bb2], [cc2, dd2]).

It is very clear that, a1 + a − aa1 ≥ a2 + a − aa2, b1 + b − bb1 ≤ b2 + b − bb2, cc1 ≥
cc2, dd1 ≥ dd2 ⇒ A + C ⊆2 B + C.

Therefore, from Theorem 1, NM(A + C) ≥ NM(B + C). Hence the proof.
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Example 2. Let A = 〈[0.1, 0.4], [0.1, 0.2]〉, B = 〈[0.2, 0.25], [0.2, 0.3]〉 ∈ IVIFN. Now J(A) =
0.15333 and J(B) = 0.15333 ⇒ A = B. However, A and B are different IVIFNs. If we apply
NM to A and B, then we get NM(A) = 0.02 < NM(B) = 0.186667. Hence A > B which favors
human intuition.

Example 3. Let A = 〈[0.4, 0.6], [0, 0.15]〉, B = 〈[0.45, 0.55], [0, 0.15]〉 ∈ IVIFN. If we apply
our new non-membership score to A and B, then we get NM(A) = 0.063, NM(B) = 0.099167
and NM(B) > NM(A). This implies that A > B.

Example 4. Let A = 〈[0.2, 0.3], [0.7, 0.7]〉, B = 〈[0.3, 0.3], [0.6, 0.6]〉 ∈ IVIFN. If we apply our
new non-membership score to A and B, then we get NM(A) = 0.6167 and NM(B) = 0.55 ⇒
A < B.

The efficacy of the proposed non-membership based score function in overcoming the
Limitations I1 to I6 are shown in Table 2.

Table 2. Comparison of some existing score function with the proposed non-membership based score function.

Numerical Example Shortcomings of Existing Methods Proposed Ranking Principle

A1 = ([0, 0][0.1, 0.3]), GIS(A1) = GIS(A2)⇒ A1 = A2 NM(A1) = 0.143 < NM(A2) = 0.743⇒ A1 > A2
A2 = ([0, 0][0.7, 0.9]) which favors with human intuition.

A1 = ([0, 0][0.6, 0.7]), GIS(A1) = 0 = GIS(A2)⇒ A1 = A2 NM(A1) = 0.573 < NM(A2) = 0.574⇒ A1 > A2

A2 = ([0, 0][0.65, 0.65]) S(A1) = S(A2) = −0.65, H(A1) =
H(A2) = 0.65⇒ A1 = A2

M(A1) = M(A2) = −0.35⇒ A1 = A2

A1 = ([0, 0], [0.2, 0.3]), GIS(A1) = 0 = GIS(A2)⇒ A1 = A2 NM(A1) = 0.19 < NM(A2) = 0.37⇒ A1 > A2A2 = ([0, 0], [0.4, 0.5]),

A = ([0.3, 0.7], [0.3, 0.3]), J(A) = J(B) = 0.433⇒ A = B NM(A) = 0.167 > NM(B) = 0.1⇒ A < BB = ([0.4, 0.7], [0.1, 0.2]),

A = ([0.2, 0.3], [0.7, 0.7]), J(A) = J(B) = 0.35⇒ A = B NM(A) = 0.617 > NM(B) = 0.55⇒ A < B.B = ([0.3, 0.3], [0.6, 0.6]),

Hence, from Table 2, it is very clear that the shortcomings of all the ranking methods
introduced in [1,2,5–7,10] can be eliminated by the proposed ranking principle.

5. Interval-Valued Intuitionistic Fuzzy TOPSIS

This section presents a new algorithm for solving MCDM problems using the IVIF-
TOPSIS method. TOPSIS is one of the most popular MCDM methods introduced by Hwang
and Yoon [15]. Any IVIF-MCDM problem is mathematically defined as follows.

Let M = {M1, M2, . . . , Mr} be the set of r alternatives and let C = {C1, C2, . . . , Cs}
be the set of s criteria based on which the alternatives to be evaluated. Let N = (nij)r×s
be the decision matrix, where nij represents the performance of Mi (i-th alternative ) with
respect to the Cj (j-th criterion). In this paper, every nij is represented by an IVIFN, that is,
nij = ([aij, bij], [cij, dij]), where nij represents the membership and nonmembership degree
of alternative Mi with respect to criterion Cj.

Algorithm 1 for solving the IVIF-MCDM problem is given as follows:
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Algorithm 1: IVIF-MCDM method based on IVIF-TOPSIS and nonmembership score function
Let N = (nij)r×s = ([aij, bij], [cij, dij])r×s

N =


([a11, b11], [c11, d11]) ([a12, b12], [c12, d12]) · · · ([a1s, b1s], [c1s, d1s])
([a21, b21], [c21, d21]) ([a22, b22], [c22, d22]) · · · ([a2s, b2s], [c2s, d2s])

...
...

. . .
...

([ar1, br1], [cr1, dr1]) ([ar2, br2], [cr2, dr2]) · · · ([ars, brs], [crs, drs])


be the decision matrix.
1. Score Matrix (N′):

A new r× s score matrix N′ is formed by applying non-membership score function to the each entry of the
decisionmatrix N. i.e., N′ = (sij)r×s, where sij = NM(nij);

2. Interval-valued intuitionistic fuzzy positive ideal solution (IVIFPIS):
An interval-valued intuitionistic fuzzy positive ideal solution (IVIFPIS) denoted by PIS, is the set of IVIFNs,
where the number of IVIFNs in PIS is equal to s (the number of columns in the decision matrix); that is,
PIS = {P1, P2, . . . , Ps}. Each Pi is an IVIFN and is defined as:
P1 = ([max(a11, a21, . . . , ar1), max(b11, b21, . . . , br1)], [min(c11, c21, . . . , cr1), min(d11, d21, . . . , dr1)])

P2 = ([max(a12, a22, . . . , ar2), max(b12, b22, . . . , br2)], [min(c12, c22, . . . , cr2), min(d12, d22, . . . , dr2)])
...
Ps = ([max(a1s, a2s, . . . , ars), max(b1s, b2s, . . . , brs)], [min(c1s, c2s, . . . , crs), min(d1s, d2s, . . . , drs)]);

3. Interval-valued intuitionistic fuzzy negative ideal solution (IVIFNIS):
An interval-valued intuitionistic fuzzy negative ideal solution (IVIFNIS) denoted by NIS, is the set of IVIFNs
where the number of IVIFNs in NIS is equal to s (the number of criteria available in the problem), that is,
NIS = {N1, N2, . . . , Ns}. Each Ni is an IVIFN and is defined as:
N1 = ([min(a11, a21, . . . , ar1), min(b11, b21, . . . , br1)], [max(c11, c21, . . . , cr1), max(d11, d21, . . . , dr1)])

N2 = ([min(a12, a22, . . . , ar2), min(b12, b22, . . . , br2)], [max(c12, c22, . . . , cr2), max(d12, d22, . . . , dr2)])
...
Ns = ([min(a1s, a2s, . . . , ars), min(b1s, b2s, . . . , brs)], [max(c1s, c2s, . . . , crs), max(d1s, d2s, . . . , drs)])

4. Non-membership score function of IVIFPIS and IVIFNIS:
Non-membership score functions for IVIFPIS and IVIFNIS are denoted by NM(PIS),
NM(NIS) and are defined as:
NM(PIS) = {NM(P1), NM(P2), . . . , NM(Ps)} and NM(NIS) = {NM(N1), NM(N2), . . . , NM(Ns)};

5. Distance between aggregated performance of alternatives and IVIFPIS, IVIFNIS:
The aggregated performance of an alternatives, non-membership score functions of IVIFPIS and IVIFNIS are
obatined as real numbers which can be seen from Step 1 and Step 4. Hence, the distance
between them can be calculated using the following formula:
d∗i (NM(Mi), NM(PIS)) = ∑s

j=1(wj|NM(nij)− NM(Pj)|),
d−i (NM(Mi), NM(NIS)) = ∑s

j=1(wj|NM(nij)− NM(Nj)|),
where d∗i (NM(Mi), NM(PIS)), d−i (NM(Mi), NM(NIS)) represent the distance between alternative Mi and IVIFPIS,
IVIFNIS, respectively, and wj is the weight of the j-th criterion;

6. Closeness Coefficient of Alternative (Ci(Mi)):
Relative closeness of an alternative Mi is defined as,

Ci(Mi) =
d−i (NM(Mi),NM(NIS))

d∗i (NM(Mi),NM(PIS))+d−i (NM(Mi),NM(NIS))
. The values of the closeness coefficient decides the Ranking of

alternatives (Mi). The alternative with the highest closeness coefficient will be ranked first.

Numerical Illustrations

This subsection demonstrates the applicability of the proposed algorithm in solving
the IVIF-MCDM problem using numerical examples.

Example 5. An animation expert wants to select the best computer animation work for an award
from four possible alternatives (A1, A2, A3, A4). The expert has to make a decision according to
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the following three criteria, (a) C1 is the artistic appeal, (b) C2 is the visual effect and (c) C3 is the
creative script. The criteria weight is given by W = {0.35, 0.25, 0.40}.

Four alternatives are evaluated by utilizing interval-valued intuitionistic fuzzy num-
bers given by the decision maker under three different criteria. The performance of an
alternative under three criteria is obtained from the decision maker and given in the
following matrix:

N = (nij)4×3 =


([0.4, 0.5], [0.3, 0.4]) ([0.4, 0.6], [0.2, 0.4]) ([0.1, 0.3], [0.5, 0.6])
([0.6, 0.7], [0.2, 0.3]) ([0.6, 0.7], [0.2, 0.3]) ([0.4, 0.7], [0.1, 0.2])
([0.3, 0.6], [0.3, 0.4]) ([0.5, 0.6], [0.3, 0.4]) ([0.5, 0.6], [0.1, 0.3])
([0.7, 0.8], [0.1, 0.2]) ([0.6, 0.7], [0.1, 0.3]) ([0.3, 0.4], [0.1, 0.2])


• Score matrix of a given decision matrix N is obtained using step 1 of Algorithm 1 and

given below:

S = (sij)4×3 =


0.307 0.240 0.410
0.293 0.293 0.100
0.233 0.340 0.210
0.260 0.250 0.113


• Interval-valued intuitionistic fuzzy positive ideal solution (IVIFPIS) and negative ideal

solution for given problem is obtained using step 2 and step 3 of Algorithm 1, that
is, PIS = {P1, P2, P3} = {([0.7, 0.8], [0.1, 0.2]), ([0.6, 0.7], [0.1, 0.3]), ([0.5, 0.7], [0.1, 0.2])},
NIS = {N1, N2, N3} = {([0.3, 0.5], [0.3, 0.4]), ([0.4, 0.6], [0.3, 0.4]), ([0.1, 0.3], [0.5, 0.6])}.

• Non-membership scores of IVIFPIS and IVIFNIS are calculated using step 4 of Algorithm 1.
NM(PIS) = {0.26, 0.25, 0.157}, NM(NIS) = {0.257, 0.287, 0.41};

• Distance between performance of alternative and IVIFPIS, IVIFNIS is obtained using
step 5.
d∗1(A1, P1) = 0.120, d∗2(A2, P2) = 0.045, d∗3(A3, P3) = 0.053, d∗4(A4, P4) = 0.017 and
d−1 (A1, N1) = 0.029, d−2 (A2, N2) = 0.139, d−3 (A3, N3) = 0.102, d−4 (A4, N4) = 0.129;

• Closeness coefficient of four alternatives are obtained using step 6 of Algorithm 1,
that is, C1(A1) = 0.195, C2(A2) = 0.754, C3(A3) = 0.656, C4(A4) = 0.881, which
ranks the alternative A4 as the best among four alternatives and the ranking order is
A4 > A2 > A3 > A1, which favors the human intuition.

Example 6. A committee wants to choose the best candidate for one faculty position available in the
Department of Mathematics. Six candidates (A1, A2, . . . , A6) have been called for interview and
their performances have been evaluated based on the following six criteria: (1) Cr1 Work attitude,
(2) Cr2 Teaching methodology, (3) Cr3 Previous Research Output, (4) Cr4 Exploration Capacity,
(5) Cr5 Future Research Plan, (6) Cr6 Experience. The weights (wi) for attributes Cri, i = 1, 2 . . . , 6
are assumed as follows: W = {w1, w2, . . . , w6} = {0.15, 0.2, 0.15, 0.1, 0.2, 0.2}.

Six candidates are evaluated based on their interview performance. Performance of
six candidates under six criteria are represented by IVIFNs and which are given in decision
matrix M = (mij)6×6, where mij represents the performance of candidate Ai with respect
to criteria Crj, i, j = 1, 2, . . . , 6.

M =



Cr1 Cr2 Cr3
A1 ([0.2, 0.3], [0.4, 0.5]) ([0.6, 0.7], [0.2, 0.3]) ([0.4, 0.5], [0.3, 0.4])
A2 ([0.5, 0.5], [0.1, 0.2]) ([0.6, 0.7], [0.1, 0.2]) ([0.4, 0.5], [0.3, 0.4])
A3 ([0.4, 0.5], [0.2, 0.3]) ([0.5, 0.5], [0.2, 0.3]) ([0.3, 0.4], [0.1, 0.2])
A4 ([0.1, 0.3], [0.2, 0.4]) ([0.5, 0.7], [0.1, 0.2]) ([0.1, 0.2].[0.5, 0.7])
A5 ([0.2, 0.4], [0.1, 0.4]) ([0.1, 0.3], [0.3, 0.6]) ([0.2, 0.4], [0.2, 0.4])
A6 ([0.4, 0.5], [0.1, 0.2]) ([0.5, 0.6], [0, 0.2]) ([0.4, 0.5], [0.3, 0.5])


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

Cr4 Cr5 Cr6
A1 ([0.6, 0.7], [0.1, 0.2]) ([0.3, 0.4], [0.1, 0.2]) ([0.5, 0.6], [0.3, 0.4])
A2 ([0.6, 0.7], [0, 0.1]) ([0.4, 0.5], [0.1, 0.2]) ([0.6, 0.7], [0.2, 0.2])
A3 ([0.1, 0.2], [0.4, 0.5]) ([0.3, 0.5], [0.3, 0.4]) ([0.3, 0.4], [0.1, 0.4])
A4 ([0.1, 0.1], [0.6, 0.7]) ([0.2, 0.3], [0.3, 0.5]) ([0.1, 0.3], [0.2, 0.4])
A5 ([0.1, 0.2], [0.2, 0.3]) ([0.2, 0.3], [0.1, 0.3]) ([0.3, 0.4], [0.4, 0.4])
A6 ([0.5, 0.6], [0.1, 0.2]) ([0.3, 0.4], [0, 0.2]) ([0.55, 0.6], [0.1, 0.2])


Algorithm 1 is used to solve the selection problem.

• Score matrix S = (sij)6×6 for given M is obtained using step 1.

S =



Cr1 Cr2 Cr3 Cr4 Cr5 Cr6
A1 0.353 0.293 0.307 0.213 0.113 0.34
A2 0.19 0.213 0.307 0.14 0.14 0.253
A3 0.22 0.27 0.113 0.34 0.257 0.187
A4 0.17 0.157 0.49 0.577 0.303 0.17
A5 0.14 0.303 0.187 0.16 0.13 0.327
A6 0.14 0.133 0.35 0.173 0.073 0.2


• Interval-valued intuitionistic fuzzy positive and negative ideal solutions IVIFPIS and

IVIFNIS are obtained using step 2 and step 3 of Algorithm 1.
PIS = {([0.5, 0.5][0.1, 0.2]), ([0.6, 0.7], [0, 0.2]), ([0.4, 0.5], [0.1, 0.2]), ([0.6, 0.7], [0, 0.1]),
([0.4, 0.5], [0, 0.2]), ([0.6, 0.7], [0.1, 0.2])}, NIS = {([0.1, 0.3], [0.4, 0.5]),
([0.1, 0.3], [0.3, 0.6]), ([0.1, 0.2], [0.5, 0.7]), ([0.1, 0.1], [0.6, 0.7]), ([0.2, 0.3], [0.3, 0.5]),
([0.1, 0.3], [0.4, 0.4])}.

• Non-membership scores for IVIFPIS and IVIFNIS are calculated using the proposed
score function and step 4 of Algorithm 1.
NM(PIS) = {0.19, 0.173, 0.14, 0.14, 0.1, 0.213}, NM(NIS) = {0.31, 0.303, 0.49, 0.577,
0.303, 0.263}.

• Distance between alternative Ai and IVIFPIS, IVIFNIS are calculated using step 5 and
given as follows:
d∗1(A1, P1) = 0.109, d∗2(A2, P2) = 0.049, d∗3(A3, P3) = 0.085, d∗4(A4, P4) = 0.152,
d∗5(A5, P5) = 0.071, d∗6(A6, P6) = 0.058 and d−1 (A1, N1) = 0.126, d−2 (A2, N2) = 0.142,
d−3 (A3, N3) = 0.125, d−4 (A4, N4) = 0.069, d−5 (A5, N5) = 0.160, d−6 (A6, N6) = 0.180;

• Closeness coefficient of six alternatives are obtained using step 6 of Algorithm 1, that is,
C1(A1) = 0.536, C2(A2) = 0.743, C3(A3) = 0.597, C4(A4) = 0.313,
C5(A5) = 0.692, C6(A6) = 0.755 and the ranking is A6 > A2 > A5 > A3 > A1 > A4.
Hence, candidate 6 (A6) should be selected for the faculty position.

6. Conclusions and Future Scope

A new non-membership score function has been introduced for the effective com-
parison of any two arbitrary IVIFNs. Besides, the effectiveness of the proposed non-
membership score function has been demonstrated by comparing it with different existing
methods. Finally, the application of the proposed non-membership score function in
solving IVIF-MCDM problems using the IVIF-TOPSIS method has been demonstrated
through numerical examples. The proposed score function defines a total ordering on the
particular subset of IVIFNs and does not define a total order on the entire class of IVIFNs.
Therefore, a total ordering principle on the class of IVIFNs would be aimed in further
research. Similar to IVIFNs, interval-valued Pythagorean fuzzy numbers (IVPFNs) [16],
interval-valued Fermatean fuzzy numbers (IVFFNs) [17], and so forth, are also used in
the literature for modelling real-life problems with incomplete information. Hence, the
proposed non-membership score function can be extended to the class of IVPFNs and
IVFFNs. Using this, a new MCDM algorithm can be developed for solving problems
modelled under the IVPFN and IVFFN environment. Researchers can also introduce a
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new similarity on the set of IVPFNs and IVFFNs by using the idea of the non-membership
score function.
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