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Abstract: In this paper, we introduce a new iterative method using an inertial technique for ap-
proximating a common fixed point of an infinite family of nonexpansive mappings in a Hilbert
space. The proposed method’s weak convergence theorem was established under some suitable
conditions. Furthermore, we applied our main results to solve convex minimization problems and
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1. Introduction

Let us first mention a mathematical scheme for an image restoration problem, as well
as some algorithms that will be employed to solve it. The following linear pattern is a
simple pattern of an image restoration problem, that is,

Ax = b + y, (1)

where A ∈ Rm×n is the blurring operation, x ∈ Rn×1 is an image, b ∈ Rm×1 is the observed
image, and y is an additive noise. The image restoration problem is finding the original
image x? ∈ Rn×1 that satisfies (1). It is well known that the image restoration problem is a
dominant topic in image processing.

In order to find the solution of the problem (1), we minimize the additive noise to
approximate the original image by using the method known as the least squares (LS)
problem:

min
x

{
‖Ax− b‖2

2

}
, (2)

where ‖ · ‖ is an `2-norm defined by ‖x‖2=
√

∑n
k=1 |xk|2. There are many iterations that

can solve the problem (2) such as the Richardson iteration; see [1] for the details. However,
the number of unknown variables is much more than the observations that cause (2)
to be an ill-posed problem because of a huge norm result, which is thus meaningless;
see [2,3]. Therefore, in order to improve the ill conditioned least squares problem, several
regularization methods were introduced. One of the most popular regularization methods
is the Tikhonov regularization suggested by Tikhonov; see [4]. It is defined to solve the
following minimization problem:

min
x

{
‖Ax− b‖2

2 + β‖Lx‖2
2

}
, (3)

where β is called a positive regularization parameter and L ∈ Rm×n is called the Tikhonov
matrix. In the standard form, L is set to be the identity. In statistics, (3) is known as a
ridge regression. To improve the original LS (2) and classical regularization such as subset

Mathematics 2021, 9, 2619. https://doi.org/10.3390/math9202619 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math9202619
https://doi.org/10.3390/math9202619
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9202619
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9202619?type=check_update&version=3


Mathematics 2021, 9, 2619 2 of 13

selection and ridge regression (3) for solving (1), Tibshirani [5] defined a new method, called
the least absolute shrinkage and selection operator (LASSO) model, as the following form:

min
x

{
‖Ax− b‖2

2 + β‖x‖1

}
, (4)

where β is a positive regularization parameter, ‖x‖1 = ∑n
k=1 |xk|, and ‖x‖2=

√
∑n

k=1 |xk|2.
This model can be used to solve the problem (1) utilizing optimization methods; see [5,6] for
instances. The problem presented in (4) can be extended to the general natural formulation
as follows:

min
x
{φ(x) + ψ(x)}. (5)

The solution of Problem (5) is usually established under the following assumptions:

(i) ψ is a lower semicontinuous function and proper convex from a Hilbert space H into
R∪ {+∞};

(ii) φ is a convex differentiable function from H into R with∇φ being `-Lipschitz constant
for some ` > 0, that is, ‖∇φ(x)−∇φ(y)‖ ≤ `‖x− y‖ for all x, y ∈ Rn.

The set of all solutions of the problem (5) will is denoted by argmin(φ + ψ).
It is well known that if x? ∈ argmin(φ+ψ), then the solution of (5) can be reformulated

as the problem of finding a zero-solution x? such that:

0 ∈ ∂ψ(x?) +∇φ(x?), (6)

where ∇φ is the gradient operator of function φ and ∂ψ is the subdifferential of function ψ;
see [7] for more details. Furthermore, Parikh and Boyd [8] solved the problem (6) by using
the proximal gradient technique, that is if x? solves (6), then:

x? = proxκψ(I − κ∇φ)(x?),

where κ is a positive parameter, proxκψ = (I+ κ∂ψ)−1, and I is the identity operator. This
means that x? is a fixed point of the proximal operator. In [9–11], the authors guaranteed
many important properties of proximal operators, for instance proxκψ is well defined with
a full domain, single-valued, and even nonexpansive.

In addition, the classical forward–backward splitting algorithm (FBS) [12] is generated
by x1 ∈ Rn and:

xn+1 = proxκnψ(I − κn∇φ)(xn), (7)

where κn ∈ (0, 2
` ) is the step size and I is the identity operator with proxψ the proximity

operator of ψ defined by proxψ(x) := argmin
y∈Rn

{
φ(y) +

1
2
‖x− y‖2

2

}
; see [13] for more

details. Because of its simplicity, the method (7) has been widely utilized to solve the
problem (5), and as a result, it has been enhanced by many works, as seen in [11,14–16].

From the work [8], it is worth noting that the fixed-point theory can be applied to
solve the problem (5). The fixed-point theory plays a very important role for solving many
problems in science, data science, economics, medicine, and engineering; see [11,17–23]
for more details. There are several methods for finding the approximate solutions of fixed-
point problems; see [24–30]. Shoaib [31] proved a result of Al Mazrooei et al. [32] by using
new contractive conditions on a closed set in b-multiplicative metric space. They obtained a
unique common solution of Fredholm multiplicative integral equations. Recently, Kim [33]
introduced the coupled Mann pair iterative scheme for a common coupled fixed point in
Hilbert spaces.

In order to accelerate the convergence rate of the studied methods, Polyak [34] intro-
duced the technique for improving the rate of convergence and giving a better convergence
behavior of those methods by adding an inertial step. The following iterative methods
with an inertial step can be used for improving the performance of (7).
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The inertial forward–backward splitting (IFBS) was presented by Moudafi and Oliny
in [35] as follows: {

zn = xn + ρn(xn − xn−1),
xn+1 = proxκnψ(zn − κn∇φ(xn)),

where x0, x1 ∈ Rn, κn ∈ (0, 2
` ), and ρn is the inertial parameter that controls the momentum

xn − xn−1. The convergence of the IFBS can be guaranteed by proper choices of κn and ρn.
The fast iterative shrinkage-thresholding algorithm (FISTA) is defined by:

zn = prox 1
` ψ(xn − 1

`∇φ(xn)),

tn+1 =
1+
√

1+4t2
n

2 , ρn = tn−1
tn+1

,

xn+1 = zn + ρn(zn − zn−1),

where n ∈ N, x1 = z0 ∈ Rn, and t1 = 1. This notion was suggested by Beck and
Teboulle [6]. They also proved the FISTA’s convergence rate and applied it to solve image
restoration problems.

Recently, Verma and Shukla [16] proposed the new accelerated proximal gradient
algorithm (NAGA) as follows:

zn = xn + ρn(xn − xn−1),
yn = (1− τn)zn + τnproxκnψ(zn − κn∇φ(zn)),

xn+1 = proxκnψ(yn − κn∇φ(yn)),

where n ∈ N, x0, x1 ∈ Rn, τn ∈ (0, 1), κn ∈ (0, 2
` ), and ρn ∈ (0, 1) is the inertial parameter,

which controls the momentum xn − xn−1. The authors proved NAGA’s convergence theo-
rem under the condition ‖xn−xn−1‖2

ρn
→ 0 and applied it to solve the convex minimization

problem for a multitask learning framework using sparsity-inducing regularizes.
Motivated and inspired by all the works mentioned above, in this article, we in-

troduced a new iterative method for the approximation of a common fixed point of an
infinite family of nonexpansive mappings in Hilbert spaces. We also proved weak con-
vergence theorems of the introduced method under some suitable conditions. Further-
more, we applied our main results for solving a convex minimization problem and image
restoration problems.

This paper is organized as follows: The next section proposes some preliminary results
that will be utilized throughout the paper. In Section 3, we introduce a new accelerated
algorithm using the inertial techniques and analyze its weak convergence to the solution
(5). After that, we apply our main results to solving image restoration problems, and some
numerical experiments of the proposed methods are given in Section 4. In the last section,
we present the brief conclusion of our work.

2. Preliminaries

Throughout this article, let N and R be the set of positive integers and real numbers,
respectively. Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖
induced by the inner product. The weak and strong convergences of {xn} in H are denoted
by xn ⇀ x and xn → x, respectively, for each sequence {xn} in H.

Let C be a nonempty closed convex subset of a real Hilbert space H. A mapping T
from C into itself is said to be an `-Lipschitz operator if there exists ` > 0 such that:

‖Tx− Ty‖ ≤ `‖x− y‖, ∀x, y ∈ C.

If ` = 1, then T is called a nonexpansive operator. The set of all fixed points of T
is denoted by F(T), that is F(T) = {x ∈ C : Tx = x}. Let {Tn} and Ω be families of
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nonexpansive mappings of C into itself such that ∅ 6= F(Ω)⊂F :=∩∞
n=1F(Tn), where F(Ω)

is the set of all common fixed points of Ω.
A sequence {Tn} is said to satisfy the NST condition (I) with Ω [36], if for every

bounded sequence {xn} in C,

lim
n→+∞

‖xn − Tnxn‖ = 0 =⇒ lim
n→+∞

‖xn − Txn‖ = 0, ∀T ∈ Ω.

Note that {Tn} is said to satisfy the NST condition (I) with T when Ω is a single-
ton, that is Ω = {T}. After that, the concept of the NST? condition was introduced
by Nakajo et al. [37], and the examples of mappings that satisfy the NST? condition
were given.

A sequence {Tn} is said to satisfy the NST? condition if for every bounded sequence
{xn} in C,

lim
n→∞

‖xn − Tnxn‖ = 0 = lim
n→∞

‖xn − xn+1‖ =⇒ ωw(xn) ⊂ Ω,

where ωw(xn) is the set of all weak cluster points of {xn}.
Note that the NST? condition is more general than the NST condition (I). It can be

directly obtained from the definition given above that if {Tn} satisfies the NST condition
(I), then {Tn} satisfies the NST? condition.

Lemma 1 ([38,39]). Let H be a real Hilbert space. For any u, v ∈ H and r ∈ [0, 1], the following
results hold:

(i) ‖u− v‖2 = ‖x‖2 − 2〈u, v〉+ ‖v‖2;
(ii) ‖ru + (1− r)v‖2 = r‖u‖2 + (1− r)‖v‖2 − r(1− r)‖u− v‖2.

The identity in Lemma 1 (ii) implies that the following equality holds:

‖ru+sv+ tw‖2= r‖u‖2+ s‖v‖2+ t‖w‖2− rs‖u− v‖2− st‖v− w‖2− rt‖u− w‖2 (8)

for all u, v, w ∈ H and r, s, t ∈ [0, 1] with r + s + t = 1.
In proving our main theorem, we need the following lemmas.

Lemma 2 ([40]). Let {un}, {vn}, and {wn} be sequences of nonnegative real numbers such
that un+1 ≤ (1 + wn)un + vn for all n ∈ N. If ∑∞

n=1 wn < +∞ and ∑∞
n=1 vn < +∞, then

limn→+∞ un exists.

Lemma 3 ([35]). Let H be a Hilbert space, and let {un} be a sequence in H such that there exists
a nonempty set F ⊂ H satisfying: for every p ∈ F, limn→+∞ ‖un − p‖ exists. Any weak cluster
point of {un} is in F. Then, there exists u in F with {un} converging weakly to u.

We end this section with the following lemmas, which will be used to prove our main
results in the next section.

Lemma 4 ([41]). Let {un} and {ρn} be sequences of nonnegative real numbers such that un+1 ≤
(1 + ρn)un + ρnun−1 for all n ∈ N. Then, the following holds

un+1 ≤ M ·
n

∏
j=1

(1 + 2ρj),

where M = max{u1, u2}. Moreover, if ∑∞
n=1 ρn < +∞, then {un} is bounded.

Recall the definition of the forward–backward operator of lower semicontinuous and
convex functions φ, ψ : Rn → (−∞,+∞) as follows: A forward–backward operator T is
defined by T:=proxκψ(I−κ∇φ) for κ>0, where ∇φ is the gradient operator of function φ

and proxκψ(I− κ∇φ)x:= arg miny∈H{ψ(y)+ 1
2κ ‖y− x‖2} (see [7,11]). The operator proxκψ
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was defined by Moreak in 1962 [42] and called the proximity operator with respect to κ
and ψ. We know that T is a nonexpansive mapping whenever κ ∈ (0, 2

` ).

Lemma 5 ([14]). Let ψ be a lower semicontinuous function and proper convex from a Hilbert
space H into R ∪ {+∞}, and let φ be a convex differentiable function from H into R with ∇φ
being `-Lipschitz constant for some ` > 0. Let T be the forward–backward operator of φ and ψ. A
sequence {Tn} satisfies the NST condition (I) with T if {Tn} is the forward–backward operator of φ
and ψ such that κn → κ with κn, κ ∈

(
0, 2

`

)
.

3. Main Results

In this section, we begin by formally introducing a new algorithm for finding a
common fixed point of a countable family of nonexpansive mappings in a real Hilbert
space H. Let {Tn : H → H} be a family of nonexpansive mappings with {τn}, {εn}, {µn},
and {ζn} being sequences in (0, 1).

Next, we prove a weak convergence theorem of Algorithm 1 for a family of nonexpan-
sive mappings in a real Hilbert space.

Algorithm 1: (MSA): A modified S-algorithm.
Initial. Take x0, x1 ∈ H arbitrarily and n = 1. Choose ρn ≥ 0 and ∑∞

n=1 ρn < +∞.
Step 1. Compute zn, yn, and xn+1 using:

zn = xn + ρn(xn − xn−1),
yn = (1− τn − εn)zn + τnTnzn + εnTnxn,
xn+1 = (1− µn − ζn)yn + µnTnzn + ζnTnyn.

Then, update n := n + 1, and go to Step 1.

Theorem 1. Let H be a real Hilbert space, and let {Tn : H → H} be a family of nonexpansive
mappings such that F := ∩∞

n=1F(Tn) 6= ∅. Let {xn} be a sequence generated by Algorithm 1 and
{τn}, {εn}{µn}, and {ζn} be sequences in (0, 1) satisfying the following conditions:

(i) 0 < lim inf
n→∞

(τn + εn) ≤ lim sup
n→∞

(τn + εn) < 1;

(ii) 0 < lim inf
n→∞

τn;

(iii) 0 < lim sup
n→∞

µn.

If {Tn} satisfies the NST? condition, then {xn} converges weakly to an element in F.

Proof. Let p ∈ F. Then, by Algorithm 1 and Tn being nonexpansive, we have:

‖zn − p‖ = ‖xn + ρn(xn − xn−1)− p‖ ≤ ‖xn − p‖+ ρn‖xn − xn−1‖,

and:

‖yn − p‖ = ‖(1− τn − εn)zn + τnTnzn + εnTnxn − p‖
≤ (1− τn − εn)‖zn − p‖+ τn‖Tnzn − p‖+ εn‖Tnxn − p‖
≤ (1− τn − εn)‖zn − p‖+ τn‖zn − p‖+ εn‖xn − p‖
= (1− εn)‖zn − p‖+ εn‖xn − p‖.

It follows that:

‖yn − p‖ ≤ (1− εn)[‖xn − p‖+ ρn‖xn − xn−1‖] + εn‖xn − p‖
≤ ‖xn − p‖+ ρn‖xn − xn−1‖.
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The above inequality implies:

‖xn+1 − p‖ = ‖(1− µn − ζn)yn + µnTnzn + ζnTnyn − p‖
≤ (1− µn − ζn)‖yn − p‖+ µn‖Tnzn − p‖+ ζn‖Tnyn − p‖
≤ (1− µn − ζn)‖yn − p‖+ µn‖zn − p‖+ ζn‖yn − p‖
= (1− µn)‖yn − p‖+ µn‖zn − p‖
≤ (1− µn)[‖xn − p‖+ ρn‖xn − xn−1‖] + µn[‖xn − p‖+ ρn‖xn − xn−1‖]
= ‖xn − p‖+ ρn‖xn − xn−1‖
≤ ‖xn − p‖+ ρn(‖xn − p‖+ ‖p− xn−1‖)
= (1 + ρn)‖xn − p‖+ ρn‖xn−1 − p‖.

(9)

By Lemma 4, we obtain that ‖xn+1 − p‖ ≤ M ·∏n
j=1(1 + 2ρj), where M = max{‖x1 −

p‖, ‖x2 − p‖}. Since ∑∞
n=1 ρn < +∞, we obtain that {xn} is bounded. This together with

∑∞
n=1 ρn < +∞ give ∑∞

n=1 ρn‖xn − xn−1‖ < +∞. Using (9) and Lemma 2, we obtain that
limn→∞ ‖xn − p‖ exists for all p ∈ F. Coming back to the definition of yn, from (8), one
has that:

‖yn − p‖2 = ‖(1− τn − εn)(zn − p) + τn(Tnzn − p) + εn(Tnxn − p)‖2

= (1− τn − εn)‖zn − p‖2 + τn‖Tnzn − p‖2 + εn‖Tnxn − p‖2

− τn(1− τn − εn)‖zn − Tnzn‖2 − τnεn‖Tnzn − Tnxn‖2

− εn(1− τn − εn)‖zn − Tnxn‖2

≤ (1− εn)‖zn− p‖2+ εn‖xn− p‖2− τn(1− τn− εn)‖zn− Tnzn‖2.

(10)

By (8), (10), together with Lemma 1 and the nonexpansiveness of Tn, we have:

‖xn+1 − p‖2 ≤ (1− µn − ζn)‖yn − p‖2 + µn‖Tnzn − p‖2 + ζn‖Tnyn − p‖2

≤ (1− µn − ζn)‖yn − p‖2 + µn‖zn − p‖2 + ζn‖yn − p‖2

= (1− µn)‖yn − p‖2 + µn‖zn − p‖2

= (1− µn)[(1− εn)‖zn − p‖2 + εn‖xn − p‖2]

− (1− µn)τn(1− τn − εn)‖zn − Tnzn‖2 + µn‖zn − p‖2

= (1− εn + µnεn)‖zn − p‖2 + εn(1− µn)‖xn − p‖2

− (1− µn)τn(1− τn − εn)‖zn − Tnzn‖2

≤ (1− εn + µnεn)[‖xn − p‖2 + 2ρn‖xn − p‖‖xn − xn−1‖]
+ (1− εn + µnεn)ρ

2
n‖xn − xn−1‖2 + εn(1− µn)‖xn − p‖2

− (1− µn)τn(1− τn − εn)‖zn − Tnzn‖2

= ‖xn − p‖2 + 2ρn(1− εn + µnεn)‖xn − p‖‖xn − xn−1‖
+ (1− εn + µnβn)ρ

2
n‖xn − xn−1‖2

− (1− µn)τn(1− τn − εn)‖zn − Tnzn‖2.

Since lim
n→∞

‖xn − p‖ exists for all p ∈ F and
∞

∑
n=1

ρn‖xn − xn−1‖ < +∞, we have from the

above inequality that:

lim
n→∞

(1− µn)τn(1− τn − εn)‖zn − Tnzn‖2 = 0.

By the conditions (i) and (iii), we conclude that:

lim
n→∞

‖zn − Tnzn‖ = 0. (11)
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This implies by the nonexpansiveness of Tn that:

‖xn − Tnxn‖ ≤ ‖xn − zn‖+ ‖zn − Tnzn‖+ ‖Tnzn − Tnxn‖
≤ ‖xn − zn‖+ ‖zn − Tnzn‖+ ‖zn − xn‖
= 2‖xn − zn‖+ ‖zn − Tnzn‖.

Thus:
‖xn − Tnxn‖ ≤ 2‖xn − zn‖+ ‖zn − Tnzn‖. (12)

By the definition of zn, we obtain:

‖zn − xn‖ = ‖xn + ρn(xn − xn−1)− xn‖ = |ρn|‖xn − xn−1‖ = ρn‖xn − xn−1‖. (13)

From (12) and (13), we obtain:

‖xn − Tnxn‖ ≤ 2ρn‖xn − xn−1‖+ ‖zn − Tnzn‖. (14)

By (11), (14), and ∑∞
n=1 ρn‖xn − xn−1‖ < +∞, we obtain:

lim
n→∞

‖xn − Tnxn‖ = 0. (15)

From (13) and ∑∞
n=1 ρn‖xn − xn−1‖ < +∞, we obtain:

lim
n→∞

‖zn − xn‖ = 0. (16)

Since:

‖yn − zn‖ ≤ τn‖Tnzn − zn‖+ εn‖Tnxn − zn‖
≤ τn‖Tnzn − zn‖+ εn(‖Tnxn − xn‖+ ‖xn − zn‖),

by (11), (15), and (16), we obtain:

lim
n→∞

‖yn − zn‖ = 0. (17)

From ‖yn − xn‖ ≤ ‖yn − zn‖+ ‖zn − xn‖, (16) and (17), we obtain:

lim
n→∞

‖yn − xn‖ = 0. (18)

Since:

‖xn+1 − xn‖ ≤ (1− µn − ζn)‖yn − xn‖+ µn‖Tnzn − xn‖+ ζn‖Tnyn − xn‖
≤ (1− µn − ζn)‖yn − xn‖+ µn[‖Tnzn − Tnxn‖+ ‖Tnxn − xn‖]
+ ζn[‖Tnyn − Tnxn‖+ ‖Tnxn − xn‖]
≤ (1− µn − ζn)‖yn − xn‖+ µn[‖zn − xn‖+ ‖Tnxn − xn‖]
+ ζn[‖yn − xn‖+ ‖Tnxn − xn‖],

it follows by (15)–(18) that limn→∞ ‖xn+1 − xn‖ = 0. Since {Tn} satisfies the NST? condi-
tion, we obtain that the set of all weak cluster points of the sequence {xn} is a subset of F.
Applying Lemma 3, we obtain that there exists x ∈ F such that xn ⇀ x.

Now, we move on to the application of our introduced algorithm for solving a convex
minimization problem (5) by setting Tn := proxκnψ(I − κn∇φ) in Algorithm 1.

Next, we prove that a sequence {xn} generated by Algorithm 2 converges weakly to
the solution of the convex minimization problem (5).
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Algorithm 2: (FBMSA): A forward-backward modified S-algorithm.
Initial. Take x0, x1 ∈ H arbitrarily and n = 1. Choose ρn ≥ 0 and ∑∞

n=1 ρn < +∞.
Step 1. Compute zn, yn and xn+1 using:

zn = xn + ρn(xn − xn−1),
yn = (1− τn − εn)zn + τnproxκnψ(I − κn∇φ)zn + εnproxκnψ(I − κn∇φ)xn,

xn+1 = (1− µn − ζn)yn + µnproxκnψ(I − κn∇φ)zn + ζnproxκnψ(I − κn∇φ)yn.

Then, update n := n + 1, and go to Step 1.

Theorem 2. Let g be a lower semicontinuous function and proper convex from a real Hilbert space
H into R ∪ {+∞}, and let φ be a convex differentiable function from H into R with ∇φ being
`-Lipschitz constant for some ` > 0. Let {xn} be a sequence generated by Algorithm 2 such that
κn → κ with κn, κ ∈

(
0, 2

`

)
. Suppose {τn}, {εn}, {µn} and {ζn} are sequences in (0, 1) satisfying

the assumptions as in Theorem 1. Then, {xn} converges weakly to an element in argmin(φ + ψ).

Proof. Let T and Tn be the forward–backward operators of φ and ψ with respect to κ and
κn, respectively. Then, T :=proxκψ(I − κ∇φ) and Tn :=proxκnψ(I − κn∇φ). Then, T and
{Tn} are nonexpansive operators for all n. By Proposition 26.1 in [7], F := ∩∞

n=1F(Tn) =
argmin(φ + ψ). It follows from Lemma 5 that {Tn} satisfies the NST? condition. Using
Theorem 1, we obtain the required result.

4. Applications

The image restoration problem is solved using Algorithm 2 in this part. We also
compared the deburring efficiency of Algorithm 2 with NAGA [16], FISTA [6], IFBS [35],
and FBS [12]. As the mentioned in the literature, the image restoration problems can be
related to the LASSO problem, that is min

x
{‖Ax− b‖2

2 + β‖x‖1}, where A represents the

blurring operator, x ∈ Rn is the original image, b is the observed image, and β is a positive
regularization parameter.

To solve image restoration problem, especially the true RGB images, this model is
highly costly to compute for the multiplication of Ax and ‖x‖1 because of the size of
matrix A and x, as well as their members. In order to overcome this problem, most of
researchers in this area employ the 2D fast Fourier transform for the transformation of
the true RGB images, and the above model is slightly reformulated by using the 2D fast
Fourier transform as the following form:

min
x
{‖Ax− b‖2

2 + β‖Wx‖1}, (19)

where A is the blurring operator, which is often chosen as A = BW , B is the blurring
matrix,W is the 2D fast Fourier transform, b ∈ Rm×n is the observed image of size m× n,
and β is a positive regularization parameter. Hence, it can be viewed as the summation
of two convex minimization problem, that is, min

x
{φ(x) + ψ(x)}. Therefore, Algorithm 2,

FBS [12], IFBS [35], FISTA [6], and NAGA [16] can be applied to solve an image restoration
problem by setting φ(x) = ‖Ax− b‖2

2, ψ(x) = β‖Wx‖1.
In our experiment, we selected the regularization parameter β = 5× 10−5 and consid-

ered the original image size of 256× 256 px. The Gaussian blur of size 9× 9 and standard
deviation ξ = 4 were used to rate the blurred and noisy image. Figure 1 shows the original
and observed images.
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(a) Original image (b) Observed image

Figure 1. The Wat Phra Singh Woramahaviharn.

We used the peak signal-to-noise ratio (PSNR) as a measure of the performance of our
algorithm, which is defined as follows:

PSNR(xn) = 10 log10(
2552

MSE
),

where MSE= 1
2562 ‖xn − x‖2, the mean-squared error for original image x. The concept of

the PSNR was proposed by Thung and Raveendran [43] in 2009. It is worth noting that a
higher PSNR demonstrates a higher quality for deblurring the image. Then, we computed
the Lipschitz constant ` by using the maximum eigenvalues of the matrix AT A.

Table 1 shows the parameters for Algorithm 2, FISTA, NAGA, IFBS, and FBS.

Table 1. Algorithms and their setting controls.

Methods Setting

Algorithm 2 τn = ζn = 0.950, εn = µn = 0.005, κn = n
`(n+1) and

ρn =

{
n

n+1 if 1 ≤ n < N
1
2n otherwise, where N is a stop number of iteration.

FISTA κ = 1
` , ρn = tn−1

tn+1
, where tn+1 =

1+
√

1+4t2
n

2 .

NAGA τn = 0.500, κn = n
`(n+1) and ρn = tn−1

tn+1
, where tn+1 =

1+
√

1+4t2
n

2 .

IFBS κn = n
`(n+1) and ρn =

{
1

n2‖xn−xn−1‖2
2

if xn 6= xn−1

0 otherwise

FBS κn = n
`(n+1)

As seen in Table 1, all parameters were created to satisfy all conditions of those
convergence theorems for each algorithm. By Theorem 2, the sequence {xn} generated by
Algorithm 2 converges to the original image.

For this experiment, our programs were run on an Intel(R) core(TM) i7-9700CPU
with 32.00 GB RAM, Windows 10, in the MATLAB computing environment. From the
controllers, which were set as above, we obtained the results of deblurring the image of
Wat Phra Singh Woramahaviharn with 1000 iterations as in Table 2.
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Table 2. The values of the PSNR at x200, x300, x400, x500, x1000.

Iteration No.
Peak Signal-to-Noise Ratio (PSNR)

Algorithm 2 NAGA FISTA IFBS FBS

200 33.8764 33.1457 32.6173 28.2840 28.2840
300 34.5951 34.1018 33.6556 28.8650 28.8650
400 34.8902 34.6174 34.2689 29.2593 29.2593
500 35.0391 34.8766 34.6409 29.5532 29.5532
1000 35.2068 35.1961 35.1562 30.4187 30.4186

Table 2 shows the images’ recovery efficiency compared to other methods under
different numbers of iterations. It is seen from Table 2 that Algorithm 2 has a higher PSNR
than the other algorithms. Therefore, the convergence behavior of our algorithm is better
than those of NAGA, FISTA, IFBS, and FBS.

Moreover, the results of deblurring the image of Wat Phra Singh Woramahaviharn at
the 1000th iteration of all the studied algorithms are presented in Figure 2.

Figure 2. The graph of the peak signal-to-noise ratio (PSNR) for Wat Phra Singh Woramahaviharn.

It was derived from the graph of PSNR in Figure 2 that Algorithm 2 gives a higher
value of the PSNR than the other algorithms. This demonstrates that Algorithm 2’s image
restoration performance is better than those of NAGA, FISTA, IFBS, and FBS.

We observed from Figure 3 that Algorithm 2 gives a better result of deblurring for Wat
Phra Singh Woramahaviharn in all the numbers of iterations.
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(a) Original image (b) Observed image

(c) FBS (d) IFBS

(e) FISTA (f) NAGA

(g) Algorithm 2

Figure 3. Results for Wat Phra Singh Woramahaviharn’s image deblurring.

5. Conclusions

This paper introduced a new accelerated algorithm for solving a common fixed-point
problem of a family of nonexpansive operators. The weak convergence theorem for this
method was proven by setting some conditions. Our main results can be applied to solve a
minimization problem involving two proper lower semicontinuous and convex functions.
The proposed method was also used to solve the image restoration problems. To compare
the performance of the studied algorithm, we conducted certain numerical experiments
and obtained that the PSNR of our proposed algorithm is higher than those of FBS [12],
IFBS [35], FISTA [6], and NAGA [16].
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