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Abstract: Feature selection reduces the dimension of input variables by eliminating irrelevant features.
We propose feature selection techniques based on a genetic algorithm, which is a metaheuristic
inspired by a natural selection process. We compare two types of feature selection for predicting
a stock market index and cryptocurrency price. The first method is a newly devised genetic filter
involving a fitness function designed to increase the relevance between the target and the selected
features and decrease the redundancy between the selected features. The second method is a genetic
wrapper, whereby we can find the better feature subsets related to KOPSI by exploring the solution
space more thoroughly. Both genetic feature selection methods improved the predictive performance
of various regression functions. Our best model was applied to predict the KOSPI, cryptocurrency
price, and their respective trends after COVID-19.

Keywords: genetic algorithm; feature selection; stock prediction; cryptocurrency price prediction

1. Introduction

When using multidimensional data in the real world, the number of cases required
to find the best feature subsets increases exponentially. The problem of finding a global
optimal feature subset is NP-hard [1]. Rather than finding a global optimal solution
by exploring all the solution spaces, heuristic search techniques [2] are used to find a
reasonable solution in a constrained time frame. In stock markets, a specific index is related
to a number of other economic indicators; however, it is difficult to predict a stock index
which tends to be non-linear, uncertain, and irregular. There are two mainstream methods
to predict a stock index: one is the improvement of feature selection techniques, and the
other is the improvement of regression models to predict a stock index. We take the former
approach to predict the stock market index using various machine learning methods.
This study is a new attempt to predict the KOSPI using various external variables rather
than internal time series data. The predictive performance was improved through feature
selection that selects meaningful variables among many external variables. We propose the
two new types of feature selection techniques using a genetic algorithm [3,4] which is a
metaheuristic [5] method. The first technique is a genetic filter [6,7], and the second one is a
genetic wrapper [8,9]. In our genetic filter, a new fitness function was applied to overcome
the disadvantages of traditional filter-based feature selection. In addition, we can find the
optimal feature subset by exploring the solution space more sufficiently using our genetic
wrapper. The remainder of the paper is consisted as follows. The background is explained
in Section 2. In Section 3, the operation and structure of our genetic algorithm for feature
selection techniques are introduced. Section 4 contains the results of KOSPI prediction
using feature selection techniques with various machine learning methods. In addition, our
best model was applied to predict the KOSPI, cryptocurrency price, and their respective
trends after COVID-19. Our conclusions are presented in Section 5.
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2. Related Work
2.1. Feature Selection

Machine learning algorithms can be constructed using either linear or non-linear
models. Because the performance of machine learning is highly dependent on the quantity
and quality of data, the most ideal input data contain information that is neither excessive
nor insufficient. Moreover, high-dimensional data may contain redundant or irrelevant
features. Thus, the latent space that effectively explains the target variable may be smaller
than the original input space. Dimensionality reduction transforms data from a high-
dimensional space into a low-dimensional space so that the low-dimensional representation
retains important properties of the original data. It finds a latent space by compressing
original data or removing noisy data. Feature selection [10] is a representative method
for reducing the dimension of data. Filter methods use a simple but fast-scoring function
to select features, whereas wrapper methods use a predictive model to score a feature
subset. Filter-based feature selection is a method suitable for ranking features to show how
relevant each feature is, rather than deriving the best feature subset for the target data. Even
though a filter-based feature selection is effective in computation time compared to wrapper
methods, it may select redundant features when it does not consider the relationships
between selected features. In contrast, wrapper-based feature selection is a method that
selects the feature subset that shows the best performance in terms of predictive accuracy. It
requires significant time to train and test a new model for each feature subset; nonetheless,
it usually provides prominent feature sets for that particular learning model.

2.2. Genetic Algorithm

A genetic algorithm is one of the metaheuristic techniques for global optimization and
is a technique for exploring the solution space by imitating the evolutionary process of
living things in the natural world. It is widely used in solving non-linear or incomputable
complex problem in fields such as engineering and natural science [11–14]. To find the
optimal solution through the genetic algorithm, we have to define two things. The solution
of the problem should be expressed in the form of a chromosome, and a fitness function has
to be derived to evaluate the chromosome. The series of these processes are similar to the
process of confirming how entity can adapt to the environment. Each generation consists of
a population that can be regarded as a set of chromosomes. Selection is performed based on
the fitness of each chromosome, and crossover, replacement, and mutation are performed.
By repeating the above process, the generated solution is improved, and searching the
solution space is searched until specific conditions are satisfied.

2.3. Stock Index Prediction

There have been various methods and frameworks for analyzing stock indices. Among
these, there exists the portfolio theory [15] and the efficient market hypothesis [16] based
on the rational expectation theory that follows the assumption that economic agents are
rational. On the contrary, a study of a stock index using behavioral finance theory [17]
also exists. There are many studies that have attempted to analyze the stock index by
combining data mining [18] with the above viewpoints of the stock index. Tsai et al. [19]
used optimized feature selection through a combination of a genetic algorithm, principal
component analysis, and decision tree, and predicted stock prices using neural networks.
Lngkvist et al. [20] proposed a method that applies deep learning to multivariate time
series data including stock index, social media, transaction volume, market conditions,
and political and economic factors. Zhang et al. [21] proposed a model that performs feature
selection using minimum redundancy maximum relevance [22,23] for stock index data.
Nalk et al. [24] improved the performance of stock index prediction using the Boruta feature
selection algorithm [25] with an artificial neural network [26]. Yuan et al. [27] compared
the performance of the stock index prediction models such as a support vector machine
(SVM) [28], random forest [29], and an artificial neural network. Hu et al. [30] improved
the performance of stock index prediction by improving Harris hawks optimization.



Mathematics 2021, 9, 2574 3 of 19

3. Genetic Algorithm for Feature Selection
3.1. Encoding and Fitness

The initial task when using a genetic algorithm is to design an encoding scheme
and a fitness function. The solution of the genetic algorithm is expressed in the form of
a chromosome through an appropriate data structure, which is called encoding. In this
study, encoding was conducted by a binary bit string, which indicates whether each feature
is included or not. In the first experiment, 264-bit string was used as a chromosome to
predict the KOSPI, and in the second experiment, 268-bit string was used to predict a
cryptocurrency price. In a genetic algorithm, fitness is measured to evaluate how well an
encoded chromosome solves a problem. The fitness is obtained from the implemented
fitness function, and we used different fitness functions according to the genetic filter and
genetic wrapper. The fitness of our genetic filter is a numerical value obtained by combining
the correlations between selected features, and the fitness of our genetic wrapper is a mean
absolute error between the target values and the predicted values of the machine learning
algorithms preceded by feature selection.

3.2. Selection

Selection is the process of choosing the parent chromosomes to generate offspring
chromosomes in each generation. In this study, we used roulette wheel selection based on
the fitness. We set the selection probability of each chromosome in proportion to its fitness;
then, we randomly selected chromosomes. It means that chromosomes with good fitness
are more likely to be selected as parents, and chromosomes with relatively poor fitness are
less likely to be selected as parents.

3.3. Crossover

Crossover is an operation that generates the offspring of the next generation by cross-
ing the parental chromosomes obtained through selection. There are several methods of
crossover; in this study, multi-point crossover was implemented. Multi-point crossover is
an extension of one-point crossover. One-point crossover is an operation that randomly se-
lects a point on chromosomes and crosses them based on that point. Multi-point crossover
is similar to a one-point crossover, but uses two or more points. Indeed, an even number of
multi-point crossover has the effect of crossing circular-shaped chromosomes because the
first and last genes of the chromosomes are adjacent to each other. Because the degree of
perturbation of multi-point crossover is larger than that of one-point crossover, a relatively
wide solution space can be explored. However, strong perturbation may decrease con-
vergence, and multi-point crossover with odd points may not maintain uniform traits of
selected chromosomes. In this study, we used the chromosomes of a circular shape, a list of
features with no meaning in the order. To increase the degree of perturbation moderately
and for effective crossover in a circular shape, we used a 2-point crossover.

3.4. Mutation and Replacement

Mutation is an operator that modifies the gene of a chromosome to prevent a premature
convergence and increase the diversity of the population. A general mutation generates a
random number between 0 and 1 for each gene on a chromosome. If the value is less than
the threshold, the corresponding gene is arbitrarily modified. In this study, a mutation
probability was set to 0.001. Replacement is an operator that replaces the chromosomes
of the existing population with the offspring chromosomes produced by crossover and
mutation. We applied a replacement to change existing chromosomes with offspring
chromosomes. Furthermore, we also applied the elitism to retain the best chromosome in
the previous population to the next generation (Figure 1).
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Figure 1. An example of our two-point crossover.

3.5. Genetic Filter

Filter-based feature selection [31–33] has the advantage of deriving feature subsets by
identifying correlations between features within a relatively short time; however, it has
the disadvantage that it may be difficult to quantify relevance and redundancy between
selected features. In this study, a new fitness function was devised to emphasize the
advantages and make up for the disadvantages. Equation (1) favors feature subsets that
are highly correlated with the target variable and largely uncorrelated with each other.

f itness =
n

∑
i=1

fStarget ,Si −
n−1

∑
i=1

n

∑
j=i+1

fSi ,Sj (1)

subject to fSi ,Sj = IGSi ,Sj + FSi ,Sj + CSi ,Sj , where n corresponds to the total number of features,
Starget is the target variable, and IG, F, and C refer to the information gain, F-statistic,
and Pearson correlation coefficient (PCC), respectively.

Moreover, fitness was obtained by combining the information gain, F-statistic, and PCC
to derive various correlations of chromosomes. Specifically, to calculate the fitness of a
chromosome, the sum of the results of the information gain, F-statistic, and PCC between
target data and the selected feature Si was obtained. Another sum was also obtained for
those between the selected features Si and Sj. Finally, the difference between the two
summations was calculated to identify the fitness of each chromosome. Figure 2 shows the
flow diagram of our genetic filter.
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Initialization of chromosome

Dataset

(All features, 264)

F-statisticInformation gain PCC

Fitness

Termination

criteria are satisfiedYES

NO

Best chromosome
Parent selection

Crossover of parents

Mutation

Stop

The proposed measure

Figure 2. Flowchart of our genetic filter.

3.5.1. Mutual Information

Mutual information [34] provides a numerical value quantifying the relationship
between two random variables. The mutual information of random variables X and Y
is I(X, Y), the probability that events X and Y occur simultaneously is P(X, Y), and the
pointwise mutual information (PMI) of the events X and Y is PMI(X, Y). If the random
variables are continuous, Equation (2) is satisfied.

I(X; Y) =
∫

x

∫
y

P(x, y) · PMI(x; y)dxdy,

PMI(x; y) = log
p(x, y)

p(x)p(y)
= log

p(x|y)
p(x)

= log
p(y|x)
p(y)

(2)

In other words, the mutual information of variables X and Y is the sum of the values
obtained by multiplying the PMI and the probability of all cases belonging to the variables
X and Y. PMI is the value obtained by dividing the probability of two events occurring at
the same time by the probability of each occurrence. It can be seen that X and Y are not
related to each other when the mutual information is closer to 0.

3.5.2. F-Test

Hypothesis testing methods for testing differences in sample variance can be divided
into the chi-squared test and F-test. The chi-squared test is applied when the population
of a single sample follows a normal distribution and the variance is known in advance;
however, considering that the variance is generally not known in advance, the F-test is used
when the population is unknown. The F-test is a statistical hypothesis test that determines
whether or not the difference in variance between two samples is statistically significant.
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We endeavored to include statistical significance between features by adding the F-statistic
to the fitness of the genetic filter.

3.5.3. Pearson Correlation Coefficient

In statistics, the Pearson correlation coefficient [35] quantifies the correlation between
two variables X and Y. According to the Cauchy-Schwarz inequality, it has a value between
[−1, 1], and it indicates no correlation when it is closer to 0, positive linear correlation
when it is closer to 1, and negative linear correlation when it is closer to −1.

r =
Σ(xi − x̄)(yi − ȳ)√

Σ(xi − x̄)2Σ(yi − ȳ)2 (3)

3.6. Genetic Wrapper

While our genetic filter calculates fitness through the correlations between features,
our genetic wrappers [36,37] use machine learning models to evaluate the fitness of each
chromosome. Therefore, the computational time is longer than that of a genetic filter;
however, the genetic wrapper tries to search for an optimal feature subset tailored to a
particular learning algorithm. We used three machine learning models for our genetic
wrapper. Figure 3 shows the flow diagram of our genetic wrapper.

Initialization of chromosome

Dataset
(All features, 264)

SVR

Fitness

Termination
criteria are satisfied

YES

NO

Best chromosome Parent selection

Crossover of parents

Mutation

Extra-Trees

Fitness

GP

Fitness

Initialization of chromosome Initialization of chromosome

Stop

Figure 3. Flowchart of our genetic wrapper.

3.6.1. Support Vector Regression

Support vector regression (SVR) [38] refers to the use of an SVM to solve regression
problems. The SVM is used for classification based on training data, but an ε-insensitive
loss function is introduced in the regression model of the SVM to predict unknown real
values. The goal of SVR is quite different from the goal of SVM. As shown in Figure 4, SVR
minimizes the error outside the margin to have as many data as possible within the margin.
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SVM SVR

Figure 4. Examples of the one-dimensional SVM and SVR model.

3.6.2. Extra-Trees Regression

The random forest is a representative ensemble model, and it assembles multiple
decision trees using bootstrap samples to prevent overfitting. The general performance
of the random forest is higher than that of a single tree. Extra-trees [39] is a variant of
the random forest model. Extra-trees increases randomness by randomly selecting a set
of attributes when splitting a node. The importance of features evaluated by Extra-trees
is higher than that evaluated by the random forest model; that is, Extra-trees evaluated
features from a broad perspective. We used the feature selection results obtained using
Extra-trees regression.

3.6.3. Gaussian Process Regression

Gaussian process (GP) regression [40,41] is a representative model of the Bayesian
non-parametric methodology and is mainly used to solve regression problems. Assuming
that f is a function that describes the input and output data, the GP assumes that the
joint distribution of finite f values follows a multivariable normal distribution. In general,
the mean is assumed to be 0 and covariance C is set by a kernel function. GP regression
gives a high prediction performance, allows the probabilistic interpretation of prediction
results, and can be implemented with a relatively simple matrix operation. Figure 5
shows that deviation of functions in a given sample is very small. On the other hand,
in the unknown region without samples, the predicted values of functions show a large
variance. Finding the distribution of function is the main point of GP regression. Since
GP regression involves computationally expensive operations, various approximation
algorithms were devised.

Samples from prior distribution Samples from posterior distribution

Figure 5. Examples of Gaussian process regression.
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4. Experiments and Evaluation
4.1. Experimental Setup

We first applied our genetic filter and genetic wrapper to KOSPI data; then, we
compared the prediction results obtained using the machine learning models. The data for
12 years (from 2007 to 2018), which had 264 features including global economic indices,
exchange rates, commodity indices, and etc, were used (Figure 6). Because the Korean
economy is very sensitive to external variables due to its industrial structure, it was very
important to grasp the trend of the global economy. Therefore, major countries and global
economic indicators closely related to South Korea were selected. Various index data
were preprocessed in three forms: index, net changes, and percentage changes (Figure 7).
To compensate for the missing data, linear interpolation was used; further, non-trading
days were excluded based on the KOSPI. The test data were not affected by the training
data during the preprocessing and experiment. The SVR, Extra-trees, and GP regression
were applied to compare the performance of preprocessed data with and without feature
selection. Next, we selected the feature selection method and evaluation model that
showed the best performance among them, and we conducted an experiment to predict
the KOSPI in 2020 by adding data corresponding to 2019 and 2020 to the 12-year data from
2007 to 2018. Consequently, we endeavored to verify whether or not our feature selection
technique also explains the data after COVID-19 adequately. We also tested whether feature
selection improved predictive performance or not. The last experiment we conducted was
to change the target data to cyptocurrency. Cryptocurrency is encrypted with blockchain
technology, distributed, and issued. Specifically, it is electronic information that can be
used as a currency in a certain network. Cryptocurrency was devised as a medium for the
exchange of goods, that is, a means of payment. However, it serves as an investment whose
price is determined according to supply and demand in the market through the exchange.
Therefore, we conducted feature selection with cryptocurrency price as the target to check
whether cryptocurrency can be regarded as an economic indicator affected by the market.

Figure 6. Daily KOSPI from 2007 to 2018.
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Figure 7. The percentage changes of the KOSPI from 2007 to 2018.

4.2. KOSPI Prediction
4.2.1. Experiment of Genetic Filter

Table 1 shows the parameters of our genetic filter. We trained and evaluated the
data from 2007 to 2018 by dividing them into 20 intervals as shown in Table A1 (see
Appendix A). As mentioned in Section 4.1, all the variables of the data were preprocessed
into three different values: index, net changes, and percentage changes, respectively.

Table 1. Operators and parameters of our genetic filter.

Operator / Parameter Value

Size of population 100
Number of generations 500
Length of chromosome 264

Selection Roulette wheel
Crossover 2-points

Mutation rate 0.001
Replacement Elitism

Our genetic filter was applied to each dataset, and the results of applying SVR,
extra-trees regression, and GP regression are shown in Tables A1–A3 (see Appendix A).
The results of predicting net changes and percentage changes were converted into original
indices, and the mean absolute error (MAE) with the actual indices was derived. The results
obtained without any feature selection were compared with those obtained by applying
our genetic filter; our genetic filter showed an improved average MAE for the three types
of preprocessed data. When the experimental results were classified by evaluation method,
GP regression showed the best performance overall among SVR, extra-trees regression,
and GP regression. When the experimental results were classified by preprocessed type,
predicting percentage changes and converting them into indices showed the least error.
The experiment in which feature selection was performed with percentage changes in
GP regression showed the best performance, and the average error was improved by
approximately 32% than in the case without feature selection. Table 2 shows the process
in which our genetic algorithm selects features between 2015 and 2016. The number
and fitness of features in the best solution for each generation are shown. The features
frequently selected among the feature subsets obtained for each interval are shown in
Table 3, which identifies the feature subset closely related to KOSPI.



Mathematics 2021, 9, 2574 10 of 19

Table 2. The fitness of our genetic filter from 2015 to 2016.

CStarget ,Si (α1) CSi ,Sj (α2)

C

IGStarget ,Si (α3) IGSi ,Sj (α4)

IG

FStarget ,Si (α5) FSi ,Sj (α6)

F

− α∗1 + α∗2 − α∗3 + α∗4 − α∗5 + α∗6

Fitness

The above terms are followed by Equation (1). α∗ means normalized value of α.
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Table 3. List of features highly relevant to KOSPI.

Category Feature Category Feature

Commodities Gas, Corn, Forex USD/JPY, INR/KRW,
Wheat GBP/KRW, EUR/GBP

Bond yield
South Korea,

Indices
SSEC, FTSE,

Japan,
France

IDX, CSE

4.2.2. Experiment of Genetic Wrapper

Similar to the application of the genetic filter in Section 4.2.1, the parameters of the
genetic wrapper are the same as in Table 1, but with a different number of generations. As
in Section 4.2.1, intervals and types of data are the same. Tables A1–A3 shows the results
of applying the genetic wrapper to each data, and combining SVR, extra-trees regression,
and GP regression (see Appendix A). Similarly, the results of predicting net changes
and percentage changes were converted into original indices, and the MAE with the
actual indices was derived. When we compared the results, our genetic wrapper showed
improved average of the MAE than that without feature selection. Our genetic wrapper
also showed better results compared with the genetic filter in all intervals. In particular,
when we used GP regression with the percentage changes data and compared with no
feature selection results, our genetic wrapper showed an improvement in the error by
approximately 39%. Therefore, based on the findings of this study, the best way to explain
the KOSPI is to apply percentage changes data to a genetic wrapper combined with
GP regression.

4.2.3. Prediction of KOSPI after COVID-19

Following the global financial crisis in 2008, the KOSPI could not avoid the impact of
COVID-19 on the stock market in 2020, and it showed significant fluctuations. It will be
important in the real world to predict a situation in which the stock index fluctuates largely
during an economic crisis. We added the data for 2019–2020 to the existing 2007–2018
data, resulting in total 14 years of data. We tried to predict the KOSPI after COVID-19 in
2020 by training 13 years of data corresponding to 2007–2019. We applied the combination
of the genetic wrapper and GP regression, which had shown the best performance in
Sections 4.2.1 and 4.2.2 on the percentage changes data. Figure 8 shows the actual KOSPI,
the results of applying feature selection, and those without applying feature selection. It
was confirmed that GP regression on the selected features could predict the KOSPI after
COVID-19 better without considerable fluctuation than that without feature selection.

It is meaningful to predict the KOSPI itself, but from an actual investment point of view,
predicting whether the stock index on that day will rise or fall compared to the previous day
may be of interest. The optimization carried out in this study is genetic feature selection,
which can better predict the numerical value of the target data. Additional experiments
were carried out to see whether the predicted index data can predict the direction of stock
index. We compared the prediction results derived from GP regression with those of the
genetic wrapper and that without any feature selection on percentage changes data. Each
target value was post-processed to UP and DOWN, which mean upward and downward
direction of the stock price, respectively. Table 4 shows the results of predicting the UP
and DOWN of the KOSPI. The technique that sufficiently well predicted the KOSPI in
the above section also predicted the actual UP and DOWN of the KOSPI relatively well.
Although our purpose of optimization was not set as the UP or DOWN compared to the
previous day, our feature selection could predict the UP and DOWN of the KOSPI with
relatively high accuracy.
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Figure 8. Prediction of KOSPI after COVID-19.

Table 4. Prediction of the direction of KOSPI. Results without feature selection (left) and with the
genetic wrapper (right).

All Features Predicted Total Genetic Wrapper Predicted Total
+ − + −

Observed + 77 49 126 Observed + 100 52 152
− 75 46 121 − 40 55 95

Total 152 95 247 Total 140 107 247
Up Down Up Down

Precision 0.611 0.380 Precision 0.658 0.579
Recall 0.507 0.484 Recall 0.715 0.514

F1-score 0.554 0.426 F1-score 0.685 0.545
Accuracy 0.498 Accuracy 0.628

4.3. Prediction of Cryptocurrency Price and Direction

Cryptocurrency [42,43], which advocates decentralization, seeks to promote the role
of an independent and objective safe asset distinct from exchange rates or other economic
indicators. However, unintentional artificial surges and plunges may occur, and similar to
other safe assets, fluctuations occur owing to changes in currency values such as increases
in interest rate or inflation and deflation. Until now, we have used stock index data existing
in the actual stock market such as KOSPI. However, in this Section, feature selection was
applied with cryptocurrency set as the target data. We tried to predict the daily prices
and UP and DOWN of Bitcoin. A total of 268 features including the KOSPI data were
preprocessed in the same manner as in Section 4.2.3. The start of the data was set as 2013
because Bitcoin prices began fluctuating to some extent only from 2013. Bitcoin prices in
2020 were predicted by training 7-year data from 2013 to 2019. The results of predicting
Bitcoin prices by applying the combination of genetic wrapper and GP regression were
compared with those without feature selection. We converted the percentage changes of
the predicted Bitcoin prices from the previous day to original Bitcoin prices and obtained
the MAE with the actual Bitcoin prices.

Figure 9 shows the actual Bitcoin prices, the results of applying feature selection,
and those of not applying feature selection. Bitcoin prices predicted without any feature
selection may show considerable fluctuation in a specific interval, which means that the
training did not proceed properly. However, when the genetic wrapper was applied,
the prediction was similar to the actual Bitcoin prices and did not show considerable
fluctuation. An additional experiment was carried out to determine whether our feature
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selection can adequately explain the fluctuations. Table 5 shows the results of predicting the
direction of Bitcoin prices. The feature selection technique that sufficiently well predicted
the KOSPI and Bitcoin prices in the above section showed the better precision, recall, F1-
score, and accuracy of the UP and DOWN of the Bitcoin prices relatively well. The purpose
of our optimization was also to accurately predict the Bitcoin prices; however, the actual
index UP and DOWN were also predicted quite accurately.

Figure 9. Prediction of Bitcoin in 2020.

Table 5. Prediction of the direction of Bitcoin price. Results without feature selection (left) and with
the genetic wrapper (right).

All Features Predicted Total Genetic Wrapper Predicted Total
+ − + −

Observed + 76 62 138 Observed + 91 58 149
− 65 44 109 − 50 48 98

Total 141 106 247 Total 141 106 247
Up Down Up Down

Precision 0.551 0.403 Precision 0.611 0.490
Recall 0.539 0.415 Recall 0.645 0.453

F1-score 0.545 0.409 F1-score 0.628 0.471
Accuracy 0.486 Accuracy 0.563

5. Conclusions

In this study, we proposed genetic feature selection techniques to predict the KOSPI
and performed various experiments to predict the KOSPI using machine learning. Tradi-
tional feature selection techniques aim to create an improved model through dimensionality
reduction of the data. We presented a new genetic filter to increase the strength of fea-
ture selection and reduce the shortcomings of feature selection. We also presented a new
genetic wrapper that maximizes prediction performance. The three important findings
of this study are as follows: First, a genetic filter and a genetic wrapper, combined with
various statistical techniques and machine learning, were applied to index, net changes,
and percentage changes data. These combinations were compared, and the optimal form of
the input data was percentage changes. By converting percentage changes into the original
index, we created a better predictive model. Second, to overcome the disadvantages of
the traditional filter-based feature selection, we tried a new fitness function. Redundant
features were removed, and the formula was developed to have high relevance with the
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target variable; thus, improved results were obtained through various evaluation functions.
Third, the best performance of the genetic wrapper in the 2007–2018 interval also produced
meaningful results in predicting the KOSPI or cryptocurrency prices after COVID-19. It
means that our stock index prediction model does not overfit to past data. Our genetic
filter reduced MAE by 32% when using Gaussian Process (GP) regression and percentage
change data. When the genetic wrapper was applied, the results were improved in all
intervals compared to the genetic filter. GP with the genetic wrapper showed the best
result with approximately 39% improvement. Although the proposed genetic wrapper
has relatively good performance compared to our genetic filter, it has the disadvantage
of long computation time. Our genetic filter runs faster than the genetic wrapper. In the
next experiment, the genetic wrapper combined with GP regression, which showed the
best result, was used to predict the KOSPI and cryptocurrency price after COVID-19. We
trained predictive models using 2007–2019 data and tested them with 2020 data. Our
feature selection improved KOSPI predictions in the post-COVID era. In addition, our
genetic feature selection improved the prediction of stock market direction in terms of
accuracy and F1-score. Our final experiment was conducted to predict cryptocurrency
after COVID-19. Our feature selection also improved the Bitcoin price predictions. As
future work, we plan experiments needed to find the fitness combination by applying more
various statistical techniques in the genetic filter. In addition to the filter improvement,
it will be necessary to apply various prediction models and conduct experiments to tune
the hyperparameters of the model. With respect to the wrapper improvement, it will be
necessary to reduce the computational cost without degeneration of prediction quality.
Furthermore, it is promising to conduct research to derive more meaningful models by
applying the ensemble method from several classifiers. Finally, we aim to predict various
equities or assets such as US stock market, Chinese stock market, Ethereum, and Ripple
using our genetic feature selection.
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Appendix A. Results of Applying Genetic Feature Selection to Various Data

In this appendix, we provide results of applying feature selections to KOSPI, the net
changes of KOSPI, and the percentage changes of KOSPI. Each table shows the MAE values
of SVR, Extra-trees regression, and GP regression.
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Table A1. Results of applying feature selection to KOSPI.

Support Vector Regression
Train (year) ’07–’08 ’09–’10 ’11–’12 ’13–’14 ’15–’16 Average ’07–09’ ’10–’12 ’13–’15 Average ’07–’10 ’11–’14 AverageTest (year) ’09–’10 ’11–’12 ’13–’14 ’15–’16 ’17–’18 ’10–12’ ’13–’15 ’16–’18 ’11–’14 ’15–’18

All features MAE 177.766 314.833 45.645 51.226 321.983 182.291 312.076 89.221 234.325 211.874 317.419 200.754 259.086
Genetic filter MAE 177.757 314.844 45.640 51.224 321.982 182.289 312.058 89.227 234.326 211.870 317.415 200.756 259.086

Genetic wrapper MAE 177.755 314.840 45.639 51.223 321.975 182.286 312.035 89.226 234.316 211.859 317.411 200.756 259.083
Train (year) ’07–’09 ’09–’11 ’11–’13 ’13–’15 ’15–’17 Average ’07–10’ ’10–’13 ’13–’16 Average ’07–’11 ’11–’15 AverageTest (year) ’10 ’12 ’14 ’16 ’18 ’11–12’ ’14–’15 ’17–’18 ’12–’14 ’16–’18

All features MAE 185.103 201.155 38.720 39.381 287.315 150.335 310.083 74.941 332.257 239.094 251.678 239.433 245.556
Genetic filter MAE 185.080 201.089 38.713 39.374 287.311 150.313 310.068 74.949 332.264 239.094 251.559 239.427 245.493

Genetic wrapper MAE 185.018 201.089 38.712 39.373 287.307 150.300 310.037 74.949 332.258 239.081 251.557 239.418 245.487
Extra-Trees Regression

Train (year) ’07–’08 ’09–’10 ’11–’12 ’13–’14 ’15–’16 Average ’07–09’ ’10–’12 ’13–’15 Average ’07–’10 ’11–’14 AverageTest (year) ’09–’10 ’11–’12 ’13–’14 ’15–’16 ’17–’18 ’10–12’ ’13–’15 ’16–’18 ’11–’14 ’15–’18
All features MAE 165.491 127.589 66.537 62.434 232.963 131.002 260.481 56.035 246.607 187.708 108.637 231.505 170.071

Genetic filter MAE 176.295 120.528 58.085 53.078 224.110 126.419 197.495 84.312 155.840 145.883 152.652 179.329 165.991
Genetic wrapper MAE 165.460 82.843 47.618 50.715 214.924 112.312 94.575 65.917 154.673 105.055 66.519 176.728 121.624

Train (year) ’07–’09 ’09–’11 ’11–’13 ’13–’15 ’15–’17 Average ’07–10’ ’10–’13 ’13–’16 Average ’07–’11 ’11–’15 AverageTest (year) ’10 ’12 ’14 ’16 ’18 ’11–12’ ’14–’15 ’17–’18 ’12–’14 ’16–’18
All features MAE 134.866 128.808 110.170 95.954 117.360 117.431 92.621 54.512 285.179 144.104 194.587 186.409 190.498

Genetic filter MAE 140.876 47.645 49.813 54.896 151.581 88.962 142.724 67.217 215.173 141.705 141.372 206.220 173.796
Genetic wrapper MAE 75.676 44.411 47.640 52.637 137.501 71.573 89.292 64.663 214.648 122.868 110.697 202.073 156.385

Gaussian Process Regression
Train (year) ’07–’08 ’09–’10 ’11–’12 ’13–’14 ’15–’16 Average ’07–09’ ’10–’12 ’13–’15 Average ’07–’10 ’11–’14 AverageTest (year) ’09–’10 ’11–’12 ’13–’14 ’15–’16 ’17–’18 ’10–12’ ’13–’15 ’16–’18 ’11–’14 ’15–’18

All features MAE 72.135 167.170 265.885 137.362 91.568 146.824 211.181 405.919 173.120 263.407 365.998 155.047 260.522
Genetic filter MAE 76.803 141.921 239.784 117.810 144.677 144.199 276.622 329.960 106.970 237.851 361.232 146.354 253.793

Genetic wrapper MAE 73.758 134.860 174.954 117.760 102.760 120.818 259.285 143.801 101.354 168.147 353.156 128.033 240.594
Train (year) ’07–’09 ’09–’11 ’11–’13 ’13–’15 ’15–’17 Average ’07–10’ ’10–’13 ’13–’16 Average ’07–’11 ’11–’15 AverageTest (year) ’10 ’12 ’14 ’16 ’18 ’11–12’ ’14–’15 ’17–’18 ’12–’14 ’16–’18

All features MAE 129.863 50.691 77.237 74.696 125.353 91.568 71.647 94.057 142.701 102.801 634.979 364.232 499.605
Genetic filter MAE 100.722 65.604 62.663 72.879 100.608 80.495 82.995 65.525 152.018 100.179 169.793 189.886 179.839

Genetic wrapper MAE 94.505 41.152 59.638 46.656 85.101 65.410 82.416 61.501 141.643 95.186 58.731 114.770 86.750
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Table A2. Results of applying feature selection to the net changes of KOSPI.

Support Vector Regression
Train (year) ’07–’08 ’09–’10 ’11–’12 ’13–’14 ’15–’16 Average ’07–09’ ’10–’12 ’13–’15 Average ’07–’10 ’11–’14 AverageTest (year) ’09–’10 ’11–’12 ’13–’14 ’15–’16 ’17–’18 ’10–12’ ’13–’15 ’16–’18 ’11–’14 ’15–’18

All features MAE 13.960 19.010 10.509 11.296 12.964 13.548 16.843 10.979 12.158 13.327 14.869 12.122 13.495
Genetic filter MAE 13.959 19.009 10.509 11.294 12.963 13.547 16.842 10.979 12.157 13.326 14.867 12.122 13.494

Genetic wrapper MAE 13.959 19.009 10.508 11.294 12.963 13.546 16.841 10.978 12.157 13.325 14.867 12.120 13.493
Train (year) ’07–’09 ’09–’11 ’11–’13 ’13–’15 ’15–’17 Average ’07–10’ ’10–’13 ’13–’16 Average ’07–’11 ’11–’15 AverageTest (year) ’10 ’12 ’14 ’16 ’18 ’11–12’ ’14–’15 ’17–’18 ’12–’14 ’16–’18

All features MAE 12.586 14.109 9.489 10.559 15.770 12.503 18.976 10.694 12.977 14.215 11.834 12.155 11.994
Genetic filter MAE 12.586 14.108 9.488 10.559 15.770 12.502 18.974 10.693 12.975 14.214 11.833 12.154 11.994

Genetic wrapper MAE 12.584 14.107 9.487 10.558 15.769 12.501 18.973 10.692 12.975 14.214 11.830 12.154 11.992
Extra-Trees Regression

Train (year) ’07–’08 ’09–’10 ’11–’12 ’13–’14 ’15–’16 Average ’07–09’ ’10–’12 ’13–’15 Average ’07–’10 ’11–’14 AverageTest (year) ’09–’10 ’11–’12 ’13–’14 ’15–’16 ’17–’18 ’10–12’ ’13–’15 ’16–’18 ’11–’14 ’15–’18
All features MAE 17.789 18.748 16.976 15.051 14.989 16.710 18.353 17.503 14.276 16.711 16.636 17.106 16.871

Genetic filter MAE 18.960 19.971 15.290 13.144 15.117 16.496 18.087 14.889 15.303 16.093 16.068 14.470 15.269
Genetic wrapper MAE 17.869 19.843 14.943 12.750 15.101 16.101 17.903 14.535 14.762 15.733 15.898 14.290 15.094

Train (year) ’07–’09 ’09–’11 ’11–’13 ’13–’15 ’15–’17 Average ’07–10’ ’10–’13 ’13–’16 Average ’07–’11 ’11–’15 AverageTest (year) ’10 ’12 ’14 ’16 ’18 ’11–12’ ’14–’15 ’17–’18 ’12–’14 ’16–’18
All features MAE 13.876 17.787 15.190 13.718 17.290 15.572 19.517 16.007 13.694 16.406 14.408 14.740 14.574

Genetic filter MAE 14.479 16.353 12.314 14.360 17.488 14.999 19.142 15.415 14.391 16.316 14.524 12.962 13.743
Genetic wrapper MAE 13.973 15.773 12.176 13.535 16.690 14.429 19.056 14.808 14.221 16.028 14.419 12.940 13.680

Gaussian Process Regression
Train (year) ’07–’08 ’09–’10 ’11–’12 ’13–’14 ’15–’16 Average ’07–09’ ’10–’12 ’13–’15 Average ’07–’10 ’11–’14 AverageTest (year) ’09-’10 ’11–’12 ’13–’14 ’15–’16 ’17–’18 ’10–12’ ’13–’15 ’16–’18 ’11–’14 ’15–’18

All features MAE 18.663 19.083 15.703 12.739 13.709 15.980 17.343 14.351 12.513 14.736 15.196 13.847 14.522
Genetic filter MAE 14.533 17.897 12.812 10.943 12.665 13.770 16.472 12.343 11.995 13.603 14.420 12.589 13.504

Genetic wrapper MAE 14.336 17.639 12.494 10.857 12.276 13.520 15.814 12.255 11.962 13.344 13.690 12.579 13.134
Train (year) ’07–’09 ’09–’11 ’11–’13 ’13–’15 ’15–’17 Average ’07–10’ ’10–’13 ’13–’16 Average ’07–’11 ’11–’15 AverageTest (year) ’10 ’12 ’14 ’16 ’18 ’11–12’ ’14–’15 ’17–’18 ’12–’14 ’16–’18

All features MAE 14.762 14.875 12.527 10.941 15.226 13.666 17.952 13.568 12.932 14.817 12.675 12.675 12.675
Genetic filter MAE 12.615 13.716 11.732 10.733 15.423 12.844 17.436 11.500 12.453 13.796 11.877 12.657 12.267

Genetic wrapper MAE 12.386 13.678 10.928 10.706 14.566 12.453 16.848 11.403 12.130 13.460 11.512 11.752 11.632



Mathematics 2021, 9, 2574 17 of 19

Table A3. Results of applying feature selection to the percentage changes of KOSPI.

Support Vector Regression
Train (year) ’07–’08 ’09–’10 ’11–’12 ’13–’14 ’15–’16 Average ’07–09’ ’10–’12 ’13–’15 Average ’07–’10 ’11–’14 AverageTest (year) ’09–’10 ’11–’12 ’13–’14 ’15–’16 ’17–’18 ’10–12’ ’13–’15 ’16–’18 ’11–’14 ’15–’18

All features MAE 13.961 19.090 10.509 11.294 12.964 13.564 16.904 10.997 12.153 13.351 14.952 12.119 13.535
Genetic filter MAE 13.925 19.017 10.457 11.284 12.895 13.516 16.817 10.966 12.063 13.282 14.897 12.091 13.494

Genetic wrapper MAE 13.918 19.007 10.429 11.284 12.874 13.502 16.809 10.954 12.044 13.269 14.866 12.088 13.477
Train (year) ’07–’09 ’09–’11 ’11–’13 ’13–’15 ’15–’17 Average ’07–10’ ’10–’13 ’13–’16 Average ’07–’11 ’11–’15 AverageTest (year) ’10 ’12 ’14 ’16 ’18 ’11–12’ ’14–’15 ’17–’18 ’12–’14 ’16–’18

All features MAE 12.583 14.155 9.482 10.558 15.764 12.508 19.046 10.692 12.966 14.235 11.894 12.147 12.021
Genetic filter MAE 12.506 14.066 9.434 10.482 15.739 12.445 18.974 10.632 12.932 14.179 11.736 11.912 11.824

Genetic wrapper MAE 12.501 14.061 9.429 10.478 15.706 12.435 18.931 10.626 12.882 14.147 11.662 11.865 11.764
Extra-Trees Regression

Train (year) ’07–’08 ’09–’10 ’11–’12 ’13–’14 ’15–’16 Average ’07–09’ ’10–’12 ’13–’15 Average ’07–’10 ’11–’14 AverageTest (year) ’09–’10 ’11–’12 ’13–’14 ’15–’16 ’17–’18 ’10–12’ ’13–’15 ’16–’18 ’11–’14 ’15–’18
All features MAE 15.077 17.519 15.258 12.920 13.083 14.771 16.806 15.176 13.707 15.230 15.628 15.342 15.485

Genetic filter MAE 16.233 16.884 14.212 12.465 12.839 14.527 15.634 15.452 14.059 15.048 14.843 15.569 15.206
Genetic wrapper MAE 15.994 16.343 14.203 12.418 12.688 14.329 14.072 13.496 12.963 13.510 14.508 13.426 13.967

Train (year) ’07–’09 ’09–’11 ’11–’13 ’13–’15 ’15–’17 Average ’07–10’ ’10–’13 ’13–’16 Average ’07–’11 ’11–’15 AverageTest (year) ’10 ’12 ’14 ’16 ’18 ’11–12’ ’14–’15 ’17–’18 ’12–’14 ’16–’18
All features MAE 14.937 13.654 12.411 12.764 14.666 13.686 17.272 13.459 14.404 15.045 13.235 13.345 13.290

Genetic filter MAE 12.329 14.053 13.244 11.953 16.279 13.571 16.764 14.947 13.392 15.034 12.915 13.155 13.035
Genetic wrapper MAE 11.604 13.985 12.310 11.460 14.191 12.710 16.103 12.541 12.327 13.657 12.853 12.694 12.773

Gaussian Process Regression
Train (year) ’07–’08 ’09–’10 ’11–’12 ’13–’14 ’15–’16 Average ’07–09’ ’10–’12 ’13–’15 Average ’07–’10 ’11–’14 AverageTest (year) ’09–’10 ’11–’12 ’13–’14 ’15–’16 ’17–’18 ’10–12’ ’13–’15 ’16–’18 ’11–’14 ’15–’18

All features MAE 15.832 18.772 19.413 41.222 13.029 21.653 15.233 19.002 19.773 18.003 15.708 34.803 25.255
Genetic filter MAE 13.571 14.390 12.775 24.164 10.957 15.171 15.321 12.048 9.914 12.428 12.459 17.251 14.855

Genetic wrapper MAE 12.377 13.954 12.235 19.341 10.238 13.629 12.705 11.531 9.415 11.217 12.224 12.241 12.233
Train (year) ’07–’09 ’09–’11 ’11–’13 ’13–’15 ’15–’17 Average ’07–10’ ’10–’13 ’13–’16 Average ’07–’11 ’11–’15 AverageTest (year) ’10 ’12 ’14 ’16 ’18 ’11–12’ ’14–’15 ’17–’18 ’12–’14 ’16–’18

All features MAE 12.138 10.604 11.681 30.996 13.213 15.727 16.498 13.435 11.471 13.801 12.048 23.822 17.935
Genetic filter MAE 10.616 11.080 10.616 7.825 13.634 10.754 14.244 11.364 11.226 12.278 10.498 9.764 10.131

Genetic wrapper MAE 10.262 10.756 10.110 7.663 11.778 10.114 12.473 10.944 10.308 11.242 10.077 9.730 9.904
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