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Abstract: In this paper, we conduct a fast calibration in the jump-diffusion model to capture the
Bitcoin price dynamics, as well as the behavior of some components affecting the price itself, such as
the risk of pitfalls and its ambiguous effect on the evolution of Bitcoin’s price. In addition, in our
study of the Bitcoin option pricing, we find that the inclusion of jumps in returns and volatilities are
significant in the historical time series of Bitcoin prices. The benefits of incorporating these jumps
flow over into option pricing, as well as adequately capture the volatility smile in option prices.
To the best of our knowledge, this is the first work to analyze the phenomenon of price jump risk
and to interpret Bitcoin option valuation as “exceptionally ambiguous”. Crucially, using hedging
options for the Bitcoin market, we also prove some important properties: Bitcoin options follow a
convex, but not strictly convex function. This property provides adequate risk assessment for convex
risk measure.

Keywords: blockchain; convex risk measure; jump-diffusion model; fintech; option pricing

1. Introduction

In the Fintech era, Bitcoin has shown remarkable performance in the decade since
Nakamoto (2008) invented the cryptocurrency, due the blockchain-based and decentralized
system. It has also risen rapidly in market capitalization since the COVID-19 pandemic
outbreak. In the past decade, Bitcoin prices have been extremely volatile, and its abnormal
return expands the potential in phases of extreme price; unpredictable and massive crashes
broke out after the 2017/18 crash. Consequently, the price of Bitcoin appears to jump. As
shown in Figure 1, the price of Bitcoin rose by more than 1900 percent in 2017, starting
the year at around USD 1000 and grazing almost USD 20,000 in mid-December. However,
there is still no clear explanation as to why there is a price jump, that is, a sudden spike
in interest. Bitcoin is notoriously volatile and has seen multiple booms and crashes. As
previously stated, these peaks are in line with price bubbles, and the current Bitcoin market
is comparable to the internet bubble of the late 1990s. A popular ambiguity model in finance
is the ambiguous volatility approach. Models with ambiguous volatility and jumps in
returns and volatility are quite different to contingent claims usages which have no analytic
solutions. A more effective approach was proposed by the implied diffusion approach
of Poisson jumps by Dupire [1] and Andersen and Andreasen [2]. They show significant
evidence that this technique exhibits some dominant in terms of capturing the form of a
smile or a skew of implied volatilities. In addition, there are several studies addressing
the valuation of options under jump-diffusion processes. In response, Ma et al. [3] apply
in univariate and self-exciting (i.e., Hawkes) jump-diffusion models to the valuation of
European-type contingent claims. Moreover, two different hedging strategies, which are
used for the option under a jump-diffusion model, were explored by He et al. [4]. Briefly,
there are two crucial problems when the underlying asset follows Merton [5] and Bates’ [6]
jump-diffusion process. First, the calibration is an ill-posed inverse problem, even for
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simple jump-diffusion models, and may lead to calibration bias of model parameters that
have serious effects on hedging performance and valuation of derivatives, see Cont and
Tankov [7]. Second, a contingent claim cannot be hedged perfectly with standard marketed
instruments available when the underlying asset returns follows a jump-diffusion with
possible jump size taking values on a continuum, see, e.g., Gómez-Valle and Martínez-
Rodríguez [8].
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Figure 1. Market Price of Bitcoin in the Bitcoin/USD exchange rate from 1 January 2015 to 28 February 2018. Notes. Jump 
effect of Bitcoin price revaluation on Bitcoin/USD exchange rate, huge jump starting from Q3/2017. 

The purpose of this paper is to address the important issue that cryptocurrencies in-
volve significant jump risks, in which they behave in a highly volatile manner, are vulner-
able to hacking, and most transactions are aimed at speculative investments in Bitcoin. 
The volatility and speculative nature of cryptocurrencies indicates the necessity for diver-
sification and hedging across market platforms (see Luther and White [9]). The conclusion 
reached so far is that Bitcoin are considered a store of value asset class or speculative in-
vestment, rather than a currency. As for the empirics of Bitcoin’s price, volatility observed 
in this market is a major concern, for example, Yermack [10] argued that Bitcoin prices are 
considerably more volatile than gold prices. In addition, Dowd and Hutchinson [11] draw 
a very drastic conclusion: “Bitcoin will bite the dust”. Furthermore, the preliminary find-
ings of current works (e.g., Ardia et al. [12], Fang et al. [13], Bouri et al. [14], Bouri and 
Gupta [15], and Cao and Celik [16]), argue that the heightened volatility of Bitcoin prices 
is likely to be driven by the uncertainty macroeconomics, e.g., the US–China trade war 
and the COVID-19 pandemic outbreak. Recently, a few studies have been devoted to com-
bining the Bitcoin literature with that on option pricing to construct Bitcoin option pricing 
models with dynamic jumps. There are several notable papers on this topic, such as Scail-
let, Treccani, and Trevisan [17], Siu and Elliott [18], Jalan, Matkovskyy, and Saqib [19], 
which have documented the earlier analysis. However, these literatures do not provide a 
specific measure by detecting jumps for implied volatility in jump-diffusion models, and 
the option is hedged with the underlying Bitcoin. 

In this paper, we focus on theoretical properties for the suggested model; the choice 
for the most suitable model parameters among the ones proposed in the literature is made 
in view of market data considering historical volatility and jumps (e.g., Hilliard et al [20]). 
It is worth noting that a market for these contingent claims has recently appeared in the 
existing literature, such as Kapetanios, Neumann, and Skiadopoulos [21] and Qiao et al. 
[22]. 

Our study makes the following contributions: From a theoretical viewpoint, it con-
tributes to a recently emerged literature in two ways. First, the model is proven to elabo-
rate on how Bitcoins can be captured using a fast calibration in the Bates jump-diffusion 
process. Second, we conduct an in-depth investigation of hedging strategies with perfect 
replication of a contingent claim. The paper empirically analyses the behavior of Bitcoin 
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The purpose of this paper is to address the important issue that cryptocurrencies
involve significant jump risks, in which they behave in a highly volatile manner, are
vulnerable to hacking, and most transactions are aimed at speculative investments in
Bitcoin. The volatility and speculative nature of cryptocurrencies indicates the necessity
for diversification and hedging across market platforms (see Luther and White [9]). The
conclusion reached so far is that Bitcoin are considered a store of value asset class or
speculative investment, rather than a currency. As for the empirics of Bitcoin’s price,
volatility observed in this market is a major concern, for example, Yermack [10] argued
that Bitcoin prices are considerably more volatile than gold prices. In addition, Dowd
and Hutchinson [11] draw a very drastic conclusion: “Bitcoin will bite the dust”. Further-
more, the preliminary findings of current works (e.g., Ardia et al. [12], Fang et al. [13],
Bouri et al. [14], Bouri and Gupta [15], and Cao and Celik [16]), argue that the heightened
volatility of Bitcoin prices is likely to be driven by the uncertainty macroeconomics, e.g., the
US–China trade war and the COVID-19 pandemic outbreak. Recently, a few studies have
been devoted to combining the Bitcoin literature with that on option pricing to construct
Bitcoin option pricing models with dynamic jumps. There are several notable papers on this
topic, such as Scaillet, Treccani, and Trevisan [17], Siu and Elliott [18], Jalan, Matkovskyy,
and Saqib [19], which have documented the earlier analysis. However, these literatures do
not provide a specific measure by detecting jumps for implied volatility in jump-diffusion
models, and the option is hedged with the underlying Bitcoin.

In this paper, we focus on theoretical properties for the suggested model; the choice for
the most suitable model parameters among the ones proposed in the literature is made in
view of market data considering historical volatility and jumps (e.g., Hilliard et al [20]). It is
worth noting that a market for these contingent claims has recently appeared in the existing
literature, such as Kapetanios, Neumann, and Skiadopoulos [21] and Qiao et al. [22].

Our study makes the following contributions: From a theoretical viewpoint, it con-
tributes to a recently emerged literature in two ways. First, the model is proven to elaborate
on how Bitcoins can be captured using a fast calibration in the Bates jump-diffusion process.
Second, we conduct an in-depth investigation of hedging strategies with perfect replica-
tion of a contingent claim. The paper empirically analyses the behavior of Bitcoin prices;
we contribute to the literature by fitting the calibrated model combining the ambiguous
parameters and detecting spurious jump component from Table 1.
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Table 1. Descriptive statistics on significant jumps using LM statistics.

Q1 Q2 Q3 Q4
No. of
Jumps

P(Jump
freq.)

No. of
Jumps

P(Jump
freq.)

No. of
Jumps

P(Jump
freq.)

No. of
Jumps

P(Jump
freq.)

2015 45 0.125 52 0.1429 61 0.1685 44 0.1196
# Observations 360 364 368 368

2016 45 0.1236 42 0.1154 47 0.1291 37 0.1016
# Observations 364 364 368 368

2017 38 0.1056 36 0.0989 50 0.1359 41 0.1114
# Observations 360 364 368 368

2018 35 0.1483
# Observations 236

# jumps 573
(Mean)

(Std. dev.)
(Total Obs.

(0.124)
(0.02)
4,620

Regarding number of jumps and jump intensity, we further provide the total number jumps (# jumps), their proportion (%) over sample
observations, i.e., expressed as (P(jump) = 100(#jumps/#obs.)), and their mean and standard deviation of full sample observations (values
in parentheses). Quarterly estimates for BTC and no. of jumps represents number of detected jumps, and P (jump freq.) implies the
proportion of observations with a significant jump arrivals at α = 0.05. LM statistics represent the Lee and Mykland [23] jump test statistic.

The rest of the paper is s organized as follows. In Section 2, we briefly describe the
jump detection technique to capture the Bitcoin price dynamics and calculus the intensity of
the jumps. In Section 3 we introduce a quasi-closed formula for European-style options for
Bitcoin derivations pricing and computation of Greeks. Section 4 is devoted to a numerical
application and some preliminary results. Finally, Section 5 offers some concluding remarks.
Most technical proofs are provided in the Appendix.

2. Methodology
2.1. Jump Detection Methodology

The evolution of Bitcoin prices under jump-diffusion processes can be expressed the
following stochastic differential equation as:

d log Pt = µtdt + σ(t)dWt + YtdJt (1)

where µt, σ(t) and Wt are the drift and volatility stochastic processes and the Brownian
motion, respectively, such that d log Pt denotes an Itô process with continuous sample paths;
Jt is a counting process that controls the jumps arrival; and Yt represents the jump size.

Due to competing approaches, the study uses Lee and Mykland’s [23] jump detection
technique to identify whether there are any arrival jumps in Bitcoin prices for a review
of frequency jump detection. Moreover, the jump detection test proposed by Lee and
Mykland [23] can identify jumps that occur at any time during the trading day in financial
assets, whereas the other jump tests in the existing literature can merely examine the
daily discontinuous sample-path, see Dumitru and Urga [24]. The discrete time returns of
Equation (1) are expressed as follows:

Rt= log (Pt ) − log (Pt−1) (2)

where Rt is the log return. Additionally, to formally define our empirical volatility measures
on the trading day t, we sum the squared j-th intraday returns by:

RVt =
M

∑
j=1

R2
t,j (3)
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where M refers to the number of observations within the measurement time frame. Multiply
the above estimator by π/2, a consistent estimator for quadratic variance in the arrival
jumps, to obtain the realized bipower variation (BV) as follows:

BVt ≡
π

2
M

M− 1

M

∑
j=2

∣∣Rt,j
∣∣∣∣Rt,j−1

∣∣ (4)

where the M
M−1 term indicates a finite sample correction. Therefore, an empirically more

robust measure was developed by Huang and Tauchen [25] as the following relative jump
statistic, defined as:

RJt =
RVt − BVt

RVt
(5)

or the corresponding (approximate) logarithmic form can be expressed as:

RJt ≡ log RVt − log BVt (6)

In addition, both BVt and RJt, in order to capture the distinct components, are calcu-
lated for the total daily price variation. Therefore, the jump detection statistic is defined as:

L(i) =
Rt,i

σ̂t,i
(7)

where σ̂t,i
2 = 1

K−2 ∑i−1
j=i−K+2

∣∣Rt,j
∣∣∣∣Rt,j−1

∣∣, and K is the window size. Additionally, Lee and
Mykland [23] construct a rejection region to test the null hypothesis of no jump at (ti−1, ti]
at a given significance level α meeting the following condition:

|L(i)| − Cn

Sn
> − log(− log(1− α)) (8)

where Cn =

√
2 log n

0.7979 −
log π+log(log n)
1.5958

√
2 log n

, Sn = 1
1.5958

√
2 log n

. The null hypothesis of no jumps

is rejected whenever L(i)− Cn
Sn

> β* exceeds the critical value β* under a significance level of
α= 0.05. For a given confidence level α is obtained with β* such that exp(—e−β∗ ) = 1− α = 0.95,
namely, β*= − log(− log(0.95)) = 2.9702. This procedure can be expected to detect only a
spurious jump in a given sample of n observations. Finally, by the above procedure, we
can obtain the jump intensity, and these results can later be applied as a setting parameter
to calibrate in the Bates model.

2.2. The Bitcoin and Its Options Market Model

To model uncertainty, we consider a complete, filtered, probability space (Ω,F , P)
with a right-continuous filtration (Ft)t>0 that satisfies the usual conditions of completeness
on which is defined the price process S = (St)t of a Bitcoin asset. This asset serves us later
as underlying European derivatives. Using Ito’s Lemma, the corresponding model for
the Bitcoin price under the physical probability measure P, the Bitcoin price whose return
dynamics are given by the following:

dSt

St
=
(

µ− λk
)

dt + σWt + kdNt (9)

where µ,σ are the instantaneous expected return and the instantaneous volatility, respec-
tively, scaled to correspond to the unit time interval; Wt denotes a standard Wiener process
under the market measure P. The Nt follows a Poisson counting process, with the mean
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number of jumps per unit time λ under the measure P so that arrival jump intensity is also
given by:

dNt =

{
0 with probability 1− λdt,

1 with probability λdt.
(10)

where k is magnitude of the sudden jumps, the expected proportional jump size takes
the form:

k ≡ EP
(

eJ − 1
)

.

We next extend the jump-diffusion model and obtain a diffusion approximation as the
following right-continuous process, also called the Levy–Itô decomposition:

St = S0 +
[
b− λk

]
t + σWQ(t) + k

N(t)

∑
i=1

Ji (11)

where S0 is the initial price level of Bitcoin and b is cost-of-carry for Bitcoin options. Their
price dynamics follow the stochastic differential equation described by:

dSt

St
=
(

b− λk
)

t + σWQ(t) + (Ji − 1)dNt (12)

Suppose Zt is a jump-diffusion process with evolution given by:

Zt = Z0+
∫ t

0
as ds +

∫ t

0
σdW + ∑Nt

i=1 ∆Zi (13)

where as is the drift term, σ is the volatility term, and ∆Zi corresponds to jump i in the
Bitcoin price. Then, using Ito’s formula for jump-diffusions, the stochastic equation can be
further obtained as follows:

lnSt = lnS0 +

[
b− λk− σ2

2

]
(t) + σWt +

Nt

∑
i=1

lnJi (14)

We next obtain the following after taking the exponential of the previous equation

St = S0 exp
{(

b− σ2

2

)
t + σWt

}
exp

(
Nt

∑
i=1

lnji

)
(15)

It is worth recalling the assumption that the price fluctuation of Bitcoin follows a
log-normal diffusion process with jumps. Specifically, using the previous definition of the
price log-return jump size, that is lnji ≡ Ji. Then, for a given under jump-diffusion, the
corresponding Bitcoin price fluctuations process St satisfies the stochastic equation

St = S0exp
[(

b− σ2

2

)
t + σWt

]( Nt

∏
i=1

Ji

)
(16)

2.3. Fourier Transform and Moments of Bitcoin’s Returns Dynamic

From the above model, several interesting implicit parameters, such as implied total
annual volatility, can also be found. When the underlying process under P is defined by
Equation (9), then the log return process is given by:

Ln St
S0

=

[(
α− 1

2 σ2 − λk
)

t + σWt +
Nt
∑

i=1
ln(ji)

]
=
[(

α− 1
2 σ2 − λk

)
t + σWt + ∑Nt

i=1 ln(ji)
] (17)
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The characteristic function of the Bitcoin’s log-return process can be expressed as the
following expectation by using the Fourier transform of the log-return density function.

Fω(ln St
S0
) =E

[
exp
(

iω ln St
S0

)]
= E

[
exp
(

iω
(

α− 1
2 σ2 − λk

)
t
)]

E[exp(iω σWt)]E[exp(∑Nt
i=1 iω Ji )]

= exp
[
iω
(

α− 1
2 σ2 − λk

)
t
]
exp
[

1
2 (iω σ)2t

]
E[exp(∑Nt

i=1 iωln(ji) )]

= exp
[
iω
(

α− 1
2 σ2 − λk

)
t− 1

2 (ω σ)2t
] [

exp
(
λtE

(
jiω − 1

) )]
= exp

[
iωαt− 1

2 iωσ2t− iωλkt− 1
2 ω2σ2t + λtE

(
jiω − 1

)]
Fω

(
ln St

S0

)
= exp

{
iωαt− 1

2 iω(1− iω )σ2t + λ[E
(

jiω − 1
)
− iωk]t

}
(18)

Accordingly, the density function is based on the PDF of Poisson counter data, using
the property of the law of iterated expectation and progresses to the Taylor expansion
of exponential function. Note that all ji are identically distributed as j. Expectation of
E
(

jiω − 1
)

is also expressed with the law of iterated expectations. Therefore, moments of
the returns dynamic can be calculated by the inverse Fourier transforms of the characteristic
function. The mean and the volatility of Bitcoin’s log-returns process are obtained by the
derivatives of the aforementioned characteristic function as follows:

E
(

ln St
S0

)
= (−i) ∂F

∂ω |ω=0 =
[
α− 1

2 σ2 + λE(lnj)− λk
]
t

Var
(

ln St
S0

)
= (−i)2 ∂2F

∂ω2 |ω=0 = {σ2 + λ[E(lnj)]2 + λVar(lnj)}t

When the jump size is log-normal, ln(jt)~N
(

αj − 1
2 σ2

j , σ2
j

)
or j ∼ logN[eαj , e2αj(eσj − 1)]

E
(

ln
St

S0

)
=

[
α− 1

2
σ2 + λ

(
αj −

1
2

σ2
j

)
− λk

]
t (19)

Hence, the total variance of the natural logarithm of the Bitcoin price under a jump-
diffusion process is given by:

Var
(

ln
St

S0

)
=

{
σ2 + λ

[
(αj −

1
2

σ2
j )

2
+ σ2

j

]}
t (20)

In the risk-neutral probability process JQ = lnjQ~N
(

αj − γσ2
j −

1
2 σ2

j , σ2
j

)
.

Consequently:

FQ
ω

(
ln

St

S0

)
= exp

[
iωrt− 1

2
iω(1− iω )σ2t + λQt

[
EQ
(

jiω − 1
)
− iωk

Q]]
(21a)

EQ
(

ln
St

S0

)
=

[
r− 1

2
σ2 + λQ

(
αj − γσ2

j −
1
2

σ2
j

)
− λQk

Q
]

t (21b)

VarQ
(

ln
St

S0

)
=

{
σ2 + λQ

[
(αj − γσ2

j −
1
2

σ2
j )

2
+ σ2

j

]}
t (21c)

Equations (21a)–(21c) synthesize and depict completely the mapping from the risk-
neutral measures P to Q for transform analysis of affine jump-diffusion options pricing,
given the assumption that the representative investor has a CRRA utility. The next theorem
provides the European call option price.
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2.4. Pricing Contingent Claims of Bitcoin under Jump-Diffusion

In the market model outlined above, pricing contingent claims of Bitcoin can be
expressed, and its value is given by:

Ca(S, X, τ) =
∞

∑
i=0

e−λQτ
(
λQτ

)i

i!
CBS(S, X, b, τ, r, σs) (22)

Or equivalently as follows:

Cai(S, X, τ) = POi(λτ)
[
Ste−bτ N(d1i)− Xe−rτ N(d2i)

]
(23a)

A European put option has an analogous jump-diffusion formula

Pui(S, X, τ) = POi(λτ)
[

Xe−rτ N(−d2i)− Ste−bτ N(−d1i)
]

(23b)

where

Poi(λτ) =
∞

∑
i=0

e−λQτ
(
λQτ

)i

i!

and:

• X: the strike price of Bitcoin; St: the underlying price of Bitcoin at time t.
• σs: Volatility of the price variation based on no jump.
• r : risk-free rate, λ and b are as before.

In Proposition 1, we offer a pricing method that can calculate Ca. To price Bitcoin, a
risk–neutrality measure Q is required which is equivalent to real-world measure P, such
that the discounted asset price process is a martingale. Alternative interpretation of Bitcoin
pricing with jump-diffusion Q is a risk-neutral measure. Therefore, the Merton options
pricing formula can be interpreted as the weighted sum of individual Black–Scholes values,
that the probability of i jumps will occur during the life of the option.

Proposition 1. Suppose the Bitcoin price follows the dynamics of (16), and the corresponding
model for the European call option price Ca is given by

Ca(S, X, τ) = ∑∞
i=0

e−λ∗τ(λ∗τ)i

i!

[
StN(d1i)− Xe−riτ N(d2i)

]
(24)

where

d2i =
ln St

X + (ri − λ∗k∗ + σ2
i
2 )τ

σ2
s τ + iσ2

J

and
d2i = d1i − σi

√
τ

with
α ≡ α + γσ2

J
λ∗ = λ∗(1 + k∗)
k∗ = exp

(
α + σ2

J /2
)
− 1

ri = (b− λk)τ +
(

α− σ2
J /2

)
i

σ2
i = σ2

s τ + iσ2
J or σi =

√
σ2

s τ + iσ2
J

τ ≡ T − t time to expiration

Proof of Proposition 1. A Bitcoin option with a payoff of the form φ(Sτ) = (Sτ − X)+ on
the underlying asset Sτ can be written as φ(Sτ)e−rt, which is a martingale under Q. The ex-



Mathematics 2021, 9, 2567 8 of 24

pectation operator EQ[.] under the risk-neutral measure, which is a conditional expectation
of the discounted final payoff with a solution for option prices, can be denoted as:

φ(Sτ) = ertEQ

[
φ(Sτ)

ert

∣∣∣∣Ft

]
(25)

Note that the option price discounted by the money market account e−rt is a martingale
in the martingale measure Q. Substituting b = r-g into (14) with the non-dividend yield on
Bitcoin option, that is g = 0, we can proceed to the next step. Let A = {Sτ > X} be the event
that the option is in-the-money at maturity. Event A is equivalent to the event that:

σiWτ +
Nτ

∑
i=1

Ji > ln
St

X
−
(

r− λ∗k∗ −
σ2

i
2

)
τ (26)

Hence, in (25), the call option price is

φ(Sτ) = e−rtEQ[(St − X)IA]

= Ste−rτEQ

[
e−

σ2
i
2 τ+σiWτ+∑Nτ

i=1 Ji−λ∗k∗τ)IA

]
− Xe−rτEQIA

= StQ̃(A)− Xe−rτQ(A)

(27)

wherein (27), the Radon–Nikodym derivative is

dQ̃
dQ

∣∣∣∣∣
τ

= e−
σ2

i
2 τ+σiWτ+∑Nτ

i=1 Ji−λ∗k∗τ

from which we note that

Q(A) =
∞

∑
i=0

e−λ∗τ(λ∗τ)i

i!
N(d2i) (28)

where

d2i =
ln St

X + (ri − λ∗k∗ + σ2
i
2 )τ

σ2
s τ + iσ2

J

For a selected γ and ν in the Radon–Nikodym derivative, we can obtain from the
application of the derivative Cheang et al. [26] that the jump-sizes will follow normally
distributed with mean α = α + γσ2

j with the same variance σ2
j under the equivalent

martingale measure Q. Moreover, under the measure Q̃ and the Wiener component σiW̃τ

is normally distributed and J is normally distributed and the Poisson process Nt has the
new intensity of the jump-arrivals λ∗ = λ∗(1 + k∗).

Hence:

Q̃(A) =
∞

∑
i=0

e−λ∗τ(λ∗τ)i

i!
N(d1i) (29)

where
d1i = d2i + σi

√
τ

By plugging Equations (28) and (29) into Equation (27), we can obtain Equation (24).
Consequently, the proof of Proposition 1 is completed. �

Throughout this paper, we shall consider the Bates model as an extension of a Merton
jump-diffusion model. The diffusion based on stochastic volatility models cannot capture
the asymmetry of short-term price returns to describe implied volatility skews of the
options for short maturities. The combined stochastic volatility and jump-diffusion (SVJD)
processes introduced by Bates can deal with this puzzle by incorporating jump components
to the Heston stochastic volatility model. The benefit of the Bates model also reflects the
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‘jump fear’ of the participants had experienced from the markets crash. The SVJD processes
also provide the explanation to the distinction between skew and smile with respect to
the asymmetry of jumps expected by the index options market, e.g., the fear of a great
downward jump causes a downward skew (Cont and Tankov [7]). Therefore, Proposition 1
describes the closed-form expression for the Bates model.

Proposition 2. In the market model outlined above, consider a European call option, Ca with
maturity t or T , and strike X written on a futures contract with maturity T, where t ≤ T .
Whereas Bitcoin prices follow a jump-diffusion process, the closed form solutions of contingent
claims Call/Put can be obtained from:

Ca(S, X, τ) = POi(λτ)
[
Ste−biτ N(d1i)− Xe−rτ N(d2i)

]
(30)

Pu(S, X, τ) = POi(λτ)
[

Xe−rτ N(−d2i)− Ste−biτ N(−d1i)
]

(31)

where

Poi(λτ) =
∞

∑
i=0

eλ∗τ(λ∗τ)i

i!

d1i =
ln St

X + bi +
σ2

i
2

σi
, d2i =

ln St
X + bi −

σ2
i
2

σi

and

bi = (b− λk)τ +

(
σs −

σ2
J

2

)
i

k∗ ≡ exp
(

σs −
σJ

2

)
− 1,

d2i ≡ d1i − σi

σ2
i = σ2

s τ + iσ2
J , or σi =

√
σ2

s τ + iσ2
J

Proof. See Appendix A. Appendix A provides the proof of Proposition 2 and the Xt values
are the terminal Bitcoin drawn from the distribution of the equation. On the other hand,

notice that if the ∑∞
i=0

eλ∗τ(λ∗τ)i

i! term of Equation (30) can be simplified into 1, then Equation
(30) can be written as the B-S formula, one:

Cai(S, X, τ) = Ste−biτ N(d1i)− Xe−rτ N(d2i) (32)

�

Remark 1. In the proof of Proposition 2, the decomposition of the option price in Equation (32) is
similar to that obtained by Geman et al. [27] for the pure-diffusion case. As the jump size becomes
smaller and smaller, that is, the jump rate is equal to zero, λ = 0, then the pricing formulae again
degenerate to the Black–Scholes option formula. Substituting the Black–Scholes call/put price into
Equations (30) and (31), yield the value of a call/put option, respectively.

3. Option Hedging for Bitcoin Market

For each option pricing model, certain risk metrics can be computed and be managed
their risk by analyzing Greeks. The sensitivities of the option price can represent the
different dimensions of the risk in a Bitcoin option.

3.1. Option Hedging for Bitcoin Derivatives and Computation of Greeks

Before proceeding, it should be mentioned that option Greeks are widely adopted to
measure risk exposure and hedging. More precisely, Appendix B provides the proof for the
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derivation results of Delta, Gamma, Theta, Vega, and the option Rho, and are summarized
as follows:

1. Delta (∆)

∆Ca = Poi(λτ).e−biτ N(d1i) (33)

∆Pu = Poi(λτ).e−biτ [N(d1i)− 1] (34)

The algorithm describes the first-order sensitivity of call options price with respect to
the underlying rate is known to option traders as ‘Delta’, i.e., ∆Ca .

2. Gamma (Γ)

Gamma represents the second derivative of the option’s price concerning the under-
lying price. Hedges of gamma risk are generally accompanied by a delta hedge, with an
option’s delta being the first partial derivative of the option price with respect to changes
in the underlying asset’s price.

ΓCa = Poi(λτ)
e−biτ

σi
√

τSt
N′(d1i) (35)

ΓPu = Poi(λτ)
e−biτ

σi
√

τSt
N′(d1i) (36)

where N′(di) =
1√
2π

e−
d2

i
2 .

3. Theta (Θ)

ΘCa = [biPoi(λτ) + λPoi−1(τ)− λPoi(τ)][Ste−biτ N(d1i)]−
[rPoi(λτ) + λPoi−1(τ)− λPoi(τ)][Xe−rτ N(d2i)]

(37)

ΘPu = [rPoi(λτ) + λPoi−1(τ)− λPoi(τ)][Xe−rτ N(−d2i)]− [biPoi(λτ)+
λPoi−1(τ)− λPoi(τ)][Ste−biτ N(−d1i)]

(38)

4. Vega (ν)

Vega indicates the amount that an options option’s price changes in reaction to changes
by one percentage point in the implied volatility of the underlying asset. One approach
to managing risk is to establish a hedge against the implied volatility exposure of the
underlying asset.

νCa = Poi(λτ)Ste−biτ
√

τN′(d1i) > 0 (39)

νPu = Poi(λτ)Ste−biτ
√

τN′(d1i) > 0 (40)

5. Rho

RhoCa= Poi(λτ)Xτe−rτ N(d2i) > 0 (41)

RhoPu= −Poi(λτ)τXe−rτ N(−d2i) < 0 (42)

3.2. Derivation of Sensitivity for Bitcoin Options Respective with Exercise Price

Proposition 3 incorporates our results in as far as the jump components for the
European-style options contracts.

Proposition 3. In the Poisson jump-component type model with lognormally distributed jump
sizes at the Bitcoin price, the value of a European call option under the locally risky minimizing
hedging strategy is given by Ca(S, X, τ). The Bitcoin option is convex in (S, X). However, the
function is not strictly convex. In addition, the specific property of a put option Pu(S, X, τ) is
similar to a call option.
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Proof. Before proving the proposition we first outline the following definitions:

Definition 1. A matrix A is positive semidefinite if and only if all its principal n minors (not just
leading) are nonnegative.

Definition 2. Let f : U → R be a twice differentiable function f ′′ (x), where U ∈→ Rn is a
convex open subset. It follows that: f is positive semidefinite on Rn if and only if all its principal
minors are positive or zero. Its second derivative Hessian matrix f ′′ (x) is positive semidefinite for
x ∈ U if and only if a function f is convex. If f ′′ (x) is positive definite for every x ∈ U, then f is
strictly convex.

Then, in sensitivity analysis, the optimal hedge is approximated at first-order by the
ratio. For a European call option on a Bitcoin option, the sensitivity can be shown as:

∂Ca

∂X
= −Poi(λτ)e−rτ N(d2i) (43)

The derivation for Equation (41) with respect to X,S are written as

∂2Ca
∂X2 = −∂POi(λτ)e−rτ N(d2i)

∂X = POi(λτ)e−rτ N′(d2i)
Xσ
√

τ
> 0

∂2Ca
∂X∂S = −∂POi(λτ)e−rτ N(d2i)

∂S = −POi(λτ)e−rτ N′(d2i)
Sσ
√

τ
< 0

∂2Ca
∂S∂X = ∂POi(λτ).e−biτ N(d1i)

∂X = −POi(λτ)e−biτ N′(d1i)
Xσ
√

τ
< 0

For simplicity, the term of ∂2Ca
∂S2 yields Poi(λτ)e−biτ

σi
√

τSt
N′(d1i).

The above equations can be rearranged in the following matrix form and the Hessian
matrix of a Bitcoin option can now be written as:[

∂2Ca
∂S2

∂2Ca
∂S∂X

∂2Ca
∂X∂S

∂2Ca
∂X2

]
=

 Poi(λτ)e−biτ

σi
√

τSt
N′(d1i)

−POi(λτ)e−biτ N′(d1i)
Xσ
√

τ
−POi(λτ)e−rτ N′(d2i)

Sσ
√

τ

POi(λτ)e−rτ N′(d2i)
Xσ
√

τ

 (44)

The leading principal minors of the Hessian matrix is Poi(λτ)e−biτ

σi
√

τSt
N′(d1i) > 0 and

det|H| = 0. Therefore, according to Definition 1, the Hessian matrix is a positive semidefinite
matrix, which indicates that Ca(S, X, τ) is convex in (S, X). In addition, according to
Definition 2, Ca(S, X, τ) is not a strictly convex function. Consequently, the corresponding
delta of a long position in a Bitcoin call option is a strictly positive (negative) number; or
equivalently, the call option price is a strictly increasing function of the Bitcoin price. For a
European put option on a Bitcoin option, the sensitivity can be shown as:

∂Pu

∂X
= Poi(λτ)e−rτ N(−d2i) (45)
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The process of derivation Equation (45) is shown as:

∂Pu
∂X = Poi(λτ)

[
e−rτ N(−d2i) + Xe−rτ ∂N(−d2i)

∂X − Ste−biτ ∂N(−d1i)
∂X

]
= Poi(λτ)

{
e−rτ [−N(d2i)] + Xe−rτ ∂[−N(d2i)]

∂d2i

∂d2i
∂X − Ste−biτ ∂[−N(d1i)]

∂d1i

∂d1i
∂X

}
= Poi(λτ)

{
e−rτ [−N(d2i)]− Xe−rτ

(
1√
2π

e−
d2

1i
2 . St

X .eriτ

)(
1

σi
√

τ

)
.−1

X + Ste−biτ 1√
2π

e−
d2

1i
2 .
(

1
σi
√

τ

)
.−1

X

}
= Poi(λτ)

{
e−rτ [−N(d2i)] +

1
σi
√

2πτ
e−

d2
1i
2 . St

X .e−biτ − 1
σi
√

2πτ
e−

d2
1i
2

(
St
X .e−biτ

)}
= POi(λτ)e−rτ N(−d2i)

Next, the derivation for Equation (45) with respect to X,S are written as:

∂2Pu
∂S∂X = ∂POi(λτ).e−biτ [N(d1i)−1]

∂X = −POi(λτ)e−biτ N′(d1i)
Xσ
√

τ
< 0

∂2Pu
∂X∂S = ∂POi(λτ).e−rτ N(−d2i)

∂S = −POi(λτ)e−rτ N′(d2i)
Sσ
√

τ
< 0

∂2Pu
∂X2 = ∂POi(λτ)e−rτ N(−d2i)

∂X = −POi(λτ)e−rτ N′(d2i)
−Xσ

√
τ

> 0

After slightly rearranging the above equations, these equations correspond to the
Hessian matrix of a Bitcoin put option is shown as:[

∂2Pu
∂S2

∂2Pu
∂S∂X

∂2Pu
∂X∂S

∂2Pu
∂X2

]
=

 Poi(λτ)e−biτ

σi
√

τSt
N′(d1i)

−POi(λτ)e−biτ N′(d1i)
Xσ
√

τ
−POi(λτ)e−rτ N′(d2i)

Sσ
√

τ

POi(λτ)e−rτ N′(d2i)
Xσ
√

τ

 = 0 (46)

Similarly, the leading principal minors of the Hessian matrix are also Poi(λτ)e−biτ

σi
√

τSt
N′(d1i) > 0

and det|H| = 0. Therefore, according to Definition 1, the Hessian is a positive semidefinite
matrix. Similarly, Pu(S, X, τ) is convex in (S, X). According to Definition 2, Pu(S, X, τ) is
not a strictly convex function. Thus, the proof of Proposition 3 is completed. �

In general, the price of a Bitcoin put option serves in the same direction as a short
position in the specific portfolio. In particular, to short the specified number of underlying
Bitcoin shares is necessary to hedge a written put option for investors.

More generally, we can adopt the preceding convex property for the contingent claim
function based on convex risk measures of probability measures, making it useful for other
applications beyond estimation. Next, we proceed to capture parameter uncertainty by
using convex risk measures for all derivatives without exposure to model (parameter)
risk. Due to the uncertainty that emerges from the estimator’s volatility and possible bias,
adequately specified parameters of a financial model are applied to the case of historical
estimation. Hedging contingent claims with computation of Greeks is assumed in different
model approaches based on convex risk measures in order to incorporate parameter risk
and to transform it into Bitcoin derivatives prices, extending the results in Cont and
Tankov [7] and Bannör and Scherer [28].

4. Numerical Application

The estimation procedures for fast calibration in the jump-diffusion model will be
exhibited as follows:

First, estimates for the jump intensity parameter λ from Table 1 will be needed. The
Bitcoin market data employed for the jump detection on the empirical research will be
described. As closed-form solutions are available for the Bates implied volatility from the
asymptotic formulas, this approach improves the calibration efficiency.

Second, with the setting parameters received from the calibration procedures, Bitcoin
option prices, with Bates’ semi-closed form solution (Equation (30)), were computed. The
calibration results are shown as volatility surface and smiles.
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For the empirical investigation in the study, we select the historical Bitcoin data
from 1 January 2015 to 28 February 2018, which consists of 4620 daily collected data.
The dataset is adopted from the Bitcoin Price Index (BPI) traded daily on CoinDesk
(https://www.coindesk.com/price/bitcoin/ (accessed on 01 October 2018)). In prac-
tice, the Bitcoin Price Index of CoinDesk indicates an average Bitcoin price across leading
Bitcoin exchanges and their rate between the US dollar (USD) and the Bitcoin. The Bitcoin
return profile of log-returns representing Rt = log(St/St−1) is shown in Figure 2. The
magnitude of log-returns depicts from 0.25 to −0.25 and exhibits asymmetry phenomenon.
Additionally, Figures 2 and 3 display both the persistence and asymmetry features in
Bitcoin return volatility. As expected, the RVt, BVt, and RJt are all robust in detecting
irregular jump arrivals and market structure noise. To further analyze the jump dynamics,
we provide quarterly statistics of the significant jump components for a critical value of
α = 0.05 in Table 1. The observations have a jump range of 0.099 to 0.169 for the sample
period, with an average of 0.124. As a comparison shown in Table 1, the intensity of
the exact jump is the highest during the Q3 in any given year of the sample period. For
example, in 2015, there are 45, 52, 61, and 44 jumps in Q1, Q2, Q3, and Q4, respectively.
Similar patterns exist in other years. The jump intensity also varies across years. Hence,
jumps appear to be time-varying.
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The following empirical results illustrate some of the rich implications of pricing
contingent claims on Bitcoin following jump-diffusions. The real-world probabilities
calculated from historical price data is referred to as physical or market probabilities
measure P. Accordingly, the estimated model parameters can be used in the option pricing
under the risk-neutral pricing measure Q for price all options. Consider constructing a
portfolio that includes a contingent claim (e.g., a call option) having price S, an underlying
asset whose price follows the process given in Equation (16). For the simulations, we used
the following model parameters: cost-of-carry (b) = 5%, the riskless interest rate r = 0.02,
option’s time to maturity (τ) = 1, 3, or 6 months(M), and nonzero value of the mean jump
size or expected jump size k = −0.05. The Bitcoin price at time t = 0 is set to S0 = 11,000,
which is the average price from 26–31 January, 2018, and σB

2 = 0.25 refers to the annualized
5- or 30-day historical volatility of the Bitcoin Price Index (BPI). Early examples of the use of
this for jump components can be found in Haug [29], Beckers [30], and Ball and Torous [31].
More importantly, in Tables 2 and 3, the base parameters of the jump intensity λ are set
to 9.89%, 13.5%, and 16.85%, the magnitudes are filtered from the empirical outcomes in
Table 1, include jump means uj,t= 0.124, and jump volatilities δ = 0.02.

https://www.coindesk.com/price/bitcoin/
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No. of 
Jumps P(Jump freq.)

No. of 
Jumps P(Jump freq.) 

No. of 
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2015 45 0.125 52 0.1429 61 0.1685 44 0.1196 
# Observations 360  364  368  368  
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# Observations 364  364  368  368  
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# Observations 360  364  368  368  

2018 35 0.1483      
# Observations 236       

# jumps  573 
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(Std. dev.) 
(0.124) 
(0.02) 

𝑅𝐽  
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Figure 3. Time series of the Bipower variation, realized volatility, and the relative jump and jump statistic component for
Bitcoin prices. The top panel of the figure depicts the BVt (Equation (4)), the second panel plots for respective graphs the
daily realized volatility RVt (Equation (3)); the third panel plots the relative jump component RTt (Equation (6)); and the
bottom panel depicts the jump statistic L(i) (Equation (7)) at significance α = 0.05.
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Table 2. Calculating Bitcoin Call Option Valuation with Merton Jump-Diffusion.

σB
2 Strike

S = 11, 000, δ = 0.02, r = 0.02, ¯
k = −0.05, b = 5 (%)

λ = 9.89%
Time to Maturity

λ = 13.5%
Time to Maturity

λ = 16.85%
Time to Maturity

1M 3M 6M 1M 3M 6M 1M 3M 6M

9000 2014.78 2044.27 2088.59 2014.79 2044.28 2088.58 2014.80 2044.29 2088.57
10,000 1016.44 1053.38 1119.73 1016.43 1053.37 1119.72 1016.45 1053.39 1119.74

0.1 11,000 134.84 245.47 363.59 134.83 245.45 363.58 134.85 245.49 363.57
12,000 0.13 11.66 55.22 0.14 11.67 55.23 0.12 11.68 55.24
13,000 0.01 0.08 3.65 0.01 0.07 3.66 0.01 0.06 3.64

9,000 2015.28 2069.29 2185.76 2015.27 2069.28 2185.76 2015.28 2069.30 2185.76
10,000 1046.95 1203.09 1407.02 1046.94 1203.08 1407.02 1046.95 1203.07 1407.02

0.25 11,000 323.31 570.56 820.85 323.30 570.57 820.85 323.31 570.57 820.85
12,000 46.99 216.75 434.98 46.99 216.74 434.97 46.99 216.76 434.98
13,000 3.06 66.48 211.10 3.05 66.49 211.11 3.06 66.58 211.10

9000 2065.65 2324.81 2670.25 2065.64 2324.80 2670.26 2065.65 2324.831 2670.27
10,000 1239.45 1642.23 2069.64 1239.46 1642.24 2069.63 1239.45 1642.25 2069.65

0.5 11,000 637.06 1111.34 1580.02 637.07 1111.33 1580.03 637.06 1111.37 1580.04
12,000 279.18 723.76 1191.25 279.17 723.77 1191.26 279.18 723.78 1191.27
13,000 105.35 455.94 889.10 105.36 455.92 889.11 105.35 455.95 889.15

European options prices were computed using equation (22). Numerical results are based on historical parameter estimates and then
calibration of the Merton volatility jump-diffusion model is simultaneously applied to call options. Calibrated parameters as follows: initial
volatility = 10%, 25%, and 50%, and mean jump size is −0.05. In addition, jump intensity λ = 0.0989, 0.135, and 0.1685, jump means = 0.124,
and jump standard deviation = 0.02, among the jump distribution are calculated from Table 1.

Table 3. Calculating Bitcoin Call Option Valuation with Bates Jump-Diffusion.

σB
2

S = 11, 000, δ = 0.02, r = 0.02, ¯
k = −0.05, b = 5 (%)

λ = 9.89%
Time to Maturity

λ = 13.5%
Time to Maturity

λ = 16.8%
Time to Maturity

1M 3M 6M 1M 3M 6M 1M 3M 6M

9000 2050.00 2187.91 2410.51 2057.83 2227.12 2488.79 2065.43 2259.81 2550.17
10,000 1114.09 1350.15 1646.38 1146.09 1426.31 1764.11 1171.19 1482.95 1850.13

0.1 11,000 381.98 704.14 1040.01 447.37 806.26 1183.55 489.41 878.62 1285.27
12,000 49.05 295.50 603.86 89.59 392.93 750.66 121.84 463.55 855.31
13,000 0.32 94.32 320.94 3.76 161.27 450.09 11.37 215.11 545.86

9000 2060.35 2249.91 2539.11 2071.18 2292.66 2615.41 2080.69 2326.57 2674.05
10,000 1161.11 1472.97 1840.52 1193.35 1541.26 1941.94 1218.07 1592.42 2017.41

0.25 11,000 486.37 874.77 1280.33 534.45 957.44 1396.49 569.87 1018.31 1481.99
12,000 113.63 468.59 856.52 169.57 548.11 974.78 197.93 607.68 1062.35
13,000 21.77 226.28 552.67 35.06 289.33 662.17 47.64 338.81 744.89

9000 2128.68 2495.99 2961.99 2143.91 2535.12 3022.75 2156.08 2565.66 3069.84
10,000 1332.08 1834.29 2375.33 1358.67 1883.84 2446.11 1379.26 1922.06 2500.62

0.5 11,000 737.67 1306.54 1886.12 769.45 1361.35 1962.91 793.95 1403.54 2021.95
12,000 359.96 905.03 1485.66 387.99 959.66 1564.53 409.98 1001.94 1625.31
13,000 164.43 611.86 1,162.73 174.89 662.07 1,240.36 190.58 701.33 1,300.48

European options prices were computed using Equation (30). Calibration of the Bates volatility jump-diffusion model is simultaneously
applied to call options. Calibrated parameters are the same as Table 2.

In Tables 2 and 3, the empirical outcomes are provided for pricing call options under
the Merton and Bates models, respectively. Tables 2 and 3 summarize the options pricing
under the jump-diffusion process for the setting parameters against several strikes (in
columns). As expected, the values of in-the-money (ITM) options decrease with respect to
strike prices while out of the money (OTM) values show similar results obtained by the
calibration procedure. The pricing values, which are tabulated with different choices of
strike price X, frequency of Poisson events λ, and volatility σ, are key differences for ATM
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prices values of Bitcoin options, while ITM and OTM options in Bitcoin are very small. This
may be justified by the fact that Bitcoin investors consider ambiguity neutrality with respect
to probabilistically sophisticated preferences to ambiguity averse market makers, even the
OTM and ITM ones, as the underlying value is expected to blow up. However, Bitcoin
investors prefer ATM options that are more likely to be exercised under ambiguous Bitcoin
market making, especially on jump-diffusion. Our findings should be interpreted with
caution. What we document here are the price of a call/put option is a strictly decreasing
(increasing) function of Bitcoin price depicted as Figure 4A,B, and which is violated from
the traditional theoretical call/put values (Theoretically, a long call option can only increase
the value of the option. Hence, the delta of a long call option is always positive. Another
way to look at this would be in terms of replicating a Bitcoin with options. The delta of a
long call option goes up when their underlying Bitcoin goes up. Therefore, more shares
of underlying assets, which are represented by the replicated options, should be held to
hedge a written call option). Such deviations may be the result of the jump risk of option
prices in the Bitcoin market (The value of a call option increases when the price of Bitcoin
increases, so the delta of a call option is positive. Conversely the value of a put option
decreases when the price of Bitcoin increases, so the delta of the put option is negative).
If an option holder can always realize the option’s theoretical value by selling (or delta
hedging) in the market, only a European call option is better than a Bitcoin call, as it can be
exercised just before stock becomes an ex-dividend.

Figure 4A–F depict the calibration results of the Greeks for Bitcoin options. As shown
in Figure 4A,B, the surfaces of the delta of call and put options display non-convex. These
Figures illustrate the difficulty of using the method based on convex risk measures to quan-
tify parameter risk. However, the Vega of call and put options, as depicted in Figure 4D,
appear to adequately specify the risk parameters with convex risk measures. Moreover,
Figure 4C shows that the volatility surfaces obtained using jump diffusion model exhibit
both smiles and skews for short maturities, which is also shown in Figure 4E. The findings
interpret that the benefits of incorporating these jumps flow over into option pricing, as
well as accurately capture the volatility smile in option prices (see Duan et al. [32]). Com-
pared to the study of Cretarola et al. [33], they have not considered Bitcoin prices with
jump innovations and not found volatility skews or smiles in Bitcoin options.

To summarize, jump-diffusion models shed light on an explanation of the implied
volatility smile phenomenon as the implied volatility is different from the historical volatil-
ity as well as varies as a function of strikes (see Tankov et al. [34]). Our observations meet
our expectations concerning Figure 5, which shows possible implied volatility patterns (as
a function of strikes) in the Merton–Bates jump-diffusion model.

Stability across Strikes

Calibrated parameters for the Greek of above equations are set to time to maturity
(τ) = 3 month(M), risk-free rate (r) = 2%, cost of carry (b) = 5%, volatility σB

2 = 0.5, jump
size (kbar) = −5%, jump intensity λ = 0.124, and jump standard deviation δ = 0.02. The
setting values of the asset price (S), strike price (X) for the European call option considered
are 11,000 for above Figure 4A–F.

Based on the same maturities, it is clear from the graphs in Figure 5 that the parametriza-
tion of the implied volatility smile in the Bates model converges to a flat smile and is more
stable across different strikes than in the Merton model. For example, in the Bates model,
this convergence is possible as the smile captures the presence of jumps whereas the term
structure of implied volatility is taken into account using the cost-of-carry component.
Moreover, the result is in line with Mijatović and Tankov [35] regarding the function of
both the jump activity index of the jump component and the diffusion process component.
We should emphasize that it only serves as an illustration, to indicate that the model can
yield a close fit even to a very sharp volatility phenomenon. Similar examples are discussed
in Kuo [36].
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Figure 5. Volatility Smile Fitting. Figure depicts the volatility smile that the parametrization of the implied volatility smile
in terms of the strike. This figure plots implied volatilities of call options on the Bitcoin price index as a function of their
strikes and maturities for the Bates’ model (red solid line) and the BSM model (blue dotted line). More importantly, the
Bates’ volatility jump-diffusion model is consistent with an asymmetric volatility smile. This model assumes jump risk is
systematic and appears to be a much closer match to reality than Merton due to the simultaneous asset price jumps and
amplitudes, possibly by varying amounts.

5. Concluding Remarks

Overall, Bitcoin prices exhibit highly volitile behavior due to the interventions, spec-
ulative investment interest, and the numerous news-driven shocks in the market (see
Scaillet et al. [17]). In this paper, we adopt the idea that Bitcoin prices are influenced by
jump-diffusion and confidence about the underlying technology; as a consequence, such a
jump-diffusion may spread to Bitcoin prices causing an ambiguous effect.

To describe the jump risk distribution more accurately, this paper applies the jump
detection approach to identify realized jumps on the Bitcoin market and to estimate the
jump parameters of intensity, mean, and variance. Crucially, similar to Tauchen et al. [37],
we find that the jump intensity varies among the 2015–2018Q1 from 9.89% to 16.85%.
Applying this to the Bitcoin market, this finding reports some important implications in
jump frequencies and volatilities across the sample period over time.

Moreover, based on risk-neutral measures, we derive a quasi-closed formula for
European-style Bitcoin derivatives under the Merton–Bates jump-diffusion risk and their
Greeks, and a numerical application is provided.

To shed some light on Bitcoin hedging, this paper introduces the computation of
Greeks relationships for Bitcoin options as asset replication in frictionless markets. Market
makers or confidence about cryptocurrencies are not directly observed, but some major
factors may be considered as target variables, such as the number and volume of Bitcoin
option transactions. More unconventional problems in the current analysis are left for
future research. As suggested in Figure 2A,B, we must ensure that the introduced model
is capable of capturing jumps in the Bitcoin market by simply calibrating the model
parameters.

As future work, we could better fit the model by incorporating the GARCH-Jump
process (e.g., Chan and Maheu [38], Duan et al. [39], and Gronwald [40]) for the volatility
of Bitcoin options or considering a new variable such as the stochastic volatility. Therefore,
its resolution will be considerably more complex, and could be very interesting research.
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Appendix A

The proof of Proposition 2 follows along the line of Chen [41]. To find the stochas-
tic jump-diffusion (SJD) formula of Bates and evaluate the options under a risk-neutral
measure Q. First, the risk-neutral price Ca at time τ ∈ [0,t) of European-style call options
at strike price X and underlying options on the Bitcoin price S expiring in τ under the
martingale measure Q, can be written by:

Ca

(
S, X, τ, r, σ2

s

)
= e−rτ

∞

∑
i=0
{Pi(i jumps)}EQ[max(St − X, 0)|i jumps ] (A1)

= e−rτ
∞

∑
i=0

eλτ(λτ)i

i!
EQ

[
max

(
St ke−λτ − X, 0

)]
(A2)

=
∞

∑
i=0

eλτ(λτ)i

i!
EQ

[
e−rτmax

(
St ke−λτ − X, 0

)]
(A3)

=
∞

∑
i=0

eλτ(λτ)i

i!
EQ

[
CBS

(
St ke−λτ , X, τ, r, σ2

s

)]
(A4)

where St = S0 exp
[(

µ− σ2
s

2

)
t + σsdWt

]
denotes the underlying prices of Bitcoin under

risk measure in Black and Scholes’ model (CBS). Thus we proceed to prove the relationship:

eλτ(λτ)i

i! EQ
[
CBS

(
St ke−λτ , X, τ, r, σ2

S
)]

= eλ∗τ(λ∗τ)i

i! [StN(d1i)− Xe−rτ N(d2i)]
(A5)

Under the risk-neutral measure Q, the undelying Bitcoin prices dynamic S̃t can be
written as:

S̃t = S̃0exp

[(
u− λk−

σ2
i

2

)
τ + σiWt +

N(t)

∑
n=1

Jn

]
Therefore,

EQ
[
CBS

(
St eJe−λτ , X, τ, r, σ2

s
)]
= EQ


(
S̃t eJ e−λτ N

(
St
X +J−λτ+

(
r+

σ2
i
2

)
τ

))
σs
√

τ


−EQ

[(
X e−λτ N

(
St
X + J − λτ +

(
r− σ2

i
2

)
τ

))
/σs
√

τ

] (A6)
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By Girsanov’s theorem and taking the logarithm on the equation, we then arrange the
results as follows:

∞
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Finally, the desired result is obtained as follows:

Ca(S, X, τ) =
∞

∑
i=0

eλ∗τ(λ∗τ)i

i!

[
Ste−biτ N(d1i)− Xe−rτ N(d2i)

]
The derivation of put options is analogous to the above procedures.
This completes the proof of Proposition 2.

Appendix B. Risk Metrics of the Model of Bates (1991)

In this appendix, we make various technical remarks on the different kinds of Bitcoin
options which are necessary for our proofs to hold. Instead of hedging the position with
the underlying asset, we consider here a strategy in which we invest in another European
option (call or put). Other important risk metrics are delta ∆, Vega Λ, and gamma Γ under
Bates’ model is derived as follows:
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Appendix B.1. Derivation of Delta for Different Kinds of Bitcoin Derivatives

Recall that the prices of a European call/put option based on Black–Scholes formulas
with the dividend yield paid by the contingent claims are written as follows:

Ca(S, X, τ) = POi(λτ)
[
Ste−bτ N(d1i)− Xe−rτ N(d2i)

]
and

Pu(S, X, τ) = POi(λτ)
[

Xe−rτ N(−d2i)− Ste−bτ N(−d1i)
]

The similar proof of the derivatives of the Greeks letters on the standard Black–Scholes
one can be found in, e.g., Haug [29] and Chen et.al. [42]. First of all, we want to derive the
formula of Delta. To make the following derivations more easily, we calculate Equation
(A14) and Equation (A15) in advance.
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X .eriτ

For a European call option on a dividend-paying contingent claim, the Equation (30)
applies; delta can be written as:

∆ = POi(λτ).e−biτ N(d1i) (A16)

The derivation process of (A16) is:

∆ = ∂Ca
∂St

= POi(λτ)
[
e−biτ N(d1i) + Ste−biτ ∂N(d1i)

∂St
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]
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For brevity, a European call option on continuously compounded dividend yield,
delta can be written as:

∆ = POi(λτ).e−biτ [N(d1i)− 1] (A17)

The derivation process of (A17) is:

∆ = ∂Pu
∂St
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√
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yields→ Poi(λτ).e−biτ [N(d1i)− 1]

Q.E.D
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Appendix B.2. Derivation of Gamma for Different Kinds of Bitcoin Options

In the model approach outlined above, the derivation process of Equations (35) and (36)
as follows

Γ = ∂2Ca
∂S2

t
=

∂
(

∂Ca
∂St

)
∂St

=
∂[e−biτ N(d1i)]

∂St
= POi(λτ)e−biτ ∂[N(d1i)]

∂d1i

∂d1i
∂St

= POi(λτ)e−biτ N′(d1i)
1
St

σi
√

τ

= POi(λτ) e−biτ

σi
√

τSt
N′(d1i)

(A18)

Alternative, for a European put option, gamma can be given as

Γ = ∂2Pu
∂S2

t
=

∂
(

∂Pu
∂St

)
∂St

=
∂[e−biτ N(d1i)−1]

∂St
= POi(λτ)e−biτ ∂[N(d1i)−1]

∂St

∂d1i
∂St

=

POi(λτ)e−biτ N′(d1i)
1
St

σi
√

τ
= POi(λτ) e−biτ

σi
√

τSt
N′(d1i).

(A19)

Q.E.D

Appendix B.3. Derivation Process of Vega for Different Kinds of Bitcoin Options

The derivation process of Equation (39) can be shown as

ν = ∂Ca
∂σi

= POi(λτ)[Ste−biτ ∂N(d1i)
∂σi

− Xe−rτ ∂N(d2i)
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(A20)

Similarly, the derivation process of Equation (40) as follows

ν = ∂Pu
∂σi
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Appendix B.4. Derivation Process of Rho for Different Kinds of Bitcoin Options

The derivation process of Equation (41) as follows

Rho = ∂Ca
∂r = POi(λτ)
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(A22)

Similarly, the derivation process of Equation (42) can be shown as

Rho = ∂Pu
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(A23)

Q.E.D

B.5. Derivation of Theta for Different Kinds of Bitcoin Options

Proof. Available from the author upon request. �
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