
mathematics

Article

Complex Investigations of a Piecewise-Smooth
Remanufacturing Bertrand Duopoly Game

Sameh Askar

����������
�������

Citation: Askar, S. Complex

Investigations of a Piecewise-Smooth

Remanufacturing Bertrand Duopoly

Game. Mathematics 2021, 9, 2558.

https://doi.org/10.3390/math9202558

Academic Editor: Vladimir A.

Plotnikov

Received: 5 September 2021

Accepted: 5 October 2021

Published: 13 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455,
Riyadh 11451, Saudi Arabia; saskar@ksu.edu.sa or s.e.a.askar@hotmail.co.uk; Tel.: +966-555-88-3742

Abstract: This paper considers a Bertrand competition between two firms whose decision variables
are derived from a quadratic utility function. The first firm produces new products with their own
prices while the second firm re-manufactures returned products and sells them in the market at
prices that may be less than or equal to the price of the first firm. Dynamically, this competition is
constructed on which boundedly rational firms apply a gradient adjustment mechanism to update
their prices in each period. According to this mechanism and the nature of the competition, a two-
dimensional piecewise smooth discrete dynamic map was constructed in order to study the complex
dynamic characteristics of the game. The phase plane of the map was divided into two different
regions, separated by border curve. The equilibrium points of the map, in each region on where
they are defined, were calculated, and their stability conditions were investigated. Furthermore, we
conducted a global analysis to investigate the complex structure of the map, such as closed invariant
curves, periodic cycles, and chaotic attractors and their basins, which cause qualitative changes as
some parameters are allowed to vary.

Keywords: small piecewise smooth; Bertrand game; stability; bifurcation

1. Introduction

In the economy, there are different kinds of competitions that attract both scientific
researchers and economists (who study the complex characteristics of these competitions).
Studies show that some of these economic models may be chaotic. Here, we must cite the
individual who implemented the first trial of such studies, essentially opening the way
for more studies about such models. Augustin Cournot introduced the first mathematical
model of a duopoly game [1]. A duopoly game is a special ’case’ of the oligopoly game, in
which only two firms dominate the market. It is more complex than a monopoly, where only
one firm dominates the market. Duopoly games assume that firms sell homogeneous goods
in the same market, but with independent prices. Consequently, the optimal decisions
of these firms are affected by their opponents. Competition in such games is divided
into static or dynamic; in this manuscript, we focus on the dynamic. The Cournot and
Bertrand models are popular models that describe dynamic competition [2]. In Cournot
models, the two firms produce homogeneous commodities; the decision variables here are
the quantities they produce. On the other hand, when the decision variables are prices
instead of quantities, the model is known as a Bertrand. The Stackelberg game is also
interesting [3,4]—it involves two firms, one of which is more powerful than the other. In
such a game, the weaker firm does not take action until the stronger firm takes action. The
firms are known as the leader and the follower.

Studying the dynamic features of the above-mentioned models shows whether we
can make predictions about these models in the long run. Studying the stability of the
equilibrium points of such models occurs after modeling; this requires following certain
mechanisms, such as bounded rationality and Puu’s approach. The latter is not applied
much in the literature because it has some disadvantages when studying the stability of the
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equilibrium points [5–7]. The bounded rationality mechanism has been intensively applied
in many economic games investigated in the literature. More information about this mech-
anism and its application exists [8–10]. Studying the stability of the equilibrium reveals
that such models open the gate toward discovering other complex dynamic characteristics
of systems modeling such a game. Characteristics include the coexistence of different types
of bifurcations that make the equilibrium points lose their stability and behave chaotically.
There are several studies in the literature [11–15] that have reported that those systems lose
their stability due to flip and Neimark–Sacker bifurcations; then routes to chaos coexist.

Remanufacturing in the economy is important and requires more analytical and
numerical studies to show its benefits. Remanufacturing is the process of disassembling
commodities, which are then repaired and collected, and sent back to the line of production
to be sold as new products. The firm, known as a third-party company, handles this part of
production. Examples of such companies include Xerox, as well as Mercedes-Benz and Ford
for car industries [13]. Studies show that most of the current remanufacturing competitions
highlight the decisions taken by all competitors involved in the economy. Only a few
studies have focused on the complex dynamic features behind this kind of competition.
For example, in [13], a remanufacturing Cournot duopoly game was introduced. It shows
that the equilibrium point of the game loses its stability due to the coexistence of two
types of bifurcations—period doubling and Neimark–Sacker. Furthermore, in [16], a
remanufacturing duopoly game was introduced and its characteristics were investigated.
The current paper extends the work introduced in [13]. Here, we study the case of Bertrand
adopting the inverse demand functions used in [13]. We assume that the preferences
adopted by the consumers follow a quadratic utility function that is concave, by which the
inverse demand functions of both firms are derived. However the prices derived from this
utility are linear, but the analysis given in this paper is rich in extra dynamic features. Our
analysis, either analytic or numeric, differs from those given in [13,16]. In the current paper,
we introduce a piecewise smooth Bertrand duopoly game, which is entirely different than
smooth Bertrand games in the literature, and gives rise to our motivation. The piecewise
Bertrand game is more complicated than classic ones and the bifurcation taking place
in this game belongs to border-collision bifurcation. In the literature, several works on
tackling piecewise smooth maps were discussed. In [17], a two-dimensional discontinuous
piecewise linear map was considered. This map described the dynamics of a discrete-time
version of a continuous-time fashion cycle model. The bifurcation discussed in this map
belongs to the class of border-collision bifurcation. A three-region footloose-entrepreneur
economic geography model was introduced in [18]. The map described this geography
model as a piecewise map, defined in three regions. Its local and global dynamics and
the corresponding bifurcation were discussed in [18]. In [19], a four-region economic
geography model was introduced and analyzed as a piecewise map that was defined in
four regions, in which regions are differentiated in size and geographical position. The
effects of the constraints were discussed in an adaptive segregation model in [20]. In that
study, the model was described by a discrete two-dimensional piecewise smooth dynamic
map to investigate the dynamics of the entry and exit of two populations into the model
described by such a map. The asymmetric case of the map given in [20] was studied in [21].
In [22], the border collision bifurcations of a piecewise adaptive oligopoly model whose
demand function was isoelastic was investigated. Discriminatory individual choices may
lead to two groups of people of opposite kinds as a result of segregation. People may be
separated for different reasons, such as age, sex, language, income, nationality, skin color,
etc. This segregation has led to investigations of such piecewise maps. This piecewise
characteristic, which is one of the peculiarities of such models, gives rise to a particular
kind of bifurcation due to the change of map definition. This kind of bifurcation is related
to closed invariant sets (such as attractors, frontiers, manifolds), having contact with the
border region on where the map is defined. Such maps are more general and complicated
than the traditional smooth maps and only few studies on those maps have been reported
in the literature and its applications to economic models are still undeveloped areas.
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In brief, this paper is organized as follows. In Section 2, the piecewise smooth Bertrand
map describing the proposed game is formulated. In Section 3, the stability conditions for
the equilibrium points in each region where the map is defined are discussed. In Section 4,
local and global analyses based on numerical experiments are investigated. Finally, we
summarize our obtained results in this paper in the conclusion section.

2. The Model

In an economic market, individuals have their own preferences, which are used
to measure their satisfaction about certain goods. Those preferences are translated into
decisions of consumers, which are represented according to the demand theory by a
utility function. Under a certain budget condition, this utility must be maximized in
order to achieve a consumer’s perspective [23]. In this paper, we assume the following
utility function,

U(q1, q2) = q1 + θq2 −
1
2
(q2

1 + 2θq1q2 + θq2
2); q1, q2 > 0 (1)

Which was defined by Singh and Vives [24]. It is easy to see that this function is strictly
concave for any values of the decision variables q1 and q2 and the fraction parameter θ
where 0 < θ < 1. The meaning of this fraction is defined later in this section. Now, assume
that we have two competing firms. The first firm is called the manufacturer and it produces
new goods that are denoted by the variable q1, while the second firm receives returned
goods and repairs them, and then sells them again in the market. It reproduces the quantity
q2. Indeed, we restrict the decision variables space to S = {(q1, q2) : q1, q2 > 0}. As the first
firm is responsible for providing the market with the q1 at period time t, the second firm
should provide the market with returned products at time t + 1. Therefore, the consumers
will have to differentiate between those products and are willing to pay a fraction θ in
order to buy new remanufactured products. Moreover, the second firm’s marginal cost
must be less than this fraction θ otherwise it loses the market. So, using a budget constraint

2
∑

i=1
piqi = 1 with pi =

∂U
∂qi

, i = 1, 2 and with (1), we obtain the inverse demand functions

as follows,
p1 = 1− q1 − θq2,
p2 = θ(1− q1 − q2)

(2)

where pi, i = 1, 2 denotes the price for qi, i = 1, 2. θ = 1 indicates customers’ bias to pay
same price for both new and remanufactured goods, which may not be accepted in the
economy. θ = 0 means remanufactured goods are not approved by customers. Hence,
this variety of preferences gives restrictions of the parameter θ ∈ (0, 1). Now, the demand
functions of (2) are given by,

q1 = 1− 1
1−θ p1 +

1
1−θ p2,

q2 = 1
1−θ p1 +

1
θ(1−θ)

p2
(3)

Using linear cost functions, Ci(qi) = ciqi, i = 1, 2 where ci, i = 1, 2 are the marginal
costs. This gives the following profits,

π1 = (p1 − c1)
(

1− 1
1−θ p1 +

1
1−θ p2

)
,

π2 = (p2 − c2)
(

1
1−θ p1 +

1
θ(1−θ)

p2

) (4)

Using (4), the marginal profits become:

∂π1
∂p1

= 1 + c1
1−θ −

2
1−θ p1 +

1
1−θ p2,

∂π2
∂p2

= c2
θ(1−θ)

− 2
θ(1−θ)

p2 +
1

1−θ p1
(5)
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By setting ∂πi
∂pi

= 0, i = 1, 2 the equilibrium point E = ( p̄1, p̄2) for the firms is unique
and takes the following form:

p̄1 = 2(1+c1−θ)+c2
4−θ ,

p̄2 = θ(1+c1−θ)+2c2
4−θ

(6)

It depends on the parameters c1, c2 and θ. Let us first show the influence of the
parameter θ on the equilibrium point. It is easy to get,

∂ p̄1
∂θ = 2c1+c2−6

(4−θ)2 ,
∂ p̄2
∂θ = θ2−8θ+4+2(2c1+c2)

(4−θ)2

(7)

This means that ∂ p̄1
∂θ < 0 under the condition 2c1 + c2 < 6 and ∂ p̄2

∂θ > 0 is always
satisfied for θ2 − 8θ + 4 + 2(2c1 + c2) > 0 and 0 < θ < 1. This means that by increasing the
parameter θ, the price of the remanufactured goods will be high and the price of the new
goods will decrease. However, in the economy, consumers prefer to buy new goods instead
of buying remanufactured goods; therefore, it may be preferable to keep the fraction θ
low for both firms. Now, we assume a repeated discrete dynamic games between the two
firms according to their prices (the so-called Bertrand game). To do that, we recall the
bounded rationality mechanism [25–27]. This mechanism depends on the change occurring
in the marginal profit, Φi(p1, p2) =

∂πi
∂pi

, i = 1, 2, whether it is increased or decreased. It is
expressed as follows,

pi(t + 1) = pi(t) + ki(pi)Φi(p1, p2), i = 1, 2 (8)

where, ki(pi) refers to an adjustment parameter. This parameter is important in such games
and has influences on the stability of the equilibrium point of the game. Using (5) and (8)
and assuming that αi(qi) = ki pi, i = 1, 2 the following discrete dynamic system is obtained.

p1,t+1 = p1,t + k1 p1,t

(
1 + c1

1−θ −
2

1−θ p1,t +
1

1−θ p2,t

)
,

p2,t+1 = p2,t + k2 p2,t

(
c2

θ(1−θ)
− 2

θ(1−θ)
p2,t +

1
1−θ p1,t

) (9)

where ki, i = 1, 2 is positive constant. Here, we should mention that the price of the
second firm at time t + 1 should be less than or equal those of the first firm at time
t, i.e., p2(t + 1) ≤ p1(t). Therefore, the system defined by (9) should be modified to:
p2(t + 1) = min{Ω(t), p1(t)} where Ω = p2(t) + k2 p2

(
c2

θ(1−θ)
− 2

θ(1−θ)
p2 +

1
1−θ p1

)
then

the system (9) is rewritten to,

p1,t+1 = p1,t + k1 p1,t

(
1 + c1

1−θ −
2

1−θ p1,t +
1

1−θ p2,t

)
,

p2,t+1 = min{Ω(t), p1(t)}
(10)

Therefore, the map defined in (10) is considered as a piecewise map. In order to study
the stability of this map, one should consider the second equation in the above map. It is
governed by the function Ω. This function is responsible for converting the map (9) to a
piecewise one. This means that if (p1, p2) ∈ Ω and Ω < p1 then we have only one part
from the map (10) to be applied, otherwise if Ω > p1 we have the other part of the map
to be used. Here comes the case when Ω = p1, which is called the border curve, in which
the map (10) is continuous but not differentiable. This border curve divides the phase
plane into different regions where the map is defined by different expressions. It has the
following form,

p1 =
p2

[
1 + k2

θ(1−θ) (c2 − 2p2)
]

1− k2
1−θ p2

:= g(p2) (11)
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that makes the map (10) becomes,

p1,t+1 = p1,t + k1 p1,t

(
1 + c1

1−θ −
2

1−θ p1,t +
1

1−θ p2,t

)
,

p2,t+1 =

{
p2,t + k2 p2,t

(
c2

θ(1−θ)
− 2

θ(1−θ)
p2,t +

1
1−θ p1,t

)
if p1,t ≥ g(p2)

p1,t if p1,t ≤ g(p2)

(12)

or it is equivalent to,

(p1,t+1, p2,t+1) =

 p1,t + k1 p1,t

(
1 + c1

1−θ −
2

1−θ p1,t +
1

1−θ p2,t

)
,

p2,t + k2 p2,t

(
c2

θ(1−θ)
− 2

θ(1−θ)
p2,t +

1
1−θ p1,t

)
if p1,t ≥ g(p2) (region 1)

(p1,t+1, p2,t+1) =

{
p1,t + k1 p1,t

(
1 + c1

1−θ −
2

1−θ p1,t +
1

1−θ p2,t

)
,

p1,t if p1,t ≤ g(p2) (region 2)

(13)

It is important to note that the stability of the above map should be studied according
to the border curve. This means that the map may have fixed points that are located in
different regions of the phase plane. The destabilization of those fixed points means that
their dynamics are usually never related to one region and, hence, the dynamic of the map
must be studied as a piecewise map.

3. The Stability

It is clear that the map (13) is defined in two different regions, so there may be
different fixed points in each region. We denote the fixed points in these regions by Er1

and Er2 where Er1 =
(

2(1+c1−θ)+c2
4−θ , θ(1+c1−θ)+2c2

4−θ

)
and Er2 = (1 + c1 − θ, 1 + c1 − θ). The

Jacobians at those points are,

Jr1 =

 1− 2k1(1+c1)[2(c2+θ)−θ2]
4(1+c1)(1+c2)−θ2

−θk1[2(c2+θ)−θ2]
4(1+c1)(1+c2)−θ2

−θ2k2(1+2c1)
4(1+c1)(1+c2)−θ2 1− 2θk2(1+2c1)(c2+θ)

4(1+c1)(1+c2)−θ2

,

Jr2 =

[
1− 2k1(1+c1)

θ+2(1+c1)
−θk1

θ+2(1+c1)

1 0

] (14)

Studying the stability of those fixed points depends on the eigenvalues that are calculated
by λ1,2 = 1

2

(
τ ±
√

τ2 − 4δ
)

. Where τ and δ refer to the trace and determinant respectively.
They are depending on the region on where the fixed points lie in. There may be τr1 or τr2
if the fixed points lie in region 1 or region 2. The same observation is for δ (δr1 or δr2). They
are given by,

τr1 = 2
[
1− k1

(
c2+2(1+c1−θ)
(4−θ)(1−θ)

)
− k2

θ

(
2c2+θ(1+c1−θ)
(4−θ)(1−θ)

)]
,

τr2 = 1− 2(1+c1−θ)
1−θ k1,

δr1 = 1− 2k1

(
c2+2(1+c1−θ)
(4−θ)(1−θ)

)
− 2k2

θ

(
2c2+θ(1+c1−θ)
(4−θ)(1−θ)

)
− k1k2

(
1− 4

θ2

)(
c2+2(1+c1−θ)
(4−θ)(1−θ)

)(
2c2+θ(1+c1−θ)
(4−θ)(1−θ)

)
,

δr2 = − (1+c1−θ)
1−θ k1

(15)

The eigenvalues in both regions are,

λ1r1,2r1 = 1− k1

(
c2+2(1+c1−θ)
(4−θ)(1−θ)

)
− k2

θ

(
2c2+θ(1+c1−θ)
(4−θ)(1−θ)

)
±

± 1
θ

√
θ2k2

1

(
c2+2(1+c1−θ)
(4−θ)(1−θ)

)2
− θ(1− θ)k1k2

(
c2+2(1+c1−θ)
(4−θ)(1−θ)

)(
2c2+θ(1+c1−θ)
(4−θ)(1−θ)

)
+ k2

2

(
2c2+θ(1+c1−θ)
(4−θ)(1−θ)

)2
,

λ1r2,2r2 = 1
2 − k1

(
1+c1−θ

1−θ

)
± 1

2

√
1 + 4k2

1

(
1+c1−θ

1−θ

)2

(16)

Or it can be rewritten in the form,



Mathematics 2021, 9, 2558 6 of 13

λ1r1,2r1 = 1
2

(
τr1 ±

√
τ2

r1 − 4δr1

)
λ1r2,2r2 = 1

2

(
τr2 ±

√
τ2

r2 − 4δr2

)
It should be noted that the map (13) is continuous and differentiable in both regions sepa-
rately. However, on the border curve Ω = p1, the map is continuous, but not differentiable.
Furthermore, there may be no fixed point in one region of the phase plane. This means that
the fixed point Er1 (or Er2) may turn out to be in region 2 (or region 1). This also means that
the character of a virtual fixed point exists. In addition, the stability of those fixed points
will be governed by the following triangles,

Sr1 = {(τr1, δr1) : 1 + τr1 + δr1 > 0, 1− τr1 + δr1 > 0, 1− δr1 > 0}
Sr2 = {(τr2, δr2) : 1 + τr2 + δr2 > 0, 1− τr2 + δr2 > 0, 1− δr2 > 0} (17)

where,

1 + τr1 + δr1 = [c2+2(1+c1−θ)][2c2+θ(1+c1−θ)]

θ(4−θ)(1−θ)2 k1k2,

1− τr1 + δr1 = 4− 4
(

c2+2(1+c1−θ)
(4−θ)(1−θ)

)
k1 − 4

θ

(
2c2+θ(1+c1−θ)
(4−θ)(1−θ)

)
k2 −

(
1− 4

θ

)(
c2+2(1+c1−θ)
(4−θ)(1−θ)

)(
2c2+θ(1+c1−θ)
(4−θ)(1−θ)

)
k1k2,

1− δr1 = 2k1

(
c2+2(1+c1−θ)
(4−θ)(1−θ)

)
+ 4

θ

(
2c2+θ(1+c1−θ)
(4−θ)(1−θ)

)
+
(

1− 8
θ2

)(
c2+2(1+c1−θ)
(4−θ)(1−θ)

)(
2c2+θ(1+c1−θ)
(4−θ)(1−θ)

)
k1k2,

1 + τr2 + δr2 = (1+c1−θ)
1−θ k1,

1− τr2 + δr2 = 2− 3(1+c1−θ)
1−θ k1,

1− δr2 = −1 + (1+c1−θ)
1−θ k1

(18)

Now, the next section carries out some numerical simulation in order to investigate
the routes and the types of bifurcation by which the fixed points of the above system lose
their stability.

4. Numerical Simulation

By looking at the map (13) one can see that it contains five important parameters,
k1, k2, c1, c2 and θ. We start our numerical analysis by investigating the influences of
k1 and k2 on the stability of the map. Figure 1a,b present 2D-bifurcation diagrams in
the (k1, k2)-plane at two different sets of parameters’ values. These sets are (θ, c1, c2) =
(0.9721801, 0.41, 0.45) and (θ, c1, c2) = (0.74, 0.4, 0.8316) for the same datum (p0,1, p0,2) =
(0.12, 0.11). Figure 1a shows different colored regions on where different periodic cycles,
chaotic attractors, and closed invariant curves coexist due to both Neimark–Sacker and flip
bifurcation. Figure 1b presents closed invariant sets due to Neimark–Sacker bifurcation
followed by flip bifurcation. Therefore, we study, in the next section, the global influence
of the parameters k1 and k2 separately in the dynamic of map (13). Now, we study the
local impact of these parameters by assuming (θ, c1, c2, k2) = (0.9721801, 0.41, 0.45, 0.006).
Figure 1c presents a situation of stable equilibrium point for any value of the parameter
k1until this parameter reaches the value 0.061 on where there are two routes to two different
types of bifurcations, Neimark–Sacker comes first then followed by flip bifurcation. The
same observation is presented in Figure 1d for the variable q2. At the parameters set
(θ, c1, c2, k1) = (0.9721801, 0.41, 0.45, 0.006), Figure 1e,f show the bifurcation diagrams
for the map’s variables when varying the parameter k2. Another mixed scenario arises
when we assume the following set of parameter values, (θ, c1, c2) = (0.74, 0.4, 0.8316). At
this set, the equilibrium point becomes stable when varying either k1or k2 until closed
invariant curves are born because of Neimark–Sacker bifurcation. Afterward, higher
periodic cycles and chaotic attractors coexist due to flip bifurcation, as shown in Figure 2a,b.
This discussion shows that the speeds of the adjustment parameters k1 and k2 have a great
impact on the map’s equilibrium points. There is more evidence by which we confirm that
the map enters chaotic regions. The evidence is confirmed by plotting the largest Lyapunov
exponent (LLE). It is known that when LLE takes positive values, it means that the map’s
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dynamic behavior enters chaotic regions and, hence, closed invariant curves or higher
period cycles, and then routes to chaos coexist. We show in Figure 2c,d the corresponding
LLE for the two cases plotted in Figure 2a,b with respect to the parameters k1and k2.
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Figure 1. (a,b) 2D bifurcation diagram of the system in the (k1, k2) parameter plane. The light gray
color refers to the stability region of the fixed point. Other colors are for different types of period
cycles. The white color refers to the non-convergent points. (c,d) Bifurcation diagrams with respect
to p1 and p2 on varying k1 at: c1 = 0.41, c2 = 0.45, θ = 0.9721801 and k2 = 0.006. (e,f) Bifurcation
diagrams with respect to p1 and p2 on varying k2 at: c1 = 0.41, c2 = 0.45, θ = 0.9721801 and
k1 = 0.006.
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Figure 2. (a) Bifurcation diagrams with respect to p1 and p2 on varying k1 at: c1 = 0.4, c2 = 0.8316, θ = 0.74 and k2 = 0.1.
(b) Bifurcation diagrams with respect to p1 and p2 on varying k2 at: c1 = 0.4, c2 = 0.8316, θ = 0.74 and k1 = 0.1. (c) Largest
Lyapunov exponent on varying k1 for c1 = 0.4, c2 = 0.8316, θ = 0.74 and k2 = 0.1 (d) Largest Lyapunov exponent on
varying k2 for c1 = 0.4, c2 = 0.8316, θ = 0.74 and and k1 = 0.1.

Global Analysis: Multistability and Basin of Attraction

The local analysis discussed previously provides observations about the stability of the
map’s equilibrium points around some neighborhoods; it is important to study the global
analysis to gain more insight into the complex analysis of the map’s dynamic behavior.
Detecting information about the multistability of the map may provide us with some
predictions about its future evolution. For that, we perform, in this subsection, a global
analysis of the dynamic behavior of the model to obtain projections about the long run of the
map’s trajectories. In the previous section, we concluded that the equilibrium point can be
destabilized via flip and Neimark–Sacker Bifurcations. Now, we show a variety of different
complex dynamic scenarios for the map (13) using numerical simulations. In particular,
the chaotic trajectories that can emerge beside the multistability of the map’s behavior
where different chaotic attractors may coexist reflect the wide spectrum of the parameter
sets. Such complex characteristics are interesting because the demand function adopted
by the two firms is linear not nonlinear. Let us start our global analysis by assuming the
following parameters set, c1 = 0.41, c2 = 0.45, θ = 0.9721801, k1 = 0.006 and k2 = 0.006.
At this set, we have two coincided equilibrium points, Er1 = Er2 = (0.4378199, 0.4378199)
whose Jacobian matrices (14) become,

Jr1 =

[
0.81115 0.094426

0.094426 0.80574

]
,

Jr2 =

[
0.81115 0.094426

1 0

]
and the eigenvalues in both regions are (λ1r1,2r1) = (0.90291, 0.71398) and (λ1r2,2r2) =
(0.91441,−0.10326). They are real eigenvalues and lie within the unit circle |λ1r1,2r1| < 1
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and |λ1r2,2r2| < 1. In addition, we have τr1 = 1.61689, δr1 = 0.64466, τr2 = 0.81115 and
δr2 = −0.094426. It is clear that |δr1| < 1 and |δr2| < 1 that means the map (13) is
dissipative in both regions of the border curve Ω = p1 and the triangles of stability are
satisfied. Figure 3a shows the basin of attraction of the coincided equilibrium points born
on the border curve. It is plotted at the same set of the parameter values. Now, we show
the rise of the multistability of attractors, as the speed of the adjustment parameter k1
increases, the other parameter values remain fixed. We should note that all of the numerical
simulations were carried out based on the initial data of decision variables p1,0 = 0.12
and p2,0 = 0.11. In the following figures, iterations of the map (13) present different
attractors with their basins, using sets of initial conditions at the long run. Increasing
the bifurcation parameter k1 to 0.0659, the equilibrium point becomes unstable and the
dynamics of the map converts into a spiral on one side from the border curve, as shown in
the top left in Figure 3b. Increasing that parameter further gives rise to larger spiral points
and then they convert into a closed invariant curve due to the Neimark–Sacker bifurcation
at k1 = 0.0664. This closed invariant curve is tangent to the border curve. This closed
invariant curve continues to appear until k1 = 0.0796, where the period-2 cycle is born due
to the coexistence of flip bifurcation. It is plotted in Figure 3c with its basin of attraction.
As one can see, this period is born on region 1, but its basin is distributed in both regions
from the border curve. Increasing k1 further gives rise to the period-4 cycle, which has a
complicated basin of attraction distributed in both regions in Figure 3d. Others increasing
in this parameter give four chaotic areas, which start gathering into two chaotic areas,
then finally become one chaotic attractor, as shown in Figure 3e,f. It is obvious from the
1D bifurcation diagrams presented in Figure 1c,d that the bifurcation parameter k1 affects
the complex dynamic of the map (13). The dynamics start first with a stable equilibrium
point, then closed invariant curves in region 2 appear due to Neimark–Sacker. Afterward,
higher periodic cycles and chaotic attractors are born in region 1 due to flip bifurcation.
This means that the map’s dynamics jumps from Neimark–Sacker to flip bifurcation.

Now, we study another set of parameter values. We assume c1 = 0.4, c2 = 0.8316,
θ = 0.74, k1 = 0.1 and k2 = 0.1. At this set, we get two coincided stable equilibrium points
born on the border curve Ω = p1. It is depicted in Figure 4a with its basin of attraction. As
previously, we studied the influences of the bifurcation parameter k1 on the dynamics of
the map (13). Increasing k1 makes the equilibrium point unstable and gives rise to spiral
points. Those points are located in region 2, as shown in Figure 4b. They are turned into
closed invariant curves in region 2 as k1 increases further as given in Figure 4c. The closed
invariant curves continue to appear because of Neimark–Sacker bifurcation until they turn
into a period-11 cycle due to flip bifurcation at k1 = 0.451, and keeping the other parameter
values as presented in Figure 4d. It is clear that this period cycle is located in region 2 and
it does not cross the border curve that means the dynamic of the map (13) is only obtained
by the part defined in this region. In Figure 4e, we obtain a period-11 cycle located in
region 2 with a chaotic attractor that crosses the border curve and is distributed in both
regions at k1 = 0.452. It is also clear that the phase plane becomes quite complicated.
Increasing k1 to 0.46 gives a chaotic attractor of the map in both regions and passes through
the border curve. This chaotic attractor continues to appear until a period-9 cycle is born
at k1 = 0.4736 with the other parameter values fixed. Figure 5a displays this cycle with
its complicated basin of attraction, and it is clear it has points jumping from region 1 to
region 2. This indicates that the map (13) must be manipulated and studied as a piecewise
smooth map. When k1 increases further, a one-piece chaotic attractor continues to appear
and pass through the border curve. After that, further increasing in the parameter k1 gives
birth to an additional period-10 cycle crossing the border curve. Figure 5b displays this
period cycle with its basin of attraction. As k1 increases, further higher period cycles that
are followed by chaotic attractors passing through the border curve arise. After that, the
dynamic of the map changes to a period-2 cycle at k1 = 0.5, which is followed by a period-4
cycle at k1 = 0.501 and both cycles are located in region 1. We end our discussion here
by presenting the influences of the parameter θ when fixing the map’s parameters. It is
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obvious that both equilibrium points depend on that parameter, which means we will get
two different equilibrium points. In that case, the dynamic of the map will be related to
only one region and we will have only one equilibrium point; the other point will be called
the virtual equilibrium point. We present, in Figure 5c,d, the bifurcation diagrams when
varying the parameter θ. Influences of that parameter on the map’s dynamic are left to
the readers.
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Figure 3. (a) The basin of attraction of the equilibrium points. (b) Spiral and closed invariant curves
at different values of k1. (c) Basin of attraction of period-2 cycle at k1 = 0.0827. (d) Basin of attraction
of period-4 cycle at k1 = 0.0834. (e) Phase plane for the four pieces chaotic areas at k1 = 0.0836.
(f) Phase plane for the one piece chaotic attractor at k1 = 0.0845. Other parameters values are:
c1 = 0.41, c2 = 0.45, θ = 0.9721801 and k2 = 0.006.
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Figure 4. (a) The stable equilibrium point with its basin of attraction around it. Parameters values
are c1 = 0.4, c2 = 0.8316, θ = 0.74, k1 = 0.1 and k2 = 0.1. (b) Spiral points at different values of k1.
(c) Closed invariant curves at different values of k1. (d) The basin of attraction for the period-11 cycle
at k1 = 0.451. The gray color denotes divergent and infeasible trajectories. (e) Basin of attraction of
the period-11 cycle with the chaotic attractor. (f) Phase plane of the chaotic attractor.
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Figure 5. (a) The basin of attraction for the period-9 cycle. (b) The basin of attraction for the period-10 cycle. (c) Bifurcation
diagram with respect to p1 on varying θ at: c1 = 0.2, c2 = 0.1, k1 = 0.1 and k2 = 0.1. (d) Bifurcation diagram with respect to
p2 on varying θ at: c1 = 0.2, c2 = 0.1, k1 = 0.1 and k2 = 0.1.

5. Conclusions

In this paper, we introduced and investigated a piecewise smooth Bertrand game.
Our results—by the global analysis—showed multiple attractors due to border collision
bifurcations. This is because the map’s phase plane was divided into two regions by a
border curve, which has a crucial role in the global dynamics. We analyzed the behavior of
the equilibrium points and their stabilities. For two coincided equilibrium points born on
the border curve, we showed that they become unstable due to two types of bifurcations,
which occurred simultaneously. First, the equilibrium points became unstable due to the
coexistence of closed invariant curves by Neimark–Sacker, then those closed invariant
curves were destroyed, and different periodic cycles and chaotic attractors emerged because
of flip bifurcation. This situation was shown by a 1D bifurcation analysis and then globally
by presenting other complex dynamic characteristics, which occurred in each region where
the map was defined.
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