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Abstract: For large-scale problems, how to establish an algorithm with high accuracy and stability is
particularly important. In this paper, the Householder bidiagonalization total least squares (HBITLS)
algorithm and nonlinear iterative partial least squares for total least squares (NIPALS-TLS) algorithm
were established, by which the same approximate TLS solutions was obtained. In addition, the
propagation of the roundoff error for the process of the HBITLS algorithm was analyzed, and the
mixed forward-backward stability of these two algorithms was proved. Furthermore, an upper
bound of roundoff error was derived, which presents a more detailed and clearer approximation of
the computed solution.

Keywords: Householder bidiagonalization; NIPALS; roundoff error; total least squares problems

1. Introduction

Consider estimating x from the overdetermined linear system

Ax ≈ b for A ∈ Rm×n, b ∈ Rm and x ∈ Rn, (1)

where the error exists in both the right-hand side b and the data matrix A and m ≥ n + 1.
In this case, the total least squares (TLS) model should be appropriate to adopt (cf. [1,2]).
The TLS approach is just to find a perturbation with the minimum Frobenius norm to make
the system (1) a compatible system

min ‖(E, r)‖F, subject to b + r ∈ Range(A + E). (2)

The TLS method is widely used in various scientific fields, such as physics, automatic
control, signal processing, statistics, economics, biology, medicine etc. In essence, a solution
of a TLS problem can be expressed by a singular value decomposition of the augmented
matrix (A, b). When the dimensions of A are not too large, one can use the truncated-SVD
(TSVD) method. When the dimensions of A become large, this approach becomes pro-
hibitive because the SVD algorithm is of complexity O(mn2). The above considerations
lead us to consider Krylov iterative methods, that do not alter the matrix A. The methods
have the attractive feature just like the Lanczos methods—that when n increases, the com-
puted extreme singular elements rapidly become good approximations to the exact ones,
and are satisfactorily accurate even if k is far less than n theoretically [1]. Nevertheless, the
orthonormal properties of the Krylov basis strongly support the use of these Householder
matrix-based algorithms. This is particularly true when we need to be sure that the per-
turbed problem we are solving has to conserve some spectral similarity properties. This
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will be especially relevant when we need to compute approximations of the TLS problems.
In view of this, we consider applying the Householder bidiagonalization algorithm and the
NIPALS PLS algorithm posed by Å. Björck [3] to TLS problems, the formed Householder
bidiagonalization total least squares (HBITLS) algorithm, and NIPALS-TLS algorithm,
respectively. Furthermore, we find that the HBITLS and NIPALS-TLS algorithms also
compute the same approximate solutions for the TLS problems.

When it comes to practical problems, the arithmetic will be inaccurate and there will
be errors in each step of the calculation. Arithmetic operations running on the computer
have finite precision, so there will be rounding errors as long as there are numerical
computations. These rounding errors cause the calculation quantities to be different from
their theoretical values. One of the design principles of the floating-point operation is
that it should encourage experts to develop robust, efficient, and portable numerical
programs, enable the handling of arithmetic exceptions, and provide for the development
of transcendental functions and high-precision arithmetic [4]. The results in the roundoff
error analysis in Lanczos-type methods obtained by Paige [5–7] played an important role in
interpreting the behavior of the Lanczos method in finite-precision computations. Parlett
and Scott [8] used the results of the roundoff error analysis as the basis for suggesting a
modification of the Lanczos method, which they called selective orthogonalization [8–10].
In addition, in many practical problems, the stop criterion can be safely selected on the
basis of the rounding error analysis of the original problem, thereby diminishing the need
for an extremely precise approximation of the algebraic problem solution [4]. As far as
we know, the roundoff error analysis of the approximation TLS solutions obtained by
using the Householder bidiagonalization procedure was not systematically performed in
the literature. Hence, in this paper, we analyzed the propagation of the roundoff error
during the process of the HBITLS algorithm and found that the HBITLS algorithm and
NIPALS-TLS algorithm are mixed forward–backward stable.

The paper is organized as follows. The HBITLS algorithm and NIPALS-TLS algorithm
were established, by which the same approximate TLS solution was obtained in Section 2.
Section 3 analyzes the propagation of the roundoff error during the process of the HBITLS
algorithm. A brief conclusion is shown in the last section.

2. HBITLS Algorithm and NIPALS-TLS Algorithm

It is well known that algorithms based on a sequence of orthogonal transformations
with Householder matrices have very good stability properties; see Higham [4]. Based on
this, this paper gives the HBITLS and NIPALS-TLS algorithms and finds that they both
compute the same approximate TLS solutions.

2.1. HBITLS Algorithm

Let us first describe the Householder bidiagonalization process just as shown in [3].
However, in this paper, the process is used in the augmented matrix (b, A) for the TLS
problem. The idea is to compute orthogonal matrices U ∈ Rm×(n+1) and V ∈ R(n+1)×(n+1),
such that

UT(b, A)V =


β1 α1

β2 α2

β3
. . .
. . . αn

βn+1

 = (β1e1, Bn) ≡ Cn. (3)

U = G1 · · ·Gn = [u1, u2, · · · , un+1] and V = H1 · · ·Hn = [v1, v2, · · · , vn+1] can be
determined as a product of Householder matrices in each iteration. Generally, Gk introduces
zero in the kth column, while Hk sets zero for the appropriate entries in the kth row. This
can be done by an algorithm named Householder. Given the reason of space, and known
to all, we omit it here, see algorithm 5.4.2 in [1] for details.
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From the above process of Householder bidiagonalization, we know that V can be

rewritten as V =

(
1 0
0 Vn−1

)
, Vn−1 = [v1, v2, · · · , vn].

In detail, from (3), we have

UTb = UT(b, A)Ve1 = UT(b, A)

(
1 0
0 Vn−1

)
e1 = Cne1 = β1e1

and

Avi = αiui + βi+1ui+1, for i = 1, · · · , n. (4)

From (3), we have

(b, A)TU =

(
1 0
0 Vn−1

)
CT

n

and there comes

ATu1 = α1v1,

ATui = αivi + βivi−1, for i = 2, · · · , n− 1. (5)

Let Vk = H1H2 · · ·Hk

(
Ik
0

)
, Uk = Gk · · ·G2G1

(
Ik
0

)
, and Ck = (β1e1, Bk) is a

leading principal submatrix of order k + 1 of the final bidiagonal matrix Cn. As we all
know, if the exact arithmetic is used, we have UT

k+1Uk+1 = I, VT
k Vk = I. However, in any

case, the previous equations remain within machine precision. Then (4) and (5) can be
rewritten as

(b, A)Vk = Uk+1Ck, (6)

(b, A)TUk+1 = VkCT
k + αk+1vk+1eT

k+1 = Vk+1C̄T
k , (7)

where C̄k = (Ck, αk+1ek) ∈ Rk×(k+1).
After performing the k-step Householder bidiagonalization iterations, the TLS prob-

lem can be reduced onto the subspace generated by Uk+1 and Vk. Then the reduced TLS
problem (also see [11]) is as follows

min ‖UT
k+1((b, A)− (b̂k, Âk))

(
1 0
0 Vk

)
‖F subject to UT

k+1 ÂkVky = UT
k+1b̂k, (8)

or

min ‖(β1e1, Bk)− (êk, B̂k)‖F subject to B̂ky = êk, (9)

where e1 = (1, 0, · · · , 0)T , and B̂k and êk are generally full. As in LSQR, seek an approximate
TLS solution

xk = Vkyk ∈ Kk(AT A, ATb),

where Kk(B, y) denotes the Krylov subspace span{y, By, ..., Bk−1y}.
Let the SVD of (β1e1, Bk) = W̄kΣ̄kZ̄T

k and if let(
γk
zk

)
=

(
1 0
0 Vk

)
(Z̄kek+1) (10)
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with

Z̄k =
(

Z̄1 Z̄2
)
=

k 1
Z̄11 z̄12 1
Z̄21 z̄22 k

, (11)

then the approximate TLS solution is given by

xk = −
zk
γk
∈ Kk(AT A, ATb). (12)

Note that we only need the last singular vector Z̄kek+1 to compute xk. To this ex-
tent, summarizing the above process, we can get the Householder bidiagonalization TLS
(HBITLS) algorithm as follows:

Remark 1. A variant of Algorithm 1 can also be given, in which the product of the Householder
transformations applying to vectors are replaced by operations that can be performed concurrently,
to a large extent. This variation gives an efficient method for developing parallelism in the case of
parallel computing matrix vector products. In regard to this variation of Algorithm 1, one can refer
to [12] and we omit it here.

Algorithm 1 HBITLS

1: Initialize: C = (b, A), U := I, V := I.
2: for j = 1, · · · , n + 1

[v, β] = Householder(C(j : m, j));
P = Im−j+1 − βvvT ;
C(j : m, j : n + 1) = PC(j : m, j : n + 1);
G = diag{Ij−1, P};
U = UG;
uj = U(:, j); if j ≤ n− 1
[v, β] = Householder(C(j, j + 1 : n + 1));
Q = In−j − βvvT ;
C(j : m, j + 1 : n + 1) = C(j : m, j + 1 : n + 1)Q;
H = diag{Ij, Q};
V = VH;
vj = V(:, j).
end

3: Compute the last singular triplet for matrix Ck by employing the implicit zero-shift QR
algorithm.

4: the approximate TLS solution is given by xk = − zk
γk

, see (10).
5: end

Using the recursions (4) and (5), the following properties of {v1, v2, · · · , vi} and
{u1, u2, · · · , ui} can be proved.

Lemma 1. The sets {v1, v2, · · · , vi} and {u1, u2, · · · , ui} generated by Algorithm 1 are the
orthonormal basis of Ki(AT A, ATb) and Ki(AAT , AATb) respectively.

Proof. As a result of the facts that β1v1 = ATb, α1u1 = Av1 = AATb/β1, H1v1 = e1
and the process of Householder bidiagonalization, for 1 ≤ k ≤ i, it’s easy to know that
vj = H1 · · ·Hkej for j = 1, · · · , k, i.e., that

H1 · · ·Hk = [v1, · · · , vk, · · · ], 1 ≤ k ≤ i. (13)
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Certainly K1(AT A, ATb) = R(v1). It clearly holds if i = 1 . Suppose for some i > 1
that the iteration has produced Vi = [v1, v2, · · · , vi] with orthonormal columns such that

Ki(AT A, ATb) = span{v1, (AT A)v1, · · · , (AT A)i−1v1} = span{v1, v2, · · · , vi}.

It is easy to see from (4) that

VT
i AT AVi = BT

i Bi

and we have VT
i ri = 0, where ri = AT Avi − (α2

i + β2
i+1)vi − αi−1βi−1vi−1. If ri 6= 0, then

vi+1 = ri/‖ri‖2 is orthogonal to v1, v2, · · · , vi. It follows that vi+1 /∈ Ki(AT A, ATb) and

vi+1 ∈ span{AT Avi, vi, vi−1} ⊆ Ki+1(AT A, ATb).

Thus, VT
i+1VT

i+1 = I and

span(Vi+1) = Ki+1(AT A, ATb).

On the other hand, if ri = 0, then AT AVi = ViBT
i Bi. This says that span(Vi) =

Ki(AT A, ATb) is invariant for AT A and the induction is complete. The proof of span(Ui) =
Ki(AAT , AATb) is in a similar way.

The Householder matrices Hi and Gi need not be formed explicitly. In other words,
the matrices Vk and Uk can also remain in product form in the HBITLS algorithm. In
floating-point operations, the Householder transformation does not have to worry too
much about the loss of orthogonality.

2.2. The NIPALS-TLS Algorithm

For the NIPALS PLS algorithm, one can see in [3,13]. In this paper, we want to use it
to solve the TLS problems and then form the NIPALS-TLS algorithm. We can find that the
HBITLS algorithm and NIPALS-TLS algorithm generate the same sequences, orthonormal
base Vk. From the uniqueness of this base, and combined with the relationship between
the two algorithms, we conclude that the two algorithms generate the same numerical
solution xk.

In [3], it tells us that we can set A0 = A, b0 = b, for k = 1, 2, · · · , we can produce
sequences uk and vk according to the following form:

vk = AT
k−1bk−1/µk, µk = ‖AT

k−1bk−1‖2, (14)

pk = Ak−1vk−1/ρk, ρk = ‖Ak−1vk−1‖2, (15)

(Ak, bk) = (I − pk pT
k )(Ak−1, bk−1). (16)

In (16) Ak and bk are formed by deflated Ak−1 and bk−1 by subtracting their orthogonal
projections onto pk. We know that this operation uses elementary orthogonal transforma-
tions, such that S = I − ppT , ‖p‖2 = 1. The deflation in (16) can also be written as

Ak = Ak−1 − pksT
k , sk = AT

k−1 pk, (17)

bk = bk−1 − pkζT
k , ζk = bT

k−1 pk. (18)

The process is terminated when it meets either ‖AT
k−1bk−1‖2 = 0 or ‖Ak−1vi‖2 = 0.

We note that if pT
k Ak−1vk 6= 0, then the rank of the matrix Ak is one less than that of

Ak−1 exactly.
Using exact arithmetic, the sets {v1, v2, · · · , vk} and {p1, p2, · · · , pk} generated by (14)

and (15) are the unique orthogonal bases for the Krylov sub-spaces Kk(AT A, ATb) and
Kk(AAT , AATb), respectively. Summing (17) and (18) generates

A = PkST
k + Ak, b = Pkzk + bk, (19)
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where Pk = [p1, p2, · · · , pk], Sk = [s1, s2, · · · , sk], and zk = (ζ1, ζ2, · · · , ζk)
T . These rela-

tionships maintain working accuracy and do not depend on orthogonality. The matrix
PkST

k is a rank-k approximation to the data matrix A. From [3], we have ST
k = PT

k A and
ST

k Vk = Rk. Thus, in exact arithmetic, the matrix ST
k Vk is upper bidiagonal with its elements

θk = sT
k−1vk ρk = sT

k vk = ‖Ak−1vk‖2, (20)

and

Rk ≡


ρ1 θ2

ρ2 θ3
. . . . . .

ρk−1 θk
ρk

.

By Paige [14], we know that Rk must be identical to the matrix that would be obtained
from the conventional QR factorization of Bk, such that

QkBk =

(
Rk
0

)
.

Then we have

(
Bk β1e1

)
= QT

k

(
Rk zk

‖bk‖2

)
≡ QT

k Nk. (21)

Let Nk = ǓkΣ̌kV̌k, and V̌kek+1 ≡ v̌k+1 =
(

(v̌(1)
k+1)

T v̌(2)
k+1

)T
, then the solution of the

projected TLS problem (9) is yk = − v̌(1)
k+1

v̌(2)k+1

, and the TLS solution is xk = −Vk
v̌(1)

k+1

v̌(2)k+1

. And the

following theorem comes by (12) and (21)

Theorem 1. the HBITLS and NIPALS-TLS algorithms compute the same approximate solutions xk.

3. Roundoff Error Analysis

In this section, we analyze the propagation of roundoff error during the process of the
HBITLS algorithm and get the mixed forward–backward stability of the HBITLS algorithm
and NIPALS-TLS algorithm naturally. The total roundoff error during the process of the
HBITLS algorithm can be divided into the following four parts:

First, we can find that the HBITLS algorithm solves the original TLS problem (2) to a
perturbed TLS problem. The propagation of the roundoff error of a Householder matrix in
the HBITLS algorithm is advantageous when performing numerical computations.

From now one, we will denote by ε the machine precision under consideration. In [15],
it shows that the computed Householder matrix f l(H) comes near the exact Householder
matrix H itself:

‖ f l(H)− H‖2 ≤ 84ε +O(ε2).

Moreover, for a vector y, the computed updates with f l(H) are very close to the exact
updates with H :

f l( f l(H)y) = H(y + w), ‖w‖2 ≤ 87ε‖y‖2 +O(ε2).

and, in general,

f l( f l(H1) · · · f l(Hj)y) = H1 · · ·Hj(y + z), ‖z‖2 ≤ 87jε‖y‖2 +O(ε2). (22)
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The following lemma tells us that the reduced system calculated by the HBITLS
algorithm is equivalent to the system formed after the original system has been disturbed.
B̄k, Q̂k and P̂k+1 are the floating-point computation of the matrices Bk, Vk and Uk+1 in
HBITLS algorithm, respectively.

Lemma 2. Let B̄k be the computed bidiagonalization matrix (k + 1)× k matrix obtained by the
HBITLS algorithm. Then, there comes a perturbation matrix E and exists two column orthogonal
matrices Q̂k and P̂k+1 s.t.

(A + E)Q̂k = P̂k+1B̄k,

and
‖E‖2 ≤

√
n(174n + 3

√
n + 87)ε‖A‖2 +O(ε2),

where n is the number of columns of matrix A. Furthermore, the matrix Q̂k is an orthonormal
basis of Kk

(
(A + E)T(A + E), (A + E)T(b + e)

)
with a perturbation vector e, where ‖e‖2 ≤

87ε‖b‖2 +O(ε2).

Proof. We prove this theorem by induction. The key point is that we should show the com-
puted matrix, which will be shown by introduction from (3), for GT

k · · ·G
T
1 [v1, Av1, · · · , Avk]

as follows
P̂k+1 · · · P̂1[v̄1 + g1, (A + G1)v̄1 + w1, · · · , (A + Gk)v̄k + wk].

For k = 1, first, let u1 = b/‖b‖2, ū1 = f l(u1), a Householder matrix P1 is found s.t.
P1u1 = e1. Set P̄1 = f l(P1), ref. [16] tells us that, corresponding to matrix P̄1, we can find a
Householder matrix to make

f l(P̄1v̄1) = P̂1(v̄1 + g1),

with
‖g1‖2 ≤ 87ε‖v̄1‖2 +O(ε2) = 87ε +O(ε2).

Next, let v1 = ATu1/‖ATu1‖2, f l(ATu1) = (A + G0)
T ū1, where ‖G0‖2 ≤ ε3

√
n‖A‖2.

Similarly, for Av1, the computed result can be written as f l(Av1) = (A + G1)v̄1, where
‖G1‖2 ≤ ε3

√
n‖A‖2. Now, we set the Householder matrix P2 s.t. P2P1[v1, Av1] is upper

bidiagonal matrix. We know P2 only works the vector P1 Av1, so there’s no change for
the 1st column of f l(P̄1[ f l(v1), f l(Av1)]) when producted by P̄2 and P̂2. Likely, there’s a
Householder matrix P̂2 s.t. P̂2 f l(P̄1[v̄1, Av̄1] is bidiagonal matrix in theory, but the algorithm
computes a matrix P̄2 in practice [16] such that

f l(P̄2P̄1 f l(Av1)) = P̂2P̂1((A + G1)v̄1 + w1),

where
‖w1‖2 ≤ 174ε(‖A‖2 + ‖G1‖2)‖v̄1‖2 = 174ε‖A‖2 +O(ε2).

Finally, we have

f l(P̄2P̄1[v̄1, f l(Av1)]) =
[

f l(P̄1v̄1), f l(P̄2 f l(P̄1 f l(Av1)))
]

=
[
P̂1(v̄1 + g1), P̂2P̂1((A + G1)v̄1 + w1)

]
= P̂2P̂1

[
v̄1 + g1, (A + G1)v̄1 + w1

]
.

For the kth step, assume that the HBITLS algorithm has calculated the matrices
P̄1, · · · , P̄k, associated with the Householder matrices P̂1, · · · , P̂k. Then, after k steps, we
can get the following result:

f l(P̄k · · · P̄1[v̄1, f l(Av1), · · · , f l(Avk)])

= P̂k · · · P̂1
[
v̄1 + g1, (A + G1)v̄1 + w1, · · · , (A + Gk)v̄k + wk

]
,
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where ‖wi‖2 ≤ 87(i + 1)ε‖A‖2 +O(ε2).
We know vk = Q1 · · ·Qkek, and v̄k = f l(Q̄1 · · · Q̄kek) = Q̂1 · · · Q̂k(ek + fk), where

‖ fk‖2 ≤ 87kε +O(ε2). For Avk, the floating-point vector is f l(Avk) = (A + Gk)v̄k, where
‖Gk‖2 ≤ ε3

√
n‖A‖2. Likely, there is a Householder matrix Pk+1, which only works on the

vector Pk · · · P1 Avk, s.t. Pk+1Pk · · · P1[v1, Av1, · · · , Avk] is the upper bidiagonal matrix. The
algorithm computes a matrix P̄k+1 in practice so that

f l(P̄k+1 · · · P̄1 f l(Avk)) = P̂k+1 · · · P̂1((A + Gk)v̄k + wk),

where

‖wk‖2 ≤ 87(k + 1)ε(‖A‖2 + ‖Gk‖2)(1 + ‖ fk‖2) ≤ 87(k + 1)ε‖A‖2 +O(ε2).

Then the floating-point matrix is obtained, such that

P̂k+1 · · · P̂1[v̄1 + g1, (A + G1)v̄1 + w1, · · · , (A + Gk)v̄k + wk].

Let P̂(k), Q̂(k) be the matrices, such that (P̂(k))T = P̂k · · · P̂1 and (Q̂(k))T = Q̂k · · · Q̂1,
respectively, we find that the first (i− 1) rows of each Q̂i is e1, · · · , ei−1. Let q(j)

i be the i-th
column of Q̂(j), then the results are as follows

q(j)
i = q(k)

i , ∀k ≥ j, i = 1, · · · , j.

Then there comes

(P̂(k+1))T [v̄1 + g1, (A + G1)v̄1 + w1, · · · , (A + Gk)v̄k + wk],

it is an n× (k + 1) upper bidiagonal matrix. And, ∀j ≤ k, we obtain

(A + Gj)v̄j + wj = (A + Gj)Q̂1 · · · Q̂j(ej + f j) + wj

= AQ̂(j)ej + GjQ̂(j)ej + AQ̂(j) f j + GjQ̂(j) f j + wj

= Aq(j)
j + Gjq

(j)
j + AQ̂(j) f j + GjQ̂(j) f j + wj.

Since ∀k ≤ j, q(j)
j is the j-th column qj of the matrix Q̂(j), if we denote by yj =

Gjq
(j)
j + AQ̂(j) f j + GjQ̂(j) f j + wj, we have

(A + Gj)v̄j + wj = Aqj + yj,

and so we can obtain

(P̂(k+1))T [v̄1 + g1, (A + G1)v̄1 + w1, · · · , (A + Gk)v̄k + wk]

= (P̂(k+1))T [v̄1 + g1, Aq1 + y1, · · · , Aqk + yk]

= (P̂(k+1))T[(v̄1, Aq1, · · · , Aqk) + (g1, y1, · · · , yk)
]
.

If we cut off the first column of the matrix, we can set B̃k with n× k such that B̃k =
(B̄T

k , 0)T , here B̄k is an (k + 1)× k upper bidiagonal matrix. If we denote Fi = [yl , · · · , yi],
∀i, then B̃k = (P̂(k+1))T(A[q1, · · · , qk] + Fk

)
. In addition, ∀j ≤ k, let Q̂j be the matrix

made up of the first j columns of Q̂(k), we obtain P̂(k+1)B̃k = AQ̂(k) + Fk, and, from the
structure of B̃k, there comes P̂k+1B̄k = AQ̂k + Fk. Then we can write Fk = FnQ̂T

n Q̂k owing

to Q̂T
n Q̂k =

(
Ik
0

)
, and so

P̂k+1B̄k = (A + FnQ̂T
n )Q̂k.
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If E = FnQ̂T
n , we can finish the proof of the first part of the lemma, because

‖E‖2 ≤ ‖E‖F = ‖Fn‖F

=

√√√√ n

∑
j=1
‖yj‖2

2

≤

√√√√ n

∑
j=1
‖Gjq

(j)
j + AQ̂(j) f j + wj‖2

2 +O(ε
2)

≤
√

n max
j
‖Gjq

(j)
j + AQ̂(j) f j + wj‖2 +O(ε2)

≤
√

n(174n + 3
√

n + 87)ε‖A‖2 +O(ε2).

Finally, we prove that the subspace spanned by the columns of the matrix Q̂k is
an orthogonal basis of a Krylov space. Let Ã = A + E, b̃ = ‖ATb‖2Q̂ke1 and form
Kk(ÃT Ã, ÃT b̃). We know that b̃ = ‖ATb‖2Q̂ke1 = ‖ATb‖2Q̂1e1 and set e = b̃− ATb, then
we have ‖e‖2 = ‖ATb‖2‖(Q̂1 −Q1)e1‖2 ≤ 87ε‖ATb‖2 +O(ε2).

We still prove the rest of the theorem by induction; that is, to prove

(ÃT Ã)i ÃT b̃ = Q̂kri, ∀i ≤ k− 1,

where each vector ri has only the first (i + 1) components, which are different from zero.
For i = 1, we have

ÃT ÃÃT b̃ = ÃT Ã‖ATb‖2Q̂ke1 = ‖ATb‖2Q̂k B̄T
k B̄ke1 = Q̂kr1,

since the last component of the vector B̄T
k B̄ke1 is zero, in addition, except for the first two

components, the rest of the components of vector r1 are all zero.
Suppose for a given i the following relation is true,

(ÃT Ã)i+1 ÃT b̃ = (ÃT Ã)Q̂kri = Q̂k+1B̄T
k B̄kri,

and in the next step, we will show it is true for i + 1.
From the inductive hypothesis, we know that only the first (i + 1) components of ri

are not zero; therefore, the last component is zero of the vector B̄T
k B̄kri with (i + 2) non-zero

elements. Then there comes a conclusion that

(ÃT Ã)i+1 ÃT b̃ = Q̂kri+1

and, hence, the lemma is proved.

Based on Lemma 2 and Algorithm 1, for the bidiagonalization matrix B̄k obtained by
the HBITLS algorithm, one can find an orthonormal matrix Q̂k s.t.

(A + E)Q̂k = P̂k+1B̄k,

where Q̂k is just an orthogonal basis of Kk((A + E)T(A + E), (A + E)T(b + e)). Based
on this, we know that the first part of HBITLS , in exact arithmetic, gives the exact basis
of the perturbed Krylov space Kk((A + E)T(A + E), (A + E)T(b + e)). A perturbation
bound for TLS solutions is given by Xie and Wei [17], see Lemma 3, which is related to
the smallest singular value σn+1 of (A, b), the TLS solution x, and the residual r = b− Ax.
Let Â = A + ∆A and b̂ = b + ∆b. Then, the unique solution of the perturbed TLS
problem can be expressed as x̂. Denote κb = ‖b‖2

‖x‖2
‖B−1

λ AT‖2 and κA = ‖A‖2
‖x‖2

(
‖r‖2‖B−1

λ ‖2 +

‖x‖2‖B−1
λ AT‖2

)
with Bλ = AT A− σ2

n+1 I. The perturbation bound is obtained under the
genericity condition σ̄n > σn+1, where σ̄n is the smallest singular value of A
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Lemma 3 ([17]). Consider the TLS problem (2) and assume that the genericity condition holds. If
‖(∆A, ∆b)‖F is sufficiently small, then we obtain that

‖x− x̂‖2

‖x‖2
. κb

‖∆b‖2

‖b‖2
+ κA

‖∆A‖2

‖A‖2
.

Suppose that x and x̂ are the exact TLS solutions of Ax ≈ b and (A + E)x̂ ≈ b + e
respectively. The error introduced in this part of the HBITLS algorithm is the inherent error,
so we can give ‖x− x̂‖2 by Lemma 3 and Lemma 2 easily, see Theorem 2.

Secondly, let us consider the error between the TLS solution of the system (A + E)x̂ ≈
b + e and the approximation solution x̂k = V̂kŷk of the system computed by the HBITLS
algorithm at step k with the exact arithmetic, i.e., ŷk is the exact solution of the reduced
TLS problem

min ‖(β1e1, B̄k)− (ěk, B̌k)‖F subject to B̌kŷk = ěk, (23)

For convenience, define V̄k =

(
1 0
0 Vk

)
and let

(b, A) = WΣZT , (24)

where W and Z = [z1, z2, · · · , zn+1] are orthogonal matrices of dimension m and n + 1,
respectively, Σ is an m× (n + 1) diagonal matrix whose diagonal entries σi are the singular
values of (b, A), sorted in non-increasing order. Let θ(u, v) be the subspace angle between
R(u) and R(v).

Lemma 4. Let x denotes the essential TLS solution to the linear system (2) satisfying genericity
condition and xk be the approximation solution obtained from Algorithm 1. Then

sin θ(z, z(k)) ≤ ‖x− xk‖ ≤ sin θ(z, z(k))
√

1 + ‖x‖2
√

1 + ‖xk‖2, (25)

where

z ≡ zn+1 =

(
z12
z22

)
∈ Rn+1,

z(k) ≡
(

z(k)12

z(k)22

)
= V̄k z̄k+1 =

(
1 0
0 Vk

)(
z̄12
z̄22

)
∈ Rn+1.

(26)

Proof. It is easy to know that(
−1
x

)
−
(
−1
xk

)
=

(
z(k)12

z(k)22

)
(z(k)12 )

−1 −
(

z12
z22

)
z−1

12 . (27)

Then we have an orthonormal matrix G ∈ R(n+1)×n with the partition

G =

n[ ]
G1 1
G2 n

such that GT((z(k)12 )
T(z(k)22 )

T)T = 0 (i.e., G “forms a complete space”). From Equation (27)
there comes

GT
[(
−1
x

)
−
(
−1
xk

)]
= −GT

(
z12
z22

)
z−1

12 , (28)
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and, therefore

GT
2 (x− xk) = −GT

(
z12
z22

)
z−1

12 . (29)

From the CS theorem [18], we know that σmin(G2)
−1 = (z(k)12 )

−1. Then

σmin(G2)‖(x− xk)‖ ≤ ‖GT
2 (x− xk)‖

= ‖GT
(

z12
z22

)
z−1

12 ‖

≤ sin θ(z, z(k))z−1
12 .

It was noticed that

sin θ(z, z(k)) = ‖GT
(

z12
z22

)
‖

denotes the sine of the subspace angle between R(z) and R(z(k)). Hence, the upper bound
can be proved as follows

‖x− xk‖ ≤ sin θ(z, z(k))z−1
12 (z

(k)
12 )
−1

= sin θ(z, z(k))
√

1 + ‖x‖2
√

1 + ‖xk‖2.

For the lower bound, we have

‖x− xk‖ ≥ ‖GT
2 (x− xk)‖

= ‖GT
(

z12
z22

)
z−1

12 ‖

≥ z−1
12 sin θ(z, z(k))

≥ sin θ(z, z(k)).

Since z−1
12 ≥ 1, and this proves the upper bound case.

Thirdly, we need to consider how to solve problem (9) and show that the error
is between the solution obtained by this method and the theoretical solution. Let the
computed solution be

• x̄k = V̂kȳk, where ȳk is the computed solution of the problem (23).

In [19], James and Kahan posed an algorithm named QR iteration with a zero shift,
which guaranteed forward stability. Furthermore, an implicit algorithm about it is given.
Error analysis including the singular values and singular vectors are also given, which is
just what we’ve needed.

Lemma 5 ([19]). Let the matrix B̄ obtained by running the implicit zero-shift QR algorithm on a
bidiagonal matrix B with n× n. Suppose that all perturbation angles θ emerged from the operations
of the algorithm satisfy sin2 θ ≤ τ < 1. Let σ1 ≥ σ2 ≥ · · · ≥ σn and σ̄1 ≥ σ̄2 ≥ · · · ≥ σ̄n are the
singular values of B and B̄ respectively. If

ω ≡ 88nε

(1− τ)2 < 1, (30)

then we have:
|σi − σ̄i| ≤

ω

1−ω
σi.
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Moreover, let σk1 ≥ σk2 ≥ · · · ≥ σkn be the singular values of Bk produced after k steps of the
implicit zero-shift QR algorithm. Then if condition (30) holds, and all perturbation angles θ satisfy
sin2 θ ≤ τ < 1, we obtain

|σi − σki| ≤
(

1
(1−ω)k − 1

σi

)
≈ 88knε

(1− τ)2 σi.

James and Kahan [19] also give the relative differences between the singular vectors
of B and the ones of B̄.

Lemma 6 ([19]). Let σi be the singular value of be an unreduced bidiagonal matrix B with ui and
vi being its corresponding left and right singular vectors, respectively. Let ūi and v̄i be the singular
vectors computed by the implicit zero-shift QR algorithm. Then the bound of the errors in v̄i are
shown by

θ(v̄i, vi) ≤ p(n)ε/relgap ≡ p(n)ε/ min(|σi − σi+1|/σi). (31)

Then, combining with the perturbation bound of TLS given in [20] as shown in
Lemma 7, we can give the error estimate ‖ŷk − ȳk‖2.

If let (Ã, b̃) is a rank-k matrix approximation to (A, b), and (∆Ã, ∆b̃) = (A, b)− (Ã, b̃).
Let (Ā, b̄) = (A, b) + (∆A, ∆b) represent a perturbation of (A, b), (Ǎ, b̌) denote a rank-k
matrix approximation to (Ā, b̄) and define (∆Ǎ, ∆b̌) = (Ā, b̄)− (Ǎ, b̌), then

Lemma 7 ([20]). Let x and x̄ denote the TLS solution and the perturbed TLS solution.
If max(‖∆Ã‖, ‖∆Ǎ‖+ ‖∆A‖ < σ

′
k(the k-th singular value of A) may be provided. Then

sin θ(v, v̄) ≤ ‖x− x̄‖ ≤ sin θ(v, v̄)
√

1 + ‖x‖2
√

1 + ‖x̄‖2, (32)

where v and v̄ are the smallest right singular vectors of (A, b) and (Ā, b̄) respectively.

In summary, if let x̃k = f l(V̄kȳk) be the final computed solution at the k-th step, then
roundoff error analysis of HBITLS algorithm for TLS problem can be shown as follows

Theorem 2. Considering the HBITLS algorithm at step k , the roundoff error emerged during the
algorithm can be bounded as follows:

‖x− x̃k‖ ≤ κb87ε + κA
√

n(174n + 3
√

n + 87)ε

+ sin θ(ẑ, ẑ(k))
√

1 + ‖x̂‖2
√

1 + ‖x̂k‖2

+ sin θ(ẑ(k), ž)
√

1 + ‖ŷk‖2
√

1 + ‖ȳk‖2

+ 87kε‖ȳk‖+O(ε2),

where ẑ and ẑ(k) are defined in (26) similarly, ž is the computed smallest right singular vector of
(β1e1, B̄k).

Proof. The roundoff error can be composed of the following parts

x− x̃k = (x− x̂) + (x̂− x̂k) + (x̂k − V̂kȳk) + (V̂kȳk − f l(V̄kȳk)

and we analyze these errors separately.
For the first part, x and x̂ are the TLS solutions of the systems Ax ≈ b and (A + E)x̂ ≈

b + e, respectively, in line with Lemma 2, so the error of this part is the inherent error. Then,
combining with Lemma 3, we have

‖x− x̂‖ ≤ κb87ε + κA
√

n(174n + 3
√

n + 87)ε,
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where κA and κb see Lemma 3.
For the second part, this error is owing to the approximate solution of (A+E)x̂ ≈ b+ e

obtained by using HBITLS algorithm after k steps with the exact arithmetic. Lemma 4 tells
us that

‖x̂− x̂k‖ ≤ sin θ(ẑ, ẑ(k))
√

1 + ‖x̂‖2
√

1 + ‖x̂k‖2.

For the third part, it is noticed that x̂k = V̂kŷk, we have that ‖x̂k − V̂kȳk‖ = ‖ŷk − ȳk‖,
where ‖ŷk − ȳk‖ is the roundoff error stem from the projected TLS solution. Since Bk is a
special form of bidiagonal matrices, we consider using the implicit zero-shift QR algorithm
to perform singular value decomposition. (31) gives an upper bound of the angle between
the solution vectors, and combining Lemma 7, we know

‖x̂k − V̂kȳk‖ = ‖ŷk − ȳk‖ ≤ sin θ(ẑ(k), ž)
√

1 + ‖ŷk‖2
√

1 + ‖ȳk‖2,

where θ(ẑ(k), ž) is the subspace angle between the sub-spaces produced by the small-
est right singular vector and the computed smallest right singular vector of (β1e1, B̄k),
respectively.

For the last part, we know Vk = H1H2 · · ·Hk

(
Ik
0

)
, where H1H2 · · ·Hk is the product

of k Householder matrices. So, on the basis of (22), we obtain

‖V̂kȳk − f l(V̄kȳk)‖ ≤ 87kε‖ȳk‖+O(ε2).

By theorem 2, we get the mixed forward–backward stability of the HBITLS algorithm
and NIPALS-TLS algorithm naturally. The backward stability will generate perturbation
that will marginally influence the theoretical convergence of the residual to zero.

Remark 2. The bound we introduced in Theorem 2 shows that the total roundoff errors are
dominated by the approximation errors ‖x̂− x̂k‖. From this, we can know that, in many practical
problems, we can safely select the stopping criteria required by the algorithm based on the theoretical
nature of the original problem. This shows that, in a great deal of practical studies, the stopping
criteria may be effectively selected based on the theoretical properties of the problem itself, thereby
reducing the cost required to pursue an extremely accurate approximate solution to the original
problem.

4. Conclusions

For large-scale problems, how to give an algorithm with good accuracy and stability is
particularly important. In this paper, the Householder bidiagonalization total least squares
(HBITLS) algorithm and nonlinear iterative partial least squares (NIPALS-TLS) algorithm
are given. The HBITLS uses the Householder bidiagonalization algorithm for reducing
(b, A) to upper bidiagonal form and then runs the implicit zero-shift QR algorithm to
compute the smallest right singular vector of the reduced form for the approximation
solutions. The NIPALS-TLS is based on rank-reducing orthogonal projections. The two
algorithms compute the same approximate TLS solutions. By analyzing the propagation of
the roundoff error during the process of the HBITLS algorithm, we find that the HBITLS
algorithm and the NIPALS-TLS algorithm are to be mixed forward–backward stable. In
addition, in many practical problems, the stop criterion can be safely selected on the basis
of the rounding error analysis of the original problem. The upper bound of our roundoff
error gives a more detailed and clearer approximation of the computed solution.
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