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Abstract: In this work, we design a multiscale simulation method based on the Generalized Multiscale
Finite Element Method (GMsFEM) for numerical modeling of fluid seepage under permafrost
condition in heterogeneous soils. The complex multiphysical model consists of the coupled Richards
equation and the Stefan problem. These problems often contain heterogeneities due to variations
of soil properties. For this reason, we design coarse-grid spaces for the multiphysical problem and
design special algorithms for solving the overall problem. A numerical method has been tested
on two- and three-dimensional model problems. A a quasi-real geometry with a complex surface
is considered for the three-dimensional case. We demonstrate the efficiency and accuracy of the
proposed method using several representative numerical results.

Keywords: cryolithozone; heat and mass transfer; finite element methed; GMsFEM

1. Introduction

It is very important to consider the permafrost strata in soils under difficult climatic
conditions in the Far North and the Arctic. Moreover, the structure is not constant, as many
may believe, but is subject to changes as a result of thawing and freezing processes. Critical
changes in structure, as a result, can lead to catastrophic consequences. Furthermore, the case
with the fuel storage company NorNickel clearly demonstrates it. According to the official
version, an accident occurred due to a strong thawing of the permafrost layer that led to the
damage as the base could not withstand the weight of the structure. It caused irreparable
ecological damage in the region and incurred colossal financial losses. In the permafrost zone,
one of the main tasks in construction of buildings is a reasonable determination of the bearing
capacity of permafrost soils. In addition, from a technological point of view, it is crucial
to plan the start period of construction. Construction start date depends on the results of
geocryological forecast and thermal engineering calculation taking into account many factors
such as structure, composition, and soil properties, meteorological conditions, temperature
of each engineering and geological element, the thermal effect of buildings and structures
during operation. When carrying out the predictive calculations for construction under
permafrost conditions, one of the important tasks is to determine the three-dimensional
thermal state of soils during the operation of the structure, since the stability and reliability
of the structure depend on the depth of thawing and soil temperatures. The climate is also
one of the main factors in the dynamics of physical processes.

The model equations can be generalized and include sink terms due to, for example,
root uptake [1–3]. In this case, one needs new multiscale basis functions that describe
root uptake and this has not been studied in the literature. Our goal in this paper is to
focus on construction related issues; however, the additional effects due to water uptake
in some applications. In the paper, we design and implement Generalized Multiscale
Finite Element Method (GMsFEM) for flows into heterogeneous permafrost soils. We
construct a mathematical model by combining several models [4–6]. The seepage process
is implemented using the Richards Equation [7–15], where the coefficients of permeability
and the derivative of saturation concerning pressure are empirical dependences based on
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estimates of the percolation rate. The process of heat transfer in the soil is described by the
heat conduction equation and takes into account the phase transition of pore moisture into
ice and vice versa [16,17]. An additional convective term introduced considers the effect of
saturation on temperature, and the effect of temperature on the seepage process is taken
into account through the permeability coefficient [5].

Due to the multiscale nature of the problem, direct numerical simulations can be
resource-intensive. For this reason, we introduce some types of upscaling or multiscale
methods. These methods solve the problem on a coarse grid by introducing effective media
properties or multiscale basis functions (e.g., [18,19]). The extensions of these methods to
complex multiphysical problems require some special treatments. In this paper, we design
GMsFEM methods for our coupled multiphysical problems. The computational algorithm
is based on the GMsFEM [18–23].

We would like to highlight our contributions. In [24,25], we have considered a linear
heat transfer, where the permeability does not depend on the pressure. This simplifies
the algorithm as one does not need to iterate and update multiscale basis functions. In
this paper, we consider the nonlinear soil model, which is more realistic. In this case, the
permeability depends on the pressure and the overall multiscale procedure requires a
somewhat different approach. We design multiscale basis functions and iterative methods
for solving the global multiphysical problem.

Multiscale methods have become very popular in recent years and a variety of meth-
ods was developed, for example, Multiscale Finite Volume Method, Heterogeneous Multi-
scale Method, Multiscale Finite Element Method, Variational Multiscale Method, and so
on [26–29]. For high contrast porous media, more than one degree of freedom should be
introduced for accurate approximation of the processes. The main idea of GMsFEM is to
apply multiscale basis functions to obtain important information in each coarse grid (com-
putational grid) and build a reduced-order model. In this method, we construct a coarse
mesh then compute the snapshot space at each coarse element and construct multiscale
basis functions by performing the appropriate local spectral decomposition in each coarse
block. The types of local spectral problems are motivated by analysis.

In the paper, we present several two-dimensional and three-dimensional numerical
tests. In our tests, we choose parameters and test simulations by using different number
of basis functions per each coarse-grid block. Our results show that using fewer basis
functions, one can achieve a reasonably accurate approximation of the solution.

The work consists of 5 chapters and an introduction. The second chapter contains the
statement of the problem. It discusses the process of water seepage into frozen ground.
The third chapter provides a finite element approximation of the calculated mathematical
model. In the fourth chapter, we demonstrate GMsFEM. The last two chapters provide
numerical results for a 2D and 3D problem. The paper ends with the conclusions based on
the results of calculations.

2. Mathematical Model

We consider the process of water infiltration into the ground under permafrost condi-
tions. To do this we write down the associated mathematical model:

Seepage process. To describe the seepage process we use the Richards equation that
generalizes Darcy’s law. Note that there are three different forms of writing the Richards
Equation [9,10]: in terms of pressure, in terms of saturation, and mixed form. We in turn
use the Richards equation written in terms of pressure:

m
∂s
∂p

∂p
∂t
− div(K(p)∇(p + z)) = 0, (1)

here, p = p̃/ρg is head pressure, p̃ is pressure, m is porosity, s(p) is saturation, K(p) is
hydraulic conductivity.
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The following dependencies are true for the coefficients:

s(p) = 1.5− exp(−γp), K(p) = Ks · s(p)σ, (2)

where Ks is fully saturated conductivity, γ, σ are problem coefficients.
Heat transfer process. To simulate the thermal regime of soils, we consider which

thermal conductivity equation is used, taking into account the phase transitions of pore
moisture. In practice, phase transformations occur in a small temperature range [T∗ −
∆, T∗ + ∆]. Let us take sufficiently smooth functions φ∆ and δ∆(T − T∗) depending on
temperature:

φ∆ =
1
2

(
1 + erf

(T − T∗√
2∆

))
, δ∆(T − T∗) =

1√
2π∆

exp
(
− (T − T∗)2

2∆2

)
. (3)

Then, we obtain the following equation for the temperature in the region Ω:

cρ∆(T)
∂T
∂t
− div(λ∆(T) grad T) = f , (4)

here cρ∆(T) = ĉρ(φ∆) + ρ+Lδ∆(T − T∗), λ∆(T) = λ(φ∆) and L is specific heat of phase
transition (the latent heat). The resulting Equation (4) is a standard quasilinear parabolic equation.

For the coefficients of the equation, the following relations are true

ĉρ(φ∆) = ρ−c− + φ∆(ρ
+c+ − ρ−c−), λ(φ∆) = λ− + φ∆(λ

+ − λ−). (5)

here, ρ+, c+, λ+, ρ−, c−, λ− are density, specific heat, thermal conductivity of thawed and
frozen zones, respectively.

Fully coupled. We adapt the complete physical model by analogy with [5]. The effect of
saturation on temperature is taken into account by introducing an additional convective term:

c+ρ+(K(p, T)∇p,∇T). (6)

The effect of temperature on the seepage process is taken into account through the
permeability coefficient (if we mark the hydraulic permeability through K(p)):

K(p, T) = ε · K(p) + φ∆(K(p)− ε · K(p)), (7)

here, ε = 10−6 is small number. Thus, based on (1), (2), (4), (6), (7), we write down the
complete system of equations describing the seepage process in a porous medium, taking
into account temperature and phase transitions.

m
∂s
∂p

∂p
∂t
− div(K(p, T)∇(p + z)) = 0,

cρ∆(T)
∂T
∂t
− div(λ∆(T)∇T) + c+ρ+(K(p, T)∇p,∇T) = 0.

(8)

Boundary and initial conditions. We consider a quasi-real domain Ω ⊂ R2, with
boundary Γ = ∂Ω, Γ = Γin + Γst + Γs + Γb (see Figure 1). Let us supplement the complete
system with boundary and initial conditions:

For temperature. On top of the area (Γst ∪ Γin):

− λ∆(T)
∂T
∂n

= β(T − Tair), x ∈ Γst ∪ Γin, (9)

here, Tair is air temperature.
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On the lateral and lower parts of the border:

− λ∆(T)
∂T
∂n

= 0, x ∈ Γin ∪ Γb. (10)

For pressure (saturation) there are non-flow conditions everywhere:

− K(p, T)(∇(p + z), n) = 0, x ∈ ∂Ω, (11)

except part Γin, where under the condition temperature of the air is greater than fifteen
degrees of Celsius:

p = 1, x ∈ Γin, Tair > 15◦C. (12)

Initial conditions for temperature:

T = 0, x ∈ Ω, t = 0. (13)

Initial conditions for pressure (saturation):

p1 = 0, p2 = 0, x ∈ Ω, t = 0. (14)

Γin
Γst Γst

Γb

Γs Γs

Figure 1. Domain Ω with boundaries Γin, Γst, Γs, Γb.

3. Fine Grid Finite Element Approximation and Picard Iteration for Linearization

To describe the approximation in time we introduce a uniform grid with a step τ:

ω̄τ = tn = nτ, n = 0, 1, ..., N, τN = T (15)

and introduce the notation pn = p(tn), Tn = T(tn).
For approximation in time, we will use an analog of the implicit difference scheme.

For the Richards equation, we use the Picard iterations, and for the Stefan equation,
linearization from the previous time layer is used.

m
∂s
∂p

(pk)
pk+1 − pn

τ
− div(K(pk, Tn)∇(pk+1 + z)) = 0, k = 0, 1, ...

cρ∆(Tn)
Tn+1 − Tn

τ
− div(λ∆(Tn)∇Tn+1) + c+ρ+(K(pn+1, Tn)∇pn+1,∇Tn) = 0,

(16)

where k are Picard iterations. Only after solving the equation for p can we calculate the
equation for T using pn+1 = pk+1.
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For the approximation in space, standard Lagrangian finite elements are used. Next,
we introduce the space of finite elements:

VT = V̂T = H1(Ω),

Vp = {v ∈ H1(Ω) : v(x) = 1, x ∈ Ω},
V̂p = {v ∈ H1(Ω) : v(x) = 0, x ∈ Ω},

and introduce finite-dimensional spaces Vh
T , V̂h

T ⊂ VT , Vh
p , V̂h

p ⊂ Vp. Here H1(Ω)—Sobolev
space. Next, we represent the system in a variational form (16). Thus, we obtain a
variational formulation with taking into account the boundary conditions:

m
∫

Ω

∂s
∂p

(pk)
pk+1 − pn

τ
v1dx +

∫
Ω
(K(pk, Tn)∇(pk+1 + z),∇v1)dx = 0, k = 0, 1, ...

∫
Ω

cρ∆(Tn)
Tn+1 − Tn

τ
v2dx +

∫
Ω
(λ∆(Tn)∇Tn+1,∇v2)dx+

+
∫

Ω
c+ρ+(K(pn+1, Tn)∇pn+1,∇Tn)v2dx +

∫
Γst∪Γin

β(Tn+1 − Tair)v2ds = 0.

(17)

here, v1 ∈ V̂h
p and v2 ∈ V̂h

T .

4. Generalized Multiscale Finite Element Method

In this section, we describe how to build a local reduced-order model on a snapshot
space by solving some local spectral problems using GMsFEM. First, we need to generate
a rough mesh and build a snapshot space. Then, we solve special spectral problems in
these snapshot spaces for each coarse grid block we get some kind of set of multiscale
basis functions. Thus, it can be seen that the key component of the GMsFEM method is the
construction of local basis functions.

In offline computation, we have to build a snapshot of the Vωi
snap space for each rough

neighborhood ωi. The snapshot space can be the space of all small-scale basis functions or
solutions of some local problems on ωi with all possible boundary conditions.

−div(KS(x)∇ψj) = 0, x ∈ ωi,

ψj = δj(x), x ∈ ∂ωi,

here, δj(x) some set of functions defined on ∂ωi, j = 1, . . . , Ji (Ji number of all nodes ∂ωi).
Therefore, we define

Vsnap = span{ψsnap
j : 1 ≤ j ≤ Ji}, and Rsnap = [ψ

snap
1 , . . . , ψ

snap
Ji

].

Offline space is constructed using the following local spectral problems in snapshot space:

AoffΨoff
k = λoff

k SoffΨoff
k ,

here, Aoff = Rsnap ART
snap, Soff = RsnapSRT

snap. Here A and S denote similar fine-scale
matrices defined as follows:

A = [amn] =
∫

ωi

Ks(x)∇φm · ∇φndx, S = [smn] =
∫

ωi

Ks(x)φmφndx,

here, φm are linear basis functions.
To generate the offline space, choose the smallest Mωi

off eigenvalues and find the
corresponding eigenvectors ψoff

k = ∑m Ψoff
k,mφoff

m for k = 1, . . . , Mωi
off.
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We implement special multiscale basis functions φi
j (Figure 2) to describe near surface

form effects. We must multiply the found eigenvectors by the partition of unity functions χi.

φi
k = χiψ

off
k for 1 ≤ i ≤ N and 1 ≤ k ≤ Mωi

off,

here, Mωi
off denotes the number of eigenvectors that are sampled for each local area ωi.

Figure 2. Illustration of Multiscale basis functions that are used to construct coarse grid approxi-
mation. Multiscale basis functions are constructed: based on the spectral characteristics of the local
problems multiplied by partition of unity functions (the top is 2D and the bottom is 3D).

To define a partition of unity function, we first define an initial coarse space
Vinit

0 = span{χi}N
i=1; here, N the number of rough neighborhoods and χi is a standard

multiscale partition of unity function which is defined by:

−div(Ks(x)∇χi) = 0, C ∈ ωi,

χi = gi, on ∂C,

where gi is a continuous function on ∂C and linear on each edge ∂C; here, C is the cell of
the coarse grid.

Next, we define a multiscale space:

Voff = span{φi
k : 1 ≤ i ≤ N and 1 ≤ k ≤ Mωi

off}

and define the projection matrix:
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R = [φ1
1, . . . , φ1

M1 , . . . , φN
1 , . . . , φN

MN ]
T .

In this problem, obtained basis functions are used to solve a fully coupled problem.
Using the projection matrix R, we solve the problem using a coarse grid:

Mc
un

c − un−1
c

τ
+ Acun

c = Fc, (18)

where Mc = RNRT , Ac = RART , Fc = RF and un
ms = RTun

c ; here, un
ms is a fine-grid

projection of the coarse-grid solution. M and A are the mass and stiffness matrices for
the Fine system, respectively, F is the vector of the right-hand side and u is the required
function for the pressure P and T.

5. Numerical Results Two-Dimensional Problem

Numerical simulation of an applied problem in a two-dimensional formulation de-
scribing water seepage into the permafrost. The object dimension is 10 m wide and 5 m
deep (Figure 3).

Figure 3. Computational domain and heterogeneous coefficient Ks(x) (two-dimensional problem).

In an open area boundary conditions of the third kind were used—the external
environment. For the parameters of the external environment, the monthly average values
of air temperature were taken in the area of Yakutsk for the last year (Table 1).

Table 1. Average air temperature.

Month Temperature ◦C

January −36.0
February −31.9

March −17.7
April −2.8
May 7.7
June 16.7
July 19.8

August 17.3
September 6.6

October −4.7
November −25.2
December −36.4

In these calculations, it was assumed that the heat flow from the bowels would not
affect the temperature distribution of the rocks; therefore, the homogeneous Neumann
boundary condition was taken at the lower boundary of the computational domain.

We implement numerical modeling of the problem under consideration for the follow-
ing values of the thermophysical properties of the soil:

• Problem parameters σ = 2.0, γ = 1.0, β = 14.0;
• Volumetric heat capacity cρ—thawed zone 2397.6× 103 [J/m3·K]; frozen zone 1886.4×

103 [J/m3·K];
• Thermal conductivity α—thawed zone 1.37 [W/m·K], frozen zone 1.72 [W/m·K];
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• Phase transition ρ+L—75,330 ×103 [J/m].

The soil has an initial temperature −1.5 ◦C, pressure is equal 0. Calculations are
carried out for 365 days (1 year). For Picard iterations we use ε = 1% .

For numerical comparison of the fine–scale and multiscale solutions, we use weighted
relative L2 and energy errors for temperature and pressure:

||e||L2 =

√∫
Ω(uh − ums)2dx∫

Ω u2
hdx

, ||e||a =

√
aφ(uh − ums, uh − ums)

aφ(uh, uh)
,

where uh and ums are the fine–scale and multiscale solutions.
Table 2 shows the relative errors of L2 and energies for a different number of multiscale

basis functions. First of all, we noticed that by updating the basis functions more often we
can get more accurate solutions. We obtain 0.82% L2 error for the pressure and 1.3% L2
error for temperature on 2 multiscale basis functions. On the other hand accuracy of the
method increase on 8 multiscale basis functions. In this case, method provide 0.16% L2
error for the pressure, and 0.23% for temperature.

Table 2. Relative L2 and energy errors (%) for different number of multiscale basis functions.
(DOFf = 29,041).

M DOF ||e||L2 ||e||a M DOF ||e||L2 ||e||a
20× 5 coarse grid

t = 150

Temperature Pressure

1 496 3.97 21.96 1 496 2.28 29.78
2 992 2.06 15.29 2 992 1.14 21.3
4 1984 0.88 9.43 4 1984 0.65 16.05
8 3968 0.33 4.97 8 3968 0.28 10.02

16 7936 0.07 1.91 16 7936 0.09 4.89

t = 200

Temperature Pressure

1 496 2.77 14.78 1 496 2.19 29.06
2 992 1.3 10.9 2 992 0.82 21.3
4 1984 0.62 7.35 4 1984 0.46 16.53
8 3968 0.23 4.26 8 3968 0.16 8.56

16 7936 0.03 1.18 16 7936 0.04 3.83

The coarse grid solution using 8 basis functions for each temperature and pressure are
shown in Figures 4 and 5 for four time steps.

Figure 4. Numerical results for pressure that correspond to time step: (a) τ = 128 (b) τ = 150
(c) τ = 200 (d) τ = 365. This results are coarse grid solutions using 8 basis functions (DOFc = 3968).
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Figure 5 demonstrates zero isoclines (phase transition). The white line indicates
saturated soil and the black line unsaturated soil. The thawed layer lasts longer when a
layer is saturated and this can lead to dangerous consequences.

Figure 5. Numerical results for temperature (a) τ = 150 (b) τ = 200 (c) τ = 320 (d) τ = 365. Where
the white line is the isocline of zero for saturated soils and the black line is the isocline of zero for
non-saturated soils. This results are coarse grid solution using 8 basis functions (DOFc = 3968).

6. Numerical Results Three-Dimensional Problem

We expand the 2D problem to the problem in a three-dimensional setting (Figure 6).
The area in the plan has the same dimensions of 10 m and a height of 6 m. The computa-
tional grid has the dimensions Nn = 522,774 and Ne = 35,844,142. All characteristics of
the problem remain the same as in the case of 2D. The calculations were carried out for
1 year with a time step of τ = 24 h. To generate the soil surface, we used the following
surface equation z(x, y) = 5.5 + 0.5 sin(x + y)− 0.2 exp(−0.5[(5− x)2 − (5− y)2]/10). At
the center of this geometry, there is a pronounced depression through which liquid seeps.
This depression serves as an analog of places where water from precipitation accumulates.

Figure 6. Computational domain and heterogeneous coefficient Ks(x) (three-dimensional problem).

Table 3 demonstrates numerical convergences in norm ||e||L2 and ||e||a for tempera-
ture and pressure. Methodical results for the three-dimensional case qualitatively repeat
calculations in two-dimensional calculations. At the same time, the main trends persist and
a decrease in the error can be observed with an increase in the number of multiscale basis
functions. The main computational difficulty is localized in the Richards equation. This fact
can be described by the error in ||e||a norm. This is due to the non-linearity of the equation
complicated by the complex permeability coefficient which depends on the temperature.
This can be dealt with by an increasing number of multiscale basis embassies. On the other
hand, the average ||e||L2 error demonstrates good accuracy of the applied method. Already
good accuracy is achieved when 16 multiscale basis functions are implemented. We obtain



Mathematics 2021, 9, 2545 10 of 12

0.52% L2 error for the pressure and 0.18% L2 error for temperature on 16 multiscale basis
functions. Discussed L2 norms are observed to provide smaller errors because they do not
contain gradients. It is known that the gradients of multiscale functions are rough, and
these spatial fields are more difficult to represent with multiscale methods.

Table 3. Relative L2 and energy errors (%) for different number of multiscale basis functions.
(DOFf = 522,774).

M DOF ||e||L2 ||e||a M DOF ||e||L2 ||e||a
20× 20× 8 coarse grid

t = 150

Temperature Pressure

1 3969 3.27 16.8 1 3969 9.17 36.26
2 7938 2.67 14.75 2 7938 4.34 24.83
4 15,876 0.97 8.87 4 15,876 2.31 19.6
8 31,752 0.6 6.96 8 31,752 1.22 16.17

16 63,504 0.3 4.27 16 63,504 0.67 12.92

t = 200

Temperature Pressure

1 3969 2.71 13.87 1 3969 8.57 31.61
2 7938 1.5 11.1 2 7938 3.63 20.53
4 15,876 0.66 6.35 4 15,876 1.89 15.09
8 31,752 0.43 5.53 8 31,752 1.01 12.26

16 63,504 0.18 3.12 16 63,504 0.52 9.04

The coarse grid solution using 8 basis functions for each temperature and pressure are
shown in Figures 7 and 8 for four time steps. Multiscale solvers can significantly reduce
the size of the system and provide accurate solutions.

Figure 7. Numerical results for pressure that corresponds to time step: (a) τ = 128 (b) τ = 150
(c) τ = 200 (d) τ = 365. This results are coarse grid solution using 8 basis functions (DOFc = 31,752).
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Figure 8. Numerical results for temperature (a) τ = 150 (b) τ = 200 (c) τ = 320 (d) τ = 365, where
white line is isocline of zero for saturated soils. This results are a coarse grid solution using 8 basis
functions (DOFc = 31,752).

These results indicate that our method is robust with respect to the contrast in the
coefficient, and is able to give accurate approximate solution with a few local basis functions
per each coarse neighborhood. Numerical results demonstrate fact that the infiltration
process strongly affects the frozen ground.

7. Conclusions

A generalized multiscale method for solving the problem of the seepage process into
permafrost soil is presented. Such kinds of problems are relevant for applied problems
which involve the processes of thawing and freezing of a permafrost layer. The adaptive
basis functions have been developed that take into account irregularities on discretization
level for the complex geometry of the surface. The Multiphysics model was assembled
based on two nonlinear problems (Richards equation and Stefan problem) for numerical
implementation. We want to that our results are numerical and further studies are needed
to obtain the convergence. Based on the foregoing, the proposed method has shown
its efficiency both in simplified two-dimensional problems and in applied real three-
dimensional cases. To demonstrate modeling potential the results of numerical calculations
carried out in conditions close to the Yakutia region are presented.
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