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Abstract: Identifying influential edges in a complex network is a fundamental topic with a variety
of applications. Considering the topological structure of networks, we propose an edge ranking
algorithm DID (Dissimilarity Influence Distribution), which is based on node influence distribution
and dissimilarity strategy. The effectiveness of the proposed method is evaluated by the network
robustness R and the dynamic size of the giant component and compared with well-known existing
metrics such as Edge Betweenness index, Degree Product index, Diffusion Intensity and Topological
Overlap index in nine real networks and twelve BA networks. Experimental results show the
superiority of DID in identifying influential edges. In addition, it is verified through experimental
results that the effectiveness of Degree Product and Diffusion Intensity algorithm combined with
node dissimilarity strategy has been effectively improved.

Keywords: complex network; influence distribution; dissimilarity strategy; edge ranking

1. Introduction

A complex network is a multidisciplinary topic in many domains including informat-
ics, psychology, management, sociology, biology and engineering [1]. In reality, networks
arise in a multitude of domains and are useful in solving numerous problems of human
communities, such as the detection of bot accounts on Twitter [2], the discovery of vulner-
abilities in electrical grids [3], identification of potentially harmful interactions between
drugs [4], health care programs to predict the spread of epidemic diseases [5], improve-
ment of routes in the development of road networks [6] and so on. The question of how
to find influential nodes and edges is an important issue. Many methods are used to
rank the nodes in networks. Degree [7], H-index [8] and k-shell [9] are based on nodes’
neighbors. Closeness centrality [10] and betweenness centrality [11] are based on the path.
Quasi-Laplacian centrality [12], Local Gravity Model [13] and AWLM [14] are based on
semi-local structural information. In comparison, influential edges also play a significant
role in complex network study. Influential edges analysis will be beneficial for guiding
or controlling the network from a global perspective, moving the epidemic tipping point
through topologically targeted social distancing [15] and so on.

In fact, for different problems, the importance of the edge in the network contains
different meanings. In terms of the transmission of infectious diseases, the edge in the
network represents the path of the transmission of infectious diseases, and its importance
depends on the ability of this edge to spread diseases in the network. The stronger the
transmission ability, the higher the edge importance. In electric transportation networks,
edges in the network represent circuit connections. Its importance depends on the impact
of the circuit failure on the network connectivity; the greater the impact on the network
connectivity, the higher the edge importance. Therefore, the importance of the edge in the
network under different problems is different. In this paper, we use network robustness
R [16] as the target measure defining the importance of an edge for the impact on the
network connectivity.
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It is arduous that the number of edges in the network is more than the number of
nodes. However, there are still great signs of progress madding in the research of identi-
fying influential edges in complex networks. The earliest studies have reported in 1973.
Granovetter [17] proposed that weakly connected edges may be more important than
strongly connected edges, which has captured the attention of many researchers. Then,
the research on edge strength has gradually emerged. Radicchi et al. [18] extended the
clustering coefficient of nodes to edges and considered that the edges with lower clustering
coefficient bridges communities generally. Gilbert and Karahalios [19] considered the at-
tribute information and interaction strength of two nodes based on user characteristics and
interaction behavior. En-Yu Yu [20] considered not only the degrees of nodes and cliques
(local characteristics) but also the betweenness centrality (global characteristics) in order to
rank important edges. Kossinets [21], Goyal [22] and Saito [23] proposed algorithms by
learning a node behavior sequence and by calculating the influence probability.

In addition, Girvan and Newman [24] proposed edge betweenness that is based on
the centrality of betweenness. It can accurately identify the important edges in the network
but consumes huge computing resources. Holme et al. [25] multiplied the degrees of the
two nodes as the centrality value of the edge. Liu et al. [26] measured the influence of an
edge by counting the number of node first-order neighbors at the ends of the edge that
are not connected to another node. These two methods are very fast, but the accuracy is
very low. Onnela et al. [27] proposed a topological overlap method to judge the proportion
of common neighbors in the total number of neighbors to measure the importance of the
edge. It can improve the accuracy, but it was still poor at identifying edges that have a
significant impact on network connectivity. The vital edge cannot be accurately identified;
thus, the target removal edge has little effect on the network connectivity. An edge ranking
algorithm that can accurately identify important edges is urgent needed.

Maintaining global network connectivity is the basic function of edges. In fact, the
importance of an edge is related to the influence of the nodes at its two ends. However,
the most important nodes tend to have many edges, which also causes these edges to be
replaceable. In the paper, the scale of the gaint component is its nodes number. If edges
that are highly replaceable are chosen to be removed, it will have a little impact on the scale
of the giant component. On the contrary, the scale of the giant component will decrease
sharply by removing the irreplaceable edge, For example, in the power grid, if the most
irreplaceable edge is destroyed, it will cause a large-scale blackout. If such an edge is
protected in advance, the impact will not be significant for other replaceable edges are
damaged. Therefore, the rule of node influence distribution and the irreplaceability of
edges should be considered comprehensively.

In order to improve the accuracy for identifying influential edges in complex network,
we propose an edge ranking algorithm considering both local information and global
information. Firstly, a node influence distribution model is employed for measuring
the effect of the node on the edge. Subsequently, edge irreplaceability is revealed via
the node dissimilarity strategy. Afterward, the edge ranking algorithm is proposed by
combining the node influence distribution model (ID) and the node dissimilarity strategy
(DIS). The purpose of the proposed DID algorithm is to accurately detect edges that
can exert a strong influences over complex networks. Empirical results show that DID
performs best in comparison with the four methods on nine real networks and twelve BA
networks. In addition, DIS also can improve other methods that consider local information
of the network.

The structure of the paper is as follows: In Section 2, ID and DIS are proposed first.
Next, our method DID is proposed, and an analysis of DID is represented. The network
data description and numerical results based on various classic methods applying to real
networks and BA networks are shown in Section 3, respectively. Moreover, the experimental
results are discussed in Section 4. Finally, conclusions are made in Section 5.
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2. Algorithm

For different problems, the edge importance in the network is different. For the spread-
ing problems, people take the number of infected nodes per unit time as the evaluation
index of the network edge importance under the same transmission probability. On the
contrary, for network connectivity problems, researchers measure edge importance by
calculating the change of the scale of the most connected component in the network. The
purpose of this paper is to find edges that have a significant impact on network connectivity.

In this paper, we introduce the node influence distribution model and node dissimi-
larity strategy, which are the basis of our proposed edge ranking algorithm. The proposed
algorithm can identify influential edges widely. It works on unweighted and undirected
networks. The proposed algorithm consists of the following three steps: distributes node
influence, measures edge irreplaceability and proposes an edge ranking algorithm. Table 1
summarizes the symbols and notations used in the paper.

Table 1. Used symbols and variables.

Notation Description

Γ(i) Neighbor set of node i
CCi Closeness centrality of node i
N Number of nodes in the network
M Number of edges in the network
dij Distance from nodei to node j

Γ(i) ∩ Γ(j) The common neighbor of node i and j
ki Degree of node i
σst Number of the shortest path between node s and t

σst(eij) Number of the shortest path between node s and t that goes through edge eij
ni→j Neighbor of node j that is not connected with node i and not node i
〈k〉 Average degree of the network
〈d〉 Average distance of the network
D Network diameter
C Clustering coefficient of the network
r Assortative coefficient of the network

Gi Number of nodes in the largest connected component after removing i edges removed

2.1. Node Influence Distribution Model

It is known that the edge connected with the greater influence node also has greater
influence on the network. However, it is difficult to distinguish the importance of these
edges connecting the same influential node for many important nodes in reality with many
edges. For example, nodes F and G are the most influential nodes in Figure 1. However,
removing the connecting edge between nodes F and G has less impact on the overall
connectivity of the network than by removing the connecting edge between nodes H and I.
The influence of a node cannot directly reflect the influence of the edges connected to the
node. When a node has many edges, the influence will be diluted accordingly. To solve
these problems, node influence should be allocated to edges according to the actual rules.

Considering the global characteristics, closeness centrality [10] is selected to evaluate
the influence of nodes. The influence of node i allocated to an edge eij is calculated by node
i influences and the proportion of node j influence relative to the influence of all node i
neighbors. The ID value is the product of the influence values allocated to the edge by the
nodes at both ends of the edge. Thus, the edge influence is obtained as follows.

IDij = (CCi ×
CCj

∑t∈Γ(i) CCt
)× (CCj ×

CCi

∑z∈Γ(j) CCz
) =

(CCi × CCj)
2

∑t∈Γ(i) CCt ×∑z∈Γ(j) CCz
(1)



Mathematics 2021, 9, 2531 4 of 13

CCi is defined as the following.

CCi =
N

∑i 6=j dij
(2)

The node influence distribution model considers not only the information of the edge
itself but also the path, which can more comprehensively reflect the importance of the edge.
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Figure 1. Kite network [28].

2.2. Strategy Based on Node Dissimilarity

One of the greatest challenges for edge ranking is that the number of edges is much
larger than the nodes. Therefore, the cost of calculation is unacceptable for the dissimilarity
between edges. The more common the neighbors between the two nodes with the same
edge, the more backup paths there are corresponding to the edge. For example, in Figure 1,
after the edge between node F and G is removed, there are two paths between them. The
common neighbor plays the role of replacing the directly connected edge between the two
nodes. Thus, the dissimilarity of nodes should be considered when identifying important
edges to be more practical and efficient.

In order to measure the nodes similarity, Salton [29] is selected to explore the similarity
influence in two nodes on the edge. The cost of calculating the edge by this method is O(m).
By calculating the similarity between nodes, the dissimilarity in nodes at both ends of the
network is judged, and the irreplaceability of the edge is evaluated by the dissimilarity.
The node dissimilarity is calculated as follows.

DISij = 1− 1 + Γ(i) ∩ Γ(j)√
kik j

(3)

It should be noted that, in this paper, node dissimilarity is only used for pair of nodes
with connected edges. Therefore, when the neighbors of two nodes are identical except for
the degree of the two nodes being same and equal to the number of common neighbors
plus one (for an edge between them), their similarity is one, and so the dissimilarity of the
two nodes is zero.
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2.3. Dissimilarity Influence Distribution Algorithm

Considering node influence distribution and edge irreplaceability, a new edge ranking
algorithm is obtained by combining DIS with the ID model, named dissimilarity influence
distribution algorithm (DID). DID is calculated as follows.

DIDij = IDij × DISij = (
(CCi × CCj)

2

∑t∈Γ(i) CCt ×∑z∈Γ(j) CCz
)× (1− 1 + Γ(i) ∩ Γ(j)√

kik j

) (4)

The kite network (Figure 1) is used to describe the DID calculation process. The
closeness centrality of each node in the kite network is calculated, which is shown in
Table 2.

Table 2. The closeness centrality of each node in kite network.

Node Closeness Centrality

A 0.5294118
B 0.5294118
C 0.5
D 0.6
E 0.5
F 0.6428571
G 0.6428571
H 0.6
I 0.4285714
J 0.0.3103448

The closeness centrality of A is 0.5294117647058824, which is the same as B. The
neighbors of node A are B, C, D and F. The influence of edge 1 from node A can be obtained
as follows.

CCi ×
CCj

∑t∈Γ(A) CCt
= CCA ×

CCB
CCB + CCC + CCD + CCF

= 0.123

The influence of edge 1 from node B also is 0.123. The ID value of Edge 1 can be
obtained by 0.123 × 0.123 = 0.0152.

Then, the dissimilarity of nodes A and B is calculated as the irreplaceability of edge
1. Node A is connected with nodes B, C, D and F, and node B is connected with nodes A,
D, E and G. The common neighbor between node pair A B is node D, the number of the
common neighbor is one and so the dissimilarity is 0.5. Therefore, the DID of edge 1 is
calculated by 0.0152 × 0.5 = 0076. Correspondingly, the DID values of other edges can be
obtained, as shown in Table 3.

Edge 17 has the highest score calculated by DID. Edge 17 is the only way to connect
the left and right modules, which plays the role of the bridge. Although edges 4 and 5
connect the more important nodes in the network, their importance is decreased due to the
presence of many neighbors relative to these nodes. The DID method can better reflect the
real edge ranking sequence in the network.
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Table 3. DID of each edge in kite network.

Edge DID

1 0.007607
2 0.001166
3 0.003282
4 0.001076
5 0.000986
6 0.002363
7 0.00103
8 0.002224
9 0.00294
10 0.001585
11 0.002088
12 0.00273
13 0.002287
14 0.003826
15 0.007306
16 0.009036
17 0.012536
18 0.00664

3. Experiment

In this section, all experiments comprise targeted edge removal. Firstly, we explain
four algorithms used in comparison with DID. Then, we describe the data sets used in our
experiments. Next, the evaluation criterion network robustness R is described. The results
are explained at the end.

3.1. Compared Algorithms

The performance of the proposed algorithm is compared with the following four
algorithms:

(1) Edge Betweenness (EB [24]): EB considers the global information of the network
and measures the edge importance by judging the proportion of an edge on the shortest
path between any two nodes. It can be calculated as follows.

EBij = ∑
s 6=t

σst(eij)

σst
(5)

(2) Degree Product (DP [25]): The centrality of the edge can be obtained by multiplying
the degree value of nodes at both ends of an edge, as follows.

DPij = ki × k j (6)

(3) Diffusion Intensity (DI [26]): The centrality of the edge can be obtained by counting
the number of neighbors of one end node that is not connected to the other end node,
as follows.

DIij =
ni→j + nj→i

2
(7)

(4) Topological Overlap(TO [27]): The centrality of the edge can be obtained by
calculating the ratio of common neighbors to unconnected neighbors, as follows.

TOij =
Γ(i) ∩ Γ(j)

(ki − 1) + (k j − 1)− (Γ(i) ∩ Γ(j)) (8)

3.2. Data Set

In this paper, nine real networks from disparate fields including four social networks
(Dolphin [30], polblogs [31], Sex [32] and Facebook [33]; three communication networks
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(Email [34], As-733 [35] and PG [36]); and two collaboration networks (Jazz [37] and CA-
CondMat [3]) are used to test the performance of DID and DIS combined with several
classic methods. Dolphin is a social network of 62 dolphins. Polblogs is a social network in
the political blogosphere of the United States. Sex is a bipartite network in which nodes are
females (sex sellers) and males (sex buyers), and links between them are established when
males write posts indicating sexual encounters with females. Facebook describes social
circles from Facebook. Email describes email interchanges between users including faculty,
researchers, technicians, managers, administrators and graduate students of the Rovira
i Virgili University. As-733 contains the daily instances of autonomous systems from 8
November 1997 to 2 January 2000. PG is a snapshot of the Gnutella peer-to-peer file sharing
network from August 2002. Jazz is a collaboration network of jazz musicians. Ca-CondMat
is a collaboration network of Arxiv Condensed Matter category. Table 4 summarizes the
key properties of the selected real sets.

The BA networks are used to test the performance of DID and nodes, and the average
degrees include (500, 3), (500, 6), (500, 9), (500, 12), (5000, 3), (5000, 6), (5000, 9), (5000, 12),
(50,000, 3), (50,000, 6), (50,000, 9) and (50,000, 12), respectively.

Table 4. The basic topological features of 9 real networks.

Networks N M 〈k〉 〈d〉 D C r

Dolphin 62 159 2.5645 3.3570 8 0.2590 −0.0436
Jazz 198 2742 13.8485 2.2350 6 0.6175 0.0202

Email 1133 5451 9.6222 3.6060 8 0.2540 0.0782
AS-733 6474 12,572 1.9419 3.705 9 0.2522 −0.1818

polblogs 1222 16,714 13.6776 2.7375 8 0.3203 −0.2213
PG 6299 20,776 3.2983 4.6430 9 0.0108 0.0355
Sex 15,810 38,540 2.4377 5.7846 17 0 −0.1145

CA-CondMat 23,133 93,239 4.0392 5.3522 15 0.6334 −0.1340
Facebook 26,954 497,878 18.4714 3.6925 8 0.2358 0.1421

3.3. Evaluation Criterion

The network robustness R is used as an evaluation criterion to compare the perfor-
mance of DID with four algorithms on the considered data sets. The calculation process is
as follows: delete the connected edges in the network one by one and calculate the size
of the most connected subgraph of the normalized network until the network is empty. R
could be obtained as follows:

R =
1
M

M

∑
i=1

Gi
N

(9)

where i is the number of edges removed.

3.4. Experiment of DID Performance

The proposed DID is compared with four classic algorithms in nine real networks. The
results are shown in Table 5. The lower the network robustness R, the better performance
of the algorithm.

Table 5 shows that the network robustness R obtained by the proposed DID gener-
ally outperforms the competitive methods as marked in bold. From Table 5, DID is the
best performing algorithm on seven data sets (namely, Dolphin, Jazz, Email, polblogs,
PG, Sex and Facebook) whereas TO is the best performing algorithm on the as-733 and
CA-CondMat data set. Compared with TO, which considers the semi local information,
DID comprehensively considers the global and local information of the network. By com-
bining the relationship between nodes and edges, it can better reflect the importance of
network edges.
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Table 5. The R of DID and classic algorithms in real networks.

Networks EB DP DI TO DID

Dolphin 0.511 0.6745 0.6165 0.4709 0.4407
Jazz 0.666 0.9136 0.8051 0.6398 0.6024

Email 0.6253 0.809 0.7622 0.5533 0.4721
As-733 0.5262 0.564 0.5675 0.4492 0.4934

polblogs 0.5956 0.9362 0.8537 0.4809 0.4379
PG 0.5764 0.7348 0.7377 0.6002 0.4504
Sex 0.5208 0.6416 0.6395 0.5925 0.3895

CA-CondMat 0.4395 0.6278 0.5313 0.4125 0.4143
Facebook 0.6979 0.9284 0.8824 0.728 0.5156

We further study the efficiency of the algorithm by observing the ratio of the remaining
giant component relative to the original network after removing a certain proportion of
edges. By observing the proportion dynamic change of the giant component relative to
that of the original network, we can better represent the destruction of the algorithm. The
results are as shown in Figure 2.

Figure 2 exhibits that DID has excellent performance in finding the key edges in the
real network. With the important edges removed, the connectivity of the network is greatly
damaged. Even in the as-733 network and Ca-Condmat network where the performance
of DID is not optimal, the damage of DID is stronger than the other four methods when
deleting the top 50% edges. Moreover, in the Facebook network, DID is the best in the entire
process. In other networks, after more than half of the edges are deleted, DID is still more
destructive than other methods. Dynamic network experiment proves the effectiveness
of DID.

Next, we compared the proposed DID with four classic algorithms in 12 BA networks.
The results are as shown in Table 6 where the best values are marked in bold. Figure 3
shows the dynamic damage of DID and four comparison algorithms relative to network
connectivity. From Table 6 and Figure 3, DID has an excellent performance in finding the
vital edges in the BA network.

Table 6. The R of DID and classic algorithms in the BA networks.

Networks EB DP DI TO DID

BA-500-3 0.7325 0.7251 0.7262 0.7103 0.6399
BA-500-6 0.8651 0.844 0.8306 0.7771 0.6877
BA-500-9 0.886 0.8661 0.8551 0.8161 0.725
BA-500-12 0.9066 0.8728 0.8634 0.8384 0.7621
BA-5000-3 0.7346 0.7257 0.7227 0.7352 0.6493
BA-5000-6 0.8636 0.8445 0.8341 0.7982 0.7264
BA-5000-9 0.8962 0.8702 0.8575 0.8298 0.7597

BA-5000-12 0.9069 0.8788 0.8653 0.8693 0.7775
BA-50000-3 0.7358 0.723 0.7222 0.7379 0.6545
BA-50000-6 0.8578 0.8445 0.8333 0.8214 0.7283
BA-50000-9 0.8958 0.8715 0.8576 0.8484 0.775

BA-50000-12 0.9154 0.8804 0.8655 0.866 0.8131
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Figure 3. The dynamic damage of DID and 4 comparison algorithms to BA networks
connectivity (a–l).

3.5. Experiment of DIS

In order to verify the proposed DIS, we compared the combination methods (named
DEP, DDP, DDI and DTO) with the original methods in nine real networks. The network
robustness R is used as the evaluation index. The experimental results are shown in Table 7
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where the best values are marked in bold. The lower the R value, the better performance of
the algorithm.

Table 7. The R of original methods and combination methods.

Networks EB DEB DP DDP DI DDI TO DTO

Dolphin 0.511 0.4912 0.6745 0.6494 0.6165 0.564 0.4709 0.4664
Jazz 0.666 0.6514 0.9136 0.8758 0.8051 0.7264 0.6398 0.0.7328

Email 0.6253 0.6129 0.809 0.7907 0.7622 0.7376 0.5533 0.555
As-733 0.5262 0.5357 0.564 0.5622 0.5675 0.5634 0.4492 0.449

polblogs 0.5956 0.5778 0.9362 0.9356 0.8537 0.8449 0.4809 0.4749
PG 0.5764 0.613 0.7348 0.7347 0.7377 0.7315 0.6002 0.6002
Sex 0.5208 0.5446 0.6416 0.6416 0.6395 0.6379 0.5925 0.5925

CA-CondMat 0.4395 0.4449 0.6278 0.5725 0.5313 0.5058 0.4125 0.5223
Facebook 0.6979 0.7097 0.9284 0.9242 0.8824 0.8943 0.728 0.721

As Table 7 shows, when compared with the original methods, it is obvious that DEB
and DTO are not suitable, but DDP and DDI generally outperformed DP and DI. The
performance of DID is the best when compared with these eight algorithms based on
Tables 5 and 7.

4. Discussion

Identifying influential nodes and edges is a hot topic with a variety of applications in
different fields, such as informatics, psychology, management, sociology, biology, engineer-
ing and so on. Degree product [24], as the simplest measure, considers that the importance
of the edge is related to the importance of the nodes at its two ends. If nodes have a
large number of neighbors, the edge will be crucial. However, it is likely that some bridge
nodes are ignored, which connect different components but have a few neighbors. Edge
Betweenness [20] considers an edge as important if most nodes’ shortest path proceeds
through it but has high computational complexity. To overcome this shortcoming, Diffusion
Intensity [25] and Topological Overlap [26] are proposed, which can identify vital edges by
the semi local information. These two measures seem to be more suitable for identifying the
influential edges having a significant impact on network connectivity; however, they ignore
the edge irreplaceability, which is more realistic. Thus, the DID algorithm is proposed
in this paper, which firstly computes the influence that nodes distribute to the edge and
then considers edge irreplaceability by computing node dissimilarity. The proposed DID
algorithm is capable of identifying vital edges. Experimental results on nine real networks
and twelve different BA networks show the feasibility and efficiency of DID.

Firstly, the experiments comparing network robustness R exhibit the superiority of
DID, for the vital edges identified by the algorithm are observed to easily exert strong
influence than compared to the competitors. Although inferior to TO on the as-733 and
CA-CondMat data set, it is also quite competitive. As shown in Figure 2, by observing the
ratio of the remaining giant component to the original network after removing a certain
proportion of edges, the networks are more easily broken up by DID. The results on BA
networks also verify the feasibility and efficiency of DID. Secondly, we apply network
robustness R to evaluate the DIS effect on the classical algorithm (as shown in Table 7). In
general, DIS can only improve the performance of the method in some real networks, some
of which may even be reduced. Generally speaking, for some identifying influential edge
methods that consider local information of nodes, this strategy can effectively enhance
the performance of the algorithm at the cost of O(m) time when ranking edges for target
removal edges. It is worth noting that the DID is still the best.

5. Conclusions

In this paper, by considering node influence distribution and edge irreplaceability, we
proposed an edge ranking method named DID and compared it with four classic methods
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in nine real networks and twelve BA networks by network robustness R and the proportion
of dynamic change relative to the giant component. The results show that DID performs
well in identifying influential edges that have a significant impact on network connectivity.
This will help us in some real-life applications such as controlling the spreading of rumors
and targeted attacks on networks and so on.

In addition, we combined DIS with four classic methods (such as DEB, DDP, DDI
and DTO). The results show that DIS can effectively improve the performance of DP and
DI algorithms, which are based on local information of the network. The reason is that
the node dissimilarity strategy is more realistic, and these algorithms combined with this
strategy are more comprehensive for considering the topology of structure. However, for
TO and EB, which consider the network’s semi-local or global information, their accuracies
are reduced when identifying the edge that is more important compared to network
connectivity. Therefore, for different methods, the question of whether to choose this
strategy based on node dissimilarity should be answered and improved upon.
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