
mathematics

Article

Toward Non-Invasive Estimation of Blood Glucose
Concentration: A Comparative Performance

Gustavo A. Alonso-Silverio 1 , Víctor Francisco-García 1, Iris P. Guzmán-Guzmán 2 , Elías Ventura-Molina 3

and Antonio Alarcón-Paredes 4,*

����������
�������

Citation: Alonso-Silverio, G.A.;

Francisco-García, V.;

Guzmán-Guzmán, I.P.;

Ventura-Molina, E.; Alarcón-Paredes,

A. Toward Non-Invasive Estimation

of Blood Glucose Concentration: A

Comparative Performance.

Mathematics 2021, 9, 2529. https://

doi.org/10.3390/math9202529

Academic Editor: Jon-Lark Kim

Received: 4 September 2021

Accepted: 4 October 2021

Published: 9 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Facultad de Ingeniería, Universidad Autónoma de Guerrero, Chilpancingo 39087, Mexico;
gsilverio@uagro.mx (G.A.A.-S.); victor_fg@uagro.mx (V.F.-G.)

2 Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Mexico;
pao_nkiller@yahoo.com.mx

3 Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios
Bátiz, Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, Mexico City 07700, Mexico; eventuram@ipn.mx

4 Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz, Esq. Miguel
Othón de Mendizábal, Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, Mexico City 07738, Mexico

* Correspondence: aalarcon@cic.ipn.mx; Tel.: +52-7471300860

Abstract: The present study comprises a comparison of the Mel Frequency Cepstral Coefficients
(MFCC), Principal Component Analysis (PCA) and Independent Component Analysis (ICA) as
feature extraction methods using ten different regression algorithms (AdaBoost, Bayesian Ridge,
Decision Tree, Elastic Net, k-NN, Linear Regression, MLP, Random Forest, Ridge Regression and
Support Vector Regression) to quantify the blood glucose concentration. A total of 122 participants—
healthy and diagnosed with type 2 diabetes—were invited to be part of this study. The entire set of
participants was divided into two partitions: a training subset of 72 participants, which was intended
for model selection, and a validation subset comprising the remaining 50 participants, to test the
selected model. A 3D-printed chamber for providing a light-controlled environment and a low-cost
microcontroller unit were used to acquire optical measurements. The MFCC, PCA and ICA were
calculated by an open-hardware computing platform. The glucose levels estimated by the system
were compared to actual glucose concentrations measured by venipuncture in a laboratory test,
using the mean absolute error, the mean absolute percentage error and the Clarke error grid for this
purpose. The best results were obtained for MCCF with AdaBoost and Random Forest (MAE = 11.6
for both).

Keywords: non-invasive glucose monitoring; medical computing; healthcare; machine learning
regression models

1. Introduction

Diabetes is the most probable cause of one in ten deaths in people 20–59 years, and it is
catalogued as a national emergency in Mexico, according to the World Health Organization
(WHO) [1,2]. Diabetes is a metabolic disorder in which the body is not capable of regulating
blood glucose levels. Insulin is a hormone that is essential in the regulation of glucose
concentration in the blood and how the body uses it for converting glucose into energy.
This disease can be identified as two main types: type 1 diabetes (T1D) takes place when the
pancreas barely produces a limited amount of insulin, and even sometimes it is incapable
of producing any insulin. On the other hand, type 2 diabetes (T2D) comes about when the
body cannot effectively use the insulin it produces [1,3,4].

The adverse effects of diabetes in health have been demonstrated, and to mention only
a few it could lead to cardiovascular diseases, since people with T2D are at high mortality
risk of cardiovascular illnesses such as coronary heart disease or heart failure [5,6]; diabetes-
associated cognitive decline and dementia [7]; kidney alterations [8]; vision impairment
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in the form of diabetic retinopathy [9]; among others [10–12]. Recently, diabetes has been
significantly associated with mortality from COVID-19 and also with duplicating the risk
of developing more severe COVID-19, as compared to non-diabetics [13–15].

Blood glucose measurements can be performed by methods such as the glycated
haemoglobin A1c (HbA1c) test or commercial glucometers for self-monitoring; however,
the HbA1c laboratory test is considered the gold standard [16]. Both methods, the HbA1c
test and glucometers, are invasive, i.e., they need to collect a blood sample by venipuncture
or a pinprick, respectively, to carry out the process [17]. This precondition produces distress
and discomfort in patients, thus hindering the proper accomplishment of monitoring for
disease control and treatment. Although there are rapid tests as alternative methods other
than venipuncture for monitoring, they also require a pinprick to collect a blood sample
from the finger of patients—a situation that urges the experimental development of non-
invasive sensors and systems for blood glucose estimation. To alleviate this predicament,
minimally invasive glucometers (MIGs) have emerged as an alternative. Nowadays,
some MIGs are commercially available, such as the Gluco Track (Integrity Applications
Ltd., Ashdod, Israel), which uses the earlobe as the medium for measuring glucose by
applying thermal and ultrasonic technology, with the inconvenience that it needs individual
calibration [18], and the FreeStyle Libre (Abbott Diabetes Care, Inc. Alameda, USA)
designed to estimate glycemia in adults [19]. Some other MIGs remain in progress, e.g., the
SugarBEAT (Nemaura Medical Inc., Loughborough, UK) that employs its own transmitter
device synchronized to a disposable patch attached to the user’s skin, the GlucoWise
(MedWise Ltd., London, UK), which makes use of power radio waves transmitted through
the earlobe [19], or smart contact lenses (Google, LLC., Mountain View, USA) using tear
fluid for measuring the glucose concentration [20].

Previously reported studies are commonly based on optical and spectroscopy tech-
nologies due to their ease and ability to analyze samples without the need of any prior
manipulation [21,22]. Some of the preferred techniques for developing new MIGs investi-
gated in the state-of-the-art employ near and mid-infrared spectroscopy [21–26], Raman
spectroscopy [21,26], and infra-red spectroscopy based on Fourier transform [21]. Addi-
tionally, photoplethysmography (PPG) in the mid-infrared and first overtone regions of
glucose absorbance [27–29] has been widely used for non-invasive glucose measurements,
but suffers from drawbacks such as the high cost of the light sources, scattering due to fatty
tissue, strong absorption due to water, and the high cost of the experimental setup. Most of
the aforementioned studies use high-priced laboratory equipment or software that needs
specialized personnel, hindering the development of reliable devices at an affordable price.

Besides signal acquisition techniques, feature extraction methods play an important
role. Principal component analysis (PCA) and independent component analysis (ICA) are
among the most widely used methods. In the speech recognition area, the Mel frequency
cepstral coefficients (MFCC) method is one of the most important. These techniques are
typically used to reduce the dimensionality of data before processing them by a pattern
recognition algorithm. Numerous studies have reported good performances when using
these algorithms, e.g., for EEG, ECG and biomedical applications [30–33]; nevertheless,
only a few have addressed the MFCC [34,35] for glucose monitoring purposes, but PCA
and ICA have not been investigated yet.

The aim of this work is to compare the performance of PCA, ICA and MFCC as feature
extraction methods in a range of different regression algorithms (AdaBoost, Bayesian Ridge,
Decision Tree, KNN, MLP, SVR, Random Forest, Ridge, Elastic Net, Linear Regression)
included in the scikit-learn library for the Python programming language. The dataset
intended for this purpose was acquired using a cost-effective setup. After the regression
comparison, all algorithms were trained and applied to the external validation test with
the aim to explore their performance for the further development of a daily-use device.



Mathematics 2021, 9, 2529 3 of 13

2. Materials and Methods

The present work encompasses a non-invasive methodology for estimating the blood
glucose concentration by analyzing the light absorption response of a finger when a
beam of light is pointed on it. To this end, a laser beam is directed to the fingertip of
the user while an LDR (light dependent resistor) sensor captures the transmitted light
across the finger. The working principle of the proposal is the Beer–Lambert law, which
provides a formulation for calculating how much of a material is present in a sample by
obtaining the response of its light absorbance. In other words, the quantity of a material
present in a sample is proportional to its light absorption and, consequently, the intensity
of transmitted light will decrease while the concentration of the material in a medium
increases [36]. Although related past works utilize a variety of body tissues—such as
forearm, earlobe or cheek—for measuring light absorbance, we selected the fingertip to
take advantage of its high capillary concentration [37]. Furthermore, similar to some of the
related works [21,22,24–26,28,36], we hypothesized that variations in transmitted light may
correspond to variations in glucose concentration in the blood. The glucose levels estimated
by the system were compared to actual glucose concentrations measured by venipuncture
in a laboratory test, using the mean absolute error, the mean absolute percentage error
and the Clarke error grid for this purpose. A block diagram of the proposal is depicted in
Figure 1.

Figure 1. Overview of the proposed system.

2.1. Participants

A total of 122 participants—healthy and diagnosed with type 2 diabetes (T2D)—
averaging 36.7 ± 14.2 years, within a range of 21–76 years, were invited to be part of this
study. All procedures in this study were performed in accordance with the provisions of
the Declaration of Helsinki. All participants signed an informed consent form and are
aware of the research objectives. Participants with a range of different skin tones were
preferentially selected for capturing the common variations in the sample, thus making the
dataset representative of our region.

The entire set of participants was divided into two partitions. The first, a training
subset of 72 participants (~60%), was intended for model selection, whereas the second
validation subset comprised the remaining 50 participants (~40%) and was intended to test
the selected model with unknown data. Further details of the participants are described in
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Table 1. There, the average ± the standard deviation and the (min, max) range regarding
the age and glucose concentration of participants are described. The percentages of female
and male participants and for those diagnosed with T2D are also reported.

Table 1. Details of the participants per subset.

Dataset Age Gender (%) F–M T2D 1 (%) Diagnosed Glucose Concentration

All participants 36.7 ± 14.2 (21,76) 52.5–47.5 20.50 108.8 ± 38.1 (75,259)
Training subset 36.4 ± 13.93 (21,76) 58.3–41.7 19.44 107.1 ± 39.7 (75,259)

Validation subset 37.1 ± 14.16 (21,70) 44.0–56.0 22.00 111.3 ± 35.5 (77,232)
1 T2D: type 2 diabetes.

2.2. Data Collection

The system implementation considers a primary stage for data collection. In order
to collect the data, a 650 nm wavelength laser beam was pointed to the user’s fingertip.
An LDR sensor, placed below the finger, was in charge of measuring the light that can
be transmitted through the finger. Because LDR is highly sensitive to light changes, both
components, the laser and the LDR, were enclosed in a 3D-printed chamber to provide
a light-controlled environment. A low-cost microcontroller unit (MCU) was in charge of
measuring the LDR signal. Data acquisition was performed with an MCU using a 1 kHz
sampling frequency for a lapse of 6 s, thus obtaining 6000 different values arranged in
a vector. Nevertheless, some variations in data collection can be induced by the effect
of placing the finger in and out of the sensor; for this reason, we only considered the
4000 values in the middle and discarded the 1000 initial and final positions of the vector.
This signal was transmitted to a Raspberry Pi (RPi) board, responsible for the feature
extraction and regression procedure for glucose estimation.

2.3. Feature Extraction

Feature extraction techniques are intended for transforming a complex signal to repre-
sentative variables to be used by prediction algorithms. In this manuscript, three methods
for performing feature extraction were addressed: Mel frequency cepstral coefficients
(MFCC) [38], principal components analysis (PCA) [39] and independent component analy-
sis (ICA) [40]. Prior to applying the feature extraction algorithms, signal data were filtered
using a Hamming window of size 40.

The MFCC method is one of the most used feature extraction techniques, commonly
applied in acoustics and speech recognition [41]. In this method, the signal is divided into
overlapped frames of n data. A fast Fourier transform (FFT) is applied to each of those
frames, resulting in a signal representation in the frequency domain. The resulting signal
spectrum is filtered by the Mel filter banks. Finally, the cepstral coefficients are calculated
by computing the inverse discrete cosine transform (DCT) on logarithmic values of Mel
filters. The MFCC function included in the python_speech_features library’s outcomes are
the thirteen first coefficients of the inverse DCT, which stands for the MFCC.

PCA is commonly used as an exploratory tool for data analysis; it is a decomposition
technique that employs singular value decomposition (SVD) with the aim to project data
into a lower dimensional space. The principal components represent the orthogonal
projections for which the variance of data is maximum, that is, the directions in the feature
space along which the original data are highly variable [42].

The ICA algorithm is typically applied in signal processing for separating superim-
posed signals rather than for dimensionality reduction. It is supposed to find the projections
that decompose a multivariate signal into sources that are statistically independent [43].

For both PCA and ICA, the first three components were selected.

2.4. Regression Models

For this study, ten regression models were fit and tested. In order to obtain an
enhanced result, a grid search for hyperparameter tuning was performed on the training
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subset using a 5-fold cross-validation scheme for each algorithm; parameters yielding the
least MAE were taken into consideration. All regression algorithms were implemented
with the Python programming language using the scikit-learn library. Below, a description
of the regression models is presented.

2.4.1. AdaBoost

AdaBoost regressor is one of the most used boosting algorithms. It is a method that
combines a number of weak algorithms, fitting them on the training data by adjusting the
weights of corresponding instances according to the measured output errors. This process
is repeatedly performed until a predefined error condition is met [44].

2.4.2. Bayesian Ridge

This estimates a probabilistic regression model in which the priors for the parameters
are given by a spherical Gaussian. This model may include regularization parameters in the
estimation procedure and is performed iteratively by trying to maximize the log-likelihood
of the instances [45].

2.4.3. Decision Tree

A decision tree is boosted by fitting n + 1 decision trees on a dataset with a small
amount of Gaussian noise. The results obtained by the n boosts, i.e., the decision trees, are
each compared with a single decision tree regressor. As the number of boosts increases, the
regressor is capable of including more details in the model [46].

2.4.4. Elastic Net

This model consists of a linear regression that intuitively includes an L1 and L2 regu-
larization while fitting the coefficients to training data. Due to parameter regularization,
the elastic net stands as a sparse model, which in turn is truly convenient when correlated
features are present in the data [47,48].

2.4.5. k-Nearest Neighbors Regressor (k-NNr)

This is an instance-based and well-known model in the state-of-the-art. It works
by performing two main procedures: first, obtaining a similarity function (commonly
Euclidean distance) between the training dataset and the instance we want to predict;
then, averaging the output of the k closest observations to give the prediction value. The
parameter k is of great importance since its election may yield high error rates if it is a very
large value, and overfitting when a lower k value is selected [49].

2.4.6. Linear Regression

This constitutes the simplest regression model, and it is also one of the preferred
regression techniques due to its capability for capturing data behavior and its ease of
implementation. In the present study, an Ordinary Least Squares (OLS) linear regression
was implemented using the gradient descent method for error minimization and a mean
squared error as a cost function [42].

2.4.7. Multilayer Perceptron Regressor (MLPr)

This type of neural network employs the backpropagation learning algorithm for
training a multi-layer perceptron (MLP). Different from the traditional classification MLP,
this implementation uses a linear activation function for giving a set of continuous values
as an output [50].

2.4.8. Random Forest

This model fits a variety of decision trees considering random subsamples with
replacement from the dataset in such a way that subsamples are always the same size as
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the original input. After that, it averages the results for overfitting control and helping to
reduce the predictive error [51].

2.4.9. Ridge Regression

This model is similar to LASSO due to the fact that both are based on OLS linear
regression and support multivariate regression. However, this very model overcomes
some problems by using a coefficient regularization penalty given by the L2-norm. As a
result, ridge coefficients are prone to minimizing the residual sum of squares for model
construction [42,47].

2.4.10. Support Vector Regression (SVR)

This algorithm comes from the statistical learning theory. In its simplest way, it
employs a linear kernel for delivering the regression values and a loss parameter denoting
the maximum permitted error of predictions in contrast to reference output values. It
also can be extended for non-linear predictions by using a kernel trick in which data are
mapped to a higher-dimensional space [52,53].

2.5. Algorithm Performance

Regression analysis was performed for model selection. With the aim to measure
the performance of the algorithms, the experiments were run considering the following
aspects:

• Evaluation metrics. The mean absolute error (MAE), mean absolute percentage error
(MAPE) and the Clarke error grid were considered. MAE, computed as in Equation
(1), constitutes the average difference between the estimated values vs. the lab test;
in addition, MAPE represents the same difference but expressed in percentage (see
Equation (2)). The Clarke error grid is a graph divided into five zones, for which
the success of the results depends on where the reference glucose values versus the
algorithm outcomes are plotted. That is, zones A and B stand for accurate or acceptable
estimation, zone C is commonly associated with unnecessary treatments, but zones D
and E are representative of potentially dangerous mistreatment caused by confusing
hyperglycemia and hypoglycemia.

• Cross-validation. Data from all participants were divided into two mutually exclusive
partitions. Here, the k-fold cross-validation model was applied onto 60% of the data,
and the remaining 40% were intended for testing the model once the algorithms were
fitted. In this study, the five-fold cross-validation scheme was preferred. First, data
are divided into five subsets, commonly referred to as folds, and repeatedly perform a
procedure for which at the i-th step the corresponding i-th fold is taken as a test subset
while the remaining four folds are used to train the regressor [42]. This paragraph is
graphically outlined in Figure 2.

MAE =
1
n

n

∑
i=1
|yi − ŷi| (1)

MAPE =
100%

n

n

∑
i=1

|yi − ŷi|
yi

(2)
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Figure 2. Data partitioning for cross-validation and external validation set.

3. Results

As mentioned before, all the regression algorithms used 5-fold cross-validation for
hyperparameter grid searching for model selection, and its outcomes are presented in
Table 2.

Table 2. Selected parameters by grid search.

Regression Model Selected Parameters

AdaBoost learning_rate:1.0; loss:square; n_estimators:50

Bayesian Ridge alpha_1:1e-6; alpha_2:0.001; fit_intercept:True; lambda_1:0.001;
lambda_2:0.001; n_iter:200; tol:0.01

Decision Tree criterion:mse; max_features:sqrt; min_samples_leaf:3;
min_samples_split:2

Elastic Net alpha:1.0; l1_ratio:0.9; max_iter:100
k-NNr 1 leaf_size:2; n_neighbors:13

Linear Regression fit_intercept:False; normalize:True
MLPr 2 activation:tanh; alpha:1.0; max_iter:500; solver:lbfgs

Random Forest max_depth:2; n_estimators:30
Ridge Regression alpha:0.1; max_iter:50; solver:sag; tol:0.8

SVR 3 C:100.0; gamma:0.01; kernel:rbf
1 k-NNr: k-nearest neighbors regression. 2 MLPr: Multilayer perceptron regression. 3 SVR: Support vector
regression.

The results of the grid search process are depicted in Figure 3. The selected parameters
were taken into consideration for fitting the regression algorithms on the training subset.
Intuitively, the behavior of the algorithms was measured on the validation subset. As
explained above, the performance metrics used in this study were the mean absolute error
(MAE), the mean absolute percentage error (MAPE) and the Clarke error grid.
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Figure 3. Results obtained after grid search for model selection. Values of mean absolute error (a) and mean absolute
percentage error (b) are reported.

As previously mentioned, three feature extraction procedures were tested. The first
experiment consisted of fitting the models using the dataset built by computing the MFCC
from the acquired signal; the total 13 MFCC were taken. The second and third experiments
comprised the calculation of the PCA and ICA from the Hamming-filtered signals. For
both PCA and ICA, the first three components were considered for feature construction.
The performance results of MAE, MAPE and the Clarke error grid regions over the MFCC,
PCA and ICA can be consulted on Table 3, Table 4 and Table 5, respectively. Figure 4
graphically shows the relationship of the glucose concentration obtained with the algorithm,
in comparison with the glucose values obtained by the gold standard laboratory test, by
means of the Clarke error grid. The results shown there correspond to the best performance
obtained for each feature extraction technique: (a) MFCC, (b) PCA and (c) ICA. The results
of the Clarke error grid graphics for all regression algorithms, using the referred feature
extractors, are included in the Supplementary Materials, respectively.

Table 3. Results on the test subset using the MFCC features.

Regression Model MAE MAPE Clark Error Grid Region (%)
(A–B–C–D–E)

AdaBoost 11.62 10.78 92–8–0–0–0
Bayesian Ridge 22.56 18.71 57–43–0–0–0
Decision Tree 23.65 21.70 53–47–0–0–0

Elastic Net 19.40 16.29 76–24–0–0–0
k-NNr 1 21.97 19.88 61–39–0–0–0

Linear Regression 35.21 99.05 41–57–2–0–0
MLPr 2 33.12 20.55 57–39–4–0–0

Random Forest 11.66 10.21 90–10–0–0–0
Ridge Regression 26.23 21.89 57–43–0–0–0

SVR 3 17.87 17.20 73–27–0–0–0
1 k-NNr: k-nearest neighbors regression. 2 MLPr: Multilayer perceptron regression. 3 SVR: Support vector
regression.
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Table 4. Results on the test subset using the first three components of PCA feature extraction.

Regression Model MAE MAPE Clark Error Grid Region (%)
(A–B–C–D–E)

AdaBoost 14.62 10.52 80–20–0–0–0
Bayesian Ridge 19.04 14.64 59–41–0–0–0
Decision Tree 24.24 21.99 61–37–2–0–0

Elastic Net 18.88 14.53 59–41–0–0–0
k-NNr 1 14.95 10.49 76–24–0–0–0

Linear Regression 18.87 14.52 59–41–0–0–0
MLPr 2 24.04 18.70 53–47–0–0–0

Random Forest 13.98 10.42 82–18–0–0–0
Ridge Regression 19.11 14.68 57–43–0–0–0

SVR 3 19.76 21.24 80–20–0–0–0
1 k-NNr: k-nearest neighbors regression. 2 MLPr: Multilayer perceptron regression. 3 SVR: Support vector
regression.

Table 5. Results on the test subset using the first three components of ICA feature extraction.

Regression Model MAE MAPE Clark Error Grid Region (%)
(A–B–C–D–E)

AdaBoost 16.75 15.21 82–18–0–0–0
Bayesian Ridge 17.73 14.38 78–22–0–0–0
Decision Tree 25.80 26.13 69–29–2–0–0

Elastic Net 18.62 16.10 78–22–0–0–0
k-NNr 1 16.73 12.87 69–31–0–0–0

Linear Regression 17.71 14.08 69–31–0–0–0
MLPr 2 31.19 21.36 55–45–0–0–0

Random Forest 18.26 13.85 65–35–0–0–0
Ridge Regression 18.53 16.00 78–22–0–0–0

SVR 3 19.06 20.19 82–18–0–0–0
1 k-NNr: k-nearest neighbors regression. 2 MLPr: Multilayer perceptron regression. 3 SVR: Support vector
regression.

Figure 4. Clarke error grid results using (a) MFCC, (b) PCA and (c) ICA feature extraction methods.

Overall, the best scores reflected a MAE of 11.62, 13.98 and 16.73, obtained by the
AdaBoost for the MFCC, the Random Forest for PCA and k-Nearest Neighbors when using
ICA, respectively. Similarly, the best achieved MAPE was 10.21 and 10.42 for Random
Forest with MFCC and PCA; with ICA, 12.87 was the best MAPE, found by k-Nearest
Neighbors.

It is worth mentioning that PCA and ICA seem to privilege those regressors built
upon a linear regression, such as Bayesian Ridge, Elastic Net, Ridge Regression and Linear
Regression itself. However, the MFCC extractor seems to perform on the contrary, and
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the linear regressors seem to be penalized. This behavior is reflected on the regions of the
Clarke error grid in which AdaBoost and Random Forest achieved more than 90% of points
in region A. Regarding PCA, AdaBoost, Random Forest and SVR have the best results,
obtaining more than the 80% in region A. The best regressors using ICA, similar to what
happens with PCA, were only AdaBoost and SVR, both with 82% of the points in the same
region A.

Despite the fact that the family of linear regressors obtained reasonable MAE and
MAPE results in PCA, note that their results regarding the Clarke error grid are not the
best. They obtained 59–41% in regions A and B for Bayesian Ridge, Elastic Net and Linear
Regression in PCA.

4. Discussion

The results presented in this study showed clinically acceptable prediction errors as
established by Clarke grid analysis and regarding MAE and MAPE metrics, but also, they
are competitive in comparison to previous related works. The authors in [34] acquired a
long photoplethysmography signal and divided it to generate a larger number of samples.
They extracted the MFCC and used them as input vectors for classification algorithms
obtaining up to 90% of qualitative analysis, i.e., they identified subjects for hypoglycemia
and normal or high glucose concentrations rather than obtaining the glucose concentration
value; they also reported a correlation value of 0.88 in the Clarke error grid. With respect
to [54], the authors took a picture of the subject’s fingertip, and after processing the image
they calculated descriptors that were the input values for fitting an ordinary least squares
linear regression. The predicted values were then compared with two reference tests: a
commercial glucometer and a standard laboratory test, reporting root mean squared errors
of 15.94 and 9.81, respectively. Similarly, the authors from [55] presented a sophisticated
device that incorporates different sensors for data acquisition such as an image sensor as
well as diverse monochromatic light sources in the range from blue to infrared, and even
a conventional invasive glucometer module. They reported results of MAPE values of
11.2%, 11.6% and 12.7% after conducting experiments in comparison to three commercial
glucometers of different brands.

One of the main goals of our proposal is to provide a simple and effective way to
monitor blood glucose concentration non-invasively. The main differences in relation to
state-of-the-art works are that some involve the use of complex hardware systems, whereas
in some others, the reported results do not provide an estimated glucose concentration
value, offering a qualitative evaluation instead.

5. Conclusions

The potential use and comparison of the MFCC, ICA and PCA algorithms as feature
extractors have been explored in this work. Here, each of them was applied along with
ten well-known regression models in order to estimate the glucose concentration in blood
in a non-invasive way. The obtained results and the experimental low-cost setup for data
acquisition raise the idea of continuing the development of more affordable devices for
glycemia monitoring.

Although the MFCC method has been applied in a range of diverse healthcare appli-
cations before, its use as a feature extractor in the estimation of blood glucose concentration
had not been reported until now.

The present study constitutes a baseline for the exploration of different sensors with
regard to the MFCC features towards the non-invasive estimation of blood glucose concen-
tration. After analyzing the obtained results with the light-dependent resistor used here,
we can hypothesize that the use of different kinds of sensors, such as photoplethysmog-
raphy, could be one of the future directions for exploring the MFCC method as a feature
extractor due to its inherent way of obtaining a variety of frequencies. Despite the existence
of diversity in the skin color of participants, this topic was not considered for this study;
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nevertheless, it would be of paramount interest to be included in future research with a
larger sample of subjects.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/math9202529/s1, Figures S1–S3: The results of the Clarke error grid graphics for all regression
algorithms, using the feature extraction technique: (a) MFCC, (b) PCA and (c) ICA.
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