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Abstract: Let (Xn) be a sequence of real random variables, (Tn) a sequence of random indices, and
(τn) a sequence of constants such that τn → ∞. The asymptotic behavior of Ln = (1/τn) ∑Tn

i=1 Xi, as
n→ ∞, is investigated when (Xn) is exchangeable and independent of (Tn). We give conditions for
Mn =

√
τn (Ln − L) −→ M in distribution, where L and M are suitable random variables. Moreover,

when (Xn) is i.i.d., we find constants an and bn such that supA∈B(R) |P(Ln ∈ A)− P(L ∈ A)| ≤ an

and supA∈B(R) |P(Mn ∈ A)− P(M ∈ A)| ≤ bn for every n. In particular, Ln → L or Mn → M in
total variation distance provided an → 0 or bn → 0, as it happens in some situations.

Keywords: exchangeability; random sum; rate of convergence; stable convergence; total variation
distance
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1. Introduction

All random elements appearing in this paper are defined on the same probability
space, say (Ω,A, P).

A random sum is a quantity such as ∑Tn
i=1 Xi, where (Xn : n ≥ 1) is a sequence of real

random variables and (Tn : n ≥ 1) a sequence of N-valued random indices. In the sequel,
in addition to (Xn) and (Tn), we fix a sequence (τn : n ≥ 1) of positive constants such that
τn → ∞ and we let

Ln =
∑Tn

i=1 Xi

τn
.

Random sums find applications in a number of frameworks, including statistical
inference, risk theory and insurance, reliability theory, economics, finance, and forecasting
of market changes. Accordingly, the asymptotic behavior of Ln, as n → ∞, is a classical
topic in probability theory. The related literature is huge and we do not try to summarize it
here. We just mention a general text book [1] and some useful recent references: [2–10].

In this paper, the asymptotic behavior of Ln is investigated in the (important) special
case where (Xn) is exchangeable and independent of (Tn). More precisely, we assume that:

(i) (Xn) is exchangeable;

(ii) (Xn) is independent of (Tn);

(iii) Tn
τn

P−→ V for some random variable V > 0.

Under such conditions, we prove a weak law of large numbers (WLLN), a central
limit theorem (CLT), and we investigate the rate of convergence with respect to the total
variation distance.
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Suppose in fact E|X1| < ∞ and conditions (i)-(ii)-(iii) hold. Define

L = V E(X1 | T ) and Mn =
√

τn (Ln − L),

where V is the random variable involved in condition (iii) and T the tail σ-field of (Xn).

Then, it is not hard to show that Ln
P−→ L. To obtain a CLT, instead, is not straightforward.

In Section 3, we prove that Mn → M in distribution, where M is a suitable random variable,

provided E(X2
1) < ∞ and

√
τn

{
Tn
τn
−V

}
converges stably. Finally, in Section 4, assuming

(Xn) i.i.d. and some additional conditions, we find constants an and bn such that

sup
A∈B(R)

|P(Ln ∈ A)− P(L ∈ A)| ≤ an and

sup
A∈B(R)

|P(Mn ∈ A)− P(M ∈ A)| ≤ bn for every n ≥ 1.

In particular, Ln → L or Mn → M in total variation distance provided an → 0 or bn → 0,
as it happens in some situations.

A last note is that, to our knowledge, random sums have been rarely investigated
when (Xn) is exchangeable. Similarly, convergence of Ln or Mn in total variation distance
is usually not taken into account. This paper contributes to fill this gap.

2. Preliminaries

In the sequel, the probability distribution of any random element U is denoted by
L(U). If S is a topological space, B(S) is the Borel σ-field on S and Cb(S) the space of real
bounded continuous functions on S. The total variation distance between two probability
measures on B(S), say µ and ν, is

dTV(µ, ν) = sup
A∈B(S)

|µ(A)− ν(A)|.

With a slight abuse of notation, if X and Y are S-valued random variables, we write
dTV(X, Y) instead of dTV

[
L(X), L(Y)

]
, namely

dTV(X, Y) = sup
A∈B(S)

|P(X ∈ A)− P(Y ∈ A)|.

If X is a real random variable, we say that L(X) is absolutely continuous to mean that
L(X) is absolutely continuous with respect to Lebesgue measure. The following technical
fact is useful in Section 4.

Lemma 1. Let X be a strictly positive random variable. Then,

lim
n

dTV

(
X + qn

√
X, X

)
= 0

provided the qn are constants such that qn → 0 and L(X) is absolutely continuous.

Proof. Let f be a density of X. Since limn
∫ ∞
−∞| fn(x)− f (x)| dx = 0, for some sequence fn

of continuous densities, it can be assumed that f is continuous. Furthermore, since X > 0,
for each ε > 0 there is b > 0 such that P(X < b) < ε. For such a b, one obtains

dTV

(
X + qn

√
X, X

)
≤ ε + sup

A∈B(R)

∣∣∣P(X + qn
√

X ∈ A | X ≥ b
)
− P

(
X ∈ A | X ≥ b

)∣∣∣.
Hence, it can be also assumed X ≥ b a.s. for some b > 0.
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Let gn be a density of X + qn
√

X. Since

dTV

(
X + qn

√
X, X

)
=
∫ ∞

−∞

[
f (x)− gn(x)

]+dx =
∫ ∞

b

[
f (x)− gn(x)

]+dx,

it suffices to show that f (x) = limn gn(x) for each x > b. To prove the latter fact, define
φn(x) = x + qn

√
x. For large n, one obtains 4 q2

n < b. In this case, φ′n > 0 on (b, ∞) and gn
can be written as

gn(x) = f
[
φ−1

n (x)
] 2

√
φ−1

n (x)

qn + 2
√

φ−1
n (x)

.

Therefore, f (x) = limn gn(x) follows from the continuity of f and

φ−1
n (x) = x +

q2
n

2
− qn

2

√
q2

n + 4x −→ x.

2.1. Stable Convergence

Stable convergence, introduced by Renyi in [11], is a strong form of convergence in
distribution. It actually occurs in a number of frameworks, including the classical CLT, and
thus it quickly became popular; see, e.g., [12] and references therein. Here, we just recall
the basic definition.

Let S be a metric space, (Yn) a sequence of S-valued random variables, and K a kernel
(or a random probability measure) on S. The latter is a map K on Ω such that K(ω) is a
probability measure on B(S), for each ω ∈ Ω, and ω 7→ K(ω)(B) is A-measurable for each
B ∈ B(S). Say that Yn converges stably to K if

lim
n

E
[

f (Yn) | H
]
= E

[
K(·)( f ) | H

]
, (1)

for all f ∈ Cb(S) and H ∈ A with P(H) > 0, where K(·)( f ) =
∫

f (x)K(·)(dx).
More generally, take a sub-σ-field G ⊂ A and suppose K is G-measurable (i.e.,

ω 7→ K(ω)(B) is G-measurable for fixed B ∈ B(S)). Then, Yn converges G-stably to K
if condition (1) holds whenever H ∈ G and P(H) > 0.

An important special case is when K is a trivial kernel, in the sense that

K(ω) = ν for all ω ∈ Ω

where ν is a fixed probability measure on B(S). In this case, Yn converges G-stably to ν if
and only if

lim
n

E
{

G f (Yn)
}
= E(G)

∫
f dν

whenever f ∈ Cb(S) and G : Ω→ R is bounded and G-measurable.

3. WLLN and CLT for Random Sums

In this section, we still let

Ln =
∑Tn

i=1 Xi

τn
, L = V E(X1 | T ) and Mn =

√
τn (Ln − L),

where V is the random variable involved in condition (iii) and

T =
⋂
n

σ(Xn, Xn+1, . . .)
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is the tail σ-field of (Xn). Recall that V > 0. Recall also that, by de Finetti’s theorem, (Xn)
is exchangeable if and only if is i.i.d. conditionally on T , namely

P
(
X1 ∈ A1, . . . , Xn ∈ An | T

)
=

n

∏
i=1

P
(
X1 ∈ Ai | T

)
a.s.

for all n ≥ 1 and all A1, . . . , An ∈ B(R).
The following WLLN is straightforward.

Theorem 1. If E|X1| < ∞ and conditions (i) and (iii) hold, then Ln
P−→ L.

Proof. Recall that, if Yn and Y are any real random variables, Yn
P−→ Y if and only if, for

each subsequence (n′), there is a sub-subsequence (n′′) ⊂ (n′) such that Yn′′
a.s.−→ Y. Fix a

subsequence (n′). Then, by (iii),

Tn′′

τn′′

a.s.−→ V

along a suitable sub-subsequence (n′′) ⊂ (n′). Since V > 0, then Tn′′
a.s.−→ ∞. As a result of

the SLLN for exchangeable sequences, (1/n) ∑n
i=1 Xi

a.s.−→ E(X1 | T ). Therefore,

Ln′′ =
Tn′′

τn′′

∑n′′
i=1 Xi

Tn′′

a.s.−→ V E(X1 | T ) = L.

For definiteness, Theorem 1 has been stated in terms of convergence in probability,
but other analogous results are available. As an example, suppose that E|X1| < ∞ and con-
ditions (i)–(ii) are satisfied. Then, Ln → L in distribution provided Tn

τn
→ V in distribution.

This follows from Skorohod representation theorem and the current version of Theorem 1.

Similarly, Ln
a.s.−→ L or Ln

L1−→ L whenever Tn
τn

a.s.−→ V or Tn
τn

L1−→ V.

We also note that, as implicit in the proof of Theorem 1, condition (iii) implies Tn
P−→ ∞

or equivalently

lim
n

P(Tn ≤ c) = 0 for every fixed c > 0.

We next turn to the CLT. It is convenient to begin with the i.i.d. case. From now on, U
and Z are two real random variables such that

Z ∼ N (0, 1), U is independent of Z and (2)

(U, Z) is independent of (Xn, Tn : n ≥ 1).

We also let

a = E(X1) and σ2 = var(X1).

Theorem 2. Suppose (Xn) is i.i.d., E(X2
1) < ∞, condition (ii) holds, and

√
τn

{
Tn

τn
−V

}
converges stably to L(U). (3)

Then,

Mn −→ σ
√

V Z + a U in distribution.
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Proof. Let

Wn = a
√

τn

{
Tn

τn
−V

}
+

√
V
Tn

Tn

∑
i=1

(Xi − a).

Since (Xn) is i.i.d., E(X1 | T ) = E(X1) = a a.s. Since E
{(

∑Tn
i=1(Xi−a)√

Tn

)2}
= σ2 for

every n, the sequence ∑Tn
i=1(Xi−a)√

Tn
is L2-bounded, and this implies

Wn −Mn = Wn −
√

τn
(

Ln − aV
)
=

∑Tn
i=1(Xi − a)
√

Tn

(
√

V −

√
Tn

τn

)
P−→ 0.

Therefore, it suffices to prove Wn −→ σ
√

V Z + a U in distribution. We prove the
latter fact by means of characteristic functions.

Fix t ∈ R. Let µn,j(·) = P(V ∈ · | Tn = j) be the probability distribution of V under
P(· | Tn = j) and

φj(s) = E

{
exp

(
i s

∑
j
i=1(Xi − a)√

j

)}
for all s ∈ R.

Then,

E
{

exp
(
i t Wn

)}
=

∞

∑
j=1

P(Tn = j)
∫

exp
(

i t a
√

τn

(
j

τn
− v
))

φj(
√

v t) µn,j(dv).

In addition, for each c > 0, the classical CLT yields

lim
j→∞

sup
0<v≤c

∣∣∣φj(
√

v t)− exp
(
− t2σ2v

2

)∣∣∣ = 0. (4)

Since condition (3) implies condition (iii), limn P(Tn ≤ b) = 0 for all b > 0. Given
ε > 0, take c > 0 such that P(V > c) < ε. As a result of (4), one can find an integer m
such that∣∣∣ E

{
exp

(
i t Wn

)}
− E

{
exp

(
i t a
√

τn

(
Tn

τn
−V

))
exp

(
− t2σ2V

2

)}∣∣∣ ≤
≤ ε + 2P(Tn ≤ m) + 2P(V > c) < 3 ε + 2P(Tn ≤ m).

Since ε is arbitrary and limn P(Tn ≤ m) = 0, it follows that

lim sup
n

∣∣∣ E
{

exp
(
i t Wn

)}
− E

{
exp

(
i t a
√

τn

(
Tn

τn
−V

))
exp

(
− t2σ2V

2

)}∣∣∣ = 0.

Finally, since Z ∼ N (0, 1) and Z is independent of V,

E
{

exp
(
i t σ
√

V Z
)}

= E
{

exp
(
− t2σ2V

2

)}
.
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Therefore,

E
{

exp
(
i t σ
√

V Z + i t a U
)}

= E
{

exp
(
− t2σ2V

2

)}
E
{

exp
(
i t a U

)}
= lim

n
E
{

exp
(
− t2σ2V

2

)
exp

(
i t a
√

τn

(
Tn

τn
−V

))}
= lim

n
E
{

exp
(
i t Wn

)}
where the second equality is due to condition (3). Hence, Wn −→ σ

√
V Z + a U in distri-

bution, and this concludes the proof.

The argument used in the proof of Theorem 2 yields a little bit more. Let ν =
L
(
σ
√

V Z + a U
)

and G = σ(V, X1, X2, . . .). Then, Mn converges G-stably (and not only in

distribution) to ν. Among other things, since Ln
P−→ L, this implies that (Ln, Mn)→ (L, R)

in distribution, where R denotes a random variable independent of L such that R ∼ ν. More-

over, condition (3) can be weakened into
√

τn

{
Tn
τn
−V

}
converges σ(V)-stably to L(U).

We also note that, under some extra assumptions, Theorem 2 could be given a simpler
proof based on some version of Anscombe’s theorem; see, e.g., [13] and references therein.

Finally, we adapt Theorem 2 to the exchangeable case. Let

W = E(X2
1 | T )− E(X1 | T )2 and M =

√
W V Z + U E(X1 | T ).

To introduce the next result, it may be useful to recall that

√
n
{

∑n
i=1 Xi

n
− E(X1 | T )

}
−→ N (0, W) stably

provided (Xn) is exchangeable and E(X2
1) < ∞, where N (0, W) is the Gaussian kernel

with mean 0 and random variance W (with N (0, 0) = δ0); see, e.g., ([14] Th. 3.1).

Theorem 3. If E(X2
1) < ∞ and conditions (i)–(ii) and (3) hold, then Mn → M in distribution.

Proof. Just note that (Xn) is i.i.d. conditionally on T , with mean E(X1 | T ) and variance
W. Hence, for each f ∈ Cb(R), Theorem 2 yields

E
{

f (Mn) | T
} a.s.−→ E

{
f (M) | T

}
,

which in turn implies

E
{

f (M)
}
= E

{
lim

n
E
{

f (Mn) | T
}}

= lim
n

E
{

E
{

f (Mn) | T
}}

= lim
n

E
{

f (Mn)
}

.

4. Rate of Convergence with Respect to Total Variation Distance

To obtain upper bounds for dTV(Ln, L) and dTV(Mn, M), some additional assumptions
are needed. In particular, in this section, (Xn) is i.i.d. (with the exception of Remark 1).
Hence, L and M reduce to L = a V and M = σ

√
V Z+ a U, where a = E(X1), σ2 = var(X1)

and (U, Z) satisfies condition (2).
We begin with a rough estimate for dTV(Ln, L).
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Theorem 4. Suppose that conditions (ii)–(iii) hold, (Xn) is i.i.d., E(|X1|3) < ∞ and L(X1) has
an absolutely continuous part. Then,

dTV(Ln, L) ≤ P(Tn ≤ m) +
c√

m + 1
+ dTV

(
L + σ

√
V
τn

Z, L

)
+

+ E

 |
√

V −
√

Tn
τn
|

max(
√

V,
√

Tn
τn
)

+
|a| √τn

σ
E

 |V − Tn
τn
|

max(
√

V,
√

Tn
τn
)


for all m, n ≥ 1, where c > 0 is a constant independent of m and n.

In order to prove Theorem 4, we recall that

dTV

(
N (a1, b1), N (a2, b2)

)
≤ |
√

b1 −
√

b2| + |a1 − a2|√
max(b1, b2)

(5)

for all a1, a2 ∈ R and b1, b2 > 0; see, e.g., ([15] Lem. 3).

Proof of Theorem 4. Fix m, n ≥ 1. By ([16] Lem. 2.1), up to enlarging the underlying
probability space (Ω,A, P), there is a sequence ((Sj, Zj) : j ≥ 1) of random variables,
independent of (Tn, V), such that

Sj ∼
j

∑
i=1

Xi, Zj ∼ N (0, 1), P
(
Sj 6= a j + σ

√
j Zj
)
= dTV

(
Sj, a j + σ

√
j Zj

)
.

In addition, by ([17] Th. 2.6), there is a constant c > 0 depending only on E(|X1|3)
such that

dTV

(
Sj, a j + σ

√
j Zj

)
= dTV

(
Sj − a j

σ
√

j
, Zj

)
≤ c√

m + 1
for all j > m.

Having noted these facts, define

L∗n =
a Tn + σ

√
Tn ZTn

τn
.

Then,

dTV(Ln, L∗n) ≤ P(Tn ≤ m) + ∑
j>m

P(Tn = j) dTV

[
P(Ln ∈ · | Tn = j) , P(L∗n ∈ · | Tn = j)

]
≤ P(Tn ≤ m) + sup

j>m
dTV

[
P(Ln ∈ · | Tn = j) , P(L∗n ∈ · | Tn = j)

]
= P(Tn ≤ m) + sup

j>m
dTV

[
∑

j
i=1 Xi

τn
,

a j + σ
√

j Zj

τn

]
= P(Tn ≤ m) + sup

j>m
dTV

(
Sj, a j + σ

√
j Zj

)
≤ P(Tn ≤ m) +

c√
m + 1

.
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Next, since ZTn ∼ N (0, 1), by conditioning on (Ln, V) and applying inequality (5),
one obtains

dTV

(
L∗n, aV + σ

√
V
τn

ZTn

)
≤ E

 |
√

V −
√

Tn
τn
|

max(
√

V,
√

Tn
τn
)

+
|a| √τn

σ
E

 |V − Tn
τn
|

max(
√

V,
√

Tn
τn
)

.

Moreover, since ZTn ∼ Z and both ZTn and Z are independent of V,

dTV

(
aV + σ

√
V
τn

ZTn , L

)
= dTV

(
L + σ

√
V
τn

Z, L

)
.

Collecting all these facts together, one finally obtains

dTV(Ln, L) ≤ dTV(Ln, L∗n) + dTV(L∗n, L)

≤ P(Tn ≤ m) +
c√

m + 1
+ dTV

(
L + σ

√
V
τn

Z, L

)
+

+ E

 |
√

V −
√

Tn
τn
|

max(
√

V,
√

Tn
τn
)

+
|a| √τn

σ
E

 |V − Tn
τn
|

max(
√

V,
√

Tn
τn
)

.

The upper bound provided by Theorem 4 is generally large but it becomes manageable
under some further assumptions. For instance, if V ≥ b a.s. for some constant b > 0, it
reduces to

dTV(Ln, L) ≤ P(Tn ≤ m) +
c√

m + 1
+ dTV

(
L + σ

√
V
τn

Z, L

)
+ (6)

+

(
1
b
+
|a| √τn

σ
√

b

)
E
[ ∣∣∣V − Tn

τn

∣∣∣ ].

As an example, we discuss a simple but instructive case.

Example 1. For each x ∈ R, denote by J(x) the integer part of x. Suppose V ≥ b a.s. for some
constant b > 0 and define

Tn = J(τn V + 1).

Suppose also that (Xn) is independent of V and satisfies the other conditions of Theorem 4. Then,

Tn > τn b and
∣∣∣V − Tn

τn

∣∣∣ = Tn

τn
−V ≤ 1

τn
a.s.

Hence, letting m = J(τn b), inequality (6) reduces to

dTV(Ln, L) ≤ c∗√
τn

+ dTV

(
L + σ

√
V
τn

Z, L

)

for some constant c∗. Finally, dTV

(
L + σ

√
V
τn

Z, L
)
=O(1/

√
τn) if V is bounded above and

L(V) is absolutely continuous with a Lipschitz density. Hence, under the latter condition on V,
one obtains

dTV(Ln, L) = O(1/
√

τn).
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Incidentally, this bound is essentially of the same order as the bound obtained in [6] when Tn has
a mixed Poisson distribution and the total variation distance is replaced by the Wasserstein distance.

One more consequence of Theorem 4 is the following.

Corollary 1. Ln → L in total variation distance provided the conditions of Theorem 4 hold, a 6= 0,
L(V) is absolutely continuous, and

lim
n

√
τn E

[ ∣∣∣V − Tn

τn

∣∣∣ ] = 0.

Proof. First, assume V ≥ b a.s. for some constant b > 0. For each z ∈ R, letting qn = σ
a
√

τn
z,

Lemma 1 implies

lim sup
n

dTV

(
L + σ

√
V
τn

z, L

)
= lim sup

n
dTV

(
V + qn

√
V, V

)
= 0.

Conditioning on Z and taking inequality (6) into account, it follows that

lim sup
n

dTV(Ln, L) ≤ c√
m + 1

+ lim sup
n

dTV

(
L + σ

√
V
τn

Z, L

)

≤ c√
m + 1

+ lim sup
n

∫
dTV

(
L + σ

√
V
τn

z, L

)
N (0, 1)(dz)

=
c√

m + 1
for each m ≥ 1.

This concludes the proof if V ≥ b a.s. In general, for each b > 0, define

Vb = 1{V>b} V + 1{V≤b} (V + b) and

Tn,b = J
(

1{V>b} Tn + 1{V≤b} (1 + τn (V + b))
)

where J(x) denotes the integer part of x. Since Tn,b
τn

P−→ Vb > b, the first part of the
proof implies

∑
Tn,b
i=1 Xi

τn
−→ a Vb in total variation distance.

Finally, since V > 0 and

dTV(Ln, L) ≤ 2 P(V ≤ b) + dTV

(
∑

Tn,b
i=1 Xi

τn
, a Vb

)
for all b > 0,

one obtains limn dTV(Ln, L) = 0.

We next turn to dTV(Mn, M). Following [18], our strategy is to estimate dTV(Mn, M)
through the Wasserstein distance between L(Mn) and L(M).

Recall that, if X and Y are real integrable random variables, the Wasserstein distance
between L(X) and L(Y) is

dW(X, Y) = inf
(H,K)

E|H − K| = sup
f
|E( f (X))− E( f (Y))|,
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where inf is over the real random variables H and K such that H ∼ X and K ∼ Y while sup
is over the 1-Lipschitz functions f : R→ R. Define also

ln =
∫
|t φn(t)| dt = 2

∫ ∞

0
t |φn(t)| dt

where φn is the characteristic function of Mn.

Theorem 5. Assume the conditions of Theorem 2 and:

(iv) U =
√

V0 Z0, where Z0 ∼ N (0, 1), V0 ≥ 0 is independent of Z0, and (V0, Z0) is independent
of (V, Z);

(v) E
(
T2

n0

)
< ∞ for some n0 and

sup
n

τn E
{(Tn

τn
−V

)2}
< ∞.

Then, dW(Mn, M)→ 0. Moreover, letting dn = dW(Mn, M), one obtains

dTV(Mn, M) ≤ d1/2
n + d1/2−α

n + P
(√

σ2V + a2V0 < dα
n
)
+ k

(
ln d1/2

n

)2/3

and dTV(Mn, M) ≤ d1/2
n

(
1 +

1
σ

E(V−1/2)
)
+ k

(
ln d1/2

n

)2/3

for each n ≥ 1 and α < 1/2, where k is a constant independent of n.

Proof. By Theorem 2, Mn → M in distribution. By condition (iv),

M = σ
√

V Z + a
√

V0 Z0 ∼
√

σ2V + a2V0 Z,

so that L(M) is a mixture of centered Gaussian laws. On noting that

E
{( Tn

∑
i=1

(Xi − a)
)2}

= σ2E(Tn),

one obtains

E(M2
n) = τn E


(

∑Tn
i=1(Xi − a)

τn
+ a

(
Tn

τn
−V

))2


≤ 2
τn

E
{( Tn

∑
i=1

(Xi − a)
)2}

+ 2 a2τn E

{(
Tn

τn
−V

)2
}

= 2 σ2E
(

Tn

τn

)
+ 2 a2τn E

{(
Tn

τn
−V

)2
}

.

Finally, by condition (v), limn E
(

Tn
τn

)
= E(V) < ∞ and supn E(M2

n) < ∞. To conclude
the proof, it suffices to apply Theorem 1 of [18] (see also the subsequent remark) with
β = 2.

Theorem 5 gives two upper bounds for dTV(Mn, M) in terms of dn = dW(Mn, M)
and ln. To avoid trivialities, suppose σ > 0. Obviously, the second bound makes sense
only if E(V−1/2) < ∞. However, since V > 0 and dn → 0, the first bound implies
dTV(Mn, M)→ 0 if limn lnd1/2

n = 0. In particular, dTV(Mn, M)→ 0 if supn ln < ∞.

Example 2. Under the conditions of Theorem 5, suppose also that L(X1) is absolutely continuous
with a density f satisfying

∫
| f ′(x)| dx < ∞. Then, conditioning on Tn and V and arguing as
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in ([18] Ex. 2), it can be shown that supn ln < ∞. Hence, Mn → M in total variation distance.
Furthermore, if E(V−1/2) < ∞, the second bound of Theorem 5 yields

dTV(Mn, M) ≤ k∗
(
1∧ dn

)1/3

for all n ≥ 1 and a suitable constant k∗ (independent of n).

We close the paper by briefly discussing the exchangeable case.

Remark 1. Usually, the upper bounds for the total variation distance are preserved under mixtures.
Hence, by conditioning on T and making some further assumptions, the results obtained in this
section can be extended to the case where (Xn) is exchangeable. As an example, define L and M as
in Section 3 and suppose ∣∣∣ E

{
exp(i t X1) | T

}∣∣∣ ≤ Q
|t| a.s.

for each t ∈ R \ {0} and for some integrable random variable Q. Then, Corollary 1 and Theorem 5
are still valid even if (Xn) is exchangeable (and not necessarily i.i.d.) up to replacing a 6= 0 with
E(X1 | T ) 6= 0 a.s. in Corollary 1.
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