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1. Introduction

In this paper, we derive two new sufficiency theorems in optimal control problems
as the parametric and nonparametric problems of Bolza with nonlinear dynamics, free
initial and final states, and inequality and equality mixed time-state-control constraints. The
fundamental components of the sufficiency theorems of this article are a similar version of
the Pontryagin maximum principle, a hypothesis usually called the transversality condition,
a crucial second order inequality arising from the original algorithm employed to prove
one of the sufficiency theorems, a related hypothesis of the Legendre–Clebsh necessary
condition, the positivity of a quadratic function on the cone of critical directions, and a
fundamental integral Weierstrass inequality involving a function whose role is parallel to
the Hamiltonian of the problem. Given an admissible process, its set of active indices of
the inequality restrictions has to be piecewise constant on the underlying time interval, the
Lagrange multipliers associated with the inequality mixed constraints must be nonnegative
and in fact they have to be zero whenever the corresponding index is inactive. The optimal
control of the proposed optimal process need not be continuous but only measurable, see,
for example, [1–17], where the authors study several optimal control problems having a
degree of generality very similar to the one treated in this paper and where the continuity
of the optimal controls is a crucial assumption in those sufficiency theories. In the first of
the sufficiency theorems of this work, the deviation between optimal costs and feasible
costs is estimated by quadratic functionals, two of them playing the role of the square of
the norm of the classical Banach space L1.

It is worth mentioning that second order sufficient conditions, as pointed out in [15],
are necessary in nonlinear problems when the extremal is not unique or when an existence
theorem is not applicable. In addition, the sufficient treatments have shown to be of crucial
relevance in some parametric optimal control problems studying the analysis of stability or
sensitivity, see, for example, [16,17]. In the previous references, the initial or final states
are free, but they are restricted to lie in some surfaces delimited by curves; in contrast, the
initial and final states of the nonparametric optimal control problem studied in this article
are completely free, in the sense that they are not necessarily restricted to a parametrization,
but they only must belong to any sets belonging to the images of a surface determined by a
C2 function. On the other hand, it is worth observing that all the crucial hypotheses of the
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sufficiency treatment studied in this article, are stated in the theorems, in contrast with other
second order necessary and sufficiency theories that depend upon the verifiability of some
crucial preliminary assumptions, see, for example, [18–20], where the necessary second
order conditions for optimality depend on some previous hypotheses involving some
notions of normality or regularity of a solution; or [11], where the corresponding sufficiency
theory depends on the linear independence of some vectors whose role is the gradients
of the active inequality and the equality restrictions. Finally, it is important to point out
that, in [21,22], one can also find some sufficiency theories where the deviation between
admissible and optimal costs around the optimal control has a quadratic growth.

The main novelties of this paper concern the facts that the sufficiency technique,
used to prove Theorem 1, is independent of the standard hypothesis of continuity of the
optimal controls, an assumption imposed in almost all the sufficiency theories having a
similar degree of generality as the one studied in this article. In Corollary 1, the initial
and final points of the states are not only variable, but they are completely free, in the
sense that they may belong to any sets that must only be contained in a C2 manifold, the
sufficiency method employed to prove one of the results of the paper does not invoke
classical sufficiency tools such as bounded matrix-valued Riccati equations, Hamilton–
Jacobi inequalities, generalized notions of conjugate points, the linear independence of
the gradients involving the active inequality and the equality constraints, insertions of the
original optimal control problem in an abstract optimization problem involving a Banach
space, or certain techniques based on arguments of convexity, see [1–17] for details. In
the parametric sufficiency theorem of the article, if an admissible process satisfies all of
its hypotheses, the former not only is a weak minimum, but the deviation between the
optimal cost and the admissible costs is estimated by functionals playing similar roles of
the squares of several norms.

The organization of the article is the following. In Section 2, we state a parametric opti-
mal control problem we shall be concerned with together with some elementary definitions,
and we also pose one of the main results of the paper. In Section 3, we establish a nonpara-
metric optimal control problem we shall be interested in, some fundamental definitions,
a corollary that forms one of the crucial results of the paper, and an example illustrating
how one can apply the results of the article. Section 4 is dedicated to state three auxiliary
results in which the proof of one of the theorems is based and whose proof is referred to [23].
Section 5 is dedicated to the proof of Theorem 1. Finally, in Section 6, some conclusions
and some future directions of open problems are briefly enunciated.

2. A Fundamental Theorem

Suppose an interval T := [t0, t1] in R is given, in which we have functions l : Rp → R,
Ψi : Rp → Rn (i = 0, 1), L(t, x, u) : T ×Rn ×Rm → R, f (t, x, u) : T ×Rn ×Rm → Rn, and
ϕ(t, x, u) : T ×Rn ×Rm → Rs. Set

R := {(t, x, u) ∈ T ×Rn ×Rm | ϕα(t, x, u) ≤ 0 (α ∈ R), ϕβ(t, x, u) = 0 (β ∈ S)}

where R := {1, . . . , r} and S := {r + 1, . . . , s} (r = 0, 1, . . . , s). If r = 0, then R = ∅ and we
are not concerned with statements regarding ϕα. Similarly, if r = s, then S = ∅, and we are
not concerned with statements regarding ϕβ.

Let {Θn} be a sequence of measurable functions and let Θ be a measurable function.

We shall denote uniform convergence of {Θn} to Θ by Θn
u−→ Θ. Similarly, strong

convergence in Lp by Θn
Lp
−→ Θ and weak convergence in Lp by Θn

Lp
⇀ Θ.

We are going to assume throughout the article that L, f and ϕ = (ϕ1, . . . , ϕs) have
first and second continuous derivatives with respect to x and u on T×Rn ×Rm. Moreover,
we shall suppose that the functions l and Ψi (i = 0, 1) are of class C2 on Rp.

Let X be the space of all absolutely continuous functions mapping T to Rn and
Uη := L∞(T; Rη) (η ∈ N).
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Define A := X × Um ×Rp, and keep in mind that the notation zb means any member
zb := (z, b) = (x, u, b) ∈ A. The parametric optimal control problem we shall be concerned
with, denoted by (P), consists of minimizing a functional of the form

I(zb) := l(b) +
∫ t1

t0

L(t, x(t), u(t))dt

over all zb ∈ A satisfying the constraints
ẋ(t) = f (t, x(t), u(t)) (a.e. in T).
x(ti) = Ψi(b) for i = 0, 1.
(t, x(t), u(t)) ∈ R (t ∈ T).

The elements b = (b1, . . . , bp)∗ ∈ Rp (∗ means transpose) are called parameters, the
members zb in A are called processes, and a process zb is feasible or admissible if it satisfies
the constraints. The notation z0b0

means a member (z0, b0) = (x0, u0, b0) ∈ A.
The following notation will allow us to introduce the main results of this section.
• A process z0b0

is a solution of (P) if it is feasible and I(z0b0
) ≤ I(zb) for all feasible

processes zb. A feasible process z0b0
is a weak minimum of (P) if it is a minimum of I with

respect to the norm
‖zb‖ := |b|+ ‖(x, u)‖∞,

that is, if, for some ε > 0, I(z0b0
) ≤ I(zb) for all feasible processes zb satisfying ‖zb −

z0b0
‖ < ε. In other words, if I affords a weak minimum at z0b0

, then, if zb is admissible
and it is sufficiently close to z0b0

, in the sense that the quantities ‖x− x0‖∞, ‖u− u0‖∞ and
|b− b0| are sufficiently small, then I(zb) ≥ I(z0b0

).
• For all (t, x, u, ρ, µ) ∈ T ×Rn ×Rm ×Rn ×Rs, define the Hamiltonian of the prob-

lem by
H(t, x, u, ρ, µ) := ρ∗ f (t, x, u)− L(t, x, u)− µ∗ϕ(t, x, u).

Given ρ ∈ X and µ ∈ Us set, for all (t, x, u) ∈ T ×Rn ×Rm,

F(t, x, u) := −H(t, x, u, ρ(t), µ(t))− ρ̇∗(t)x

and let

J(zb) := ρ∗(t1)x(t1)− ρ∗(t0)x(t0) + l(b) +
∫ t1

t0

F(t, x(t), u(t))dt.

• The second variation of J along zb in the direction wβ, is given by

J′′(zb; wβ) := β∗l′′(b)β +
∫ t1

t0

2Ω(t, x(t), u(t); t, y(t), v(t))dt,

where for all (t, y, v) ∈ T ×Rn ×Rm,

2Ω(t, x(t), u(t); t, y, v) := y∗Fxx(t, x(t), u(t))y + 2y∗Fxu(t, x(t), u(t))v + v∗Fuu(t, x(t), u(t))v,

and the notation wβ refers to any element (y, v, β) in X × L2(T; Rm) × Rp. In addition,
l′′(b) is the second derivative of l evaluated at b.

• Define

E(t, x, u, v) := F(t, x, v)− F(t, x, u)− Fu(t, x, u)(v− u).

• Given x ∈ X and u ∈ L1(T; Rm), set

Q(x, u) := max{Q1(x),Q2(u)}
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where

Q1(x) :=
∫ t1

t0

V(ẋ(t))dt, Q2(u) :=
∫ t1

t0

V(u(t))dt, V(e) := (1 + |e|2)1/2 − 1.

• For all x ∈ X and all u ∈ L1(T; Rm), define

D(x, u) := max{D1(x), D2(x, u)}

where
D1(x) := V(x(t0)) +Q1(x) and D2(x, u) := V(x(t0)) +Q2(u).

Finally, given (t, x, u) ∈ T ×Rn ×Rm, denote by

Ia(t, x, u) := {α ∈ R | ϕα(t, x, u) = 0},

the set of active indices of (t, x, u) with respect to the inequality restrictions. For all zb ∈ A,
let Y(zb) be the cone of all wβ ∈ X × L2(T; Rm)×Rp verifying

ẏ(t) = fx(t, x(t), u(t))y(t) + fu(t, x(t), u(t))v(t) (a.e. in T), y(ti) = Ψ′i(b)β (i = 0, 1).
ϕαx(t, x(t), u(t))y(t) + ϕαu(t, x(t), u(t))v(t) ≤ 0 (a.e. in T, α ∈ Ia(t, x(t), u(t))).
ϕβx(t, x(t), u(t))y(t) + ϕβu(t, x(t), u(t))v(t) = 0 (a.e. in T, β ∈ S).

The set Y(zb) is the cone of critical directions with respect to zb, and the symbol Ψ′i
(i = 0, 1) means the derivative of Ψi (i = 0, 1).

Theorem 1 below is a crucial tool in order to obtain Corollary 1, the latter being the
main result of the article. Theorem 1 gives sufficiency for weak minima of problem (P).
Hypothesis (i) of Theorem 1 is the transversality condition, hypothesis (ii) is an inequality
relation that was found during the original proof of Theorem 1, hypothesis (iii) is a modified
version of the Legendre–Clebsch condition, hypothesis (iv) is the positivity of a quadratic
integral on the cone of critical directions, and hypothesis (v) involves a Weierstrass integral
inequality hypothesis. A remarkable component of Theorem 1 concerns the fact that the
optimal control is not necessarily continuous but only measurable. The notation, Ψ′′i (b0; β)
(i = 0, 1) is the second derivative of Ψi (i = 0, 1) along b0 in the direction β.

Theorem 1. Let z0b0
be a feasible process. Suppose that Ia(·, x0(·), u0(·)) is piecewise constant on

T, that there exist ρ ∈ X , µ ∈ Us with µα(t) ≥ 0, µα(t)ϕα(t, x0(t), u0(t)) = 0 (α ∈ R, t ∈ T)
and δ, ε > 0, such that

ρ̇(t) = −H∗x (t, x0(t), u0(t), ρ(t), µ(t)) (a.e. in T),

H∗u(t, x0(t), u0(t), ρ(t), µ(t)) = 0 (t ∈ T),

and the following is verified

(i) l′∗(b0) + Ψ′∗1 (b0)ρ(t1)−Ψ′∗0 (b0)ρ(t0) = 0.

(ii) ρ∗(t1)Ψ′′1 (b0; β)− ρ∗(t0)Ψ′′0 (b0; β) ≥ 0 for all β ∈ Rp.

(iii) Huu(t, x0(t), u0(t), ρ(t), µ(t)) ≤ 0 (a.e. in T).

(iv) J′′(z0b0
; wβ) > 0 for all wβ ∈ Y(z0b0

), wβ 6≡ (0, 0, 0).

(v) For all zb feasible with ‖(x, u) − (x0, u0)‖∞ < ε,
∫ t1

t0
E(t, x(t), u0(t), u(t))dt ≥

δQ(z− z0).
Then, for some θ1, θ2 > 0 and all admissible processes zb satisfying ‖zb − z0b0

‖ < θ1,

I(zb) ≥ I(z0b0
) + θ2 min{|b− b0|2, D(z− z0)}.
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In particular, z0b0
is a weak minimum of (P).

3. The Main Result

Suppose that we have an interval T := [t0, t1] in R, two sets B0,B1 ⊂ Rn and functions
`(a1, a2) : Rn ×Rn → R, L(t, x, u) : T ×Rn ×Rm → R, g(t, x, u) : T ×Rn ×Rm → Rn and
φ(t, x, u) : T ×Rn ×Rm → Rs. Set

R̄ := {(t, x, u) ∈ T ×Rn ×Rm | φα(t, x, u) ≤ 0 (α ∈ R), φβ(t, x, u) = 0 (β ∈ S)}

where R := {1, . . . , r} and S := {r + 1, . . . , s} (r = 0, 1, . . . , s). If r = 0, then R = ∅ and we
are not concerned with statements regarding φα. Similarly, if r = s, then S = ∅ and we are
not concerned with statements regarding φβ.

We are going to assume throughout this section thatL, g and φ = (φ1, . . . , φs) have first
and second continuous derivatives with respect to x and u on T×Rn ×Rm. Additionally,
we suppose that the function `, is of class C2 on Rn ×Rn.

Set A := X × Um, where as usual, X denotes the space of absolutely continuous
functions mapping T to Rn and Um := L∞(T; Rm).

In this section, we shall be concerned with the nonparametric optimal control problem,
denoted by (P̄), of minimizing the functional

J (x, u) := `(x(t0), x(t1)) +
∫ t1

t0

L(t, x(t), u(t))dt

over all pairs (x, u) ∈ A satisfying the restrictions
ẋ(t) = g(t, x(t), u(t)) (a.e. in T).
x(ti) ∈ Bi for i = 0, 1.
(t, x(t), u(t)) ∈ R̄ (t ∈ T).

Members (x, u) in A are called processes, and a process (x, u) is feasible if it satisfies
the restrictions.

A process (x0, u0) solves (P̄) if it is feasible and J (x0, u0) ≤ J (x, u) for all feasible
processes (x, u). A feasible process (x0, u0) is a weak minimum of (P̄) if it is a minimum of
J relative to the essential supremum norm, that is, if for some ε > 0, J (x0, u0) ≤ J (x, u)
for all feasible processes satisfying ‖(x, u)− (x0, u0)‖∞ < ε.

Let Ψ : Rn → Rn ×Rn be any function of class C2 such that B0 ×B1 ⊂ Ψ(Rn). Relate
the nonparametric optimal control problem (P̄) with the parametric optimal control prob-
lem given in Section 2, denoted by (PΨ), that is, (PΨ) is the parametric problem defined in
Section 2, with the following data; p = n, l = ` ◦ Ψ, L = L, f = g, ϕ = φ and Ψ0, Ψ1 the
components of Ψ, that is, Ψ = (Ψ0, Ψ1).

Lemma 1. The following is verified:

(i) zb is a feasible process of (PΨ) if and only if z = (x, u) is a feasible process of (P̄) and
b ∈ Ψ−1(x(t0), x(t1)).

(ii) If zb is a feasible process of (PΨ), then

J (x, u) = I(zb).

(iii) If z0b0
solves (PΨ), then (x0, u0) solves (P̄).

Proof. This is precisely Lemma 1 of [23].

Corollary 1 below is an immediate consequence of Theorem 1 and Lemma 1. It gives
sufficiency conditions of problem (P̄). Once again, it is worthwhile observing that the
optimal control is not necessarily continuous but only measurable.
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Corollary 1. Let Ψ : Rn → Rn × Rn be any function of class C2 such that B0 × B1 ⊂ Ψ(Rn)
and let (PΨ) be the parametric optimal control problem posed before enunciating Lemma 1. Let
z0b0

be a feasible process of (PΨ). Suppose that Ia(·, x0(·), u0(·)) is piecewise constant on T, there
exist ρ ∈ X , µ ∈ Us with µα(t) ≥ 0, and µα(t)ϕα(t, x0(t), u0(t)) = 0 (α ∈ R, t ∈ T), δ, ε > 0,
such that

ρ̇(t) = −H∗x (t, x0(t), u0(t), ρ(t), µ(t)) (a.e. in T),

H∗u(t, x0(t), u0(t), ρ(t), µ(t)) = 0 (t ∈ T),

and the following is verified:

(i) l′∗(b0) + Ψ′∗1 (b0)ρ(t1)−Ψ′∗0 (b0)ρ(t0) = 0.

(ii) ρ∗(t1)Ψ′′1 (b0; β)− ρ∗(t0)Ψ′′0 (b0; β) ≥ 0 for all β ∈ Rn.

(iii) Huu(t, x0(t), u0(t), ρ(t), µ(t)) ≤ 0 (a.e. in T).

(iv) J′′(z0b0
; wβ) > 0 for all wβ ∈ Y(z0b0

), wβ 6≡ (0, 0, 0).

(v) For all zb feasible with ‖(x, u) − (x0, u0)‖∞ < ε,
∫ t1

t0
E(t, x(t), u0(t), u(t))dt ≥

δQ(z− z0).

Then, (x0, u0) is a weak minimum of (P̄).

Remark 1. It is worth observing that our sufficiency theory can also be applied to isoperimetric
problems of Bolza with inequality and equality constraints.

In order to illustrate this fact for the nonparametric problem studied in this section,
let `γ : Rn × Rn → R (γ = 1, . . . , K) be functions of class C2 in Rn × Rn. In addition, let
Lγ(t, x, u) : T×Rn ×Rm → R (γ = 1, . . . , K) be functions having first and second contin-
uous derivatives with respect to x and u on T ×Rn ×Rm, and consider the isoperimetric
nonparametric optimal control problem of minimizing

J (x, u) := `(x(t0), x(t1)) +
∫ t1

t0

L(t, x(t), u(t))dt

subject to

ẋ(t) = g(t, x(t), u(t)) (a.e. in T).
x(ti) ∈ Bi for i = 0, 1.
Ji(x, u) := `i(x(t0), x(t1)) +

∫ t1
t0
Li(t, x(t), u(t))dt ≤ 0 (i = 1, . . . , k).

Jj(x, u) := `j(x(t0), x(t1)) +
∫ t1

t0
Lj(t, x(t), u(t))dt = 0 (j = k + 1, . . . , K).

(t, x(t), u(t)) ∈ R̄ (t ∈ T).

Additionally, set L̃(t, x, w, u) := L(t, x, u),

g̃(t, x, w, u) :=


g(t, x, u)

(t1 − t0)
−1`1(x(t0), x(t1)) + L1(t, x, u)

...
(t1 − t0)

−1`K(x(t0), x(t1)) + LK(t, x, u)

,

B̄0 := B0×C0, B̄1 := B1×C1, where C1 := (−∞, 0]× · · · × (−∞, 0]× {0} × · · · × {0}
and C0 := {0} × · · · × {0}. Here, in C1, there are k intervals (−∞, 0] and K− k singletons
{0}. In C0, there are K singletons {0}. Remark 1 follows from the fact that the isoperimetric
optimal control problem stated above is equivalent to the nonparametric optimal control
problem of minimizing
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J (x, w, u) := `(x(t0), x(t1)) +
∫ t1

t0

L̃(t, x(t), w(t), u(t))dt

subject to 
(ẋ(t), ẇ(t)) = g̃(t, x(t), w(t), u(t)) (a.e. in T).
(x(ti), w(ti)) ∈ B̄i for i = 0, 1.
(t, x(t), u(t)) ∈ R̄ (t ∈ T).

Example 1 below shows how Corollary 1 can be applied. In the former, an inequality-
equality constrained optimal control problem is solved by verifying that the first order
sufficiency conditions

ρ̇(t) = −H∗x (t, x0(t), u0(t), ρ(t), µ(t)) (a.e. in T), H∗u(t, x0(t), u0(t), ρ(t), µ(t)) = 0 (t ∈ T),

are satisfied by an element (x0, u0, ρ, µ). In addition, (x0, u0, ρ, µ) satisfies hypotheses (i), (ii),
(iii), (iv) and (v) of Corollary 1, and hence it is a weak minimum of (P̄).

Example 1. Consider the nonparametric optimal control problem (P̄) of minimizing

J (x, u) := x2
1(0) + x2

2(0) + x2
1(1) + x2

2(1) +
∫ 1

0
{exp(tu(t)) + sin x(t)}dt

over all (x, u) ∈ A satisfying the constraints
(ẋ1(t), ẋ2(t)) = (u(t), exp(−x1(t))− exp(tu(t))) (a.e. in [0, 1]).
x(0) ∈ {0} × {0}, x(1) ∈ (−∞, 0]× {0}.
(t, x(t), u(t)) ∈ R̄ (t ∈ [0, 1])

where

R̄ := {(t, x, u) ∈ [0, 1]×R2 ×R | u2 − x2
1 − exp(−x1)− x1 + 1 ≤ 0, x1 + tu = 0},

A := X × U1,

X := {x : [0, 1]→ R2 | x is absolutely continuous on [0, 1]},

U1 := {u : [0, 1]→ R | u is essentially bounded on [0, 1]}.

For this example, the data of the nonparametric problem are given by T = [0, 1],
n = 2, m = 1, r = 1, s = 2, B0 = {0} × {0}, B1 = (−∞, 0] × {0}, `(a1, a2) = (a1

1)
2 +

(a2
1)

2 + (a1
2)

2 + (a2
2)

2, L(t, x, u) = exp(tu) + sin x, g(t, x, u) = (u, exp(−x1) − exp(tu))∗,
φ1(t, x, u) = u2 − x2

1 − exp(−x1)− x1 + 1 and φ2(t, x, u) = x1 + tu.
It is straightforwardly verified that the functions L, g, φ = (φ1, φ2) and their first

and second derivatives with respect to x and u are continuous on T ×R2 ×R. Moreover,
the function ` is C2 in R2 ×R2.

Additionally, it is evident that the process z0 = (x0, u0) ≡ (0, 0, 0) is admissible of
(P̄). Let Ψ : R2 → R2 ×R2 be defined by Ψ(b) := ((0, b2), (b1, b2)). Clearly, Ψ is C2 in R2

and B0 ×B1 ⊂ Ψ(R2). The related parametric problem denoted by (PΨ) has the following
data; p = 2, l = ` ◦ Ψ, L = L, f = g, ϕ = φ, and Ψ0, Ψ1 the components of Ψ, that is,
Ψ = (Ψ0, Ψ1) with Ψ0(b) = (0, b2)

∗ and Ψ1(b) = (b1, b2)
∗ (b ∈ R2).

Note that, if we set b0 = (b01, b02) := (0, 0), then z0b0
= (x0, u0, b0) ≡ (0, 0, 0, 0, 0)

is feasible for (PΨ). In addition, clearly, Ia(·, x0(·), u0(·)) = {1} is constant on T. Let
ρ = (ρ1, ρ2) ≡ (0,−1), µ = (µ1, µ2) ≡ (1, 0) and note that (ρ, µ) ∈ X × U2, µ1(t) ≥ 0 and
µ1(t)ϕ1(t, x0(t), u0(t)) = 0 (t ∈ T).
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Now,

H(t, x, u, ρ, µ) = ρ1u + ρ2 exp(−x1)− ρ2 exp(tu)− exp(tu)− sin x1

−µ1[u2 − x2
1 − exp(−x1)− x1 + 1]− µ2[x1 + tu],

and note that

Hu(t, x, u, ρ, µ) = ρ1 − tρ2 exp(tu)− t exp(tu)− 2µ1u− tµ2,

Hx(t, x, u, ρ, µ) =

(
−ρ2 exp(−x1)− cos x1 + 2µ1x1 − µ1 exp(−x1) + µ1 − µ2

0

)∗
.

It is straightforwardly verified that, for all t ∈ T,

ρ̇(t) = −H∗x (t, x0(t), u0(t), ρ(t), µ(t)) and Hu(t, x0(t), u0(t), ρ(t), µ(t)) = 0

and then (x0, u0, ρ, µ) satisfies the first order sufficiency hypotheses of Corollary 1. As
Ψ0(b) = (0, b2)

∗, Ψ1(b) = (b1, b2)
∗, l(b) = b2

1 + 2b2
2 (b ∈ R2), then

l′∗(b0) + Ψ′∗1 (b0)ρ(1)−Ψ′∗0 (b0)ρ(0) = 0

and hence hypothesis (i) of Corollary 1 is satisfied. In addition, one can easily verify that,

ρ∗(1)Ψ′′1 (b0; β)− ρ∗(0)Ψ′′0 (b0; β) = 0 for all β ∈ R2

and so hypothesis (ii) of Corollary 1 is fulfilled.
Now, for all (t, x, u) ∈ T ×R2 ×R,

H(t, x, u, ρ(t), µ(t)) = − sin x1 − u2 + x2
1 + x1 − 1

and so, for all t ∈ T,
Huu(t, x0(t), u0(t), ρ(t), µ(t)) = −2 ≤ 0

which in turn implies that (x0, u0, ρ, µ) satisfies hypothesis (iii) of Corollary 1.
In addition, observe that, for all t ∈ T,

fx(t, x0(t), u0(t)) =
(

0 0
−1 0

)
, fu(t, x0(t), u0(t)) =

(
1
−t

)
,

ϕ1x(t, x0(t), u0(t)) = (0, 0), ϕ1u(t, x0(t), u0(t)) = 0, ϕ2x(t, x0(t), u0(t)) = (1, 0), ϕ2u(t, x0(t), u0(t)) = t.

Thus, Y(z0b0
) is given by all wβ ∈ X × L2(T; R)×R2 satisfying{

(ẏ1(t), ẏ2(t)) = (v(t),−y1(t)− tv(t)) (a.e. in T), y(0) = (0, β2)
∗, y(1) = (β1, β2)

∗.
y1(t) + tv(t) = 0 (a.e. in T).

Moreover, note that, for all (t, x, u) ∈ T ×R2 ×R,

F(t, x, u) = sin x1 + u2 − x2
1 − x1 + 1

and, for all t ∈ T,

Fxx(t, x0(t), u0(t)) =
(
−2 0
0 0

)
, Fxu(t, x0(t), u0(t)) = (0, 0), Fuu(t, x0(t), u0(t)) = 2.
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Therefore, for all wβ ∈ Y(z0b0
),

1
2 J′′(z0b0

; wβ) = β2
1 + 2β2

2 +
∫ 1

0
{v2(t)− y2

1(t)}dt = β2
1 + 2β2

2 +
∫ 1

0
{ẏ2

1(t)− y2
1(t)}dt.

Consequently,
J′′(z0b0

; wβ) > 0

for all wβ ∈ Y(z0b0
), wβ 6≡ (0, 0, 0), and so hypothesis (iv) of Corollary 1 is satisfied.

Now, observe that, if zb is feasible, for all t ∈ T,

E(t, x(t), u0(t), u(t)) = u2(t).

Therefore, if zb is feasible,

∫ 1

0
E(t, x(t), u0(t), u(t))dt =

∫ 1

0
u2(t)dt =

∫ 1

0
{u2(t) + (exp(−x1(t))− exp(tu(t)))2}dt

=
∫ 1

0
{ẋ2

1(t) + ẋ2
2(t)}dt =

∫ 1

0
|ẋ(t)|2dt ≥

∫ 1

0
V(ẋ(t))dt = Q1(x− x0).

In addition, if zb is feasible,∫ 1

0
E(t, x(t), u0(t), u(t))dt =

∫ 1

0
u2(t)dt ≥

∫ 1

0
V(u(t))dt = Q2(u− u0).

Accordingly, for any ε > 0 and for any zb feasible with ‖(x, u)− (x0, u0)‖∞ < ε,

∫ 1

0
E(t, x(t), u0(t), u(t))dt ≥ max{Q1(x− x0),Q2(u− u0)} = Q(x− x0, u− u0) = Q(z− z0).

Therefore, hypothesis (v) of Corollary 1 is fulfilled for any ε > 0 and δ = 1. By
Corollary 1, (x0, u0) is a weak minimum of (P̄).

Remark 2. The reader can find a concrete example concerning the existence of a purely measurable
optimal control in which one of its components satisfies a classical type of amplitude constraints on
the controls u.

Indeed, see Example 1 of [23], where one can find a concrete optimal control u0 =
(u01, u02) with

u02(t) :=


1, t = 0
1, t ∈ ∪∞

i=1[1/(2i), 1/(2i− 1)]
−1, t ∈ ∪∞

i=2(1/(2i− 1), 1/(2i− 2))

and the feasible controls u = (u1, u2) satisfying the amplitude constraints

|u2(t)− u02(t)| ≤ 1 for all t ∈ [0, 1].

Remark 3. It would be of interest to see how the references quoted in this article or even the
sufficiency theory presented in this paper can be generalized to the more complicated situation of
the discrete-time case. See, for instance, [24], where time is measured in days in order to introduce
a mathematical model to describe the outbreak of the Sars-Cov-2 in Ireland in March–May 2020.
In the above reference, the optimal control treatment appeals to piecewise constant controls and
state constraints for which a theoretical analysis is not amenable and hence a numerical approach is
studied. It is worth mentioning that the optimal control model mentioned above saved lives and
minimized the economical costs of the pharmaceutical interventions.
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4. Auxiliary Lemmas

Now, we state three auxiliary lemmas which are going to be useful in order to prove
Theorem 1. The proof of these results are included in the proofs of Lemmas 2, 3, and 4
of [23], respectively. From now on, we are not going to relabel the subsequences of a given
sequence since this fact will not modify our results.

Throughout this section, we shall assume that we are given an element z0 := (x0, u0) ∈
X × L1(T; Rm) and a sequence {zq := (xq, uq)} in X × L1(T; Rm) such that

lim
q→∞

D(zq − z0) = 0 and dq := [2D(zq − z0)]
1/2 > 0 (q ∈ N).

For all q ∈ N, define

yq :=
xq − x0

dq
and vq :=

uq − u0

dq
.

For all q ∈ N, define
Wq := max{W1q, W2q}

where
W1q := [1 + 1

2 V(ẋq − ẋ0)]
1/2, W2q := [1 + 1

2 V(uq − u0)]
1/2.

Lemma 2. For some v0 ∈ L2(T; Rm) and some subsequence of {zq}, vq
L1
⇀ v0 on T.

Lemma 3. There exist σ0 ∈ L2(T; Rn), ȳ0 ∈ Rn, and a subsequence of {zq}, such that ẏq
L1
⇀ σ0

on T. Moreover, if for all t ∈ T, y0(t) := ȳ0 +
∫ t

t0
σ0(τ)dτ, then yq

u−→ y0 on T.

Lemma 4. Suppose that Wq
L∞
−→ 1 on T. Let Rq, R0 ∈ L∞(T; Rm×m), assume that Rq

L∞
−→ R0

on T, R0(t) ≥ 0 (a.e. in T), and let v0 be as in Lemma 2. Then,

lim inf
q→∞

∫ t1

t0

v∗q(t)Rq(t)vq(t)dt ≥
∫ t1

t0

v∗0(t)R0(t)v0(t)dt.

5. Proof of Theorem 1

The proof of Theorem 1 will be split up into two Lemmas. In Lemmas 5 and 6 below,
we are assuming that all the hypotheses of Theorem 1 are satisfied. Before enunciating the
lemmas, let us introduce some definitions.

First, note that given x = (x1, . . . , xn)∗ ∈ Rn and b = (b1, . . . , bp)∗ ∈ Rp, if we define
xi, bj ∈ Rn+p by xi := (x1, . . . , xn, 0, . . . , 0)∗ and bj := (0, . . . , 0, b1, . . . , bp)∗, then

xi + bj = (x1, . . . , xn, b1, . . . , bp)
∗ =

(
x
b

)
∈ Rn+p.

Define F̃ : T ×Rn+p ×Rm → R by

F̃(t, ξ, u) :=
l(ξn+1, . . . , ξn+p)

t1 − t0
+ F(t, ξ1, . . . , ξn, u).

Note that the Weierstrass function Ẽ : T ×Rn+p ×Rm ×Rm → R of F̃ is defined by

Ẽ(t, ξ, u, v) := F̃(t, ξ, v)− F̃(t, ξ, u)− F̃u(t, ξ, u)(v− u).

As one readily verifies, for all (t, x, u, v) ∈ T ×Rn ×Rm ×Rm and all b ∈ Rp,

Ẽ(t, xi + bj, u, v) = E(t, x, u, v).
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Define

J̃(zb) := ρ∗(t1)x(t1)− ρ∗(t0)x(t0) +
∫ t1

t0

F̃(t, x(t)i + bj, u(t))dt.

We have that J(zb) = J̃(zb) for all zb ∈ A, and

J̃(zb) = J̃(z0b0
) + J̃′(z0b0

; zb − z0b0
) + K̃(z0b0

; zb) + Ẽ(z0b0
; zb) (1)

where

Ẽ(z0b0
; zb) :=

∫ t1

t0

Ẽ(t, x(t)i + bj, u0(t), u(t))dt,

K̃(z0b0
; zb) :=

∫ t1

t0

{M̃(t, x(t)i + bj) + [u∗(t)− u∗0(t)]Ñ(t, x(t)i + bj)}dt,

J̃′(z0b0
; zb − z0b0

) := ρ∗(t1)[x(t1)− x0(t1)]− ρ∗(t0)[x(t0)− x0(t0)]

+
∫ t1

t0

{F̃ξ(t, x0(t)i + b0j, u0(t))([x(t)− x0(t)]i + [b− b0]j)

+F̃u(t, x0(t)i + b0j, u0(t))(u(t)− u0(t))}dt,

and M̃, Ñ are given by

M̃(t, xi + bj) := F̃(t, xi + bj, u0(t))− F̃(t, x0(t)i + b0j, u0(t))

−F̃ξ(t, x0(t)i + b0j, u0(t))([x− x0(t)]i + [b− b0]j),

Ñ(t, xi + bj) := F̃∗u (t, xi + bj, u0(t))− F̃∗u (t, x0(t)i + b0j, u0(t)).

We have

M̃(t, xi + bj) = 1
2 ([x

∗ − x∗0(t)]i + [b∗ − b∗0 ]j)P̃(t, xi + bj)([x− x0(t)]i + [b− b0]j), (2a)

Ñ(t, xi + bj) = Q̃(t, xi + bj)([x− x0(t)]i + [b− b0]j), (2b)

where

P̃(t, xi + bj) := 2
∫ 1

0
(1− λ)F̃ξξ(t, [x0(t) + λ(x− x0(t))]i + [b0 + λ(b− b0)]j, u0(t))dλ,

Q̃(t, xi + bj) :=
∫ 1

0
F̃uξ(t, [x0(t) + λ(x− x0(t))]i + [b0 + λ(b− b0)]j, u0(t))dλ.

Lemma 5. If the conclusion of Theorem 1 is false, then there exists a subsequence {zq
bq
} of feasible

processes such that

lim
q→∞

D(zq − z0) = 0 and dq := [2D(zq − z0)]
1/2 > 0 (q ∈ N).

Proof. If the conclusion of Theorem 1 is false, then for all θ1, θ2 > 0, there exists a feasible
process zb such that

‖zb − z0b0
‖ < θ1 and I(zb) < I(z0b0

) + θ2 min{|b− b0|2, D(z− z0)}. (3)

As
µα(t) ≥ 0 (α ∈ R, a.e. in T),

if zb is feasible, then I(zb) ≥ J(zb). In addition, since

µα(t)ϕα(t, x0(t), u0(t)) = 0 (α ∈ R, a.e. in T)
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then I(z0b0
) = J(z0b0

). Therefore, (3) implies that, for all θ1, θ2 > 0, there exists zb feasi-
ble with

‖zb − z0b0
‖ < θ1 and J(zb) < J(z0b0

) + θ2 min{|b− b0|2, D(z− z0)}.

Thus, if the conclusion of Theorem 1 is false, then, for all q ∈ N, there exists zq
bq

feasible
such that

‖zq
bq
− z0b0

‖ < min{ε, 1/q}, J(zq
bq
)− J(z0b0

) < min
{ |bq − b0|2

q
,

D(zq − z0)

q

}
. (4)

Clearly, the first relation in (4) implies that

lim
q→∞

D(zq − z0) = 0.

In addition, D(zq − z0) = 0 if and only if zq = z0. Then, by the second relation of (4),

D(zq − z0) = 0 =⇒ bq 6= b0.

Suppose D(zq − z0) = 0 for infinitely many q’s. For i = 0, 1, we have

0 = xq(ti)− x0(ti) = Ψi(bq)−Ψi(b0) =
∫ 1

0
Ψ′i(b0 + λ[bq − b0])(bq − b0)dλ, (5)

0 = Ψi(bq)−Ψi(b0) = Ψ′i(b0)(bq − b0) +
∫ 1

0
(1− λ)Ψ′′i (b0 + λ[bq − b0]; bq − b0)dλ. (6)

Denoting by (bq, b0) the line segment in Rp joining the points bq and b0, by the second
relation of (4), by condition (i) of Theorem 1, by (6), and the mean value theorem, there
exists Ξq ∈ (bq, b0) such that

0 > J(z0bq )− J(z0b0
)

= l(bq)− l(b0)

= l′(b0)(bq − b0) +
1
2 (bq − b0)

∗l′′(Ξq)(bq − b0)

= ρ∗(t0)Ψ′0(b0)(bq − b0)− ρ∗(t1)Ψ′1(b0)(bq − b0) +
1
2 (bq − b0)

∗l′′(Ξq)(bq − b0)

=
1

∑
i=0

(−1)i+1
∫ 1

0
(1− λ)ρ∗(ti)Ψ′′i (b0 + λ[bq − b0]; bq − b0)dλ + 1

2 (bq − b0)
∗l′′(Ξq)(bq − b0). (7)

Choose an appropriate subsequence of {(bq − b0)/|bq − b0|}, such that

lim
q→∞

bq − b0

|bq − b0|
= β0 (8)

for some β0 ∈ Rp with |β0| = 1. By (5),

Ψ′i(b0)β0 = 0 (i = 0, 1).

By (7) and (8) and condition (ii) of Theorem 1, it follows that

0 ≥ 1
2 [ρ
∗(t1)Ψ′′1 (b0; β0)− ρ∗(t0)Ψ′′0 (b0; β0) + β∗0l′′(b0)β0] ≥ 1

2 β∗0l′′(b0)β0 = 1
2 J′′(z0b0

; 0β0)

which contradicts (iv) of Theorem 1. Therefore, we may assume that, for all q ∈ N,

dq = [2D(zq − z0)]
1/2 > 0.
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Lemma 6. If the conclusion of Theorem 1 is false, then hypothesis (iv) of Theorem 1 is false.

Proof. Let {zq
bq
} be the sequence of feasible processes given in Lemma 5. Then,

lim
q→∞

D(zq − z0) = 0 and dq = [2D(zq − z0)]
1/2 > 0 (q ∈ N).

Case (1): First, suppose that the sequence {(bq − b0)/dq} is bounded in Rp.

For all q ∈ N, define

yq :=
xq − x0

dq
, vq :=

uq − u0

dq
, ωq := yqi +

bq − b0

dq
j.

By Lemma 2, there exist v0 ∈ L2(T; Rm) and a subsequence of {zq}, such that vq
L1
⇀ v0

on T. By Lemma 3, there exist σ0 ∈ L2(T; Rn), ȳ0 ∈ Rn, and a subsequence of {zq}, such
that if y0(t) := ȳ0 +

∫ t
t0

σ0(τ)dτ (t ∈ T), then

yq
u−→ y0 on T. (9)

Since the sequence {(bq − b0)/dq} is bounded in Rp, then we may assume that there
exists some β0 ∈ Rp such that

lim
q→∞

bq − b0

dq
= β0. (10)

First, we are going to show that for i = 0, 1,

y0(ti) = Ψ′i(b0)β0. (11)

Observe that, for i = 0, 1 and all q ∈ N, we have that

yq(ti) =
∫ 1

0
Ψ′i(b0 + λ[bq − b0])

(bq − b0)

dq
dλ. (12)

By (9), (10) and (12), we obtain (11). Now, we claim that

J′′(z0b0
; w0β0

) ≤ 0, w0β0
= (y0, v0, β0) 6≡ (0, 0, 0). (13)

To prove it, observe that by (2), (9) and (10),

M̃(·, xq(·)i + bqj)
d2

q
= 1

2 ω∗q (·)P̃(·, xq(·)i + bqj)ωq(·)
L∞
−→

1
2 [y
∗
0(·)i + β∗0j]F̃ξξ(·, x0(·)i + b0j, u0(·))[y0(·)i + β0j],

Ñ(·, xq(·)i + bqj)
dq

= Q̃(·, xq(·)i + bqj)ωq(·)
L∞
−→ F̃uξ(·, x0(·)i + b0j, u0(·))[y0(·)i + β0j]

both on T. This fact, combined with Lemma 2, implies that

lim
q→∞

K̃(z0b0
; zq

bq
)

d2
q

=
1
2

∫ t1

t0
{[y∗0(t)i + β∗0j]F̃ξξ (t, x0(t)i + b0j, u0(t))[y0(t)i + β0j]

+2v∗0(t)F̃uξ (t, x0(t)i + b0j, u0(t))[y0(t)i + β0j]}dt. (14)
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Since (x0, u0, ρ, µ) satisfies the conditions

ρ̇(t) = −H∗x (t, x0(t), u0(t), ρ(t), µ(t)) (a.e. in T), H∗u(t, x0(t), u0(t), ρ(t), µ(t)) = 0 (t ∈ T),

and by hypothesis (i) of Theorem 1, we have that

lim
q→∞

J̃′(z0b0
; zq

bq
− z0b0

)

d2
q

= lim
q→∞

1
d2

q
[ρ∗(t1)(xq(t1)− x0(t1))− ρ∗(t0)(xq(t0)− x0(t0)) + l′(b0)(bq − b0)]

= lim
q→∞

1
d2

q
[ρ∗(t1)(Ψ1(bq)−Ψ1(b0)−Ψ′1(b0)(bq − b0))− ρ∗(t0)(Ψ0(bq)−Ψ0(b0)−Ψ′0(b0)(bq − b0))]

= lim
q→∞

1
d2

q

∫ 1

0

1

∑
i=0

(−1)i+1(1− λ)ρ∗(ti)Ψ′′i (b0 + λ[bq − b0]; bq − b0)dλ

= 1
2 [ρ
∗(t1)Ψ′′1 (b0; β0)− ρ∗(t0)Ψ′′0 (b0; β0)]. (15)

Consequently, by (1), the fact that

J(zq
bq
)− J(z0b0

) < min
{ |bq − b0|2

q
,

D(zq − z0)

q

}
,

(15) and condition (ii) of Theorem 1,

0 ≥ lim
q→∞

K̃(z0b0
; zq

bq
)

d2
q

+ lim inf
q→∞

Ẽ(z0b0
; zq

bq
)

d2
q

. (16)

Now, for all t ∈ T and q ∈ N,

1
d2

q
Ẽ(t, xq(t)i + bqj, u0(t), uq(t)) = 1

2 v∗q(t)Rq(t)vq(t),

where

Rq(t) := 2
∫ 1

0
(1− λ)F̃uu(t, xq(t)i + bqj, u0(t) + λ[uq(t)− u0(t)])dλ.

As one readily verifies,

Rq(·)
L∞
−→ R0(·) := F̃uu(·, x0(·)i + b0j, u0(·)) on T.

By hypothesis (iii) of Theorem 1, we have

F̃uu(t, x0(t)i + b0j, u0(t)) = R0(t) ≥ 0 (a.e. in T). (17)

For all q ∈ N, define
Wq := max{W1q, W2q}

where
W1q := [1 + 1

2 V(ẋq − ẋ0)]
1/2, W2q := [1 + 1

2 V(uq − u0)]
1/2.

By the fact that

‖zq
bq
− z0b0

‖ < 1
q

,
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and the admissibility of zq
bq

, Wq
L∞
−→ 1 on T. With this in mind, by (17) and Lemma 4,

lim inf
q→∞

Ẽ(z0b0
; zq

bq
)

d2
q

= lim inf
q→∞

1
d2

q

∫ t1

t0

Ẽ(t, xq(t)i + bqj, u0(t), uq(t))dt

=
1
2

lim inf
q→∞

∫ t1

t0

v∗q (t)Rq(t)vq(t)dt ≥ 1
2

∫ t1

t0

v∗0(t)R0(t)v0(t)dt. (18)

By (16) and (18), we have

0 ≥
∫ t1

t0

{v∗0(t)F̃uu(t, x0(t)i + b0j, u0(t))v0(t) + 2v∗0(t)F̃uξ(t, x0(t)i + b0j, u0(t))[y0(t)i + β0j]

+[y∗0(t)i + β∗0j]F̃ξξ(t, x0(t)i + b0j, u0(t))[y0(t)i + β0j]}dt

= β∗0 l′′(b0)β0 +
∫ t1

t0

{v∗0(t)Fuu(t, x0(t), u0(t))v0(t) + 2v∗0(t)Fux(t, x0(t), u0(t))y0(t)

+y∗0(t)Fxx(t, x0(t), u0(t))y0(t)}dt

= β∗0 l′′(b0)β0 +
∫ t1

t0

2Ω(t, x0(t), u0(t); t, y0(t), v0(t))dt = J′′(z0b0
; w0β0

).

Now, let us show that w0β0
6≡ (0, 0, 0). By (16), condition (v) of Theorem 1 and the fact

that V(e) ≤ |e|2/2 for all e ∈ Rn,

0 ≥ lim
q→∞

K̃(z0b0
; zq

bq
)

d2
q

+ lim inf
q→∞

δ

d2
q
Q(zq − z0)

= lim
q→∞

K̃(z0b0
; zq

bq
)

d2
q

+ lim inf
q→∞

δ

d2
q
[D(zq − z0)−V(xq(t0)− x0(t0))]

≥ lim
q→∞

K̃(z0b0
; zq

bq
)

d2
q

+
δ

2
− δ

2
lim sup

q→∞

|xq(t0)− x0(t0)|2

d2
q

= lim
q→∞

K̃(z0b0
; zq

bq
)

d2
q

+
δ

2
− δ

2
lim sup

q→∞

|Ψ0(bq)−Ψ0(b0)|2

d2
q

= lim
q→∞

K̃(z0b0
; zq

bq
)

d2
q

+
δ

2
− δ

2
lim sup

q→∞

∣∣∣∣∫ 1

0
Ψ′0(b0 + λ[bq − b0])

(
bq − b0

dq

)
dλ

∣∣∣∣2

= lim
q→∞

K̃(z0b0
; zq

bq
)

d2
q

+
δ

2
− δ

2
|Ψ′0(b0)β0|2

= lim
q→∞

K̃(z0b0
; zq

bq
)

d2
q

+
δ

2
− δ

2
|y0(t0)|2.

With this in mind and (14), if we suppose that w0β0
≡ (0, 0, 0), then δ would not be

positive, which is not the case, and this establishes (13). Now, let us prove that

ẏ0(t) = fx(t, x0(t), u0(t))y0(t) + fu(t, x0(t), u0(t))v0(t) (a.e. in T). (19)

Note that, for all q ∈ N,

ẏq(t) = Aq(t)yq(t) + Bq(t)vq(t) (a.e. in T)

where

Aq(t) =
∫ 1

0
fx(t, x0(t) + λ[xq(t)− x0(t)], u0(t) + λ[uq(t)− u0(t)])dλ,
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Bq(t) =
∫ 1

0
fu(t, x0(t) + λ[xq(t)− x0(t)], u0(t) + λ[uq(t)− u0(t)])dλ.

As

Aq(·)
L∞
−→ fx(·, x0(·), u0(·)), Bq(·)

L∞
−→ fu(·, x0(·), u0(·)), yq

u−→ y0, vq
L1
⇀ v0,

all on T, it follows that

ẏq(·)
L1
⇀ fx(·, x0(·), u0(·))y0(·) + fu(·, x0(·), u0(·))v0(·) on T.

By Lemma 3, ẏq
L1
⇀ σ0 = ẏ0 on T. Then, (19) is verified.

Now, we claim that
i. ϕαx(t, x0(t), u0(t))y0(t) + ϕαu(t, x0(t), u0(t))v0(t) ≤ 0 (a.e. in T, α ∈ Ia(t, x0(t), u0(t))).
ii. ϕβx(t, x0(t), u0(t))y0(t) + ϕβu(t, x0(t), u0(t))v0(t) = 0 (a.e. in T, β ∈ S).
As one can easily verify, (i) and (ii) above are obtained if one simply copies the proofs

from (27) to (29) of [25].
Consequently, from (11), (19), (i) and (ii), above, it follows that w0β0

∈ Y(z0b0
). This

fact together with (13) contradict hypothesis (iv) of Theorem 1.
Case (2): Now, assume that the sequence {(bq − b0)/dq} is unbounded. Then,

lim
q→∞

∣∣∣∣ bq − b0

dq

∣∣∣∣ = +∞.

In this case, if one copies the proofs from (31) to (38) of [25], then one obtains that for
some β̄0 ∈ Rp with |β̄0| = 1,

a. Ψ′i(b0)β̄0 = 0 (i = 0, 1).
b. J′′(z0b0

; 0β̄0
) ≤ 0.

Consequently, (a) and (b) above contradict hypothesis (iv) of Theorem 1.

6. Conclusions

In this paper, we have obtained two sufficiency theorems for a parametric and a non-
parametric problems of Bolza having nonlinear dynamics, variable initial and final states
and nonlinear inequality and equality mixed time-state-control constraints. The proposed
optimal controls need not be continuous but also purely measurable. In the nonparamet-
ric problem, the initial and final states are not only variable but also completely free, all
the crucial sufficiency hypotheses are included in the theorems and, in the parametric
sufficiency theorem, the deviation around the optimal cost, can be measured by a pro-
portion of a function involving several functionals playing similar roles of the square of
some norms. The algorithm of sufficiency used to prove one of the main results of the
article is self-contained in the sense that it is independent of classical techniques used to
obtain sufficiency of problems having a similar degree of generality as the one studied
in this work. On the other hand, some future directions of research can be visualized by
applying this method of sufficiency. Concretely, we conjecture that Corollary 1 can be
proved directly, that is, without invoking the theorem of the parametric problem. The only
issue that must be addressed is that the sets Bi (i = 0, 1) appearing in the corollary should
be manifolds determined by some C2 functions Φ−i (i = −1, 0), satisfying the relations
x(t−i) = Φ−i(x(ti+1)) (i = −1, 0). We also conjecture that a parallel version of Corollary 1
can be derived directly with the sets Bi (i = 0, 1) being any sets and they need not have to
be subsets of any manifold. Once again, another issue that possibly arises is that we have
to diminish the class of admissible processes by requiring that the strategies be of class C2

instead of being absolutely continuous on the underlying interval of time.
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