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Abstract: For a graph G with no isolated vertex, let γpr(G) and sdγpr (G) denote the paired-
domination and paired-domination subdivision numbers, respectively. In this note, we show that
if T is a tree of order n ≥ 4 different from a healthy spider (subdivided star), then sdγpr (T) ≤
min{ γpr(T)

2 + 1, n
2 }, improving the (n− 1)-upper bound that was recently proven.

Keywords: paired-domination number; paired-domination subdivision number

1. Introduction

Throughout the paper, G = (V, E) is a simple connected graph with vertex set
V = V(G) of order n = |V| and edge set E(G) = E. For every vertex v ∈ V(G), the
open neighborhood of v is the set NG(v) = {u ∈ V(G)|uv ∈ E(G)} and the closed neighbor-
hood of v is the set NG[v] = NG(v) ∪ {v}. The degree of a vertex v is degG(v) = |NG(v)|.
When no confusion arises, we will delete the subscript G in NG and degG . A vertex of
degree one is called a leaf and its neighbor is called a stem. A stem is said to be strong if it is
adjacent to at least two leaves. A healthy spider Sq for q ≥ 2 is obtained from a star K1,q by
subdividing each edge by exactly one vertex. The center vertex of a healthy spider will be
called a head. Let Pn and Cn be the path and cycle of order n. The diameter of G, denoted by
diam(G), is the maximum value among minimum distances between all pairs of distinct
vertices of G. A matching in a graph G is a set of pairwise non-intersecting edges, while a
perfect matching in G is a matching that covers each vertex.

A dominating set of G is a subset S of V such that every vertex in V − S has at least one
neighbor in S. A subset S of V is a paired-dominating set of G, abbreviated PD-set, if S is a
dominating set and the subgraph induced by the vertices of S contains a perfect matching.
The paired-domination number γpr(G) is the minimum cardinality of a PD-set of G. If S is
a PD-set with a perfect matching M, then two vertices u and v are said to be partners (or
paired) in S if the edge uv ∈ M. We call a PD-set of minimum cardinality a γpr(G)-set.
Note that every graph G without isolated vertices has a PD-set since the endvertices of any
maximal matching in G form such a set. Paired-domination was introduced by Haynes
and Slater [1] and is studied, for example, in [2–7]. For more details on paired-domination,
we refer the reader to the recent book chapter [8].

As an application, in the design of networks for example, it is essential to study the
effect that some modifications on the graph that have on the graph parameters. These mod-
ifications can be deletion or addition of vertices, deletion or addition of edges. We re-
fer the reader to chapter 7 of [9] when the graph parameter is the domination number.
Fink et al. [10], were the first to study the bondage number of G defined to be the minimum
number of edges whose removal increases the domination number of G, while Kok and
Mynhardt [11] were the first to study the reinforcement number of G defined to be the
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minimum number of edges which must be added to G in order to decrease the domination
number of G. In [12], Velammal studied another kind of modification where the goal is
find the minimum number of edges to be subdivided (each edge in G is subdivided at most
once) in order to increase the domination number. For more details, see [13–17].

Our main purpose in this paper is to study of the paired-domination subdivision number
of trees. This parameter was introduced by Favaron et al. in [18] and defined as follows.
The paired-domination subdivision number sdγpr (G) of a graph G is the minimum number
of edges that must be subdivided (where each edge in G can be subdivided at most once)
in order to increase the paired-domination number of G. Observe that since the paired-
domination subdivision number of the complete graph K2 remains unchanged when its
only edge is subdivided, we will assume that the graph G has order at least 3. It is worth
noting that it has recently been shown by Amjadi and Chellali [19] that the problem of
computing the paired-domination subdivision number is NP-hard for bipartite graphs.
The paired-domination subdivision number has been further studied by several authors
(see [20–22]).

In [18], Favaron et al. have given some conditions for a graph (including trees) to have
a small paired-domination subdivision number that we summarize by the following results.

Proposition 1 ([18]). For every graph G of order n ≥ 3, if γpr(G) = 2, then 1 ≤ sdγpr (G) ≤ 3.

Proposition 2 ([18]). If G contains either a strong stem or adjacent stems, then sdγpr (G) ≤ 2.

Proposition 3 ([18]). If a connected graph G contains a path v1v2v3v4v5 in which deg(vi) = 2
for i = 2, 3, 4, then sdγpr (G) ≤ 4.

It should also be noted that Favaron et al. [18] conjectured that sdγpr (G) ≤ n− 1 for
all connected graphs of order n. In connection with this conjecture, Egawa et al. [20] proved
that for every connected graph G of order n ≥ 4, sdγpr (G) ≤ 2n− 5. Moreover, if further G
has an edge uv such that u and v are not partners in any γpr(G)-set, then sdγpr (G) ≤ n− 1.
The conjecture has recently been settled in the affirmative in [22]. Restricted to the class of
trees, we observe that for healthy spiders Sq with q ≥ 2 or paths P3, sdγpr (T) = n− 1.

In this note, we improve the (n− 1)-upper bound on the paired-domination subdi-
vision number for all trees T of order n ≥ 4 different from a healthy spider by providing
an upper bound on it in terms of the paired-domination number. More precisely, we will
mainly show the following.

Theorem 1. Let T be a tree of order n ≥ 4 different from a healthy spider. Then

sdγpr (T) ≤
γpr(T)

2 + 1.

In addition, we will also show that if T is a tree of order n ≥ 4 different from a healthy
spider, then its paired-domination subdivision number is at most n

2 . Before giving the proof
of our results, it is necessary to recall the following two useful results.

Proposition 4 ([18]). Let G be a connected graph of order n ≥ 3 and e = uv ∈ E(G). If G′ is
obtained from G by subdividing the edge e, then γpr(G′) ≥ γpr(G).

Proposition 5 ([18]). For n ≥ 3,

sdγpr (Pn) = sdγpr (Cn) =


1 if n ≡ 0 (mod 4)
4 if n ≡ 1 (mod 4)
3 if n ≡ 2 (mod 4)
2 if n ≡ 3 (mod 4).

We close this section by mentioning that the paired-domination number of a path Pn
of order n ≥ 2 is 2

⌈ n
4
⌉

(see [8]).
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2. Proof of Theorem 1

For non-negative integers t1, t2 where t1 ≥ 1, let Ft1,t2 be the tree obtained from
a path v1v2v3v4 by adding t1 pendant paths v1ui

2ui
1, t1 pendant paths v4wi

2wi
1, and t2

pendant paths v2zi
2zi

1 (see Figure 1). Let F be the family of all trees Ft1,t2 . The set P =
{v1, u1

2, v4, w1
2} ∪ {ui

1, ui
2, wi

1, wi
2 | 2 ≤ i ≤ t1} ∪ {zi

1, zi
2 | 1 ≤ i ≤ t2} is a PD-set of

Ft1,t2 and so γpr(Ft1,t2) ≤ 4t1 + 2t2. One the other hand, if D is a γpr(Ft1,t2)-set, then to
paired-dominate the leaves of Ft1,t2 , we must have |D ∩ {v1, ui

1, ui
2 | 1 ≤ i ≤ t1}| ≥ 2t1,

|D ∩ {v4, wi
1, wi

2 | 1 ≤ i ≤ t1}| ≥ 2t1 and |D ∩ {v2, zi
1, zi

2 | 1 ≤ i ≤ t2}| ≥ 2t2 implying that
γpr(Ft1,t2) ≥ 4t1 + 2t2. Thus γpr(Ft1,t2) = 4t1 + 2t2.

u1
2 w1

2

u1
1 w1

1

wt1
2

wt1
1

ut1
1

z1
2

z1
1

. . .

zt2
2

zt2
1

v1

...
...

ut1
2

v2 v3 v4

Figure 1. The graph Ft1,t2 .

Lemma 1. If T ∈ F , then sdγpr (T) ≤
n(T)−2

2 = 1 + γpr(T)
2 .

Proof. Let T = Ft1,t2 , and let T′ be the tree obtained from T by subdividing the edge v2v1
with new vertex x, the edges v1ui

2, ui
2ui

1 with new vertices xi, yi respectively, for each i, and

the edge v2zj
2 with new vertex aj for each j, if t2 ≥ 1. Clearly the number of subdivided

edges is 2t1 + t2 + 1 = n(T)−2
2 . Let D′ be a γpr(T′)-set. To paired-dominate each leaf uj

1,

we must have |D′ ∩ {uj
1, uj

2, yj}| ≥ 2 for each 1 ≤ j ≤ t1; to paired-dominate each leaf

zj
1 we must have |D′ ∩ {zj

1, zj
2, aj}| ≥ 2 for each 1 ≤ j ≤ t2; and to paired-dominate the

leaves w1
1, . . . , wt1

1 we may assume that v4, w1
2, w2

2, . . . , wt1
2 , w2

1, . . . , wt1
1 ∈ D′. Moreover, to

paired-dominate the vertex v1, we must have |D′ ∩ {x1, . . . , xt1 , v1, v2, x}| ≥ 2. Therefore

γpr(T′) = |D′| ≥ 4t1 + 2t2 + 2 > γpr(T). Hence sdγpr (T) ≤
n(T)−2

2 = 1 + γpr(T)
2 .

Now we are ready to start the proof of Theorem 1.

Proof of Theorem 1. If diam(T) ≤ 3, then clearly γpr(T) = 2 and by Proposition 2 we have

sdγpr (G) ≤ 2 =
γpr(T)

2 + 1. Hence, let diam(T) ≥ 4. Note that γpr(T) ≥ 4. If T has a strong
stem or adjacent stems, then the result follows from Proposition 2. Hence, we can assume
that T has no strong stem or adjacent stems. If diam(T) = 4 and v1v2v3v4v5 is a diametral
path in T, then since T is not a subdivided star, we must have degT(v3) ≥ 3 and v3 is a
stem, which is a contradiction. Hence, we can assume that diam(T) ≥ 5. Let v1v2v3 . . . vk
be a diametral path in T such that degT(v3) is as small as possible. We consider two cases.

Case 1. diam(T) ∈ {5, 6}. Root T at v4, and consider the following subcases.
Subcase 1.1. v4 is not a stem and degT(v3) = 2.
By the choice of the diametral path, we deduce that for each child w of v4, the maximal

subtree rooted at w is a either path P2, P3 or a healthy spider (if diam(T) = 6). Let H be
the forest of T − v4 where each of its components is a healthy spider. Since degT(v3) = 2,
note that H is empty if diam(T) = 5. Now, let v4u1

i u2
i u3

i be the (pendant) paths in T such
that degT(u

1
i ) = degT(u

2
i ) = 2 and degT(u

3
i ) = 1 for each i ∈ {1, . . . , r}, and let v4z1

i z2
i be

the paths in T (if any) such that degT(z
1
i ) = 2 and degT(z

2
i ) = 1 for each i ∈ {1, . . . , s}.

Assume, without loss of generality, that u1
1 = v3. Let T′ be the tree obtained from T by

subdividing the edges v4v3, v3v2 with new vertices x, y, respectively, the edge v4u1
i with

a new vertex u′1i for each 2 ≤ i ≤ r and the edge v4z1
j with a new vertex z′1j for each
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j ∈ {1, . . . , s}. Let D be a γpr(T′)-set. To paired-dominate each leaf u3
i in T′, we must

have that |D ∩ {u1
i , u2

i , u3
i }| ≥ 2 for each i ∈ {2, . . . , r}, to paired-dominate u3

1 = v1 we
must have |D ∩ {u2

1, u3
1, y}| ≥ 2, and to paired-dominate each leaf z2

j in T′ we must have

|D ∩ {z1
j , z2

j , z′1j }| ≥ 2 for each j. Also, to paired-dominate vertex x, we may assume that
v4 and x are partners in D′. It follows that γpr(T′) ≥ γpr(H) + 2r + 2s + 2. A similar
argument shows that γpr(T) ≥ γpr(H) + 2r + 2s. Moreover, the equality in the last
inequality is attained since each PD-set of H can be extended to a PD-set of T by adding
the set {z1

j , z2
j | 1 ≤ j ≤ s} ∪ {u1

i , u2
i | 1 ≤ i ≤ r}. Thus γpr(T) = γpr(H) + 2r + 2s, and

therefore γpr(T′) > γpr(T). It follows that sdγpr (T) ≤ r + s + 1, and hence sdγpr (T) ≤
r + s + 1 ≤ γpr(T)

2 + 1.
Subcase 1.2. v4 is not a stem and degT(v3) ≥ 3.
By assumption, for each child w of v4, the maximal subtree rooted at w is either a

healthy spider or a path P2. Let w1, . . . , wr be the children of v4 such that Twi is a healthy
spider with head wi, and let w1

i , . . . , w`i
i be the children of wi and let yj

i be the leaf neighbor

of wj
i for each i, j. Also, let v4z1

i z2
i be the paths in T (if any) such that degT(z

1
i ) = 2 and

degT(z
2
i ) = 1 for each i ∈ {1, . . . , t}. Without loss of generality, let w1 = v3. Let T′ be the

tree obtained from T by subdividing the edge v4v3 with vertex x, the edges wiw1
i , . . . , wiw

`i
i

with vertices w′1i , . . . , w′`i
i , respectively, and the edge v4z1

j with vertex z′1j for each j. Let D

be a γpr(T′)-set. To paired-dominate each leaf yj
i in T′, we must have |D∩ {wj

i , yj
i , w′ ji}| ≥ 2

for each i, j; to paired dominate each leaf z2
j we must have |D ∩ {z1

j , z2
j , z′1j } ≥ 2 for

each j ∈ {1, . . . , t} and to paired dominate vertex x we may assume that v4 and x are
partners in D. Hence γpr(T′) ≥ ∑r

i=1 2`i + 2t + 2. A similar argument as above shows
that γpr(T) ≥ ∑r

i=1 2`i + 2t. Moreover, the equality in the last inequality is attained since

{v3, v2} ∪ {z1
j , z2

j | 1 ≤ j ≤ t} ∪ (∪r
i=2{w

j
i , yj

i | 1 ≤ j ≤ `i}) ∪ {w
j
1, yj

1 | 2 ≤ j ≤ `1} is a
PD-set of T. Thus γpr(T) = ∑r

i=1 2`i + 2t, and therefore γpr(T′) > γpr(T). It follows that

sdγpr (T) ≤ ∑r
i=1 `i + t + 1, and hence sdγpr (T) ≤

γpr(T)
2 + 1.

Subcase 1.3. v4 is a stem.
Let w be a leaf neighbor of v4. By assumption, w is the unique leaf adjacent to v4 and

v4 is not adjacent to any stem. Hence, T has diameter 6. First let there be a path v4u3u2u1
in T such that degT(u2) = degT(u3) = 2 and degT(u1) = 1. Without loss of generality,
we may assume that u3 = v3. Let T′ be the tree obtained from T by subdividing the
edges v4w, v4v3, v3v2, v2v1 with new vertices u, x, y, z, respectively, and let D′ be a PD-set
of T′. It is easy to see that |D′ ∩ {v4, v3, v2, v1, u, w, x, y, z}| ≥ 6. If v4 6∈ D′ or v4 ∈ D′

and its partner belongs to {u, x}, then (D′ \ {v4, v3, v2, v1, u, w, x, y, z}) ∪ {v2, v3, w, v4}
is a PD-set of T smaller than D′. If v4 ∈ D′ and its partner does not belong to {u, x},
then (D′ \ {v3, v2, v1, u, w, x, y, z}) ∪ {v2, v3} is a PD-set of T smaller than D′. Hence,
γpr(T′) > γpr(T), and thus sdγpr (T) ≤ 4. Now let D be a γpr(T)-set. To paired-dominate
v1 and v7, we must have |D ∩ {v1, v2, v3}| ≥ 2 and |D ∩ {v6, v5, v7}| ≥ 2, respectively.
Moreover, to paired-dominate w, we have |D ∩ {w, v4}| ≥ 1. Since γpr(T) is even, we

have γpr(T) ≥ 6. Consequently, sdγpr (T) ≤ 4 ≤ γpr(T)
2 + 1 as desired. Therefore, we

can assume that T has no such a path v4u3u2u1 in T such that degT(u2) = degT(u3) = 2
and degT(u1) = 1. Thus for any child v 6= w of v4, the maximal subtree Tv is a healthy
spider. Since diam(T) = 6, we deduce that v4 has at least two children whose maximal
subtrees are healthy spiders. Let v3 = w1, . . . , wr be the children of v4 such that Twi is a
healthy spider with head wi. Suppose that v2 = w1

1, . . . , w`
1 are the children of w1 and yj

1

is the leaf adjacent to wj
1. Let T′ be the tree obtained from T by subdividing the edges

v4w, v4v3 with new vertices x, y, respectively, the edges w1wj
1, yj

1wj
1 with new vertices xj

and yj, respectively for each j ∈ {1, . . . , `}. Clearly the number of subdivided edges
is 2 degT(w1). Let D′ be a γpr(T′)-set. To paired-dominate y1

1, . . . , y`1, we may assume
that w1

1, . . . , w`
1, y1, . . . , y` ∈ D′. Also to paired-dominate the vertices w, v3, we must
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have |D′ ∩ {w, x, v4, y, v3, x1, . . . , x`}| ≥ 4. Now, if v4 6∈ D′ or v4 ∈ D′ and its partner
belongs to {x, y}, then (D′ \ {w, x, v4, y, v3, x1, . . . , x`, y1, . . . , y`}) ∪ {y1

1, . . . , y1
` , v4, v3} is a

PD-set of T smaller than D′. If v4 ∈ D′ and its partner does not belong to {x, y}, then
(D′ \ {w, x, y, v3, x1, . . . , x`, y1, . . . , y`}) ∪ {y1

1, . . . , y1
`} is a PD-set of T smaller than D′. In

either case, we deduce that sdγpr (T) ≤ 2 degT(w1). Now let D be a γpr(T)-set and let
Tw1 , Tw2 be the components of T − {v4w1, v4w2} containing w1 and w2, respectively. To
paired-dominate the leaves of Tw1 and Tw2 we must have |D ∩V(Tw1)| ≥ 2 degT(w1)− 2
and |D ∩ V(Tw2)| ≥ 2 degT(w2) − 2 ≥ 2 degT(w1) − 2. Also to paired-dominate w we
must have |D ∩ {w, v4}| ≥ 1. Since |D| is even, we deduce that |D| ≥ 4 degT(w1)− 2. This

implies that sdγpr (T) ≤ 2 degT(w1) ≤
γpr(T)

2 + 1.

Case 2. diam(T) ≥ 7. We consider two subcases.
Subcase 2.1 degT(v3) = 2.
If T is a path, then the result follows from Proposition 5 and the exact value of the

paired-domination number of a path given at the end of Section 1. Hence, we assume that
T is not a path, and thus γpr(T) > 4. If degT(v4) = 2, then v5v4v3v2v1 is a path in T such
that deg(v2) = deg(v3) = deg(v4) = 2 and the result follows from Proposition 3. Hence,
assume that degT(v4) ≥ 3. If v4 is a stem, then using an argument similar to that described

in Subcase 1.3, we can see that sdγpr (G) ≤ 4 ≤ γpr(T)
2 + 1. Thus, we assume that v4 is not a

stem. Hence, each component of T− v4 is of order at least 2. Moreover, since diam(T) ≥ 7,
one component of T− v4 different from the one containing v3, must have order at least four
and diameter at least three. Root T at v4 and let w1, . . . , wr be the children of v4 with depth
at least three, u1, . . . , us be the children of v4 with depth two, and z1, . . . , zt be the children
of v4 with depth one, if any. We can assume, without loss of generality, that v3 = u1 and
v5 = w1. Let T′ be the tree obtained from T by subdividing the edges v4v3, v3v2, v2v1 with
new vertices x, y, z, respectively, the edge v4ui with new vertex xi for each i ∈ {2, . . . , s},
the edge v4zi with new vertex ai for each i ∈ {1, . . . , t} and each edge v4wi with new
vertex yi for all i ∈ {1, . . . , r}. We note that all edges incident to v4 are subdivided and
the number of subdivided edges is degT(v4) + 2. Let D′ be a PD-set of T′ and F the set
of all edges in {v4u2, , . . . , v4us, v4w1, . . . , v4wr} whose subdivision vertices belong to D′.
Let T1 be the tree obtained from T by subdividing only the edges in F. Clearly, to paired-
dominate vertices v1, v2, v3, x, y, z in T′, we must have |D′ ∩ {v1, v2, v3, v4, x, y, z}| ≥ 4.
Now, if v4 6∈ D′ or v4 ∈ D′ and its partner is not x, then (D′ − {v1, v2, v3, x, y, z})∪ {v3, v2}
is a PD-set of T1 smaller than D′ and thus γpr(T′) > γpr(T1) ≥ γpr(T). If v4 ∈ D′ and
its partner is x, then (D′ − {v1, v2, v3, v4, x, y, z}) ∪ {v3, v2} is a PD-set of T1 smaller than
D′ and thus γpr(T′) > γpr(T1) ≥ γpr(T). We deduce that sdγpr (T) ≤ degT(v4) + 2. Now
let D be a γpr(T)-set. To paired-dominate the leaves in each Twi , Tuj , Tz` we must have
|D ∩V(Twi )| ≥ 2 and |D ∩V(Tuj)| ≥ 2 for each i, j, and |D ∩ ({v4} ∪ (∪t

m=1V(Tzm))| ≥ 2t.
Assume that diam(T) ≥ 9. Then to paired-dominate vk−4, we must have |D∩N(vk−4)| ≥ 1.
Hence, |D| ≥ 2 degT(v4) + 1. But since |D| is even, it follows that |D| ≥ 2 degT(v4) + 2.

Therefore, sdγpr (T) ≤ degT(v4) + 2 ≤ γpr(T)
2 + 1. Hence, we can assume in the sequel that

diam(T) ∈ {7, 8}. Now, consider the following situations.

(2.1.1) v4 has a child wi with depth 2 and degree at least three.
Then we must have |D ∩V(Twi )| ≥ 4, implying that |D| ≥ 2 degT(v4) + 2, and the
desired result is obtained as above.

(2.1.2) degT(v5) ≥ 3.
Let w be a neighbor of v5 such that w /∈ {v4, v6}. To paired-dominate w, we must
have |D ∩ N[w]| ≥ 1, and thus |D| ≥ 2 degT(v4) + 1. Since |D| is even, we have
|D| ≥ 2 degT(v4) + 2, and the result follows as above.

(2.1.3) degT(vk−2) ≥ 3. Then we have |D∩V(Tvk−2)| ≥ 4 implying that |D| ≥ 2 degT(v4)+
2, and the result follows as above.

(2.1.4) diam(T) = 8.
If degT(v6) ≥ 3 and w is a neighbor of v6 such that w /∈ {v5, v7}, then the result
follows as in item 2. Hence, assume that degT(v6) = 2. By above item we can



Mathematics 2021, 9, 181 6 of 9

assume that degT(v5) = 2. Since T is not a path, we must have degT(v4) ≥ 3. By
item (2.1.3), we may assume that degT(v3) = degT(v7) = 2. In this case, one can
see that γpr(T) ≥ 6 and sdγpr (T) ≤ 4 (Proposition 3), and thus the desired result is
obtained.

(2.1.5) diam(T) = 7.
By items 2 and 3, we may assume that degT(v5) = degT(v6) = 2 and the result
follows as item (2.1.4).

Subcase 2.2. deg(v3) ≥ 3.
By the choice of diametral path in which deg(v3) is as small as possible, there is

no path v4u1u2u3 in T such that deg(u1) = deg(u2) = 2 and deg(u3) = 1. Thus the
component of T − v3v4 containing v3 is a healthy spider with head v3. Similarly we may
assume that the component of T − vk−2vk−3 containing vk−2 is a healthy spider with head
vk−2. By the choice of the diametral path, deg(v3) is as small as possible and we have
degT(v3) ≤ degT(vk−2). Let NT(v3) \ {v4} = {u1 = v2, . . . , us} and let u′i be the leaf
neighbor of ui for each i. Suppose first that v4 is a stem and let w be the leaf neighbor of v4.
Let T′ be the tree obtained from T by subdividing the edges v4w, v4v3 with new vertices
x, y, respectively, and the edges v3ui, uiu′i with new vertices xi, yi, respectively, for each
i ∈ {1, . . . , s}. Clearly the number of subdivided edges is 2 degT(v3). Let D′ be a PD-set
of T′. Without loss of generality, we can assume that u1, . . . , us, y1, . . . , ys ∈ D′, where
each ui is paired with yi. Moreover, to paired-dominate the vertices w, v3, we must have
|D′ ∩ {w, x, v4, y, v3, x1, . . . , xs}| ≥ 4. Let S be the set of all subdivision vertices. If v4 6∈ D′

or v4 ∈ D′ and the partner of v4 is in {x, y}, then (D′ \ (S ∪ {w})) ∪ {v3, v4, u′1, . . . , u′s}
is a PD-set of T smaller than D′. If v4 ∈ D′ and the partner of v4 is not in {x, y}, then
(D′ \ (S∪ {w, v3}))∪ {u′1, . . . , u′s} is a PD-set of T smaller than D′. In either case, we obtain
sdγpr (T) ≤ 2 degT(v3). Now let D be a γpr(T)-set and let Tv3 and Tvk−2 be the components
of T − {v3v4, vk−2vk−3} containing v3 and vk−2, respectively. To paired-dominate the
leaves of Tv3 and Tvk−2 we must have |D ∩V(Tv3)| ≥ 2 degT(v3)− 2 and |D ∩V(Tvk−2)| ≥
2 deg(vk−2)− 2. Also to paired-dominate w we must have |D ∩ {w, v4}| ≥ 1. Since |D|
is even, we have |D| ≥ 4 degT(v3)− 2. Therefore, sdγpr (T) ≤ 2 degT(v3) ≤

γpr(T)
2 + 1,

as desired.
Suppose now that v4 is not a stem. Then each component of T − v4 is of order at

least two. If T ∈ F , then the result follows from Lemma 1. Hence, we assume that
T 6∈ F . Since diam(T) ≥ 7 and degT(v3) ≤ degT(vk−2), we deduce that |V(Tvk−3)| ≥
|V(Tv3)|+ 1. On the other hand, since T 6∈ F , either one of the components of T − v4 that
does not contain neither v3 nor v5 has order at least three or |V(Tvk−3)| ≥ |V(Tv3)|+ 2.
Let N(v4) = {w1 = v3, w2 . . . , wr}. Let T′ be the tree obtained from T by subdividing
the edges v4wi with vertices zi for 1 ≤ i ≤ r, the edges v3ui, uiu′i with vertices xi, yi,
respectively, for each 1 ≤ i ≤ s. Note that the number of subdivided edges is degT(v4) +
2 degT(v3)− 2. Let D′ be a PD-set of T′ and let F be the set of all edges incident with v4
whose subdivision vertices belong to D′. Let T2 be the tree obtained from T by subdividing
only the edges in F. Without loss of generality, assume that u1, . . . , us, y1, . . . , ys ∈ D,
where each ui is paired with yi. Also, to paired-dominate vertex v3, we must have |D′ ∩
{v4, z1, v3, x1, . . . , xs}| ≥ 2. Let W = {z1, x1, . . . , xs, y1, . . . , ys}. If v4 6∈ D′ or v4 ∈ D′

and its partner is z1, then (D′ \ (W ∪ {v4, v3})) ∪ {v3, u′2, . . . , u′s} is a PD-set of T2 smaller
than D′ and so γp(T′) > γp(T2) ≥ γp(T). If v4 ∈ D′ and its partner is not z1, then
(D′ \ (W ∪ {v3})) ∪ {u′1, u′2, . . . , u′s} is a PD-set of T2 smaller than D′ and again γp(T′) >
γp(T2) ≥ γp(T). Consequently, sdγpr (G) ≤ degT(v4) + 2 degT(v3)− 2. Now let D be a
γpr(T)-set. As seen above, we can see that for each child wi of v4 with depth two we have
|D ∩ V(Twi )| ≥ 2 degT(wi) − 2. In particular, |D ∩ V(Tv3)| ≥ 2 degT(v3) − 2. Similarly,
|D ∩V(Tvk−2)| ≥ 2 degT(vk−2)− 2 ≥ 2 degT(v3)− 2. Moreover, if q1, ..., qt are the children
of v4 with depth one (if any), then to paired-dominate the leaf neighbors of q1, ..., qt, we
must have |D ∩ ({v4} ∪ (∪t

i=1V(Tqi ))| ≥ 2t.
Assume that diam(T) ≥ 9. Then to paired-dominate vk−4, we must have |D ∩

N(vk−4)| ≥ 1. Hence |D| ≥ 4 degT(v3)− 4+ 2(degT(v4)− 2)+ 1 = 4 degT(v3)+ 2 degT(v4)
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−7. But since |D| is even, it follows that |D| ≥ 4 degT(v3) + 2 degT(v4)− 6. Therefore,

sdγpr (T) ≤ degT(v4) + 2 degT(v3)− 2 ≤ γpr(T)
2 + 1. Hence, we can assume in the sequel

that diam(T) ∈ {7, 8}. Now, consider the following situations.

(2.2.1) v4 has a child wi 6= v3 with depth 2 and degree at least three.
Then we must have |D∩V(Twi )| ≥ 4, implying that |D| ≥ 4 degT(v3)+ 2 degT(v4)−
6, and the desired result is obtained as above.

(2.2.2) degT(v5) ≥ 3.
Let w be a neighbor of v5 such that w /∈ {v4, v6}. To paired-dominate w, we must
have |D ∩ N[w]| ≥ 1, and thus |D| ≥ 4 degT(v3) + 2 degT(v4) − 7. Since |D| is
even, we have |D| ≥ 4 degT(v3) + 2 degT(v4)− 6, and the result follows as above.

(2.2.3) degT(v3) < degT(vk−2). Then we have |D ∩ V(Tvk−2)| ≥ 2 degT(vk−2) − 2 ≥
2 deg(v3) implying that |D| ≥ 4 degT(v3) + 2 degT(v4)− 6, and the result follows
as above.

(2.2.4) diam(T) = 8.
If degT(v6) ≥ 3 and w is a neighbor of v6 such that w /∈ {v5, v7}, then the result
follows as in item 2. Hence, assume that degT(v6) = 2. By above item we can
assume that degT(v5) = 2. If degT(v4) = 2, then the result follows from Proposition
3. Thus, let degT(v4) ≥ 3. Note that since v4 is not a stem and according to the first
item and the choice of diametral path, every subtree rooted at a child of v4 different
from v3 and v5 is a path P2. Moreover, by the third item we may assume that
degT(v3) = degT(v7). In this case, one can see that γpr(T) ≥ 10 and sdγpr (T) ≤ 4
(for instance we can subdivide edges v4v5, v5v6, v6v7 and one edge incident with v4
different from v3v4 and v4v5). Therefore, the desired result is obtained.

(2.2.5) diam(T) = 7.
Since T 6∈ F , we must have degT(v3) < degT(v6) or degT(v5) ≥ 3. In either case,
the result follows by above items.

This completes the proof. �

The following upper bound on the paired domination number of a tree has been
presented by Chellali and Haynes in [2].

Theorem 2 ([2]). If T is a tree of order n ≥ 3 with s stems, then γpr(T) ≤ n+2s−1
2 .

According to Theorems 1 and 2, we obtain the following upper bound on the paired-
domination subdivision number of a tree.

Corollary 1. If T is a tree of order n ≥ 4 with s stems different from a healthy spider, then
sdγpr (T) ≤ n+2s+3

4 .

Applying Theorem 1 and Corollary 1, we get the following result.

Corollary 2 ([20]). If T is a tree of order n ≥ 4 different from a healthy spider, then sdγpr (T) ≤ n
2 .

Proof. We first observe that if T has a strong stem, then by Proposition 2, sdγpr (T) ≤
2 ≤ n/2. Hence we assume that T has no strong stem. Let s be the number of stems in
T and let t be the number of vertices that are neither leaves nor stems. Note that t 6= 1
since T is different from a healthy spider. Now, if t = 0, then s = n/2 and thus T has
adjacent stems. By Proposition 2, sdγpr (T) ≤ 2 ≤ n/2. Hence we can assume that t ≥ 2.
Clearly, s = n−t

2 . If t ≥ 3, then s ≤ n−3
2 , and by Corollary 1, we obtain sdγpr (T) ≤ n/2.

Therefore, let t = 2. Thus n ≥ 6 and is even. Let x and y be the two vertices of T that
are neither leaves nor stems. Then V(T)− {x, y} in which each stem is paired with its
unique leaf neighbor, is a PD-set of D and so γpr(T) ≤ n− 2. It follows from Theorem 1

that sdγpr (T) ≤
γpr(T)

2 + 1 ≤ n/2 and the proof is complete.
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Let H1 = Sm and H2 = Sm be two healthy spiders with m ≥ 2 feet each and centers x
and y, respectively. Let Tm be the tree obtained from H1 and H2 by adding the edge xy (see
Figure 2). It is not hard to see that n(Tm) = 4m + 2, γpr(Tm) = 4m and sdγpr (Tm) = 2m + 1.
Therefore the bounds of Theorem 1 and Proposition 2 are sharp.

u1
2 w1

2

u1
1 w1

1

wm
2

wm
1

um
1

x
...

...

um
2

y

Figure 2. A tree Tm with sdγpr (Tm) =
γpr(Tm)

2 + 1 = n(Tm)/2.

Let T′m be the tree obtained from Tm by subdividing the edge xy with a subdivision
vertex u and adding a new vertex v and a new edge uv (see Figure 3). It is not hard to see
that n(T′m) = 4m + 4, γpr(T′m) = 4m + 2 and sdγpr (T

′
m) = 2m + 2. Therefore the bounds of

Theorem 1 and Proposition 2 are sharp for any tree in the family T = {Tm, T′m | m ≥ 2}.

u1
2 w1

2

u1
1 w1

1

wm
2

wm
1

um
1

x u

v

...
...

um
2

y

Figure 3. A tree T′m with sdγpr (T
′
m) =

γpr(T′m)
2 + 1 = n(T′m)/2.

We conclude this paper with two conjectures.

Conjecture 1. For any connected graph G of order n ≥ 4 different from a healthy spider,

sdγpr (G) ≤ γpr(G)
2 + 2.

Conjecture 2. For any connected graph G of order n ≥ 7 different from a healthy spider,
sdγpr (G) ≤ n

2 .

If G is the graph obtained from C5 by adding a pendant edge at one vertex, then we
have sdγpr (C5) = sdγpr (G) = 4. Therefore, the condition n ≥ 7 is necessary to establish the
second conjecture.
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13. Dettlaff, M.; Kosari, S.; Lemańska, M.; Sheikholeslami, S.M. The convex domination subdivision number of a graph. Commun.

Comb. Optim. 2016, 1, 43–56. [CrossRef]
14. Fvaron, O.; Karami, H.; Sheikholeslami, S.M. Disprove of a conjecture the domination subdivision number of a graph. Graphs Comb.

2008, 24, 309–312. [CrossRef]
15. Haynes, T.W.; Hedetniemi, S.M.; Hedetniemi, S.T.; Jacobs, D.P.; Knisely, J.; Merwe, L.C.V. Domination subdivision numbers.

Discuss. Math. Graph Theory 2001, 21, 239–253. [CrossRef]
16. Favaron, O.; Karami, H.; Sheikholeslami, S.M. Connected domination subdivision numbers of graphs. Util. Math. 2008,

27, 101–111.
17. Haynes, T.W.; Henning, M.A.; Hopkins, L.S. Total domination subdivision numbers of graphs. Discuss. Math. Graph Theory 2004,

24, 457–467. [CrossRef]
18. Favaron, O.; Karami, H.; Sheikholeslami, S.M. Paired-domination subdivision numbers of graphs. Graphs Comb. 2009, 25, 503–512.

[CrossRef]
19. Amjadi, J.; Chellali, M. Complexity of the paired domination subdivision problem. 2020, Submitted.
20. Egawa, Y.; Furuya, M.; Takatou, M. Upper bounds on the paired domination subdivision number of a graph. Graphs Comb. 2013,

29, 843–856. [CrossRef]
21. Kosari, S.; Shao, Z.; Sheikholeslami, S.M.; Chellali, M.; Khoeilar, R.; Karami, H. On the paired-domination subdivision number of

a graph. 2020, Submitted.
22. Shao, Z.; Sheikholeslami, S.M.; Chellali, M.; Khoeilar, R.; Karami, H. A proof of a conjecture on the paired-domination subdivision

number. 2020, Submitted.

http://doi.org/10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO;2-F
http://dx.doi.org/10.1016/j.disc.2007.11.034
http://dx.doi.org/10.1016/j.tcs.2004.02.028
http://dx.doi.org/10.1016/0012-365X(90)90348-L
http://dx.doi.org/10.2298/FIL1608101D
http://dx.doi.org/10.1007/s00373-008-0788-6
http://dx.doi.org/10.7151/dmgt.1147
http://dx.doi.org/10.7151/dmgt.1244
http://dx.doi.org/10.1007/s00373-005-0871-1
http://dx.doi.org/10.1007/s00373-012-1162-2

	Introduction
	Proof of Theorem 1
	References

