A Note on the Paired-Domination Subdivision Number of Trees

Xiaoli Qiang ${ }^{1 \times}$, Saeed Kosari ${ }^{1, *}$, Zehui Shao ${ }^{1}{ }^{(\mathbb{D}}$, Seyed Mahmoud Sheikholeslami ${ }^{2} \mathbb{D}^{(D}$, Mustapha Chellali ${ }^{3}$ and Hossein Karami ${ }^{2}$
1 Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China; qiangxl@gzhu.edu.cn (X.Q.); zshao@gzhu.edu.cn (Z.S.)
2 Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz 51368, Iran; s.m.sheikholeslami@azaruniv.ac.ir (S.M.S.); h.karami@azaruniv.ac.ir (H.K.)
3 LAMDA-RO Laboratory, Department of Mathematics, University of Blida, B.P. 270 Blida, Algeria; m_chellali@yahoo.com
* Correspondence: saeedkosari38@gzhu.edu.cn

Citation: Qiang, X.; Kosari, S.; Shao, Z.; Sheikholeslami, S.M.; Chellali, M.; Karami, H. A Note on the Paired-Domination Subdivision Number of Trees. Mathematics 2021, 9 , 181. https://doi.org/10.3390/ math9020181

Received: 13 December 2020
Accepted: 15 January 2021
Published: 18 January 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

For a graph G with no isolated vertex, let $\gamma_{p r}(G)$ and $\operatorname{sd}_{\gamma_{p r}}(G)$ denote the paireddomination and paired-domination subdivision numbers, respectively. In this note, we show that if T is a tree of order $n \geq 4$ different from a healthy spider (subdivided star), then $\operatorname{sd}_{\gamma_{p r}}(T) \leq$ $\min \left\{\frac{\gamma_{p r}(T)}{2}+1, \frac{n}{2}\right\}$, improving the $(n-1)$-upper bound that was recently proven.

Keywords: paired-domination number; paired-domination subdivision number

1. Introduction

Throughout the paper, $G=(V, E)$ is a simple connected graph with vertex set $V=V(G)$ of order $n=|V|$ and edge set $E(G)=E$. For every vertex $v \in V(G)$, the open neighborhood of v is the set $N_{G}(v)=\{u \in V(G) \mid u v \in E(G)\}$ and the closed neighborhood of v is the set $N_{G}[v]=N_{G}(v) \cup\{v\}$. The degree of a vertex v is $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. When no confusion arises, we will delete the subscript G in N_{G} and deg_{G}. A vertex of degree one is called a leaf and its neighbor is called a stem. A stem is said to be strong if it is adjacent to at least two leaves. A healthy spider S_{q} for $q \geq 2$ is obtained from a star $K_{1, q}$ by subdividing each edge by exactly one vertex. The center vertex of a healthy spider will be called a head. Let P_{n} and C_{n} be the path and cycle of order n. The diameter of G, denoted by $\operatorname{diam}(G)$, is the maximum value among minimum distances between all pairs of distinct vertices of G. A matching in a graph G is a set of pairwise non-intersecting edges, while a perfect matching in G is a matching that covers each vertex.

A dominating set of G is a subset S of V such that every vertex in $V-S$ has at least one neighbor in S. A subset S of V is a paired-dominating set of G, abbreviated PD-set, if S is a dominating set and the subgraph induced by the vertices of S contains a perfect matching. The paired-domination number $\gamma_{p r}(G)$ is the minimum cardinality of a PD-set of G. If S is a PD-set with a perfect matching M, then two vertices u and v are said to be partners (or paired) in S if the edge $u v \in M$. We call a PD-set of minimum cardinality a $\gamma_{p r}(G)$-set. Note that every graph G without isolated vertices has a PD-set since the endvertices of any maximal matching in G form such a set. Paired-domination was introduced by Haynes and Slater [1] and is studied, for example, in [2-7]. For more details on paired-domination, we refer the reader to the recent book chapter [8].

As an application, in the design of networks for example, it is essential to study the effect that some modifications on the graph that have on the graph parameters. These modifications can be deletion or addition of vertices, deletion or addition of edges. We refer the reader to chapter 7 of [9] when the graph parameter is the domination number. Fink et al. [10], were the first to study the bondage number of G defined to be the minimum number of edges whose removal increases the domination number of G, while Kok and Mynhardt [11] were the first to study the reinforcement number of G defined to be the
minimum number of edges which must be added to G in order to decrease the domination number of G. In [12], Velammal studied another kind of modification where the goal is find the minimum number of edges to be subdivided (each edge in G is subdivided at most once) in order to increase the domination number. For more details, see [13-17].

Our main purpose in this paper is to study of the paired-domination subdivision number of trees. This parameter was introduced by Favaron et al. in [18] and defined as follows. The paired-domination subdivision number $\operatorname{sd}_{\gamma_{p r}}(G)$ of a graph G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the paired-domination number of G. Observe that since the paireddomination subdivision number of the complete graph K_{2} remains unchanged when its only edge is subdivided, we will assume that the graph G has order at least 3 . It is worth noting that it has recently been shown by Amjadi and Chellali [19] that the problem of computing the paired-domination subdivision number is NP-hard for bipartite graphs. The paired-domination subdivision number has been further studied by several authors (see [20-22]).

In [18], Favaron et al. have given some conditions for a graph (including trees) to have a small paired-domination subdivision number that we summarize by the following results.

Proposition 1 ([18]). For every graph G of order $n \geq 3$, if $\gamma_{p r}(G)=2$, then $1 \leq \operatorname{sd}_{\gamma_{p r}}(G) \leq 3$.
Proposition 2 ([18]). If G contains either a strong stem or adjacent stems, then $\operatorname{sd}_{\gamma_{p r}}(G) \leq 2$.
Proposition 3 ([18]). If a connected graph G contains a path $v_{1} v_{2} v_{3} v_{4} v_{5}$ in which $\operatorname{deg}\left(v_{i}\right)=2$ for $i=2,3,4$, then $\operatorname{sd}_{\gamma_{p r}}(G) \leq 4$.

It should also be noted that Favaron et al. [18] conjectured that $\operatorname{sd}_{\gamma_{p r}}(G) \leq n-1$ for all connected graphs of order n. In connection with this conjecture, Egawa et al. [20] proved that for every connected graph G of order $n \geq 4, \operatorname{sd}_{\gamma_{p r}}(G) \leq 2 n-5$. Moreover, if further G has an edge $u v$ such that u and v are not partners in any $\gamma_{p r}(G)$-set, then $\operatorname{sd}_{\gamma_{p r}}(G) \leq n-1$. The conjecture has recently been settled in the affirmative in [22]. Restricted to the class of trees, we observe that for healthy spiders S_{q} with $q \geq 2$ or paths $P_{3}, \operatorname{sd}_{\gamma_{p r}}(T)=n-1$.

In this note, we improve the $(n-1)$-upper bound on the paired-domination subdivision number for all trees T of order $n \geq 4$ different from a healthy spider by providing an upper bound on it in terms of the paired-domination number. More precisely, we will mainly show the following.

Theorem 1. Let T be a tree of order $n \geq 4$ different from a healthy spider. Then $\operatorname{sd}_{\gamma_{p r}}(T) \leq \frac{\gamma_{p r}(T)}{2}+1$.

In addition, we will also show that if T is a tree of order $n \geq 4$ different from a healthy spider, then its paired-domination subdivision number is at most $\frac{n}{2}$. Before giving the proof of our results, it is necessary to recall the following two useful results.

Proposition 4 ([18]). Let G be a connected graph of order $n \geq 3$ and $e=u v \in E(G)$. If G^{\prime} is obtained from G by subdividing the edge e, then $\gamma_{p r}\left(G^{\prime}\right) \geq \gamma_{p r}(G)$.

Proposition 5 ([18]). For $n \geq 3$,

$$
\operatorname{sd}_{\gamma_{p r}}\left(P_{n}\right)=\operatorname{sd}_{\gamma_{p r}}\left(C_{n}\right)=\left\{\begin{array}{llll}
1 & \text { if } & n \equiv 0 & (\bmod 4) \\
4 & \text { if } & n \equiv 1 & (\bmod 4) \\
3 & \text { if } & n \equiv 2 & (\bmod 4) \\
2 & \text { if } & n \equiv 3 & (\bmod 4)
\end{array}\right.
$$

We close this section by mentioning that the paired-domination number of a path P_{n} of order $n \geq 2$ is $2\left\lceil\frac{n}{4}\right\rceil$ (see [8]).

2. Proof of Theorem 1

For non-negative integers t_{1}, t_{2} where $t_{1} \geq 1$, let $F_{t_{1}, t_{2}}$ be the tree obtained from a path $v_{1} v_{2} v_{3} v_{4}$ by adding t_{1} pendant paths $v_{1} u_{2}^{i} u_{1}^{i}, t_{1}$ pendant paths $v_{4} w_{2}^{i} w_{1}^{i}$, and t_{2} pendant paths $v_{2} z_{2}^{i} z_{1}^{i}$ (see Figure 1). Let \mathcal{F} be the family of all trees $F_{t_{1}, t_{2}}$. The set $P=$ $\left\{v_{1}, u_{2}^{1}, v_{4}, w_{2}^{1}\right\} \cup\left\{u_{1}^{i}, u_{2}^{i}, w_{1}^{i}, w_{2}^{i} \mid 2 \leq i \leq t_{1}\right\} \cup\left\{z_{1}^{i}, z_{2}^{i} \mid 1 \leq i \leq t_{2}\right\}$ is a PD-set of $F_{t_{1}, t_{2}}$ and so $\gamma_{p r}\left(F_{t_{1}, t_{2}}\right) \leq 4 t_{1}+2 t_{2}$. One the other hand, if D is a $\gamma_{p r}\left(F_{t_{1}, t_{2}}\right)$-set, then to paired-dominate the leaves of $F_{t_{1}, t_{2}}$, we must have $\left|D \cap\left\{v_{1}, u_{1}^{i}, u_{2}^{i} \mid 1 \leq i \leq t_{1}\right\}\right| \geq 2 t_{1}$, $\left|D \cap\left\{v_{4}, w_{1}^{i}, w_{2}^{i} \mid 1 \leq i \leq t_{1}\right\}\right| \geq 2 t_{1}$ and $\left|D \cap\left\{v_{2}, z_{1}^{i}, z_{2}^{i} \mid 1 \leq i \leq t_{2}\right\}\right| \geq 2 t_{2}$ implying that $\gamma_{p r}\left(F_{t_{1}, t_{2}}\right) \geq 4 t_{1}+2 t_{2}$. Thus $\gamma_{p r}\left(F_{t_{1}, t_{2}}\right)=4 t_{1}+2 t_{2}$.

Figure 1. The graph $F_{t_{1}, t_{2}}$.
Lemma 1. If $T \in \mathcal{F}$, then $\operatorname{sd}_{\gamma_{p r}}(T) \leq \frac{n(T)-2}{2}=1+\frac{\gamma_{p r}(T)}{2}$.
Proof. Let $T=F_{t_{1}, t_{2}}$, and let T^{\prime} be the tree obtained from T by subdividing the edge $v_{2} v_{1}$ with new vertex x, the edges $v_{1} u_{2}^{i}, u_{2}^{i} u_{1}^{i}$ with new vertices x_{i}, y_{i} respectively, for each i, and the edge $v_{2} z_{2}^{j}$ with new vertex a_{j} for each j, if $t_{2} \geq 1$. Clearly the number of subdivided edges is $2 t_{1}+t_{2}+1=\frac{n(T)-2}{2}$. Let D^{\prime} be a $\gamma_{p r}\left(T^{\prime}\right)$-set. To paired-dominate each leaf u_{1}^{j}, we must have $\left|D^{\prime} \cap\left\{u_{1}^{j}, u_{2}^{j}, y_{j}\right\}\right| \geq 2$ for each $1 \leq j \leq t_{1}$; to paired-dominate each leaf z_{1}^{j} we must have $\left|D^{\prime} \cap\left\{z_{1}^{j}, z_{2}^{j}, a_{j}\right\}\right| \geq 2$ for each $1 \leq j \leq t_{2}$; and to paired-dominate the leaves $w_{1}^{1}, \ldots, w_{1}^{t_{1}}$ we may assume that $v_{4}, w_{2}^{1}, w_{2}^{2}, \ldots, w_{2}^{t_{1}}, w_{1}^{2}, \ldots, w_{1}^{t_{1}} \in D^{\prime}$. Moreover, to paired-dominate the vertex v_{1}, we must have $\left|D^{\prime} \cap\left\{x_{1}, \ldots, x_{t_{1}}, v_{1}, v_{2}, x\right\}\right| \geq 2$. Therefore $\gamma_{p r}\left(T^{\prime}\right)=\left|D^{\prime}\right| \geq 4 t_{1}+2 t_{2}+2>\gamma_{p r}(T)$. Hence $\operatorname{sd}_{\gamma_{p r}}(T) \leq \frac{n(T)-2}{2}=1+\frac{\gamma_{p r}(T)}{2}$.

Now we are ready to start the proof of Theorem 1.
Proof of Theorem 1. If $\operatorname{diam}(T) \leq 3$, then clearly $\gamma_{p r}(T)=2$ and by Proposition 2 we have $\operatorname{sd}_{\gamma_{p r}}(G) \leq 2=\frac{\gamma_{p r}(T)}{2}+1$. Hence, let $\operatorname{diam}(T) \geq 4$. Note that $\gamma_{p r}(T) \geq 4$. If T has a strong stem or adjacent stems, then the result follows from Proposition 2. Hence, we can assume that T has no strong stem or adjacent stems. If $\operatorname{diam}(T)=4$ and $v_{1} v_{2} v_{3} v_{4} v_{5}$ is a diametral path in T, then since T is not a subdivided star, we must have $\operatorname{deg}_{T}\left(v_{3}\right) \geq 3$ and v_{3} is a stem, which is a contradiction. Hence, we can assume that $\operatorname{diam}(T) \geq 5$. Let $v_{1} v_{2} v_{3} \ldots v_{k}$ be a diametral path in T such that $\operatorname{deg}_{T}\left(v_{3}\right)$ is as small as possible. We consider two cases.
Case 1. $\operatorname{diam}(T) \in\{5,6\}$. Root T at v_{4}, and consider the following subcases.
Subcase 1.1. v_{4} is not a stem and $\operatorname{deg}_{T}\left(v_{3}\right)=2$.
By the choice of the diametral path, we deduce that for each child w of v_{4}, the maximal subtree rooted at w is a either path P_{2}, P_{3} or a healthy spider (if diam $(T)=6$). Let H be the forest of $T-v_{4}$ where each of its components is a healthy spider. Since $\operatorname{deg}_{T}(v 3)=2$, note that H is empty if $\operatorname{diam}(T)=5$. Now, let $v_{4} u_{i}^{1} u_{i}^{2} u_{i}^{3}$ be the (pendant) paths in T such that $\operatorname{deg}_{T}\left(u_{i}^{1}\right)=\operatorname{deg}_{T}\left(u_{i}^{2}\right)=2$ and $\operatorname{deg}_{T}\left(u_{i}^{3}\right)=1$ for each $i \in\{1, \ldots, r\}$, and let $v_{4} z_{i}^{1} z_{i}^{2}$ be the paths in T (if any) such that $\operatorname{deg}_{T}\left(z_{i}^{1}\right)=2$ and $\operatorname{deg}_{T}\left(z_{i}^{2}\right)=1$ for each $i \in\{1, \ldots, s\}$. Assume, without loss of generality, that $u_{1}^{1}=v_{3}$. Let T^{\prime} be the tree obtained from T by subdividing the edges $v_{4} v_{3}, v_{3} v_{2}$ with new vertices x, y, respectively, the edge $v_{4} u_{i}^{1}$ with a new vertex $u_{i}^{\prime 1}$ for each $2 \leq i \leq r$ and the edge $v_{4} z_{j}^{1}$ with a new vertex $z_{j}^{\prime 1}$ for each
$j \in\{1, \ldots, s\}$. Let D be a $\gamma_{p r}\left(T^{\prime}\right)$-set. To paired-dominate each leaf u_{i}^{3} in T^{\prime}, we must have that $\left|D \cap\left\{u_{i}^{1}, u_{i}^{2}, u_{i}^{3}\right\}\right| \geq 2$ for each $i \in\{2, \ldots, r\}$, to paired-dominate $u_{1}^{3}=v_{1}$ we must have $\left|D \cap\left\{u_{1}^{2}, u_{1}^{3}, y\right\}\right| \geq 2$, and to paired-dominate each leaf z_{j}^{2} in T^{\prime} we must have $\left|D \cap\left\{z_{j}^{1}, z_{j}^{2}, z_{j}^{\prime 1}\right\}\right| \geq 2$ for each j. Also, to paired-dominate vertex x, we may assume that v_{4} and x are partners in D^{\prime}. It follows that $\gamma_{p r}\left(T^{\prime}\right) \geq \gamma_{p r}(H)+2 r+2 s+2$. A similar argument shows that $\gamma_{p r}(T) \geq \gamma_{p r}(H)+2 r+2 s$. Moreover, the equality in the last inequality is attained since each PD-set of H can be extended to a PD-set of T by adding the set $\left\{z_{j}^{1}, z_{j}^{2} \mid 1 \leq j \leq s\right\} \cup\left\{u_{i}^{1}, u_{i}^{2} \mid 1 \leq i \leq r\right\}$. Thus $\gamma_{p r}(T)=\gamma_{p r}(H)+2 r+2 s$, and therefore $\gamma_{p r}\left(T^{\prime}\right)>\gamma_{p r}(T)$. It follows that $\operatorname{sd}_{\gamma_{p r}}(T) \leq r+s+1$, and hence $\operatorname{sd}_{\gamma_{p r}}(T) \leq$ $r+s+1 \leq \frac{\gamma_{p r}(T)}{2}+1$.

Subcase 1.2. v_{4} is not a stem and $\operatorname{deg}_{T}\left(v_{3}\right) \geq 3$.
By assumption, for each child w of v_{4}, the maximal subtree rooted at w is either a healthy spider or a path P_{2}. Let w_{1}, \ldots, w_{r} be the children of v_{4} such that $T_{w_{i}}$ is a healthy spider with head w_{i}, and let $w_{i}^{1}, \ldots, w_{i}^{\ell_{i}}$ be the children of w_{i} and let y_{i}^{j} be the leaf neighbor of w_{i}^{j} for each i, j. Also, let $v_{4} z_{i}^{1} z_{i}^{2}$ be the paths in T (if any) such that $\operatorname{deg}_{T}\left(z_{i}^{1}\right)=2$ and $\operatorname{deg}_{T}\left(z_{i}^{2}\right)=1$ for each $i \in\{1, \ldots, t\}$. Without loss of generality, let $w_{1}=v_{3}$. Let T^{\prime} be the tree obtained from T by subdividing the edge $v_{4} v_{3}$ with vertex x, the edges $w_{i} w_{i}^{1}, \ldots, w_{i} w_{i}^{\ell_{i}}$ with vertices $w_{i}^{\prime 1}, \ldots, w_{i}^{\prime \ell_{i}}$, respectively, and the edge $v_{4} z_{j}^{1}$ with vertex $z_{j}^{\prime 1}$ for each j. Let D be a $\gamma_{p r}\left(T^{\prime}\right)$-set. To paired-dominate each leaf y_{i}^{j} in T^{\prime}, we must have $\left|D \cap\left\{w_{i}^{j}, y_{i}^{j}, w_{i}^{\prime j}\right\}\right| \geq 2$ for each i, j; to paired dominate each leaf z_{j}^{2} we must have $\mid D \cap\left\{z_{j}^{1}, z_{j}^{2}, z_{j}^{11}\right\} \geq 2$ for each $j \in\{1, \ldots, t\}$ and to paired dominate vertex x we may assume that v_{4} and x are partners in D. Hence $\gamma_{p r}\left(T^{\prime}\right) \geq \sum_{i=1}^{r} 2 \ell_{i}+2 t+2$. A similar argument as above shows that $\gamma_{p r}(T) \geq \sum_{i=1}^{r} 2 \ell_{i}+2 t$. Moreover, the equality in the last inequality is attained since $\left\{v_{3}, v_{2}\right\} \cup\left\{z_{j}^{1}, z_{j}^{2} \mid 1 \leq j \leq t\right\} \cup\left(\cup_{i=2}^{r}\left\{w_{i}^{j}, y_{i}^{j} \mid 1 \leq j \leq \ell_{i}\right\}\right) \cup\left\{w_{1}^{j}, y_{1}^{j} \mid 2 \leq j \leq \ell_{1}\right\}$ is a PD-set of T. Thus $\gamma_{p r}(T)=\sum_{i=1}^{r} 2 \ell_{i}+2 t$, and therefore $\gamma_{p r}\left(T^{\prime}\right)>\gamma_{p r}(T)$. It follows that $\operatorname{sd}_{\gamma_{p r}}(T) \leq \sum_{i=1}^{r} \ell_{i}+t+1$, and hence $\mathrm{sd}_{\gamma_{p r}}(T) \leq \frac{\gamma_{p r}(T)}{2}+1$.

Subcase 1.3. v_{4} is a stem.
Let w be a leaf neighbor of v_{4}. By assumption, w is the unique leaf adjacent to v_{4} and v_{4} is not adjacent to any stem. Hence, T has diameter 6 . First let there be a path $v_{4} u_{3} u_{2} u_{1}$ in T such that $\operatorname{deg}_{T}\left(u_{2}\right)=\operatorname{deg}_{T}\left(u_{3}\right)=2$ and $\operatorname{deg}_{T}\left(u_{1}\right)=1$. Without loss of generality, we may assume that $u_{3}=v_{3}$. Let T^{\prime} be the tree obtained from T by subdividing the edges $v_{4} w, v_{4} v_{3}, v_{3} v_{2}, v_{2} v_{1}$ with new vertices u, x, y, z, respectively, and let D^{\prime} be a PD-set of T^{\prime}. It is easy to see that $\left|D^{\prime} \cap\left\{v_{4}, v_{3}, v_{2}, v_{1}, u, w, x, y, z\right\}\right| \geq 6$. If $v_{4} \notin D^{\prime}$ or $v_{4} \in D^{\prime}$ and its partner belongs to $\{u, x\}$, then $\left(D^{\prime} \backslash\left\{v_{4}, v_{3}, v_{2}, v_{1}, u, w, x, y, z\right\}\right) \cup\left\{v_{2}, v_{3}, w, v_{4}\right\}$ is a PD-set of T smaller than D^{\prime}. If $v_{4} \in D^{\prime}$ and its partner does not belong to $\{u, x\}$, then $\left(D^{\prime} \backslash\left\{v_{3}, v_{2}, v_{1}, u, w, x, y, z\right\}\right) \cup\left\{v_{2}, v_{3}\right\}$ is a PD-set of T smaller than D^{\prime}. Hence, $\gamma_{p r}\left(T^{\prime}\right)>\gamma_{p r}(T)$, and thus $\operatorname{sd}_{\gamma_{p r}}(T) \leq 4$. Now let D be a $\gamma_{p r}(T)$-set. To paired-dominate v_{1} and v_{7}, we must have $\left|D \cap\left\{v_{1}, v_{2}, v_{3}\right\}\right| \geq 2$ and $\left|D \cap\left\{v_{6}, v_{5}, v_{7}\right\}\right| \geq 2$, respectively. Moreover, to paired-dominate w, we have $\left|D \cap\left\{w, v_{4}\right\}\right| \geq 1$. Since $\gamma_{p r}(T)$ is even, we have $\gamma_{p r}(T) \geq 6$. Consequently, $\operatorname{sd}_{\gamma_{p r}}(T) \leq 4 \leq \frac{\gamma_{p r}(T)}{2}+1$ as desired. Therefore, we can assume that T has no such a path $v_{4} u_{3} u_{2} u_{1}$ in T such that $\operatorname{deg}_{T}\left(u_{2}\right)=\operatorname{deg}_{T}\left(u_{3}\right)=2$ and $\operatorname{deg}_{T}\left(u_{1}\right)=1$. Thus for any child $v \neq w$ of v_{4}, the maximal subtree T_{v} is a healthy spider. Since $\operatorname{diam}(T)=6$, we deduce that v_{4} has at least two children whose maximal subtrees are healthy spiders. Let $v_{3}=w_{1}, \ldots, w_{r}$ be the children of v_{4} such that $T_{w_{i}}$ is a healthy spider with head w_{i}. Suppose that $v_{2}=w_{1}^{1}, \ldots, w_{1}^{\ell}$ are the children of w_{1} and y_{1}^{j} is the leaf adjacent to w_{1}^{j}. Let T^{\prime} be the tree obtained from T by subdividing the edges $v_{4} w, v_{4} v_{3}$ with new vertices x, y, respectively, the edges $w_{1} w_{1}^{j}, y_{1}^{j} w_{1}^{j}$ with new vertices x_{j} and y_{j}, respectively for each $j \in\{1, \ldots, \ell\}$. Clearly the number of subdivided edges is $2 \operatorname{deg}_{T}\left(w_{1}\right)$. Let D^{\prime} be a $\gamma_{p r}\left(T^{\prime}\right)$-set. To paired-dominate $y_{1}^{1}, \ldots, y_{1}^{\ell}$, we may assume that $w_{1}^{1}, \ldots, w_{1}^{\ell}, y_{1}, \ldots, y_{\ell} \in D^{\prime}$. Also to paired-dominate the vertices w, v_{3}, we must
have $\left|D^{\prime} \cap\left\{w, x, v_{4}, y, v_{3}, x_{1}, \ldots, x_{\ell}\right\}\right| \geq 4$. Now, if $v_{4} \notin D^{\prime}$ or $v_{4} \in D^{\prime}$ and its partner belongs to $\{x, y\}$, then $\left(D^{\prime} \backslash\left\{w, x, v_{4}, y, v_{3}, x_{1}, \ldots, x_{\ell}, y_{1}, \ldots, y_{\ell}\right\}\right) \cup\left\{y_{1}^{1}, \ldots, y_{\ell}^{1}, v_{4}, v_{3}\right\}$ is a PD-set of T smaller than D^{\prime}. If $v_{4} \in D^{\prime}$ and its partner does not belong to $\{x, y\}$, then $\left(D^{\prime} \backslash\left\{w, x, y, v_{3}, x_{1}, \ldots, x_{\ell}, y_{1}, \ldots, y_{\ell}\right\}\right) \cup\left\{y_{1}^{1}, \ldots, y_{\ell}^{1}\right\}$ is a PD-set of T smaller than D^{\prime}. In either case, we deduce that $\operatorname{sd}_{\gamma_{p r}}(T) \leq 2 \operatorname{deg}_{T}\left(w_{1}\right)$. Now let D be a $\gamma_{p r}(T)$-set and let $T_{w_{1}}, T_{w_{2}}$ be the components of $T-\left\{v_{4} w_{1}, v_{4} w_{2}\right\}$ containing w_{1} and w_{2}, respectively. To paired-dominate the leaves of $T_{w_{1}}$ and $T_{w_{2}}$ we must have $\left|D \cap V\left(T_{w_{1}}\right)\right| \geq 2 \operatorname{deg}_{T}\left(w_{1}\right)-2$ and $\left|D \cap V\left(T_{w_{2}}\right)\right| \geq 2 \operatorname{deg}_{T}\left(w_{2}\right)-2 \geq 2 \operatorname{deg}_{T}\left(w_{1}\right)-2$. Also to paired-dominate w we must have $\left|D \cap\left\{w, v_{4}\right\}\right| \geq 1$. Since $|D|$ is even, we deduce that $|D| \geq 4 \operatorname{deg}_{T}\left(w_{1}\right)-2$. This implies that $\operatorname{sd}_{\gamma_{p r}}(T) \leq 2 \operatorname{deg}_{T}\left(w_{1}\right) \leq \frac{\gamma_{p r}(T)}{2}+1$.
Case 2. $\operatorname{diam}(T) \geq 7$. We consider two subcases.
Subcase $2.1 \operatorname{deg}_{T}\left(v_{3}\right)=2$.
If T is a path, then the result follows from Proposition 5 and the exact value of the paired-domination number of a path given at the end of Section 1. Hence, we assume that T is not a path, and thus $\gamma_{p r}(T)>4$. If $\operatorname{deg}_{T}\left(v_{4}\right)=2$, then $v_{5} v_{4} v_{3} v_{2} v_{1}$ is a path in T such that $\operatorname{deg}\left(v_{2}\right)=\operatorname{deg}\left(v_{3}\right)=\operatorname{deg}\left(v_{4}\right)=2$ and the result follows from Proposition 3. Hence, assume that $\operatorname{deg}_{T}\left(v_{4}\right) \geq 3$. If v_{4} is a stem, then using an argument similar to that described in Subcase 1.3, we can see that $\operatorname{sd}_{\gamma_{p r}}(G) \leq 4 \leq \frac{\gamma_{p r}(T)}{2}+1$. Thus, we assume that v_{4} is not a stem. Hence, each component of $T-v_{4}$ is of order at least 2 . Moreover, since diam $(T) \geq 7$, one component of $T-v_{4}$ different from the one containing v_{3}, must have order at least four and diameter at least three. Root T at v_{4} and let w_{1}, \ldots, w_{r} be the children of v_{4} with depth at least three, u_{1}, \ldots, u_{s} be the children of v_{4} with depth two, and z_{1}, \ldots, z_{t} be the children of v_{4} with depth one, if any. We can assume, without loss of generality, that $v_{3}=u_{1}$ and $v_{5}=w_{1}$. Let T^{\prime} be the tree obtained from T by subdividing the edges $v_{4} v_{3}, v_{3} v_{2}, v_{2} v_{1}$ with new vertices x, y, z, respectively, the edge $v_{4} u_{i}$ with new vertex x_{i} for each $i \in\{2, \ldots, s\}$, the edge $v_{4} z_{i}$ with new vertex a_{i} for each $i \in\{1, \ldots, t\}$ and each edge $v_{4} w_{i}$ with new vertex y_{i} for all $i \in\{1, \ldots, r\}$. We note that all edges incident to v_{4} are subdivided and the number of subdivided edges is $\operatorname{deg}_{T}\left(v_{4}\right)+2$. Let D^{\prime} be a PD-set of T^{\prime} and F the set of all edges in $\left\{v_{4} u_{2}, \ldots, v_{4} u_{s}, v_{4} w_{1}, \ldots, v_{4} w_{r}\right\}$ whose subdivision vertices belong to D^{\prime}. Let T_{1} be the tree obtained from T by subdividing only the edges in F. Clearly, to paireddominate vertices $v_{1}, v_{2}, v_{3}, x, y, z$ in T^{\prime}, we must have $\left|D^{\prime} \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}, x, y, z\right\}\right| \geq 4$. Now, if $v_{4} \notin D^{\prime}$ or $v_{4} \in D^{\prime}$ and its partner is not x, then $\left(D^{\prime}-\left\{v_{1}, v_{2}, v_{3}, x, y, z\right\}\right) \cup\left\{v_{3}, v_{2}\right\}$ is a PD-set of T_{1} smaller than D^{\prime} and thus $\gamma_{p r}\left(T^{\prime}\right)>\gamma_{p r}\left(T_{1}\right) \geq \gamma_{p r}(T)$. If $v_{4} \in D^{\prime}$ and its partner is x, then $\left(D^{\prime}-\left\{v_{1}, v_{2}, v_{3}, v_{4}, x, y, z\right\}\right) \cup\left\{v_{3}, v_{2}\right\}$ is a PD-set of T_{1} smaller than D^{\prime} and thus $\gamma_{p r}\left(T^{\prime}\right)>\gamma_{p r}\left(T_{1}\right) \geq \gamma_{p r}(T)$. We deduce that $\operatorname{sd}_{\gamma_{p r}}(T) \leq \operatorname{deg}_{T}\left(v_{4}\right)+2$. Now let D be a $\gamma_{p r}(T)$-set. To paired-dominate the leaves in each $T_{w_{i}}, T_{u_{j}}, T_{z_{\ell}}$ we must have $\left|D \cap V\left(T_{w_{i}}\right)\right| \geq 2$ and $\left|D \cap V\left(T_{u_{j}}\right)\right| \geq 2$ for each i, j, and $\mid D \cap\left(\left\{v_{4}\right\} \cup\left(\cup_{m=1}^{t} V\left(T_{z_{m}}\right)\right) \mid \geq 2 t\right.$. Assume that diam $(T) \geq 9$. Then to paired-dominate v_{k-4}, we must have $\left|D \cap N\left(v_{k-4}\right)\right| \geq 1$. Hence, $|D| \geq 2 \operatorname{deg}_{T}\left(v_{4}\right)+1$. But since $|D|$ is even, it follows that $|D| \geq 2 \operatorname{deg}_{T}\left(v_{4}\right)+2$. Therefore, $\operatorname{sd}_{\gamma_{p r}}(T) \leq \operatorname{deg}_{T}\left(v_{4}\right)+2 \leq \frac{\gamma_{p r}(T)}{2}+1$. Hence, we can assume in the sequel that $\operatorname{diam}(T) \in\{7,8\}$. Now, consider the following situations.
(2.1.1) v_{4} has a child w_{i} with depth 2 and degree at least three.

Then we must have $\left|D \cap V\left(T_{w_{i}}\right)\right| \geq 4$, implying that $|D| \geq 2 \operatorname{deg}_{T}\left(v_{4}\right)+2$, and the desired result is obtained as above.
(2.1.2) $\operatorname{deg}_{T}\left(v_{5}\right) \geq 3$.

Let w be a neighbor of v_{5} such that $w \notin\left\{v_{4}, v_{6}\right\}$. To paired-dominate w, we must have $|D \cap N[w]| \geq 1$, and thus $|D| \geq 2 \operatorname{deg}_{T}\left(v_{4}\right)+1$. Since $|D|$ is even, we have $|D| \geq 2 \operatorname{deg}_{T}\left(v_{4}\right)+2$, and the result follows as above.
(2.1.3) $\operatorname{deg}_{T}\left(v_{k-2}\right) \geq 3$. Then we have $\left|D \cap V\left(T_{v_{k-2}}\right)\right| \geq 4$ implying that $|D| \geq 2 \operatorname{deg}_{T}\left(v_{4}\right)+$ 2 , and the result follows as above.
(2.1.4) $\operatorname{diam}(T)=8$.

If $\operatorname{deg}_{T}\left(v_{6}\right) \geq 3$ and w is a neighbor of v_{6} such that $w \notin\left\{v_{5}, v_{7}\right\}$, then the result follows as in item 2. Hence, assume that $\operatorname{deg}_{T}\left(v_{6}\right)=2$. By above item we can
assume that $\operatorname{deg}_{T}\left(v_{5}\right)=2$. Since T is not a path, we must have $\operatorname{deg}_{T}\left(v_{4}\right) \geq 3$. By item (2.1.3), we may assume that $\operatorname{deg}_{T}\left(v_{3}\right)=\operatorname{deg}_{T}\left(v_{7}\right)=2$. In this case, one can see that $\gamma_{p r}(T) \geq 6$ and $\operatorname{sd}_{\gamma_{p r}}(T) \leq 4$ (Proposition 3), and thus the desired result is obtained.
(2.1.5) $\operatorname{diam}(T)=7$.

By items 2 and 3, we may assume that $\operatorname{deg}_{T}\left(v_{5}\right)=\operatorname{deg}_{T}\left(v_{6}\right)=2$ and the result follows as item (2.1.4).
Subcase 2.2. $\operatorname{deg}\left(v_{3}\right) \geq 3$.
By the choice of diametral path in which $\operatorname{deg}\left(v_{3}\right)$ is as small as possible, there is no path $v_{4} u_{1} u_{2} u_{3}$ in T such that $\operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(u_{2}\right)=2$ and $\operatorname{deg}\left(u_{3}\right)=1$. Thus the component of $T-v_{3} v_{4}$ containing v_{3} is a healthy spider with head v_{3}. Similarly we may assume that the component of $T-v_{k-2} v_{k-3}$ containing v_{k-2} is a healthy spider with head v_{k-2}. By the choice of the diametral path, $\operatorname{deg}\left(v_{3}\right)$ is as small as possible and we have $\operatorname{deg}_{T}\left(v_{3}\right) \leq \operatorname{deg}_{T}\left(v_{k-2}\right)$. Let $N_{T}\left(v_{3}\right) \backslash\left\{v_{4}\right\}=\left\{u_{1}=v_{2}, \ldots, u_{s}\right\}$ and let u_{i}^{\prime} be the leaf neighbor of u_{i} for each i. Suppose first that v_{4} is a stem and let w be the leaf neighbor of v_{4}. Let T^{\prime} be the tree obtained from T by subdividing the edges $v_{4} w_{,} v_{4} v_{3}$ with new vertices x, y, respectively, and the edges $v_{3} u_{i}, u_{i} u_{i}^{\prime}$ with new vertices x_{i}, y_{i}, respectively, for each $i \in\{1, \ldots, s\}$. Clearly the number of subdivided edges is $2 \operatorname{deg}_{T}\left(v_{3}\right)$. Let D^{\prime} be a PD-set of T^{\prime}. Without loss of generality, we can assume that $u_{1}, \ldots, u_{s}, y_{1}, \ldots, y_{s} \in D^{\prime}$, where each u_{i} is paired with y_{i}. Moreover, to paired-dominate the vertices w, v_{3}, we must have $\left|D^{\prime} \cap\left\{w, x, v_{4}, y, v_{3}, x_{1}, \ldots, x_{s}\right\}\right| \geq 4$. Let S be the set of all subdivision vertices. If $v_{4} \notin D^{\prime}$ or $v_{4} \in D^{\prime}$ and the partner of v_{4} is in $\{x, y\}$, then $\left(D^{\prime} \backslash(S \cup\{w\})\right) \cup\left\{v_{3}, v_{4}, u_{1}^{\prime}, \ldots, u_{s}^{\prime}\right\}$ is a PD-set of T smaller than D^{\prime}. If $v_{4} \in D^{\prime}$ and the partner of v_{4} is not in $\{x, y\}$, then $\left(D^{\prime} \backslash\left(S \cup\left\{w, v_{3}\right\}\right)\right) \cup\left\{u_{1}^{\prime}, \ldots, u_{s}^{\prime}\right\}$ is a PD-set of T smaller than D^{\prime}. In either case, we obtain $\operatorname{sd}_{\gamma_{p r}}(T) \leq 2 \operatorname{deg}_{T}\left(v_{3}\right)$. Now let D be a $\gamma_{p r}(T)$-set and let $T_{v_{3}}$ and $T_{v_{k-2}}$ be the components of $T-\left\{v_{3} v_{4}, v_{k-2} v_{k-3}\right\}$ containing v_{3} and v_{k-2}, respectively. To paired-dominate the leaves of $T_{v_{3}}$ and $T_{v_{k-2}}$ we must have $\left|D \cap V\left(T_{v_{3}}\right)\right| \geq 2 \operatorname{deg}_{T}\left(v_{3}\right)-2$ and $\left|D \cap V\left(T_{v_{k-2}}\right)\right| \geq$ $2 \operatorname{deg}\left(v_{k-2}\right)-2$. Also to paired-dominate w we must have $\left|D \cap\left\{w, v_{4}\right\}\right| \geq 1$. Since $|D|$ is even, we have $|D| \geq 4 \operatorname{deg}_{T}\left(v_{3}\right)-2$. Therefore, $\operatorname{sd}_{\gamma_{p r}}(T) \leq 2 \operatorname{deg}_{T}\left(v_{3}\right) \leq \frac{\gamma_{p r}(T)}{2}+1$, as desired.

Suppose now that v_{4} is not a stem. Then each component of $T-v_{4}$ is of order at least two. If $T \in \mathcal{F}$, then the result follows from Lemma 1. Hence, we assume that $T \notin \mathcal{F}$. Since $\operatorname{diam}(T) \geq 7$ and $\operatorname{deg}_{T}\left(v_{3}\right) \leq \operatorname{deg}_{T}\left(v_{k-2}\right)$, we deduce that $\left|V\left(T_{v_{k-3}}\right)\right| \geq$ $\left|V\left(T_{v_{3}}\right)\right|+1$. On the other hand, since $T \notin \mathcal{F}$, either one of the components of $T-v_{4}$ that does not contain neither v_{3} nor v_{5} has order at least three or $\left|V\left(T_{v_{k-3}}\right)\right| \geq\left|V\left(T_{v_{3}}\right)\right|+2$. Let $N\left(v_{4}\right)=\left\{w_{1}=v_{3}, w_{2} \ldots, w_{r}\right\}$. Let T^{\prime} be the tree obtained from T by subdividing the edges $v_{4} w_{i}$ with vertices z_{i} for $1 \leq i \leq r$, the edges $v_{3} u_{i}, u_{i} u_{i}^{\prime}$ with vertices x_{i}, y_{i}, respectively, for each $1 \leq i \leq s$. Note that the number of subdivided edges is $\operatorname{deg}_{T}\left(v_{4}\right)+$ $2 \operatorname{deg}_{T}\left(v_{3}\right)-2$. Let D^{\prime} be a PD-set of T^{\prime} and let F be the set of all edges incident with v_{4} whose subdivision vertices belong to D^{\prime}. Let T_{2} be the tree obtained from T by subdividing only the edges in F. Without loss of generality, assume that $u_{1}, \ldots, u_{s}, y_{1}, \ldots, y_{s} \in D$, where each u_{i} is paired with y_{i}. Also, to paired-dominate vertex v_{3}, we must have $\mid D^{\prime} \cap$ $\left\{v_{4}, z_{1}, v_{3}, x_{1}, \ldots, x_{s}\right\} \mid \geq 2$. Let $W=\left\{z_{1}, x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{s}\right\}$. If $v_{4} \notin D^{\prime}$ or $v_{4} \in D^{\prime}$ and its partner is z_{1}, then $\left(D^{\prime} \backslash\left(W \cup\left\{v_{4}, v_{3}\right\}\right)\right) \cup\left\{v_{3}, u_{2}^{\prime}, \ldots, u_{s}^{\prime}\right\}$ is a PD-set of T_{2} smaller than D^{\prime} and so $\gamma_{p}\left(T^{\prime}\right)>\gamma_{p}\left(T_{2}\right) \geq \gamma_{p}(T)$. If $v_{4} \in D^{\prime}$ and its partner is not z_{1}, then $\left(D^{\prime} \backslash\left(W \cup\left\{v_{3}\right\}\right)\right) \cup\left\{u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{s}^{\prime}\right\}$ is a PD-set of T_{2} smaller than D^{\prime} and again $\gamma_{p}\left(T^{\prime}\right)>$ $\gamma_{p}\left(T_{2}\right) \geq \gamma_{p}(T)$. Consequently, $\operatorname{sd}_{\gamma_{p r}}(G) \leq \operatorname{deg}_{T}\left(v_{4}\right)+2 \operatorname{deg}_{T}\left(v_{3}\right)-2$. Now let D be a $\gamma_{p r}(T)$-set. As seen above, we can see that for each child w_{i} of v_{4} with depth two we have $\left|D \cap V\left(T_{w_{i}}\right)\right| \geq 2 \operatorname{deg}_{T}\left(w_{i}\right)-2$. In particular, $\left|D \cap V\left(T_{v_{3}}\right)\right| \geq 2 \operatorname{deg}_{T}\left(v_{3}\right)-2$. Similarly, $\left|D \cap V\left(T_{v_{k-2}}\right)\right| \geq 2 \operatorname{deg}_{T}\left(v_{k-2}\right)-2 \geq 2 \operatorname{deg}_{T}\left(v_{3}\right)-2$. Moreover, if q_{1}, \ldots, q_{t} are the children of v_{4} with depth one (if any), then to paired-dominate the leaf neighbors of q_{1}, \ldots, q_{t}, we must have $\mid D \cap\left(\left\{v_{4}\right\} \cup\left(\cup_{i=1}^{t} V\left(T_{q_{i}}\right)\right) \mid \geq 2 t\right.$.

Assume that $\operatorname{diam}(T) \geq 9$. Then to paired-dominate v_{k-4}, we must have $\mid D \cap$ $N\left(v_{k-4}\right) \mid \geq 1$. Hence $|D| \geq 4 \operatorname{deg}_{T}\left(v_{3}\right)-4+2\left(\operatorname{deg}_{T}\left(v_{4}\right)-2\right)+1=4 \operatorname{deg}_{T}\left(v_{3}\right)+2 \operatorname{deg}_{T}\left(v_{4}\right)$
-7 . But since $|D|$ is even, it follows that $|D| \geq 4 \operatorname{deg}_{T}\left(v_{3}\right)+2 \operatorname{deg}_{T}\left(v_{4}\right)-6$. Therefore, $\operatorname{sd}_{\gamma_{p r}}(T) \leq \operatorname{deg}_{T}\left(v_{4}\right)+2 \operatorname{deg}_{T}\left(v_{3}\right)-2 \leq \frac{\gamma_{p r}(T)}{2}+1$. Hence, we can assume in the sequel that $\operatorname{diam}(T) \in\{7,8\}$. Now, consider the following situations.
(2.2.1) v_{4} has a child $w_{i} \neq v_{3}$ with depth 2 and degree at least three.

Then we must have $\left|D \cap V\left(T_{w_{i}}\right)\right| \geq 4$, implying that $|D| \geq 4 \operatorname{deg}_{T}\left(v_{3}\right)+2 \operatorname{deg}_{T}\left(v_{4}\right)-$ 6 , and the desired result is obtained as above.
(2.2.2) $\operatorname{deg}_{T}\left(v_{5}\right) \geq 3$.

Let w be a neighbor of v_{5} such that $w \notin\left\{v_{4}, v_{6}\right\}$. To paired-dominate w, we must have $|D \cap N[w]| \geq 1$, and thus $|D| \geq 4 \operatorname{deg}_{T}\left(v_{3}\right)+2 \operatorname{deg}_{T}\left(v_{4}\right)-7$. Since $|D|$ is even, we have $|D| \geq 4 \operatorname{deg}_{T}\left(v_{3}\right)+2 \operatorname{deg}_{T}\left(v_{4}\right)-6$, and the result follows as above.
(2.2.3) $\operatorname{deg}_{T}\left(v_{3}\right)<\operatorname{deg}_{T}\left(v_{k-2}\right)$. Then we have $\left|D \cap V\left(T_{v_{k-2}}\right)\right| \geq 2 \operatorname{deg}_{T}\left(v_{k-2}\right)-2 \geq$ $2 \operatorname{deg}\left(v_{3}\right)$ implying that $|D| \geq 4 \operatorname{deg}_{T}\left(v_{3}\right)+2 \operatorname{deg}_{T}\left(v_{4}\right)-6$, and the result follows as above.
(2.2.4) $\operatorname{diam}(T)=8$.

If $\operatorname{deg}_{T}\left(v_{6}\right) \geq 3$ and w is a neighbor of v_{6} such that $w \notin\left\{v_{5}, v_{7}\right\}$, then the result follows as in item 2. Hence, assume that $\operatorname{deg}_{T}\left(v_{6}\right)=2$. By above item we can assume that $\operatorname{deg}_{T}\left(v_{5}\right)=2$. If $\operatorname{deg}_{T}\left(v_{4}\right)=2$, then the result follows from Proposition 3. Thus, let $\operatorname{deg}_{T}\left(v_{4}\right) \geq 3$. Note that since v_{4} is not a stem and according to the first item and the choice of diametral path, every subtree rooted at a child of v_{4} different from v_{3} and v_{5} is a path P_{2}. Moreover, by the third item we may assume that $\operatorname{deg}_{T}\left(v_{3}\right)=\operatorname{deg}_{T}\left(v_{7}\right)$. In this case, one can see that $\gamma_{p r}(T) \geq 10$ and $\operatorname{sd}_{\gamma_{p r}}(T) \leq 4$ (for instance we can subdivide edges $v_{4} v_{5}, v_{5} v_{6}, v_{6} v_{7}$ and one edge incident with v_{4} different from $v_{3} v_{4}$ and $v_{4} v_{5}$). Therefore, the desired result is obtained.
(2.2.5) $\operatorname{diam}(T)=7$.

Since $T \notin \mathcal{F}$, we must have $\operatorname{deg}_{T}\left(v_{3}\right)<\operatorname{deg}_{T}\left(v_{6}\right)$ or $\operatorname{deg}_{T}\left(v_{5}\right) \geq 3$. In either case, the result follows by above items.
This completes the proof.
The following upper bound on the paired domination number of a tree has been presented by Chellali and Haynes in [2].

Theorem 2 ([2]). If T is a tree of order $n \geq 3$ with s stems, then $\gamma_{p r}(T) \leq \frac{n+2 s-1}{2}$.
According to Theorems 1 and 2, we obtain the following upper bound on the paireddomination subdivision number of a tree.

Corollary 1. If T is a tree of order $n \geq 4$ with s stems different from a healthy spider, then $\operatorname{sd}_{\gamma_{p r}}(T) \leq \frac{n+2 s+3}{4}$.

Applying Theorem 1 and Corollary 1, we get the following result.
Corollary 2 ([20]). If T is a tree of order $n \geq 4$ different from a healthy spider, then $\operatorname{sd}_{\gamma_{p r}}(T) \leq \frac{n}{2}$.
Proof. We first observe that if T has a strong stem, then by Proposition 2, $\operatorname{sd}_{\gamma_{p r}}(T) \leq$ $2 \leq n / 2$. Hence we assume that T has no strong stem. Let s be the number of stems in T and let t be the number of vertices that are neither leaves nor stems. Note that $t \neq 1$ since T is different from a healthy spider. Now, if $t=0$, then $s=n / 2$ and thus T has adjacent stems. By Proposition 2, $\operatorname{sd}_{\gamma_{p r}}(T) \leq 2 \leq n / 2$. Hence we can assume that $t \geq 2$. Clearly, $s=\frac{n-t}{2}$. If $t \geq 3$, then $s \leq \frac{n-3}{2}$, and by Corollary 1 , we obtain $\operatorname{sd}_{\gamma_{p r}}(T) \leq n / 2$. Therefore, let $t=2$. Thus $n \geq 6$ and is even. Let x and y be the two vertices of T that are neither leaves nor stems. Then $V(T)-\{x, y\}$ in which each stem is paired with its unique leaf neighbor, is a PD-set of D and so $\gamma_{p r}(T) \leq n-2$. It follows from Theorem 1 that $\operatorname{sd}_{\gamma_{p r}}(T) \leq \frac{\gamma_{p r}(T)}{2}+1 \leq n / 2$ and the proof is complete.

Let $H_{1}=S_{m}$ and $H_{2}=S_{m}$ be two healthy spiders with $m \geq 2$ feet each and centers x and y, respectively. Let T_{m} be the tree obtained from H_{1} and H_{2} by adding the edge $x y$ (see Figure 2). It is not hard to see that $n\left(T_{m}\right)=4 m+2, \gamma_{p r}\left(T_{m}\right)=4 m$ and $\operatorname{sd}_{\gamma_{p r}}\left(T_{m}\right)=2 m+1$. Therefore the bounds of Theorem 1 and Proposition 2 are sharp.

Figure 2. A tree T_{m} with $\operatorname{sd}_{\gamma_{p r}}\left(T_{m}\right)=\frac{\gamma_{p r}\left(T_{m}\right)}{2}+1=n\left(T_{m}\right) / 2$.
Let T_{m}^{\prime} be the tree obtained from T_{m} by subdividing the edge $x y$ with a subdivision vertex u and adding a new vertex v and a new edge $u v$ (see Figure 3). It is not hard to see that $n\left(T_{m}^{\prime}\right)=4 m+4, \gamma_{p r}\left(T_{m}^{\prime}\right)=4 m+2$ and $\operatorname{sd}_{\gamma_{p r}}\left(T_{m}^{\prime}\right)=2 m+2$. Therefore the bounds of Theorem 1 and Proposition 2 are sharp for any tree in the family $\mathcal{T}=\left\{T_{m}, T_{m}^{\prime} \mid m \geq 2\right\}$.

Figure 3. A tree T_{m}^{\prime} with $\operatorname{sd}_{\gamma_{p r}}\left(T_{m}^{\prime}\right)=\frac{\gamma_{p r}\left(T_{m}^{\prime}\right)}{2}+1=n\left(T_{m}^{\prime}\right) / 2$.
We conclude this paper with two conjectures.
Conjecture 1. For any connected graph G of order $n \geq 4$ different from a healthy spider, $\operatorname{sd}_{\gamma_{p r}}(G) \leq \frac{\gamma_{p r}(G)}{2}+2$.

Conjecture 2. For any connected graph G of order $n \geq 7$ different from a healthy spider, $\operatorname{sd}_{\gamma_{p r}}(G) \leq \frac{n}{2}$.

If G is the graph obtained from C_{5} by adding a pendant edge at one vertex, then we have $\operatorname{sd}_{\gamma_{p r}}\left(C_{5}\right)=\operatorname{sd}_{\gamma_{p r}}(G)=4$. Therefore, the condition $n \geq 7$ is necessary to establish the second conjecture.
Author Contributions: X.Q., Z.S. and S.M.S. contribute for supervision, methodology, validation, project administration and formal analyzing. S.K., M.C., H.K. contribute for investigation, resources, some computations and wrote the initial draft of the paper, which was investigated and approved by Z.S., S.M.S. and M.C. who wrote the final draft. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (61632002) and by the National Key R\&D Program of China (No. 2018YFB1005100).
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Haynes, T.W.; Slater, P.J. Paired-domination in graphs. Networks 1998, 32, 199-206. [CrossRef]
2. Chellali, M.; Haynes, T.W. Total and paired-domination in trees. AKCE J. Graphs Comb. 2004, 1, 69-75.
3. Chellali, M.; Haynes, T.W. On paired and double domination in graphs. Util. Math. 2005, 67, 161-171.
4. Favaron, O.; Karami, H.; Sheikholeslami, S.M. Paired-domination number of a graph and its complement. Discret. Math. 2008, 308, 6601-6605. [CrossRef]
5. Haynes, T.W.; Henning, M.A. Paired-domination game played in graphs. Commun. Comb. Optim. 2019, 5, 79-94.
6. Kang, L.; Sohn, M.Y.; Cheng, T.C.E. Paired-domination in inflated graphs. Theor. Comput. Sci. 2004, 320, 485-494. [CrossRef]
7. Proffitt, K.E.; Haynes, T.W.; Slater, P.J. Paired-domination in grid graphs. Congr. Numer. 2001, 150, 161-172.
8. Desormeaux, W.J.; Haynes T.W.; Henning, M.A. Paired-domination in graphs. In Topics in Domination in Graphs; Haynes, T.W., Hedetniemi, S.T., Henning, M.A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020.
9. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Fundamentals of Domination in Graphs; Marcel Dekker, Inc.: New York, NY, USA, 1998.
10. Fink, J.F.; Jacobson, M.S.; Kinch, L.F.; Roberts, J. The bondage number of a graph. Discret. Math. 1990, 86, 47-57. [CrossRef]
11. Kok, J.; Mynhardt, C.M. Reinforcement in graphs. Congr. Numer. 1990, 79, 225-231.
12. Velammal, S. Studies in Graph Theory: Covering, Independence, Domination and Related Topics. P.h.D. Thesis, Manonmaniam Sundaranar University, Tirunelveli, India, 1997.
13. Dettlaff, M.; Kosari, S.; Lemańska, M.; Sheikholeslami, S.M. The convex domination subdivision number of a graph. Commun. Comb. Optim. 2016, 1, 43-56. [CrossRef]
14. Fvaron, O.; Karami, H.; Sheikholeslami, S.M. Disprove of a conjecture the domination subdivision number of a graph. Graphs Comb. 2008, 24, 309-312. [CrossRef]
15. Haynes, T.W.; Hedetniemi, S.M.; Hedetniemi, S.T.; Jacobs, D.P.; Knisely, J.; Merwe, L.C.V. Domination subdivision numbers. Discuss. Math. Graph Theory 2001, 21, 239-253. [CrossRef]
16. Favaron, O.; Karami, H.; Sheikholeslami, S.M. Connected domination subdivision numbers of graphs. Util. Math. 2008, 27, 101-111.
17. Haynes, T.W.; Henning, M.A.; Hopkins, L.S. Total domination subdivision numbers of graphs. Discuss. Math. Graph Theory 2004, 24, 457-467. [CrossRef]
18. Favaron, O.; Karami, H.; Sheikholeslami, S.M. Paired-domination subdivision numbers of graphs. Graphs Comb. 2009, 25, 503-512. [CrossRef]
19. Amjadi, J.; Chellali, M. Complexity of the paired domination subdivision problem. 2020, Submitted.
20. Egawa, Y.; Furuya, M.; Takatou, M. Upper bounds on the paired domination subdivision number of a graph. Graphs Comb. 2013, 29, 843-856. [CrossRef]
21. Kosari, S.; Shao, Z.; Sheikholeslami, S.M.; Chellali, M.; Khoeilar, R.; Karami, H. On the paired-domination subdivision number of a graph. 2020, Submitted.
22. Shao, Z.; Sheikholeslami, S.M.; Chellali, M.; Khoeilar, R.; Karami, H. A proof of a conjecture on the paired-domination subdivision number. 2020, Submitted.
