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Abstract: Shannon and Rényi entropies are two important measures of uncertainty for data analysis.
These entropies have been studied for multivariate Student-t and skew-normal distributions. In this
paper, we extend the Rényi entropy to multivariate skew-t and finite mixture of multivariate skew-t
(FMST) distributions. This class of flexible distributions allows handling asymmetry and tail weight
behavior simultaneously. We find upper and lower bounds of Rényi entropy for these families. Numeri-
cal simulations illustrate the results for several scenarios: symmetry/asymmetry and light/heavy-tails.
Finally, we present applications of our findings to a swordfish length-weight dataset to illustrate the
behavior of entropies of the FMST distribution. Comparisons with the counterparts—the finite mixture
of multivariate skew-normal and normal distributions—are also presented.

Keywords: skew-t; finite mixtures; skewness; heavy-tails; Shannon entropy; Rényi entropy; sword-
fish data

1. Introduction

Finite mixture models have used in the analysis of heterogeneous datasets due to
its flexibility [1]. These models provide important applications in many scientific fields
such as density estimation [2], data mining and pattern recognition [3], image processing
and satellite imaging [4], medicine and genetics [4,5], fisheries [6,7], astronomy [2], and
more. Specifically, Carreira-Perpiñán [2] considered the mixture of normal densities to
find the modes of multi-dimensional data via the Shannon entropy. Because no analytical
expressions exist for Shannon entropy of normal mixture of densities, the authors of [2]
considered bounds to approximates the Shannon entropy [8]. Given that these applications
have been developed in the normal mixture of densities context, several calculations of
Shannon and Rényi entropies for non-normal distributions exist.

Azzalini and Dalla-Valle [9] and Azzalini and Capitanio [10] introduced the multivari-
ate skew-normal and skew-t distributions as an alternative to multivariate normal distribu-
tion to deal with skewness and heavy-tailness in the data, respectively. Lin et al. [11] pro-
posed a development of finite mixture of skew-t (FMST) distributions, and more recently [4]
provided an overview of developments of FMST distributions. Arellano-Valle et al. [12]
and Contreras-Reyes [13] presented the mutual information and Shannon entropy for
multivariate skew-normal and skew-t distributions, respectively. They highlighted that the
calculation of mutual information index and Shannon entropy include the negentropy con-
cept represented by a one-dimensional integral. Contreras-Reyes [14] discussed the values
of Rényi entropy of multivariate skew-normal and extended skew-normal distributions.
Contreras-Reyes and Cortés [6] considered bounds to approximate the Rényi entropy for
finite mixture of multivariate skew-normal (FMSN) distributions by using lower and upper
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bounds. More recently, the authors of [15,16] presented the bounds of Rényi entropy of
multivariate skew-normal-Cauchy and skew-Laplace distributions, and [17] considered
the Kullback–Leibler divergence based on multivariate skew-t densities [13] as a classifier
for an SAR image system.

In this paper, we propose an information-theoretic approach for FMST distributions.
The explicit expressions of Shannon and Rényi entropies of skew-t distribution are derived.
We give bounds for Rényi entropies of FMST models. An approximate value of these
entropies can be calculated. Simulation studies illustrate the behavior of Rényi entropy
approximations for a given order α, skewness, and freedom degrees of the proposed
mixture model. Numerical simulations illustrates the results for several scenarios: sym-
metry/asymmetry and light/heavy-tails. Finally, a real data application of a swordfish
length-weight dataset is revisited from the work in [6], where the skew-normal model is
compared with the proposed skew-t one.

The paper is organized as follows. Section 2 gives the propositions, lemmas, and
numerical simulations for computation of Shannon and Rényi entropies of multivariate
skew-t random variables. Section 3 provides bounds to approximate Shannon and Rényi
entropies for FMST distributions and a numerical application of swordfish data. Finally,
Section 4 concludes the study.

2. Multivariate Skew-t Distribution

The multivariate t-distribution corresponds to a generalization of the Student-t-
distribution. Let x ∈ Rd be a random vector, d ∈ Z+, is multivariate t-distributed
[18], denoted as X ∼ Td(ξ, Ω, ν), whose probability density function (pdf) is given by

td(x; ξ, Ω, ν) = Bd(ν)|Ω|−1/2
(

1 +
Q(x)

ν

)
, (1)

where Q(x) = (x − ξ)>Ω−1(x − ξ), µ ∈ Rd is a location parameter, Ω ∈ Rd×d is a
dispersion matrix, ν ∈ R is the degree of freedom parameter,

B`(ν) =
Γ
(

ν+`
2

)
Γ
(

ν
2
)
(νπ)`/2 , ν > 0, ∀` ∈ Z, (2)

and Γ(·) is the gamma function.
The multivariate normal distribution is obtained from the limit Td(ξ, Ω, ν)→ Nd(ξ, Ω),

as ν → ∞. In the special case where ν = 1, ξ = 0 and Ω = Id, td(ξ, Ω, ν) leads to the
multivariate Cauchy distribution. The mean and variance of random vector x are

E[X] = ξ, ν > 1, (3)

V[X] =

(
B−2(ν)

2π

)
Ω, ν > 2, (4)

respectively.
An extension of multivariate skew-normal distribution is the skew-t one by incorpo-

rating a degree of freedom parameter representing the presence of atypical observations
in empirical data [10,12,19]. We considered the definition of skew-t distribution given
in [12]. Let y ∈ Rd be a multivariate skew-t random variable with location vector ξ ∈ Rd,
dispersion matrix Ω ∈ Rd×d, asymmetry vector η ∈ Rd, and ν > 0 degrees of freedom.
We denoted y by Y ∼ STd(ξ, Ω, η, ν) if has pdf given by

f (y; ξ, Ω, η, ν) = 2td(y; ξ, Ω, ν)T

(
η̄>Ω−1/2(y− ξ)

√
ν + d

ν + Q(y)
; ν + d

)
, (5)
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where η̄ = Ω1/2η and T(x; ν + d) ≡ T1(x; 0, 1, ν + d) is the univariate Student-t cumulative
distribution function (cdf) of x.

The multivariate Student-t distribution is a special case of the multivariate skew-t one
and is related to a multivariate skew-normal random variable through equation

Y d
= ξ + V−1/2Z0, (6)

where Z0 = Ω−1/2(Y − ξ) ∼ SNd(0, Id, η) and V ∼ χ2/ν, and they are independent,
where SNd and χ2 denotes the d-variate skew-normal [9] and univariate chi-square dis-
tribution [10], respectively. The multivariate skew-t distribution yields the multivariate
skew-normal and Student-t ones as ν→ ∞ and when η = 0, respectively [4].

Considering the m-cumulant function

E(V−m/2) =
B−m(ν)

(2π)m/2 , m ≥ 1, ν > m,

and Equations (2)–(4), the mean vector and covariance matrix of Y are, respectively, derived
by the authors of [10] in the following forms,

E[Y] = ξ +
B−1(ν)

π
η̄, ν > 1, (7)

V[Y] = ξξ> +

(
B−2(ν)

2π

)
Ω +

(
B−1(ν)

π

)2

(ξδ> + δξ>), ν > 2, (8)

where δ = Ωη/
√

1 + η>Ωη.

2.1. Entropies

Shannon [20] proposed an entropy to quantify the uncertainty of a system and poste-
riorly, Rényi [21] generalized the Shannon entropy for any probability distribution related
to a discrete or continuous random variable. In this section, we derive these measures for
the skew-t case.

Consider a pdf f associated with a random variable y ∈ Rd, denoted by H(Y), the
well-known Shannon entropy [22]. It is defined by

H(Z) = −
∫
Rd

f (y) log f (y)dy. (9)

Proposition 1. The Shannon entropy of Y ∼ STd(ξ, Ω, η, ν) is

H(Y) = H(X)− E

log

2T

 √
ν + d ‖η̄‖WH√

ν + d− 1 + W2
H

; ν + k


, (10)

where WH ∼ ST1(0, 1, ‖η̄‖, ν + d− 1), ‖η̄‖ = η̄>η̄ = (η>Ωη)1/2, and H(X) is the Student-t
Shannon entropy of X ∼ Td(ξ, Ω, ν) given by

H(X) =
1
2

log |Ω| − log Bd(ν) + Ψd(ν), (11)

where

Ψd(ν) =

(
ν + d

2

)[
ψ

(
ν + d

2

)
− ψ

(ν

2

)]
, (12)

Bd(ν) is defined in (2) and ψ(x) = d
dx log Γ(x) is the digamma function.

The proof for the Shannon entropy of Y in (10) is shown in [12]. The same entropy,
but for X in (11), was first presented in [23].
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An extension of Shannon entropy is the αth Rényi order given by [21]. The Rényi
entropy of Y is denoted by Rα(Y) and defined by

Rα(Y) =
1

1− α
log

∫
Rd

[ f (y)]αdy, (13)

with 0 < α < ∞, α 6= 1, and where normalization to unity as given by
∫
Rd f (y)dy = 1 [24].

The Shannon entropy is obtained from Rα(Y) as α → 1 [14,21]. The Rényi entropy is
invariant under a location transformation, but not invariant under a scale transformation.
For any α1 < α2, we have Rα1(Y) ≥ Rα2(Y), and Rα1(Y) = Rα2(Y) if and only if the system
is uniformly distributed.

In order to compute the Rényi entropy of a multivariate skew-t random variate, we
need the following preliminary results that involve the pdf (5).

Lemma 1. Let Y ∼ STd(ξ, Ω, η, ν). Then,

E

[
log

{
2T

(
η̄>Ω−1/2(y− ξ)

√
ν + d

ν + Q(y)
; ν + d

)}]

= E

log

2T

 √
ν + d‖η̄‖X0√

ν + d− 1 + X2
0

; ν + d


2T

√ν + 1‖η̄‖X0√
ν + X2

0

; ν + d


,

where X0 ∼ T1(0, 1, ν + d− 1).

Proof. We directly get

E

[
log

{
2T

(
η̄>Ω−1/2(Y− ξ)

√
ν + d

ν + Q(Y)
; ν + d

)}]

=
∫
Rd

log

{
2T

(
η̄>Ω−1/2(y− ξ)

√
ν + d

ν + Q(y)
; ν + d

)}

×2td(y; ξ, Ω, ν)T

(
η̄>Ω−1/2(y− ξ)

√
ν + d

ν + Q(y)
; ν + d

)
dy.

Using the change of variables z0 = Ω−1/2(y− ξ), we get that Z0 ∼ STd(0, Id, η, ν) and the
determinant of Jacobian matrix |Ω|−1/2. Therefore,

E

[
log

{
2T

(
η̄>Ω−1/2(Y− ξ)

√
ν + d

ν + Q(Y)
; ν + d

)}]

=
∫
Rd

log

{
2T

(
η̄>z0

√
ν + d

ν + z>0 z0
; ν + d

)}

×2|Ω|−1/2td(z0; 0, Id, ν)T

(
η̄>z0

√
ν + d

ν + z>0 z0
; ν + d

)
dy

= E

[
log

{
2T

(
η̄>Z0

√
ν + d

ν + Z>0 Z0
; ν + d

)}]
.
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Lemma 3 of [12] implies that

E

[
log

{
2T

(
η̄>Ω−1/2(Y− ξ)

√
ν + d

ν + Q(Y)
; ν + d

)}]

= E

log

2T

 √
ν + d‖η̄‖WR√

ν + d− 1 + W2
R

; ν + d


,

with WR ∼ ST1(0, 1, ‖η̄‖, ν + d− 1) and ‖η̄‖ = η̄>η̄. The latter result yields the proof.

Lemma 1 allows us to compute an expected value of a d-variate random variable Y
as an expected value of a univariate Student-t one X0. This result is also applied in the
computation of Shannon entropy of Y; however, the latter depends on a univariate skew-t.
Then, we can represent the expected value of (10) with respect to a univariate Student-t
random variable as follows,

Proposition 2. Let X ∼ Td(ξ, Ω, ν) and Y ∼ STd(ξ, Ω, η, ν), the Shannon entropy of Y can be
written as

H(Y) = H(X)− N(X0), (14)

where

N(X0) = E

log

2T

 √
ν + d‖η̄‖X0√

ν + d− 1 + X2
0

; ν + d


2T

√ν + 1‖η̄‖X0√
ν + X2

0

; ν + d


,

and X0 ∼ T1(0, 1, ν + d− 1).

Proof. By computing the natural logarithm and expectation in both sides of pdf (5),
we have

E[log { f (Y; ξ, Ω, η, ν)}] = E[log {td(Y; ξ, Ω, ν)}]

+E

[
log

{
2T

(
η̄>Ω−1/2(Y− ξ)

√
ν + d

ν + Q(Y)
; ν + d

)}]
.

Using Lemma 1 and Proposition 1 of [25], we obtain

H(Y) = H(X)− E

[
log

{
2T

(
η̄>Ω−1/2(Y− ξ)

√
ν + d

ν + Q(Y)
; ν + d

)}]
.

Then, Lemma 1 gives us the required result for this proof.

Lemma 1 and Proposition 2 decompose the expected value into two parts; however, it
is still necessary to solve the integral (13) that involves parameter α. The next Lemma uses
the previous results to obtain the skew-t Rényi entropy.

Lemma 2. Let Y ∼ STd(ξ, Ω, η, ν). Then,

∫
Rd

[ f (y; ξ, Ω, η, ν)]αdy = Cα,d(Ω, ν) E

2T

 √
ν + d‖η̄‖X0√

ν + d− 1 + X2
0

; ν + d


α, (15)

where

Cα,d(Ω, ν) = |Ω|−α/2[Bd(ν)]
αB−d(α[ν + d])

(
ν

α[ν + d]

)d/2
,
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and X0 ∼ T1(0, 1, β), β = α(ν + d)− d, 0 < α < ∞, α 6= 1.

Proof. Using the change of variables z0 = Ω−1/2(y− ξ) associated with Jacobian matrix
determinant |Ω|−1/2 in Equation (5), we get∫

Rd
[ f (y; ξ, Ω, η, ν)]αdy

=

(
Bd(ν)

|Ω|1/2

)α ∫
Rd

(
1 +

z>0 z0

ν

)−α( ν+d
2 ){

2T

(
η̄>z0

√
ν + d

ν + z>0 z0
; ν + d

)}α

dz0.

By replacing β = α(ν + d)− d and using the change of variables u = z0

√
β
ν , we obtain∫

Rd
[ f (y; ξ, Ω, η, ν)]αdy

=

(
Bd(ν)

|Ω|1/2

)α( ν

β

) d
2 ∫
Rd

(
1 +

u>u
β

)−α( u+d
2 ){

2T

(
η̄>u

√
ν + d

β + u>u
; ν + d

)}α

du

=

(
Bd(ν)

|Ω|1/2

)α( ν

β

) d
2 1

Bd(ν)
E

[{
2T

(
η̄>U

√
ν + d

β + U>U
; ν + d

)}α]
,

where U ∼ Td(0, Id, β). The proof is completed by using Lemma 3 of [12].

By taking natural logarithm and multiplying by (1− α)−1 in both sides of Equation (15),
the Lemma 2 yields the final expression of skew-t Rényi entropy as is presented in the next
Proposition.

Proposition 3. The Rényi entropy of Y ∼ STd(ξ, Ω, η, ν) is

Rα(Y) = Rα(X) +
1

1− α
log

E

2T

 √
ν + d‖η̄‖WR√

α(ν + d)− 1 + W2
R

; ν + d


α, (16)

where Rα(X) is the Student-t Rényi entropy of X ∼ Td(ξ, Ω, ν) given by

Rα(X) = H(X) +
1

1− α
log[Cα,d(Ω, ν)], (17)

H(X) is the Student-t Shannon entropy of X given in (11), WR ∼ T1(0, 1, β), β = α(ν + d)− d,
and Cα,d(Ω, ν) is given in Lemma 2.

It is easy to observe that skew-t Shannon entropy is obtained from (16) by taking the
limit as α converges to 1.

2.2. Computational Implementation and Numerical Simulations

All numerical computations were made with R software [26]. The integrals of skew-
t Rényi entropies of Equation (16) were evaluated using the integrate function of R
software’s QUADPACK routine [27]. This method allows to integrate the Student-t cdf
of Equation (16) in the interval (−∞, ∞). This section illustrates the relationship between
parameters α, η, and ν with Rényi entropy for d = 1, 2, 3, and 4 dimensions. Consider
Y ∼ STd(ξ, Ω, η, ν) with the following cases.

(a) d = 1, ξ = 0, Ω = 1.5, and η = 0.3.

(b) d = 2, ξ = 0, Ω =

(
0.7 0.3
0.3 3

)
, and η =

(
0.3 2

)>.
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(c) d = 3, ξ = 0, Ω = I3, and η =
(

0.3 2 0.3
)>.

(d) d = 4, ξ = 0, Ω = I4, and η =
(

0.3 2 0.3 −0.5
)>.

Figure 1 shows the relationship between Rényi entropy of Y and ν = 3, . . . , 30, α =
2, 3, 4, 5, 6, 8, 10, and d = 1, 2, 3, 4, related to cases (a)–(d). The Rényi entropies converge to a
finite value for all α and ν, and increase for increments of d. The dispersion matrix Ω plays
an important role in Rényi entropy, mainly by the increment of matrix dimension related to
d. Moreover, the Rényi entropy decreases when α increases, as mentioned in the properties
of Rα(Y). The Rényi entropies decrease when ν increases, yielding the respective Student-t
Rényi entropies (ν→ ∞).

(a)

ν

R α
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2
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5
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ν

R α
(Y
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η

(b)
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R α
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R α
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8
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R α
(Y
)

ν
α

(d)

ν

R α
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Figure 1. Skew-t Rényi entropy [Rα(Y)] versus degree of freedom parameter (ν = 3, . . . , 30) for cases (a–d) described above.
Each line corresponds to order α = 2, 3, 4, 5, 6, 8, 10. 3d-subplot of case (a) corresponds to Rα(Y) versus ν and η, whereas the
3d-subplots of cases (b–d) are Rα(Y) versus ν and α.

Subplot of case (a) considered negative and positive values of η (−6 ≤ η ≤ 6),
producing a symmetry of Rα(Y) with respect to this parameter. However, as mentioned
below, Rα(Y) decreases for increments of ν. Subplots of cases (b)–(d) cannot represent the
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behavior of η given this parameter’s dimension d = 2, 3, 4 of. For these cases, order α is
considered and the Rényi entropy decreases when α increases.

3. Application to Finite Mixtures of Multivariate Skew-t Distributions

Let us consider the definitions of [5,7,28] for FMST distributions. The pdf of an m-
component mixture model with parameter vector set θ̃ = (ξ̃, Ω̃, Λ̃, ν̃): ξ̃ = (ξ1, . . . , ξm),
a set of m location vector parameters Ω̃ = (Ω1, . . . , Ωm), a set of m dispersion matrices
Λ̃ = (η1, . . . , ηm), a set of shape vector parameters ν̃ = (ν1, . . . , νm), a set of degree-of-
freedom parameters, and with m mixing weights p = (p1, . . . , pm) is

p(ỹ; θ̃, π) =
m

∑
j=1

pj f (yj; θj), (18)

where pj ≥ 0, ∑m
j=1 pj = 1, ỹ = (y1, . . . , ym), and f (yj; θj) are defined as in (5) for a known

θj = (ξ j, Ωj, ηj, νj), j = 1, . . . , m. If Ỹ has pdf (18), it is denoted as Ỹ ∼ FMSTd(θ̃, p).
Let Si = (Si,1, . . . , Si,m) with ∑m

j=1 Sij = 1 be a set of m latent indicators of observations
ỹ, i = 1, . . . , n, where j corresponds to a binary index such that Sij = 1, if Yi is from group
j, and Sij = 0 otherwise. Then, indicators S1, . . . , Sn are independent and each one with
multinomial distribution given by

p(si) = psi,1
1 psi,2

2 · · ·
(

1−
m−1

∑
j=1

pj

)si,m

and denoted as Si ∼ M(1; p1, . . . , pm). Proposition 1 of the work in [28] and (6) allow
obtaining a hierarchical representation to each j-th component pdf (see Section 3.1 of [28]
for details). This hierarchical representation is useful for parameter estimation based on
EM framework for FMST distributions.

The first and second moments of the j-th component Yj, (7) and (8), respectively, get
the first two moments of Ỹ:

E[Ỹ] =
m

∑
j=1

pj

(
ξ j +

B−1(ν)

π
η̄j

)
, (19)

V[Ỹ] =
m

∑
j=1

pj

[
ξ jξ
>
j +

(
B−2(ν)

2π

)
Ωj +

(
B−1(ν)

π

)2

(ξ jδ
>
j + δjξ

>
j ) + µjµ

>
j

]
, (20)

where

µj = ξ j +

(
B−1(ν)

π

)
η̄j − E[Ỹ],

η̄j = Ω1/2
j ηj, and

δj =
Ωjηj√

1 + η>j Ωjηj

, j = 1, . . . , m;

see, e.g., in [2,6].
Dehesa et al. [24] obtained an upper bound of Rényi entropy using a variational

approach that expresses the Rényi entropy of a finite mixture random variable in terms of
the dispersion matrix. Specifically, the result provided by [29] allows obtaining a lower
bound for Rényi entropy of an FMST in terms of each component (see also [6]), as is
presented next.

log[Eα(Ỹ)]
1− α

≤ Rα(Ỹ) ≤
d
2

[
log
(

V[Ỹ]
d

)
+ Fα(d)

]
, (21)

with
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Eα(Ỹ) = e(1−α)Rα(Ym) +
m−1

∑
j=1


(

j

∑
k=1

pk

)α(
e(1−α)Rα(Yj) − e(1−α)Rα(Yj+1)

)
and

Fα(d) =



log
(

π(α(2+d)−d)
α−1

)
+ 2

d(α−1) log
(

α(2+d)−d
2α

)
+ 2

d log

{
Γ( α

α−1 )
Γ
(

α(2+d)−d
2(α−1)

)
}

, if α > 1,

log
(

π(α(2+d)−d)
1−α

)
+ 2α

d(α−1) log
(

α(2+d)−d
2α

)
+ 2

d log

{
Γ
(

α(2+d)−d
2(1−α)

)
Γ( α

1−α )

}
, if d

d+2 ≤ α ≤ 1,

log(2πe), if α = 1.

On the left side of the inequality (21), the lower bound depends on Rényi entropy
of each mixture component. A proof of this lower bound is available in Lemma 1 of [6],
obtained from Proposition 1 (B1) of [29]. We can see that the right side of the inequality
(21) depends on the dispersion matrix, the shape parameters, the αth order and dimension
d. A proof of this upper bound is available in Section 3 of [24]. For the case α = 1, Fα(d) is
related to Shannon entropy of a multivariate standardized normal random variable.

Swordfish Data Analysis

We considered the dataset used in [6], which corresponds to a sample of 486 and
507 length-weight observations of swordfish males and females, respectively. The swordfish
data were sampled in the south Pacific off northern Chile during 2011. The observations
were obtained using the sampling program of the Instituto de Fomento Pesquero (IFOP,
http://www.ifop.cl/). The dataset includes swordfish from 120 to 257 cm and 110 to
299 cm for males and females, respectively.

Following [6], the length-weight nonlinear function w(l) = a lb is considered to explain
the increments in swordfish weight w(l) in terms of l, where a and b are the theoretical
weight at l = 0 and weight growth rate, respectively [30]. The authors obtained a good
fitting of w(l) after considering a log-transformed w(l). Then, a two-column matrix formed
by these variables is obtained for the clustering procedure. This means no collinearity
problem exists, given the nonlinear relationship of length and weight variables. Therefore,
the length-weight data are evaluated with the FMST model for m = 1, . . . , m∗ (where m∗ is
the maximum age by gender) and d = 2. The FMST parameter estimates were computed
using the mixsmsn R software’s library [31].

Figure 2a,b shows the upper bounds for Rényi entropies, for m∗ = 9 and 11 for males
and females, respectively [6]. Upper bounds are obtained using the right side of inequality
(21), where the parameters of each upper bound were replaced by their respective MLEs as
plug-in type estimators [6,12,32]. In theses panels, the upper bounds for Rényi entropies
are considered because it is necessary to detect the maximum information for given α and
m. Importantly, the values increase when the number of components increases for both
genders. Only for males, the Rényi entropies increase until m = 8 and then stabilize. For
females, there exists a breakpoint at m = 7 components; however, the information still
increases to m > 7. For both genders, we can see that information is maximized for α = 2
(quadratic Rényi entropy) and there also exist some differences between α values. As in
Section 2.2, the 3d-subplot illustrates similar behavior, where order α is considered and the
Rényi entropy decreases when α increases.

Given that maximum information of the system is given at α = 2, panel (c) of Figure 2
illustrates the upper and lower Rényi entropies and their average. Lower bounds are
obtained using the left side of inequality (21), where the parameters of each lower bound
were replaced by their respective MLEs as plug-in type estimators. Females presented
the largest averages for each m. For both genders, the averages tend to be similar for all

http://www.ifop.cl/
http://www.ifop.cl/
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components m. Panel (d) shows the estimated ν degree of freedom parameters with respect
to average Rényi entropy. In general, males presented light-tails (ν� 30), whereas females
presented heavy-tails (ν ≤ 20), except in models with m = 3 and m = 4 components. For
each gender, Table 1 summarizes these results in detail as described next.

(a)

m

R α
(Y
)

18.0

18.5

19.0

19.5

20.0

20.5

2 4 6 8

α=2

α=3

α=4
α=5
α=6
α=7

2
4

6
8 23456

7

18.0

18.5

19.0

19.5

20.0

m α

R α
( Y
)

(b)

m

R α
(Y
)

19.5

20.0

20.5

21.0

21.5

22.0

2 4 6 8 10

α=2

α=3

α=4
α=5
α=6
α=7

2
4

6
8

10 23456
7

19.5

20.0

20.5

21.0

21.5

22.0

m α

R α
( Y
)

8

12

16

20

3 6 9
m

Ré
ny

i e
nt

ro
py

 a
ve

ra
ge

s

Females Males

(c) (d)

ν

R
én

yi
 e

nt
ro

py
 a

ve
ra

ge
s

14.5

15.0

15.5

20 40 60 80 100

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

2

3

456
7
8

2

3

4

5

67

8

9

10

Females
Males

●

●

Figure 2. Upper bounds for Rényi entropies based on finite mixture of skew-t (FMST) distribution [Rα(Y)] by number of
components (m), for (a) males and (b) females, respectively. 3d-subplots correspond to Rα(Y) versus m and α. Panel (c)
shows the whisker plots of lower and upper bounds for Rényi entropies based on FMST distribution, and their respective
averages by gender and number of components m. Panel (d) shows a dispersion plot between Rα(Y) and ν by gender,
where the number of each point corresponds to m.

As in [7], the Rényi entropies are compared using the AICand BICcriteria. Inequality
(21) is accomplished and the Rényi information increases for parsimonious models (bigger
set of m components). The average Rényi entropy rather slowly increases with components
m = 2, . . . , 5, but stabilizes at m = 6 components for males. A similar phenomenon occurs
for females, where the average Rényi entropy is maximum for m = 7. Figure 3 illustrates
the FMST fits for length-weight by gender. The older swordfish lengths present more vari-
ability than younger ones. The estimated parameters of FMST model related to males are

π = (0.274, 0.320, 0.074, 0.178, 0.130, 0.025),

̂̃ξ =

((
167.42
58.10

)
,
(

155.49
41.65

)
,
(

197.62
102.32

)
,
(

179.64
77.11

)
,
(

138.87
33.15

)
,
(

213.50
158.73

))
,

̂̃Ω =

((
9.03 4.74
4.74 9.57

)
,
(

8.91 3.10
3.10 7.62

)
,
(

11.35 7.02
7.02 18.29

)
,
(

10.78 5.35
5.35 11.21

)
,
(

7.58 3.74
3.74 4.84

)
,
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(
20.66 11.35
11.35 14.00

))
,

̂̃Λ =

((
0.53
0.72

)
,
(
−0.92
1.09

)
,
(

0.94
1.38

)
,
(

0.79
0.91

)
,
(
−0.90
−0.63

)
,
(

0.72
0.94

))
,

and ν̂ = 100.
The estimated parameters of FMST model related to females are

π = (0.016, 0.295, 0.095, 0.238, 0.045, 0.217, 0.094),

̂̃ξ =

((
263.87
291.84

)
,
(

192.68
82.77

)
,
(

207.20
119.81

)
,
(

151.80
41.75

)
,
(

236.13
211.90

)
,
(

160.97
51.30

)
,
(

222.78
156.56

))
,

̂̃Ω =

((
16.69 13.22
13.22 53.03

)
,
(

11.53 5.17
5.17 13.51

)
,
(

8.54 3.76
3.76 13.97

)
,
(

11.65 6.02
6.02 7.96

)
,
(

16.35 7.45
7.45 22.68

)
,

(
8.96 5.35
5.35 9.73

)
,
(

14.71 8.13
8.13 22.89

))
,

̂̃Λ =

((
−0.06
0.67

)
,
(
−0.83
0.64

)
,
(

1.04
1.20

)
,
(
−0.79
−0.56

)
,
(

0.97
1.28

)
,
(

0.84
0.92

)
,
(

0.75
1.14

))
,

and ν̂ = 20.849.
Some differences to the FMSN model considered in [6] appear here, where for females

the maximum Rényi entropy based on FMSN distributions is obtained for m = 7.
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(b)

Figure 3. Selected FMST fits for (a) males (m = 6) and (b) females (m = 7). Each color is related to
each FMST component.

Table 1. Summary of FMST models. Upper and lower bounds of Rα(Y) and their average are
computed for α = 2. For each FMST model and number of clusters m, the AICand BICcriteria
are computed.

Gender m ν̂ Upper Rα(Y) Lower Rα(Y) Average Rα(Y) AIC BIC

Males 2 26.43 18.65 9.98 14.31 7747.17 7809.96
3 100 19.39 9.05 14.22 7747.83 7844.11
4 100 19.81 9.27 14.54 7747.76 7877.53
5 100 20.07 8.44 14.26 7753.50 7916.77
6 100 20.32 8.87 14.60 7756.28 7953.03
7 100 20.43 8.38 14.41 7770.71 8000.95
8 100 20.43 8.01 14.22 7775.86 8039.59
9 100 20.52 7.82 14.17 7778.41 8075.64
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Table 1. Cont.

Gender m ν̂ Upper Rα(Y) Lower Rα(Y) Average Rα(Y) AIC BIC

Females 2 20.09 20.10 10.72 15.41 8835.20 8898.62
3 70.62 20.82 9.88 15.35 8842.99 8940.25
4 85.97 21.30 9.60 15.45 8838.54 8969.62
5 16.35 21.45 9.53 15.49 8847.64 9012.55
6 17.68 21.76 9.25 15.51 8846.07 9044.81
7 15.99 21.87 9.32 15.60 8850.85 9083.42
8 17.23 21.91 8.82 15.36 8864.95 9131.34
9 16.83 21.96 8.72 15.34 8874.23 9174.45

10 20.02 22.04 8.68 15.36 8892.39 9226.44
11 11.91 22.08 8.41 15.24 8902.36 9270.24

4. Conclusions and Final Remarks

We derive upper and lower bounds on the Rényi entropy of a multivariate skew-t
random variable. Then, we extended these tools to the class of finite mixture of multivariate
skew-t densities. Considering the average of these bounds, the approximate value of
entropy can be calculated. Both entropies converge to finite value of a multivariate skew-t
random variable and its mixture model for any values of α order, ν degrees of freedom
parameter, and dimension d. Given that FMST Rényi entropies are localized between the
upper and lower bounds, the average of these bounds can be used as an approximation of
the FMST Rényi entropies. In addition, the FMST Rényi entropy bounds provide useful
information about the data and could be considered as a criterion to choose the possible
number of components in each gender-based group.

We present an application to 2-dimensional length-weight swordfish data. We com-
pared our results with those obtained in [6]. Given that best results of the work in [6]
were obtained using the FMSN Rényi entropies, the Rényi entropy bounds of FMST are
compared with the FMSN model, rather than the simplest normal model. As in [6], AIC
and BIC values increase when the m increases, where the minimum AIC and BIC values
correspond to the simplest model with m = 2 components. This fact is related to data set
complexity (high-dimensionality) and parsimonious models (large number of parameters).
However, of all these models, the FMST model has smaller AIC and BIC values with respect
to those obtained under the FMSN one (see Table 3 of [6]). The latter is produced by the
presence of heavy-tails in distributions of female swordfish, as the FMST model is more
flexible than the FMSN one.

Finally, we encourage researchers to use the proposed approach for real-world appli-
cations and data analysis, such as environmental [32] and biological [7,30] data.
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