
mathematics

Article

Approximation of CDF of Non-Central Chi-Square Distribution
by Mean-Value Theorems for Integrals

Árpád Baricz 1,2 , Dragana Jankov Maširević 3 and Tibor K. Pogány 2,4,*
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Abstract: The cumulative distribution function of the non-central chi-square distribution χ′2n (λ) of n
degrees of freedom possesses an integral representation. Here we rewrite this integral in terms of
a lower incomplete gamma function applying two of the second mean-value theorems for definite
integrals, which are of Bonnet type and Okamura’s variant of the du Bois–Reymond theorem. Related
results are exposed concerning the small argument cases in cumulative distribution function (CDF)
and their asymptotic behavior near the origin.
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1. Introduction with Historical Notes and Motivation

The non-central χ2 distribution with n ∈ N degrees of freedom (in general, n can
be a non-negative real number, see ([1] (p. 436), [2]) and non–centrality parameter
λ > 0 is usually denoted by χ′ 2

n (λ) (see, e.g., [1] (p. 433)) and it is one of the most
applied distributions: it is important in calculating the power function of some statistical
tests [3], precisely in approximating to the power of χ2-tests applied to contingency tables
(goodness of fit tests) ([1] (p. 467)); it frequently occurs in finance, estimation and decision
theory and time series analysis [4,5] and can also be regarded as a generalized Rayleigh
distribution ([1] (p. 435)) in which case it is used in mathematical physics; when it is
used in communication theory then we call the appropriate complementary cumulative
distribution function the generalized Marcum Q-function and the non-centrality parameter
is interpreted as a signal-to-noise ratio [1].

The beginnings of the research that led up to the model and finally results in the χ2
n

distribution, which is the zero non-centrality parameter case of non-central χ′2n (λ), that
is χ2

n ≡ χ′2n (0), can be located around the middle of the 19th century. More precisely
there are two main opinions exposed: firstly, the influential work by Lancaster [6] who
attributed certain preliminary results to Bienaymé in ([7] (p. 58)) (never mentioning normal
distribution), which are in fact the same as what Karl Pearson did to earn his tables [8].
It is not surprising, Bienaymé’s interest in the sum of random squares and the related
distribution of errors; namely, we should have in mind his celebrated result on the linearity
of variance of a sum of independent random variables called the Bienaymé formula.
Lancaster proceeded then to Helmert, who in [9,10] derived that which we understand
in modern notation the χ2

n probability density function (PDF). Finally, Lancaster joined
Kruskal [11], suggesting to call the distribution by Helmert’s name.

Mathematics 2021, 9, 129. https://doi.org/10.3390/math9020129 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1238-5238
https://orcid.org/0000-0003-1238-5238
https://orcid.org/0000-0002-4635-8257
https://doi.org/10.3390/math9020129
https://doi.org/10.3390/math9020129
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9020129
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/2/129?type=check_update&version=2


Mathematics 2021, 9, 129 2 of 12

However, Sheynin [12], Plackett [13] and especially Kendall [14] have mentioned the
contribution of the applied mathematician and physicists Ernst Abbe, who has published
in his venia docendi thesis [15] in Jena, 1863, the χ2 distribution’s PDF ([12] (p. 1004)). It is
also worth mentioning that Helmert himself never explicitly mentioned this distribution
as Abbe’s result in this manner, but several times quoted the “modified Abbe’s criterion”
in geodetic literature ([12] (p. 1004)). Kendall emphasizes Abbe’s priority (agreeing with
Sheynin) and wrote a laudatio to his work regarding the derivation of the PDF of χ2

distribution (in a contemporary notation) ([14] (p. 311, Equation (11))), preceding Helmert
for at least twelve years.

A random variable (rv) ξ possesses non-central χ2 distribution, which we signify with
ξ ∼ χ′2n (λ) if the associated probability density function is ([4] (p. 396, Equation (1.7)))

fn,λ(x) =
1
2

e−(x+λ)/2
( x

λ

)(n−2)/4
In/2−1(

√
λ x), λ > 0, x > 0; n ∈ N, (1)

where Iν stands for the modified Bessel function of the first kind of order ν ([16] (p. 77))
and has the power series representation ([17] (p. 375, Equation (9.6.10)))

Iν(z) =
∞

∑
k=0

1
Γ(ν + k + 1) k!

( z
2

)2k+ν
; <(ν) > −1, z ∈ C . (2)

As for the historical background of related PDF and the associated cumulative distribution
function (CDF) we consult the monographs [1,18]. In accordance with ([18] (Chapter 1, §5))
the PDF of ξ ∼ χ′2n (λ) was pioneered in 1928 by Fisher [19] by a limiting process, while the
explicit derivation belongs to Tang [20] ten years later (we also draw the interested reader’s
attention to ([1] (Chapter 29, pp. 435 et seq.)). In 1949 Patnaik [21], then, among others,
Pearson [22], Sankaran [23] and Temme [24] have been studied the χ′2n (λ) distribution;
Temme claimed that his formulae have certain computational advantages

Fn,λ(x) =


1− 1

2

( x
λ

)n/4
[

Tn/2−1(
√

λx, ω)−
√

λ

x
Tn/2(

√
λx, ω)

]
, x > λ

1
2

( x
λ

)n/4
[√

λ

x
Tn/2(

√
λx, ω)− Tn/2−1(

√
λx, ω)

]
, x < λ

,

where ω = 1
2 (
√

x−
√

λ)2/
√

λx and

Tν(α, ω) =
∫ ∞

α
e−(ω+1)t Iν(t)dt.

Here we are interested in the CDF used in communication theory ([25] (p. 66,
Equation (1.1)))

Fn,λ(x) = 1−Qn/2(
√

λ,
√

x ), x > 0, (3)

where [26]

Qν(a, b) =
1

aν−1

∫ ∞

b
tνe−(t

2+a2)/2 Iν−1(at)dt, a, ν > 0; b ≥ 0, (4)

denotes the generalized Marcum Q-function of the order ν.
Finally, it is worth mentioning that Brychkov recently published a closed expression

for the generalized Marcum Q-function ([27] (p. 178, Equation (7))) in terms of the com-
plementary error function z 7→ erfc(z) ([28] (p. 160, Equation (7.2.2))), which immediately
implies a new formula for CDF (3) in the case when n ∈ N is odd. In turn, in the case of an
even number of the degrees of freedom, Jankov Maširević derived the following expression
for the appropriate CDF for all λ > 0, x > 0 [25]
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F2n,λ(x) = 1−
√

λx
2

I1
(√

λx
) [

K0
(√

λx
)
− K0

(√
λx, ln

√
x
λ

)]
+ λ I0

(√
λx
) ∂

∂λ

[
K0
(√

λx
)
− K0

(√
λx, ln

√
x
λ

)]
− e−

λ+x
2

√
λ

x

n

∑
m=1

(√
x
λ

)m

Im−1
(√

λx
)

. (5)

Here Kν stands for the modified Bessel functions of the second kind and

Kν(z, w) =

√
π

Γ
(

ν + 1
2

) ( z
2

)ν ∫ w

0
e−z cosh t sinh2ν t dt, <(ν) > −1/2,

is its incomplete variant ([29] (p. 26, Equation (1.30))), while

lim
w→∞

Kν(z, w) = Kν(z), <(z) > 0 ,

in the pointwise sense. Jankov Maširević established the computational efficiency of
Expression (5) versus the formulae derived by Patnaik, and those by Temme for even
n ∈ N, concluding that her approach is more efficient, compare ([25] (Section 3)).

The main aim of this paper is to present new results for the CDF (3) concerning
approximation formulae obtained by two variants of the second mean-value theorems for
definite integrals. Throughout, the non-centrality parameter λ > 0 and the variable x > 0.

2. Preliminaries and Auxiliary Results

Combining the integral form of the Marcum Q-function (4) and the integral ([30]
(p. 306, Equation (2.15.5.4)))

∫ ∞

0
tν+1 e−pt2

Iν(ct)dt =
cν ec2/(4p)

(2p)ν+1 , <(p) > 0, <(ν) > −1, | arg(c)| < π ,

we express the CDF (3) for all λ > 0 and x > 0 as

Fn,λ(x) =
e−λ/2

λn/4−1/2

∫ √x

0
tn/2 e−t2/2 In/2−1

(√
λ t
)

dt . (6)

This formula is the starting point for our main results, which concerns the approximate
calculation of the involved integral using two different types of mean-value theorems.

Our next main tools are two mean-value theorems for integrals, of which the inte-
grands contain products of two suitable functions f , g, say. Both theorems belong to the
so-called second mean-value theorems for definite integrals. The ancestor results of the
first version theorem belongs to Bonnet ([31] (p. 14)); however, for the second one we are
referred to the memoir by du Bois–Reymond ([32] (p. 83)) or also to Hobson’s article [31].
The case in which at least one of the input functions f , g is a constant (first mean-value
theorem) we skip in our present considerations. Now, recall the Bonnet variant of second
mean-value theorem by Schwind–Ji–Koditschek.

Theorem 1. ([33] (p. 559, Theorem 2)). Suppose f ∈ C(a, b] and g ≥ 0 is integrable on (a, b).
Let x ∈ (a, b] be fixed. If both limt→a( f (t)− K)/(t− a)r and limt→a g(t)/(t− a)s exist and
differ from zero for some constant K, a non-zero r and some s > −1 with r + s > −1, then:

1. There exists cx ∈ (a, x] so, that∫ x

a
f (t)g(t)dt = f (cx)

∫ x

a
g(t)dt.
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2. Moreover, for any such choice of cx there holds

lim
x→a

cx − a
x− a

=

(
s + 1

r + s + 1

) 1
r
. (7)

Remark 1. We notice that often a good choice for K in Theorem 1 is to take K = limt→a+ f (t) if
the limit exists or K = 0 otherwise, consult ([33] (p. 561)), also see [34–36] for ancestry of (7),
which describes the asymptotic behavior of cx.

Another approach in approximating the CDF of χ′2n (λ) is based on the use of the
Okamura’s version of the du Bois–Reymond’s second mean-value theorem for definite
integrals [37,38].

Theorem 2. ([39] (Equation (14))). Let f : [a, b] 7→ R be monotone and g : [a, b] 7→ R integrable.
Then there exists a c ∈ [a, b] such that∫ b

a
f (t)g(t)dt = f (a+)

∫ c

a
g(t)dt + f (b−)

∫ b

c
g(t)dt.

We point out that both Theorems 1 and 2 hold for Riemann integrable input functions.
However, stronger second mean-value theorem results for definite integrals for Lebesgue
integrable functions have been presented by Wituła–Hetmaniok–Słota in ([40] (p. 1614,
Theorem 3)).

3. Approximating CDF of χ′2
n (λ) Distribution

In this section we will state and prove our main results, derived from the formula (6)
and the mean-value Theorems 1 and 2.

Theorem 3. Let n ∈ N, λ > 0 and x > 0.

1. Then, there exists cx ∈ (0,
√

x ] such that

Fn,λ(x) =
( x

λ

)n/4
e−

λ+c2
x

2 In/2
(√

λx
)
. (8)

2. For cx there holds

lim
x→0

c2
x

x
=

n
n + 2

, n ∈ N , (9)

while

Fn,λ(x) =
e−λ/2

Γ(n/2 + 1)

( x
2

)n/2(
1 +O(x)

)
, x → 0. (10)

Proof. Consider the form of CDF given in (6). Making use of Theorem 1, with f (t) =

e−t2/2 ∈ C(R+), which imply K = limt→0 f (t) = 1 and by L’Hospital rule and r = 2
follows

lim
t→0

f (t)− K
tr = lim

t→0

e−t2/2 − 1
t2 = −1

2
6= 0;

then, choosing g(t) = tn/2 In/2−1
(
t
√

λ
)

and s = n− 1 we have

lim
t→0

g(t)
ts = lim

t→0

In/2−1
(
t
√

λ
)

tn/2−1 =
λ(n−2)/4

2n/2−1 Γ(n/2)
6= 0,

bearing in mind the asymptotics of the modified Bessel Iν for small z → 0 which is the
consequence of (2):
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Iν(z) =
1

Γ(ν + 1)

( z
2

)ν (
1 +O(z2)

)
, −ν /∈ N . (11)

Hence, for x > 0 fixed, according to part 1 of Theorem 1, there exists a cx ∈ (0,
√

x ]
for which

Fn,λ(x) =
e−

λ+c2
x

2

λn/4−1/2

∫ √x

0
tn/2 In/2−1

(
t
√

λ
)

dt =
( x

λ

)n/4
e−

λ+c2
x

2 In/2(
√

λx),

where in the last equality the formula ([41] (p. 676, Equation (6.561.7)))∫ 1

0
tν+1 Iν(at)dt = a−1 Iν+1(a), <(ν) > −1,

was taken.
By the second part of Theorem 1, bearing in mind that cx ∈ (0,

√
x ] and setting

r = 2, s = n− 1, a = 0, we have

lim
x→0

c2
x

(
√

x)2 = lim
x→0

c2
x

x
=

n
n + 2

, n ∈ N ,

that is (9). Now, the asymptotic behavior of the modified Bessel Function (11) approves the
Relation (10).

Corollary 1. Let the situation be the same as in the preamble of Theorem 3. Then there exists
c = cx ∈ (0, 1] such that

Fn,λ(x) =
( x

λ

)n/4
e−

λ+x·c2
2 In/2

(√
λx
)
. (12)

Proof. Using the substitution u = t/
√

x, from (6) mutatis mutandis

Fn,λ(x) =
√

λx e−λ/2
( x

λ

)n/4 ∫ 1

0
un/2e−xu2/2 In/2−1

(
u
√

λx
)

du, (13)

and then applying Theorem 1 repeating the above procedure for f (u) = e−xu2/2, r = 2,
g(u) = un/2 In/2−1

(
u
√

λx
)

and s = n− 1 we readily conclude the Formula (12).

In what follows we propose some numerical approximations for the real number cx
given in part 2 of Theorem 3 for small values of non-centrality parameter λ > 0.

Corollary 2. Let n ∈ N and x > 0. When λ→ 0, in (8) we have

c2
x = −2 log

[(
2
x

)n/2
γ
(n

2
+ 1,

x
2

)
+ e−x/2

]
. (14)

Proof. Combining the Formulae (3) and ([26] (p. 70))

lim
a→0

Qν(a, b) =
1

Γ(ν)
Γ
(

ν, b2/2
)

,

where Γ(·, ·) denotes the upper incomplete gamma function ([28] (p. 174, Equation (8.2.2)))

Γ(a, z) =
∫ ∞

z
ta−1 e−t dt, <(a) > 0,
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we obtain

lim
λ→0

Fn,λ(x) = 1− Γ(n/2, x/2)
Γ(n/2)

. (15)

Now, from (11) we observe

lim
λ→0

In/2(
√

λx)
λn/4 =

xn/4

2n/2Γ(n/2 + 1)

which, in conjunction with (8) implies that

lim
λ→0

Fn,λ(x) =
( x

2

)n/2 e−c2
x/2

Γ(n/2 + 1)
, cx ∈ (0,

√
x ] . (16)

Equating the right-hand-side expressions in (15) and (16) we arrive at

Γ(n/2 + 1)− n
2

Γ(n/2, x/2) =
( x

2

)n/2
e−c2

x/2. (17)

The identities ([28] (p. 178, Equation (8.8.2–3)))

Γ(a + 1, z) = aΓ(a, z) + zae−z; γ(a, z) + Γ(a, z) = Γ(a),

where γ(·, ·) is the lower incomplete gamma function, defined by ([28] (p. 174,
Equation (8.2.1)))

γ(a, z) =
∫ z

0
ta−1e−t dt, <(a) > 0,

one transforms (17) into(
2
x

)n/2
γ
(
n/2 + 1, x/2

)
+ e−x/2 = e−c2

x/2.

Now, obvious steps lead to the final form of c2
x.

Corollary 3. For the small enough values of the non-centrality parameter λ and the argument x
the magnitude of approximation satisfies the relation

c2
x

x
− n

n + 2
= − n x

4(n + 4)
+ o(x), x → 0. (18)

Proof. Recalling the asymptotic of the lower incomplete gamma function, which we
deduce from the hypergeometric form expression ([17] (p. 262, Equation (6.5.12))), written
in Landau’s notation

γ(α, z) =
zα

α

(
1− α z

α + 1
+ o(z)

)
, z→ 0 ,

after asymptotic expansion of both expressions inside square brackets in (14), we get

c2
x

x
= − 2

x
log
[

x
n + 2

(
1− (n + 2) x

2(n + 4)
+ o(x)

)
+ 1− x

2
+

x2

8
+ o(x2)

]
= − 2

x
log
[

1− nx
2(n + 2)

+
nx2

8(n + 4)
+ o(x2)

]
.

For when n is fixed and x is small enough, it is legitimate to express the logarithm via its
asymptotic expansion log(1 + h) = h + o(h), |h| < 1, which approves (18).



Mathematics 2021, 9, 129 7 of 12

Remark 2. The associated limit result (18) enables the approximation

Fn,λ(x) '
( x

λ

)n/4
exp

{
−λ

2
− nx

2(n + 2)
+

nx2

8(n + 4)

}
In/2

(√
λx
)
.

This estimate we can readily take into account in numerical calculation of CDF for the purpose of
comparison with another representations like Patnaik’s and Temme’s, for instance.

Corollary 4. For all λ > 0, x > 0 we have

F1,λ(x) =

√
2

πλ
sinh(

√
λx) e−

λ+c2
x

2 , (19)

where

c2
x = x + 2 log

[
1 +

1
λ
−
√

x
λ

cosh(
√

λx)
sinh(

√
λx)

]
.

Moreover,

F2,λ(x) =
√

x
λ

e−
λ+c2

x
2 I1(

√
λx), (20)

where

c2
x = x + 2 log

[
1−

√
x
λ

I2(
√

λx)
I1(
√

λx)

]
.

Proof. Having in mind that for non-negative integer m there holds ([27] (p. 178,
Equation (7)))

Qm+1/2(a, b) =
1
2

[
erfc

(
b− a√

2

)
+ erfc

(
b + a√

2

)]
+ e−(a2+b2)/2

m

∑
k=1

(
b
a

)k−1/2
Ik−1/2(ab),

the Formula (3) for n = 1 becomes

F1,λ(x) =
1
2

[
erf

(√
x−
√

λ√
2

)
+ erf

(√
x +
√

λ√
2

)]
. (21)

As (erf(z))′ = 2e−z2
/
√

π, equating (21) and the Formula (8) and then deriving such
equality with respect to λ we get

e−x/2
(

e−
√

λx − e
√

λx
)
=

2
λ

e−c2
x/2
(√

λx cosh(
√

λx)− (1 + λ) sinh(
√

λx)
)

.

Finally, the definition of hyperbolic sine implies (19).
The Formula (3) for n = 2 becomes F2,λ(x) = 1−Q(

√
λ,
√

x) where Q1(a, b) ≡ Q(a, b)
is the Marcum Q-function. Now, knowing that ([42] (p. 1221, Equation (5)))

∂Q(a, b)
∂a

= b I1(ab) e−(a2+b2)/2,

the first derivative of (8), with respect of λ becomes

−
√

x
2
√

λ
e−(λ+x)/2 I1(

√
λx) =

√
xe−(λ+c2

x)/2

[√
x

2λ
I2(
√

λx)− I1(
√

λx)
2
√

λ

]
,
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that is

e−x/2 = e−c2
x/2

[
1−

√
x
λ

I2(
√

λx)
I1(
√

λx)

]
,

giving (20).

The second approach in approximating the CDF of χ′2n (λ) is to apply Theorem 2.

Theorem 4. Let λ > 0, x > 0 and Rρ(n) = [(2/n− 1)+, 2/n + 1), where (a)+ = max{0, a}.
Then for all ρ ∈ Rρ(1) = [1, 3) there exists some c ∈ [0, 1] for which

F1,λ(x) =
e−λ/2
√

π

( x
2

)(ρ−1)/4
cosh(

√
λx )

[
γ
(3− ρ

4
,

x
2

)
− γ

(3− ρ

4
,

xc2

2

)]
. (22)

When ρ ∈ Rρ(2) = [0, 2) there exists certain c ∈ [0, 1] that

F2,λ(x) = e−λ/2
( x

2

) ρ
2
{

I0
(√

λx
)

γ
(
1− ρ/2, x/2

)
+
[
δρ0 − I0

(√
λx
)]

γ
(
1− ρ/2, xc2/2

)}
, (23)

where δab stands for the Kronecker delta.
Moreover, for all n ∈ N3 = {3, 4, . . . } and ρ ∈ Rρ(n) there exists c ∈ [0, 1] such that

Fn,λ(x) =
λ(2−n)/4
√

2
e−λ/2

( xρ

2ρ−1

)n/4
In/2−1

(√
λx
)

×
[
γ
( (1− ρ)n + 2

4
,

x
2

)
− γ

( (1− ρ)n + 2
4

,
xc2

2

)]
. (24)

We remark that the value of c is not necessarily the same throughout.

Proof. Consider the CDF’s integral representation (13) in which the integration domain is
the unit interval [0, 1]. Our intention is to specify the appropriate input functions f , g in a
simple way and by scaling only the exponent of the power term—the integrand contains a
product of three functions—to prepare it for the use of Okamura’s Theorem 2. Precisely,
consider for some real ρ (which range will be established later):

fn,ρ(t) = tρ n/2 In/2−1
(
t
√

λx
)
; gn,ρ(t) = t(1−ρ) n/2 e−xt2/2 .

From Formula (2) we can conclude that the function Iν(x) increases monotonically for
ν > 0, x > 0. Therefore, fn,ρ(t), as a product of monotonically increasing functions, also
monotonically increases. However, to establish the interconnection between the scaling
parameter ρ and the degrees of freedom n we are forced to employ a more sophisticated
approach. Namely, investigating the monotone behavior of fn,ρ(t), t ∈ (0, 1] we start with

f ′n,ρ(t) = tρ n/2−1
{[

(ρ + 1)n/2− 1
]

In/2−1
(
t
√

λx
)
+ t
√

λx In/2
(
t
√

λx
)}

. (25)

The function Iν is monotone decreasing with respect to the order, viz. ([43] (p. 220,
Equation (2)))

Iν(x) > Iµ(x), µ > ν ≥ 0, x > 0 ,

also consult [44–46] regarding this question. So, evaluating (25) we get

f ′n,ρ(t) ≥ tρ n/2−1 [(ρ + 1)n/2− 1 + t
√

λx
]

In/2(t
√

λx )

≥ tρ n/2−1 [(ρ + 1)n/2− 1
]

In/2(t
√

λx ),
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which is sufficient to see that f ′n,ρ(t) > 0 for ρ > 2/n− 1 and also follows f ′n,2/n−1(t) > 0
directly from (25). On the other side we have∫ 1

0
gn,ρ(t)dt =

1
2

( x
2

)[(ρ−1)n−2]/4
γ
(
[(1− ρ)n + 2]/4, x/2

)
; (26)

this expression makes sense for ρ < 1 + 2/n. Thus, having in mind the finiteness of
fn,ρ(0+) and collecting all these constraints we infer that the range of the scaling parameter
ρ is the interval Rρ(n) = [(2/n− 1)+, 2/n + 1).

Firstly, consider ρ ∈ Rρ(1) = [1, 3) with the associated input functions

f1,ρ(t) = tρ/2 I−1/2
(
t
√

λx
)
=

√
2/π

4
√

λx
t(ρ−1)/2 cosh(t

√
λx ) (27)

g1,ρ(t) = t(1−ρ)/2 e−xt2/2 .

Being ρ ≥ 1, the input limits are

f1,ρ(0+) = 0; f1,ρ(1) =
√

2/π
4
√

λx
cosh(

√
λx ) .

From (13) Okamura’s Theorem 2 there follows (22).
The case n = 2, ρ ∈ Rρ(2) = [0, 2) works since I0(0) = 1. Ergo, we have two different

solutions: when ρ = 0 and, respectively, ρ ∈ Rρ(2) \ {0} ≡ (0, 2). Indeed, since

f ′2,0(t) =
√

λx I1
(
t
√

λx
)
> 0,

f ′2,ρ>0(t) = tρ−1
[
ρ I0
(
t
√

λx
)
+ t
√

λx I1
(
t
√

λx
)]

> 0 , t ∈ (0, 1],

both f2,0(t) and f2,ρ>0(t) monotone increase for t ∈ (0, 1]. The associated limits read

f2,ρ(0+) = δρ0, f2,ρ(1) = I0
(√

λx
)
; ρ ∈ Rρ(2),

which leads to the master Formula (23) for the CDF F2,λ(x).
It remains to see n ∈ N3, ρ ∈ Rρ(n). Knowing that Iν(0) = 0, <(ν) > 0, we have

vanishing fn,ρ(0+) = 0 for ρ ≥ 0 and fn,ρ(1) = In/2−1
(√

λx
)
. By the monotonicity of

fn,ρ(t) and the integration result (26) of gn,ρ(t) we get

Fn,λ(x) =

√
λ

2eλ

(
2
λ

)n/4 ( x
2

)ρn/4
In/2−1

(√
λx
)

×
[
γ
( (1− ρ)n + 2

4
,

x
2

)
− γ

( (1− ρ)n + 2
4

,
xc2

2

)]
.

The rest is obvious. This completes the proof of the expression (24).

Remark 3. Let ξ1, ξ2 be independent random variables defined on a standard probability space
(Ω, A ,P) having χ′2n1

(λ1), χ′2n2
(λ2) distributions, respectively. Then the rv ξ1 + ξ2 ∼ χ′2n (λ),

where n = n1 + n2 and λ = λ1 + λ2, see, e.g., ([18] (p. 33, Teorema 27)). According to this
relation we can consider F2,λ(x) as the CDF of the sum of two χ′21 (λj), j = 1, 2 distributed random
variables where the linear combination λ = θλ1 + (1− θ)λ2, θ ∈ [0, 1] occurs between their
non-centrality parameters.

Moreover, the values θ = 0, 1 correspond to the problem of obtaining the CDF using the
property χ′2n (λ) = χ′21 (λ) + χ′2n−1(0) ≡ χ′21 (λ) + χ2

n−1, where the no–central and the central rvs
on the right are mutually independent, consult ([1] (p. 436)) and the related quotations therein.
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Corollary 5. Let λ > 0, x > 0. Then for all n ∈ N2 = {2, 3, 4, . . . } there exists certain c ∈ [0, 1]
such that

Fn,λ(x) =

√
πλ

2
e−λ/2

( x
λ

)n/4
In/2−1

(√
λx
)[

erf
(√

x/2
)
− erf

(
c
√

x/2
)]

. (28)

Also, for all n ∈ N3 = {3, 4, . . . } there exists some c ∈ [0, 1] for which

Fn,λ(x) = e−λ/2
(

2
λ

)(n−2)/4
In/2−1

(√
λx
) [

γ
(n + 2

4
,

x
2

)
− γ

(n + 2
4

,
xc2

2

)]
. (29)

Proof. The first case occurs when ρ = 1 in Theorem 4. From (27) we have

f1,1(t) =
√

2/π
4
√

λx
cosh(t

√
λx)

which results in f1,1(0+) =
√

2/π/ 4
√

λx. Hence, we consider n ∈ N2 in which case
fn,1(0+) = 0 and fn,1(1) = In/2−1

(√
λx
)
. Additionally, from (25) it follows for all n ∈

N2, t ≥ 0 that

f ′n,1(t) = tn/2−1 In/2−1(t
√

λx )(n− 1) +
√

λx tn/2 In/2(t
√

λx ) ≥ 0 .

So, fn,1(t) monotone increases on [0, 1]. Therefore

Fn,λ(x) =
√

λx e−λ/2
( x

λ

)n/4
In/2−1

(√
λx
) ∫ 1

c
e−xt2/2 dt

=

√
πλ

2
e−λ/2

( x
λ

)n/4
In/2−1

(√
λx
) [

erf(
√

x/2)− erf(c
√

x/2)
]
.

Here, the notation of the error function (or probability integral)

erf(z) =
2√
π

∫ z

0
e−t2

dt,

has been used.
Taking ρ = 0 in Theorem 4, from (27) f1,0(t) =

√
2/(πt)
4√λx

cosh(t
√

λx), no right limit
exists at zero, hence a fortiori n > 1. Having in mind the observations stated in the proof of
Theorem 4 for n ∈ N3 the Formula (29) follows immediately from (24), setting ρ = 0.

Remark 4. Recalling the relation ([28] (p. 176, Equation (8.4.1)))

γ(1/2, x) =
√

π erf(
√

x )

the representation Formula (28) becomes

Fn,λ(x) =

√
λ

2
e−λ/2

( x
λ

)n/4
In/2−1

(√
λx
)[

γ
(
1/2, x/2

)
− γ

(
1/2, xc2/2

)]
.

Author Contributions: The authors contributed equally to the manuscript and typed, read and ap-
proved the final version. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are grateful to the referees for careful reading of the first version of
the manuscript and for helpful comments that finally encompass the article.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2021, 9, 129 11 of 12

References
1. Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions; John Wiley & Sons, Inc.: New York, NY, USA, 1995;

Volume 2.
2. Robert, C. Modified Bessel functions and their applications in probability and statistics. Stat. Probab. Lett. 1990, 9, 155–161.

[CrossRef]
3. Kamel, A.S.; Abdel-Samad, A.I. On the computation of non-central Chi-square distribution function. Commun. Stat. Simul. Comput.

1990, 19, 1279–1291. [CrossRef]
4. András, S.; Baricz, Á. Properties of the probability density function of the non–central chi–squared distribution. J. Math. Anal.

Appl. 2008, 346, 395–402. [CrossRef]
5. Scharf, L.L. Statistical Signal Processing: Detection, Estimation, and Time Series Analysis; Addison–Wesley Publishing Co.: Boston, MA,

USA, 1990.
6. Lancaster, H.O. Forerunners of the Pearson χ2. Aust. J. Stat. 1966, 8, 117–126. [CrossRef]
7. Bienaymé, I.J. Sur la probabilité des erreurs d’après la méthode des moindres carrés. Liouville’s J. Math. Pures Appl. 1852, 17, 33–78.
8. Pearson, K. On a criterion that a given system of deviations from the probable in the case of a correlated system of variables is

such that it can be reasonably supposed to have arisen from random sampling. Philos. Mag. 1900, 50, 157–175. [CrossRef]
9. Helmert, F.R. Über die Berechnung des wahrscheinlichen Fehlers aus einer endlichen Anzahl wehrer Beobachtungsfehler. Z. Math.

Phys. 1875, 20, 300–303.
10. Helmert, F.R. Über die Wahrscheinlichkeit der Potenzsummen der Beobachtungsfehler und über einige damit im Zusammenhange

stehende Fragen. Z. Math. Phys. 1876, 21, 192–218.
11. Kruskal, W.H. Helmert’s distribution. Am. Math. Mon. 1946, 53, 435–438. [CrossRef]
12. Sheynin, O.B. Origin of the theory of errors. Nature 1966, 211, 1003–1004. [CrossRef]
13. Plackett, R.L. Karl Pearson and the Chi-Squared Test. Int. Stat. Rev. 1983, 51, 59–72. [CrossRef]
14. Kendall, M.G. Studies in the history of probability and statistics. XXVI. The work of Ernst Abbe. Biometrika 1971, 58, 369–373.

[CrossRef]
15. Abbe, E. Über die Gesetzmässigkeit in der Vertheilung der Fehler bei Beobachtungsreihen; Dissertation zur Erlangung der Venia Docendi

bei den Phyilosophischen Fakultät in Jena; Verlag Frommann: Jena, Germany, 1863.
16. Watson, G.N. A Treatise on the Theory of Bessel Functions; Cambridge University Press: London, UK, 1922.
17. Abramowitz, M.; Stegun, I.A. (Eds). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Applied

Mathematics Series 55; National Bureau of Standards: Washington, DC, USA, 1964; Reprinted by Dover Publications, New York,
1972.

18. Mihoc, G.; Craiu, V. Treatise on Mathematical Statistics, Sampling and Estimation; With an English Table of Contents; Editura
Academiei Republicii Socialiste România: Bucureşti, Romania, 1976; Volume I. (In Romanian)
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