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Abstract: Operating in energy and commodity markets require a management of risk using derivative
products such as forward and futures, as well as options on these. Many of the popular stochastic
models for spot dynamics and weather variables developed from empirical studies in commodity and
energy markets belong to the class of polynomial jump diffusion processes. We derive a tailor-made
framework for efficient polynomial approximation of the main derivatives encountered in commodity
and energy markets, encompassing a wide range of arithmetic and geometric models. Our analysis
accounts for seasonality effects, delivery periods of forwards and exotic temperature forwards where
the underlying “spot” is a nonlinear function of the temperature. We also include in our derivations
risk management products such as spread, Asian and quanto options.
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1. Introduction

In commodity markets, forwards and futures are traded actively in various markets
and over-the-counter as a means of hedging production, controlling price risk or for pure
speculation. Other derivatives, such as plain-vanilla call and put options are also widely
offered for trade at organised exchanges. Such options are typically written on forward
and futures contracts, but there exist also a wide zoology of tailor-made derivatives, which
have payoff structures to mitigate risk exposure towards various factors beyond price, for
example temperature in a power market context. To effectively apply forward, futures
and derivatives in commodity and energy markets for risk management, one must have
available efficient methods for quantifying the prices of these assets. This paper provides a
theoretical framework for the application of polynomials to price derivatives.

The no-arbitrage theory in financial mathematics determines prices in a complete
market situation as the risk-neutral expected payoff (see, e.g., [1]). In incomplete markets,
which is the typical situation in commodity and energy markets, prices can be valued by
the expected payoff as well, but then under a pricing measure that must be determined (the
reader is referred to the works of Geman [2] and Eydeland and Wolyniec [3] for a general
commodity market analysis and that or Benth, Šaltytė Benth and Koekebakker [4] for
stochastic modelling and pricing). In either case, a straightforward method for computing
prices is to simulate the payoff, known as a Monte Carlo approach. In a few rare cases,
even formulas are available, for example the famous Black–Scholes or Black76 formulas
for call and put options or Margrabe’s formula for spread options. These formulas require
the very restrictive assumption of a geometric Brownian motion describing the spot dy-
namics. Alternatively, in a more general Markovian setting for the underlying stochastic
price dynamics (for the spot price of the forward/futures prices), one can resort to the
accompanying partial differential equation and numerical methods to solve this. Another
approach, which requires knowledge of the characteristic function of the underlying asset
dynamics, is numerical integration of Fourier-based representations of the price. For an
analysis of these methods in the context of energy markets, the interested reader is referred
to the work of Benth, Šaltytė Benth and Kokebakker [4].
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Polynomial processes provide an attractive alternative to the pricing approaches men-
tioned above. A polynomial process is, roughly speaking, a process for which the conditional
moments become polynomials of lower order of the process. Polynomials are extremely
efficient to compute on a computer, and thus such processes provide a framework for
pricing. Indeed, polynomial processes have gained, since their introduction by Cuchiero [5],
a lot of attention in the research literature and in various application areas, maybe foremost
within finance (see the works of Filipović and Larsson [6] and Cuchiero, Keller-Ressel and
Teichmann [7] for polynomial processes in finance). Most of the models used in commodity
and energy markets are within the polynomial class, and pricing of forwards, futures and
derivatives are feasible using methods from polynomial process theory.

Forwards and futures are settled on commodity and energy spot prices, which can
be modelled by a polynomial process or some function thereof. Such functions can be
exponentials, which has a series representation in terms of monomials or, as in weather
markets or power, nonlinear functions of max/min type. The latter appears for example in
connection with HDD and CDD weather futures traded at the CME exchange in the US.

We analyse the problem of deriving forward and futures pricing in these different
situations, where we include seasonality, multi-factor models and delivery periods into our
framework. The polynomial processes are of jump-type, following the recent introduction
and analysis of Filipović and Larsson [8]. When we face nonlinear functions, we rely on
series expansions of the function in terms of polynomials which are related to the ratio
between the distribution of the polynomial process and a target distribution. Our analysis
extends in this respect the ideas and derivations by Ackerer, Filipović and Pulido [9], who
studied call and put options on an asset price with stochastic volatility. Recently, Ware [10]
proposed and empirically estimated a polynomial model for power prices in Alberta,
Canada, while Kleisinger-Yu, Komaric, Larsson and Regez [11] studied long-term forwards
in the EEX power market using some specific polynomial processes. The current paper
provides a general polynomial framework for forward and futures pricing in commodity
and energy markets.

We also price general options on forwards and futures. These can, in some cases, be
viewed as compound options. For example, options on temperature futures are options on
options on temperature. This is a new application of polynomial processes in derivatives
pricing, which, as we device here, relies again on the existence of polynomials for the
ratio between the polynomial process distribution and a target distribution. An example is
the class of multivariate Hermite polynomials, which are closely related to the Gaussian
distribution, or the Laguerre polynomials, which are associated with the Gamma distri-
bution. We also provide series expansions for the prices of spread and quanto options,
exotic derivatives which are relevant in the energy markets. It is worth noticing that the
pricing formulas based on polynomial analysis gives regression-type expressions for the
derivatives price in terms of the current price of the underlying (or the factors thereof).
Such relations can be proven useful in statistical studies of derivatives prices.

The analysis of this paper is presented as follows. In Section 2, we give a brief account
on polynomial jump-diffusions, followed up by a short survey section of different stochastic
dynamical models used in pricing forwards and options in commodity and energy markets.
Section 4 provides a detailed analysis of polynomial processes and pricing of commodity
and energy forward contracts. In Section 5, we price options on forwards based on
polynomial processes. Finally, we end the paper with conclusions and outlook.

2. Background on Polynomial Jump-Diffusion Processes

We first recall the definition of a polynomial jump-diffusion process with values in
E ⊆ Rd. Our presentation is adopted from Filipović and Larsson [8].

Throughout the paper, we let (Ω,F ,P) be a probability space equipped with a filtra-
tion (Ft)t≥0 satisfying the usual conditions (see [12]). For a subset E ⊆ Rd, d ∈ N, we denote
Poln(E) the set of real-valued polynomials on E with order at most n ∈ N0 := N ∪ {0},
while Pol(E) is the algebra of all polynomials on E. To be precise, a polynomial p ∈ Pol(E)
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is defined as the restriction p = q|E of a polynomial q ∈ Poln(Rd), with degree deg(p) =
min{deg(q) : p = q|E, q = Pol(Rd)}.

Consider a stochastic process (X(t))t≥0 with state space E being a special semimartin-
gale and having the property that

f (X(t))− f (X(0))−
∫ t

0
G f (X(s))ds

is a local martingale for all f ∈ C2
b(R

d), the space of bounded twice continuously differen-
tiable real-valued functions on Rd. Here,

G f (x) = a(x)>∇ f (x) +
1
2

Tr
(

σ(x)∇2 f (x)
)
+
∫
Rd
( f (x + z)− f (x)− z>∇ f (x))`(x, dz)

for measurable functions a : Rd → Rd and σ : Rd → Sd
+, Sd

+ is the space of positive-
semidefinite symmetric d × d matrices. Furthermore, `(x, ·) is the Lévy jump measure
on Rd, with properties `(x, {0}) = 0 and

∫
Rd min(|z|, |z|2)`(x, dz) < ∞ for all x ∈ Rd.

Additionally, we assume that G f (x) = 0 for x ∈ E for all f ∈ Pol(Rd) with the property
that f (x) = 0 for x ∈ E and that the Lévy measure has finite moments of all orders, i.e.,∫

Rd
|z|n`(x, dz) < ∞

for all x ∈ Rd and n ≥ 2. Filipović and Larsson [8] referred to this as G being well defined.
Following Filipović and Larsson ([8], Definition 1), the E-valued jump-diffusion process
(X(t))t≥0 with extended generator G is said to be a polynomial process if G maps Poln(E)
into itself for each n ∈ N. By Lemma 1 in Filipović and Larsson [8], a characterisation of
the polynomial processes is given as

a ∈ Pol1(E)

σ +
∫
Rd

zz>`(·, dz) ∈ Pol2(E)∫
Rd

zα`(·, dz) ∈ Pol|α|(E)

for all multi-indices α = (α1, . . . , αd) ∈ Nd
0 where |α| := α1 + · · · + αd ≥ 3. Moreover,

zα = zα1
1 · · · z

αd
d . This is an “if and only if” characterisation.

The attractive property of polynomial processes is that they are stable under condi-
tional expectations of polynomials applied to the process. This property will play a key
role in our analysis of derivatives pricing in energy and commodity markets. To this end,
introduce a polynomial basis vector for Poln(E), denoted by

Hn,d(x) = (1, v1(x), . . . , vK(x))> (1)

for x ∈ E and K := K(n, d) := dim Poln(E)− 1. Sometimes, we may for notational reasons
write v0(x) for the basis vector 1. In the basis Hn,d(x), we have vi ∈ Poln(E), i = 0, 1, . . . , K.

Remark 1. The dimension of Poln(R2) is easily shown to satisfy dim Poln(R2) = n + 1 +
dim Poln−1(R2). Since dim Pol0(R2) = 1, we find that

dim Poln(R2) = 1 +
n+1

∑
i=1

i =
1
2
(n + 2)(n + 1).

In general, we have dim Poln(Rd) = (n+d
n ) (see, e.g., [8]).
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For p ∈ Poln(E), let pn ∈ RK+1 be the coefficient vector such that p(x) = p>n Hn,d(x).
Furthermore, let Gn,d be the (K + 1) × (K + 1)-matrix representation of G restricted to
Poln(E), which is determined by

GHn,d(x) = Gn,dHn,d(x). (2)

It follows that
Gp(x) = p>n Gn,dHn,d(x).

We end this section with the main result of importance for our analysis ([8] Theorem 1):

Theorem 1. Assume (X(t))t≥0 is an E-valued polynomial process. Then, for any n ∈ N0 and
p ∈ Poln(E), it holds that

E[p(X(T)) | Ft] = p>n exp(Gn,d(T − t))Hn,d(X(t))

for any T ≥ t, with pn ∈ RK+1 being such that p(x) = p>n Hn,d(x).

In this paper, we mostly deal with polynomial processes having state space E = Rd.
However, from time to time, we also encounter other state spaces in the discussion.

3. Forwards and Options on Energy and Commodities in a Polynomial Context

We review some models which are popular to apply in a commodity and energy
market modelling context. The focus is on stochastic models for the spot price dynamics,
including other relevant “spots” such as temperature and wind speed indices. We argue
for the overwhelming evidence of polynomial processes in energy and more generally
commodities markets modelling.

3.1. Commodity “Spot” Dynamics

The classical commodity spot model is given by the Schwartz model (see [13]): let

S(t) = exp(X(t)) (3)

where X follows an Ornstein–Uhlenbeck process

dX(t) = (µ− αX(t))dt + σdB(t). (4)

Here, µ, α and σ are constants, with σ and α being positive, and B is a standard
Brownian motion. The Schwartz–Smith/Gibson–Schwartz model (see [14,15]) is a two-
factor extension of this which adds to X another drifted Brownian motion or Ornstein–
Uhlenbeck model (see the works of Lucia and Schwartz [16] for a power market application
and Prokopczuk [17] on freight futures). General multi-factor Ornstein–Uhlenbeck models
which also include Lévy processes as drivers for the noise were analysed by Benth, Šaltytė-
Benth and Koekebakker [4]. That is, a general spot model for commodities and energies
may be

S(t) = exp(γ>X(t)) (5)

where γ ∈ Rd and X follows a d-dimensional Ornstein–Uhlenbeck process

dX(t) = (µ− AX(t))dt + dL(t). (6)

for µ ∈ Rd, A a d× d-matrix and L a d-dimensional Lévy process. Ornstein–Uhlenbeck
processes in Rd belong to the class of polynomial processes. Nomikos and Soldatos [18]
proposed a two-factor model of this kind for spot power prices in the NordPool electricity
market, where they assume a Brownian motion and jump-driven Ornstein–Uhlenbeck
process. Seasonality is added to the exponential stochastic dynamics, and the model is
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even extended to allow for a regime switch in the level µ of the Gaussian factor to account
for the impact of reservoir filling.

The Pilipović model (see [19] (Page 64)) is another class of polynomial mean-reverting
two-factor process for the spot price of energies. Here, the spot price is assumed to follow
the dynamics

dS(t) = α(L(t)− S(t))dt + σS(t)dB(t),

with a stochastic long-term equilibrium level L following a geometric Brownian motion
and α, σ positive constants. By fixing the long-term level L to be a constant, this model
coincides with what is called a GARCH diffusion by Filipović and Larsson [8] (Example 2).

A typical feature of many commodity markets, in particular energy and weather
markets, is seasonality. In geometric models such as (5), one typically lets t 7→ Λ(t) be a
positive-valued seasonality function and assumes

S(t) = Λ(t) exp(γ>X(t)).

A simple rewriting gives,

S(t) = exp(λ(t) + γ>X(t)). (7)

with λ(t) := ln Λ(t). Cartea and Figueroa [20] proposed such a model for electricity spot
prices in England and Wales, where the X is a univariate Ornstein–Uhlenbeck process of the
form (6) with L being a Lévy prices with both Brownian motion and a compound Poisson
process present. Interestingly, Mirantes, Población and Serna [21] proposed a stochastic
seasonality model for the spot dynamics of Henry Hub natural gas prices. In their model,
λ is assumed to follow a sum of complex Ornstein–Uhlenbeck processes in order to capture
a trigonometric seasonal variation which is affected by random fluctuations. If we were
to allow for complex-valued processes in our framework, this would mean that we could
extend the size of the vector X by this number of complex-valued Ornstein–Uhlenbeck
processes and let λ(t) = 0 in (7).

So-called arithmetic models have also been proposed, taking the form

S(t) = λ(t) + γ>X(t) (8)

Temperature (see the work of Benth and Šaltytė Benth [22] for empirical analysis and
stochastic modeling) may be described by an arithmetic CARMA-process, which is given by
(8) and a special case of (6) with A being a particular matrix and L is a Brownian or Lévy
noise in just the last dimension and zero otherwise. For example, choosing γ = u1, the
canonical unit vector in Rd, u>1 X(t) will form a continuous autoregressive process of order
d, a so-called CAR(d)-model. CAR(3)-processes have been used to model the temperature
dynamics in several locations across the globe (see, e.g., the works of Härdle and Lopez-
Cabrera [23] for US cities and Asian cities and Swishchuk and Cui [24] for Canadian cities).
Geometric multi-factor CARMA-processes have been proposed in the context of commodity
futures pricing (see the work of Paschke and Prokopczuk [25] for crude oil).

Power spot markets have a cap on the range of possible prices, which defends the
introduction of a stochastic model with values in a given interval. Ware [10] proposed to
model the power spot price dynamics in Alberta, Canada using a polynomial transform of
the Jacobi process,

dX(t) = α(µ− X(t))dt + σ
√

X(t)(1− X(t))dB(t) (9)

with α > 0, θ ∈ [0, 1] and σ > 0. The Jacobi process takes values in the unit interval
[0, 1] and is an example of a polynomial process. We remark that the Jacobi process was
proposed as a stochastic volatility model by Ackerer, Filipović and Pulido [9] in financial
derivatives pricing. Kleisinger-Yu et al. [11] proposed to model power spot by a quadratic
polynomial of a two-factor Schwartz–Smith dynamics in a theoretical and empirical hedge
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study of long-term power forward contracts. They also considered a stochastic correlation
between the two factors modelled as the Jacobi process.

Wind futures based on relative wind production to total capacity require a “spot”
which is a process taking values in the unit interval [0, 1]. Hence, the Jacobi process is a
potential candidate. However, Benth and Pircalabu [26] suggested an exponential process
of the form (7) with X being the negative of a univariate Ornstein–Uhlenbeck process as
in (6) driven by a subordinator Lévy process. This leads to the exponential of polynomial
process with jumps, with state space [0, 1]. The Cox–Ingersoll–Ross (CIR) stochastic process
was applied by Bensoussan and Brouste [27] to model 10-min wind speed data at rotor
height in Wyoming, USA. The CIR stochastic dynamics is an example of a polynomial
process. Benth and Rohde [28] extended the study of Bensoussan and Brouste [27] in two
different directions. Considering a finite sum of squared CARMA processes, they defined
a so-called CIR-CARMA model on the one hand. As an alternative to this, they defined
and analysed a CARMA-process with exponential jumps. Both models fit wind speed
data very well and are within the class of polynomial processes (the former in fact being a
polynomial transform of a polynomial process).

There also exists some research on stochastic volatility models with polynomial struc-
ture in the context of energy markets. Kyriakou et al. [29] proposed a mean-reverting
exponential model with jumps and a Heston stochastic volatility for the spot dynamics of oil
prices. They calibrated their model to different refined oil futures price series in Europe and
the US. Kleisinger-Yu et al. [11] modelled the correlation by a Jacobi process in a polynomial
power dynamics model.

All these mentioned processes are polynomial, demonstrating from an empirical
and theoretical point of view the relevance of this class of dynamical models for risk
management in commodity and energy markets.

3.2. Plain-Vanilla Forward Contracts

The forward price F(t, T) at time t ≥ 0 of a plain-vanilla forward contract delivering
at time T ≥ t is given as

F(t, T) = E[S(T) | Ft], (10)

assuming that S is integrable. We suppose in this work that the risk-free interest rate is
fixed to be r > 0. Thus, forwards and futures prices are identical, and we do not make any
distinction between them. Notice also that we assume P to be the pricing measure, which is
not necessarily equal to the market/objective probability. If the spot can be liquidly traded,
the pricing measure is equal to the risk-neutral probability (i.e., the equivalent martingale
measure).

We notice from (10) that, when S follows a geometric model (7), we find from the
power expansion of the exponential function

F(t, T) =
∞

∑
n=0

1
n!
E[(λ(T) + γ>X(T))n | Ft] (11)

assuming that we can interchange summation and expectation. The forward price can
thus be computed by conditional expectations of polynomials of X. One can also use
other polynomial expansions of the exponential function, tailor-made to the distributional
properties of X. An arithmetic spot model (8) gives a very simple first-order polynomial
in the conditional expectation, while Ware [10], for example, assumed the spot to be a
polynomial of the Jacobi process, hence leading to a forward price of a finite sum of
conditional expectations of polynomials to be computed.

3.3. Exotic Forward Contracts

Temperature forwards traded at the Chicago Mercantile Exchange (CME) are written
on cooling-degree days (CDD) and heating-degree-days (HDD), which can be formulated
as, respectively, call and put options on temperature spot (see Jewson and Brix [30]). The
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German energy exchange EEX launched in 2015 and 2016 intraday cap and floor futures,
which have very similar settlement as temperature forwards (see the work of Hinderks and
Wagner [31] for a discussion and analysis of these cap and floor futures). If temperature S
is modelled by an arithmetic process (8), a CDD-forward price is

F(t, T) = E[max(S(T)− c, 0) | Ft] (12)

where c is a threshold temperature, which at the CME is set to 18 ◦C. The max-function
is obviously not polynomial, however, as presented by Ackerer et al. [9] in the context of
option pricing with stochastic volatility, and discussed in a broader context in this paper
below, one can represent the forward price (12) via a series of polynomials. Such series
representations may be utilised in practice by a truncation of the infinite series followed by
an efficient computation of the price resorting to the polynomial property of the process.

We remark that, in power and weather markets, as well as in freight markets, the
forwards deliver over a specified period of time T1 ≤ T ≤ T2 rather than at a fixed time
point T. This means that the forward price becomes simply a sum (or integral) over the
specified time period,

F(t, T1, T2) =
T2

∑
T=T1

F(t, T)

For example, in the temperature market, one is summing over the daily CDD or HDD,
which again is based on the average of the maximum and minimum temperature on a
given day. In the power market, one is aggregating over the hourly spot prices in the
delivery period. These delivery periods are typically given as weeks, months, quarters or
even years.

3.4. Options in Energy and Commodities

Exchange-traded options in energy and commodity markets are typically plain-vanilla
call and put options written on forward contracts. In the EEX market, e.g., call and put
options are listed on forwards delivering over months and quarters and years. The price of
such contracts is

C(t, τ) := e−r(τ−t)E[max(F(τ, T1, T2)− K, 0) | Ft]

for a call option with strike K and exercise time τ, written on a forward delivering over the
period [T1, T2], where τ ≤ T1. Other markets with similar contracts include temperature
derivatives at CME and options on the forward freight rate agreements (FFA) at the Baltic
Exchange in London, UK.

In the oil market, e.g., the options are written on forwards with fixed-delivery time,
i.e., the contract is settled on F(τ, T) with τ ≤ T. Such options are traded, e.g., at the
New York Mercantile Exchange (NYMEX). NYMEX also offers trade in spread options on
different blends of oil. Spreads play an important role in energy and commodity markets,
for example the spark and dark spreads between, respectively, power and gas and power
and coal. In the OTC-market, there exists an abundance of various options and derivatives
based on such spreads but also other variations of options on several underlyings as the
quanto options. Quanto options are settled on the product of two payoff functions with
respect to price and a volume measure such as temperature (see, e.g., [32]).

Asian-style options on spot prices are also attractive products in energy and com-
modity markets. Asian options on the spot price of electricity were traded on the Nord
Pool power exchange and at the Imarex shipping exchange a few decades ago (see [17,33]),
and Asian-like payoff structures on spots appear in many tailor-made commodity deriva-
tives contracts traded OTC. Fusai, Marena and Roncoroni [34] advocated Fourier-based
pricing methods for discretely-monitored Asian options in corn and gas markets using a
square-root (Cox–Ingersoll–Ross) stochastic process for the spot dynamics. Discrete and
continuous-time Asian options in the context of crude oil were priced by an iterative numer-
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ical method by Kyriakou, Pouliasis and Papapostolou [35] based on the Heston stochastic
volatility model and its Bates’ extension where the log-price dynamics have jumps (see
also [29]). The Heston along with the SABR stochastic volatility models were proposed
for oil futures price dynamics by Shiraya and Takahashi [36], who derived approximation
formulas by asymptotic expansions for Asian options. The models are calibrated using
WTI futures American options.

4. Polynomial Processes and Forward Pricing

As shown in the previous section, the problem of finding the forward price in com-
modity and energy markets can be reduced to computing

E
[

p(λ(t) + γ>X(t)) | Fs

]
(13)

for some t ≥ s ≥ 0, with X being an Rd-valued polynomial process, γ ∈ Rd and λ(t) a
deterministic function. We assume p ∈ Poln(R).

We see from Expression (13) that we are facing the following two problems when com-
puting the conditional expectation. First, we shift the polynomial process by a seasonality
function λ(T), which means that we need to know how the polynomials act under shifting.
We express this in terms of a shift in monomials, followed by a matrix for basis change
on Poln(R). Secondly, we consider polynomials on real-valued affine transformations of
multi-dimensional polynomial processes. This requires an understanding of how one trans-
forms p(γ>x) for a real-valued polynomial p into a polynomial on Rd, with γ, x ∈ Rd. We
can assign a linear transformation between the polynomial bases in Poln(R) and Poln(Rd).
In the next two lemmas, we spell this out.

The first lemma is a simple consequence of the binomial formula:

Lemma 1. Let Mn(x) = (1, x, x2, . . . , xn)> be a vector of monomials onR up to order n ∈ N. Then,

Mn(λ + x) = Λn(λ)Mn(x)

where Λn ∈ R(n+1)×(n+1) is a lower triangular matrix with elements (Λn(λ))ij = (i−1
j−1)λ

i−j for
i = 1, 2, . . . n + 1 and j ≤ i.

Proof. Let m ≤ n. Then, by the binomial formula,

(λ + x)m =
m

∑
k=0

(
m
k

)
λm−kxk

This yields the result.

If we are given a basis Hn(x) := Hn,1(x) of polynomials in Poln(R),

Hn(x) := (h0(x) := 1, h1(x), . . . , hn(x))> (14)

where hk(x) ∈ Poln(R), then one can find an invertible matrix Cn ∈ R(n+1)×(n+1) such that

Hn(x) = Cn Mn(x) (15)

In forward pricing, we consider polynomials which are shifted by the seasonal function
λ(t), p(λ(t)+ x). Hence, if pn ∈ Rn+1 is such that p(x) = p>n Hn(x), for Hn(x) as in Lemma
above, then we find

p(λ + x) = p>n Hn(λ + x) = p>n Cn Mn(λ + x) = p>n CnΛn(λ)Mn(x) = pn(λ)
>Hn(x)

with
pn(λ)

> := p>n CnΛn(λ)C−1
n . (16)



Mathematics 2021, 9, 124 9 of 30

We have the following technical result on changing from univariate to multivariate
polynomial bases:

Lemma 2. There exists an (n + 1)× (K + 1)-dimensional matrix Γn,d such that

Hn(γ
>x) = Γn,d Hn,d(x)

for any γ, x ∈ Rd. Here, K + 1 is the dimension of Poln(Rd).

Proof. From (15), we have that Hn(γ>x) = Cn Mn(γ>x). Moreover, by the multinomial
formula, it holds for 1 ≤ k ≤ n,

(γ>x)k = (γ1x1 + γ2x2 + · · ·+ γdxd)
k = ∑

k1+···+kd=k

(
k

k1, k2, . . . , kd

)
Πd

i=1γ
ki
i xki

i ,

where (
k

k1, k2, . . . , kd

)
=

k!
k1! · · · kd!

is the multinomial coefficient. Hence, (γ>x)k ∈ Polk(Rd) and Mn(γ>x) is an n + 1-
dimensional vector of polynomials in Poln(Rd). Therefore, we can find a matrix Γ̃n,d such
that Mn(γ>x) = Γ̃n,d Hn,d(x) and the lemma follows.

Typically, a seasonality function λ(t) may be a finite series of sine and cosine functions.
Since, for example, the pair of functions (sin(kt), cos(kt)) satisfies a two-dimensional first
order linear system of ordinary differential equations, we see that truncated series of
trigonometric functions fits into the framework of polynomial processes. This was pointed
out and discussed by Filipović and Willems [37] in their study of dividend derivatives. As
mentioned in Section 3, complex-valued Ornstein–Uhlenbeck processes were proposed
by Mirantes, Población and Serna [21] to model stochastic seasonality. Their model can
be viewed as an extension of the seasonality dynamics by Filipović and Willems [37]
with additive (complex-valued) noise. More generally, one can allow for polynomial
complex-valued processes of polynomial type to model stochastic seasonality. Such an
approach would in our framework imply that we ignore the seasonality function λ, i.e.,
let λ(t) = 0 and extend the dimensionality of the vector-valued polynomial process X (as
well as allowing for more generally complex-valued polynomial processes). The price we
would pay for interpreting the seasonality λ as a polynomial process would be that the
dimensionality d of X increases and hence the dimension K + 1 of Poln(Rd).

4.1. Plain-Vanilla Forward Prices

We find the following result, collecting the notation introduced in this section:

Proposition 1. Let p ∈ Poln(Rd). For T ≥ t ≥ 0, it holds,

E
[

p(λ(t) + γ>X(T)) | Ft

]
= pn(λ(T))>Γn,d exp(Gn,d(T − t))Hn,d(X(t))

where pn(λ) is given in (16), Γn,d in Lemma 2 and Gn,d is the polynomial transition matrix defined
in (2).

Proof. First note that a polynomial process has finite conditional moments of all orders
(see [8] (Theorem 1)). Hence, the conditional expectation is well-defined. From Lemma 2,
we have for γ, x ∈ Rd and λ ∈ R,

p(λ + γ>x) = p(λ)>Hn(γ
>x) = pn(λ)

>Γn,dHn,d(x).
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Hence,

E
[

p(λ(T) + γ>X(T)) | Ft

]
= pn(λ(T))>Γn,dE[Hn,d(X(T)) | Ft]

The result follows from the polynomial process property of X (see Theorem 1).

If the spot dynamics follows an arithmetic model (8), then we find the forward price
(10) as

F(t, T) = p1(λ(T))>Γ1,d exp(G1,d(T − t))H1,d(X(t))

where p1 := (p1,0, p1,1)
> is the vector such that x = p1,0h0(x) + p1,1h1(x). Of course, if we

choose H1(x) = M1(x), then p1 = (0, 1)>, C1 = I2, the 2× 2-identity matrix and

Λ1(λ) =

[
1 0
λ 1

]
Then,

p1(λ)
> = (λ, 1).

Furthermore, Γ1,d is in this case the matrix mapping M1(γ
>x) = (1, γ1x1 + · · · +

γdxd)
> into H1,d(x) = (v0(x), . . . , vd(x))>, with vi(x) being polynomials of order 1 on Rd.

If v0(x) = 1 and vi(x) = xi for i = 1, . . . , d, then

Γ1,d =

[
1 0 · · · 0
0 γ1 · · · γd

]
Thus, we have a simple relationship when the monomials are chosen as the basis of

H1,d(x). Indeed, the forward price is

F(t, T) = (λ(T), γ1, . . . , γd) exp(G1,d(T − t))


1

X1(t)
·
·

Xd(t)


Remark 2. Proposition 1 is a simple extension of the formulas by Kleisinger-Yu et al. [11] who
focussed on the case of p ∈ Pol2(Rd). Ware [10] also discussed such formulas in his polynomial
approach to power spot models.

Let us discuss the forward price dynamics in Proposition 1 from an empirical viewpoint.
To put our discussion into context, we note that Ware [10] proposed, among other models, a
one-factor polynomial diffusion process combined with a fifth-order polynomial as a spot
dynamics, i.e., S(t) = p(X(t)) with X ∈ R and p ∈ Pol5(R). Here, we ignore seasonality
for simplicity in the discussion. Then, using τ := T − t, the time to maturity, we get

f (t, τ) := F(t, t + τ) = θ> exp(G5,1τ)H5,1(X(t))

where θ := Γ>5,1 p5 ∈ R6. Using the monomials as basis, we have H5,1(x) = (1, x, x2, x3, x4, x5)>.
Moreover, as X is polynomial, we have that its drift a(x) := a0 + a1x is in Pol1(R) and
diffusion σ(x) = σ0 + σ1x + σ2x2 is in Pol2(R). If vk(x) = xk, k = 0, . . . , 5, it is easy to see
that Gv0(x) = 0, Gv1(x) = a(x) and Gvk(x) = a(x)kvk−1(x) + 1

2 σ2(x)k(k− 1)vk−1(x) for
k = 2, . . . , 5. Hence, G5,1 will be a lower triangular matrix with zero in the first row and
diagonal elements ka1 +

1
2 k(k− 1)σ2 for k = 1, . . . , 5. (Note that first diagonal element is

zero, the second is a1, the next is 2a1 + σ2, etc. to the last which is 5a1 + 10σ2.) The distinct
eigenvalues of the matrix then becomes λ0 = 0 and λk = ka1 +

1
2 k(k− 1)σ2 for k = 1, . . . , 5.

We can find a basis of R6 of eigenvectors w0, w1, . . . , w5, where w0 can be chosen to be the
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first canonical basis vector of R6 with 1 in first coordinate and zeros otherwise. From this,
we find

exp(G5,1τ)H5,1(X(t)) = w0 +
5

∑
k=1

eλkτw>k H5,1(X(t))wk (17)

In commodity markets, one typically expects forward prices to be flat in the long end
of the curve as long as spot prices are expected to possess some stationarity properties.
It is evident from above that the forward prices for large τ’s tend to p>5 w0 whenever the
eigenvalues λk are negative. Hence, we obtain a flat forward curve in the long end when
ka1 +

1
2 k(k− 1)σ2 < 0 for k = 1, . . . , 5. For example, if σ2 = 0, then this is achieved when

a1 < 0. On the other hand, in the Jacobi model suggested by Ware [10], σ1 = −1, which
again implies that a1 < 0. This is indeed the case in his model.

By an application of Ito’s formula, one furthermore observes that the volatility of
f (t, τ) will satisfy the Samuelson effect, as the volatility will be determined by the diffusion
term from X(t) and scaled by exponentials eλkτ . Whenever λk < 0, these exponentials will
tend to 1 when τ tends to zero, which gives a Samuelson effect as the forward volatility
converges to the spot volatility in this case.

It is also worth noticing that the sum of exponentials in (17) gives rise to several
humps in the forward term structure, that is, the curve τ 7→ f (t, τ) may have several local
maxima and minima according to the values of the eigenvalues. A hump shape behaviour
of the forward curve is reasonable from an economic viewpoint, indicating differences in
risk preferences of the traders along the forward curve. We refer to the work of Benth,
Šaltytė Benth and Koekebakker [4] for a discussion of the various stylised facts of forward
curves in power and commodity markets.

The analysis above can be generalised to arbitrary polynomials p, as well as also
extending the dimension of the polynomial process beyond d = 1.

If the spot follows a geometric model (7), then, from the Taylor series expansion
of the forward price in (11), one chooses the basis for Poln(R) to be the monomials, i.e.,
Hn(x) = Mn(x). The basis for Poln(Rd) is arbitrary selected. We find:

Proposition 2. Suppose the commodity spot dynamics is given by S(t) = exp(λ(t) + γ>X(t))
as in (7). Assume that exp(|γ>X(T)|) ∈ L1(P). Then, the forward price in (11) is given by

F(t, T) =
∞

∑
n=0

1
n!

u>n+1Λn(λ(T))Γn,d exp(Gn,d(T − t))Hn,d(X(t)),

where un+1 is the n + 1-canonical unit vector in Rn+1 (i.e., the vector with 1 in coordinate n + 1
and zero otherwise), Γn,d in Lemma 2, Λn(λ) in Lemma 1 and Gn,d in (2).

Proof. From the exponential integrability condition on γ>X(T), it follows from monotone
convergence (see [38] (Theorem 2.15)) that

∞

∑
n=0

1
n!
E[|λ(T) + γ>X(T)|n] = E[

∞

∑
n=0

1
n!
|λ(T) + γ>X(T)|n]

= E[exp(|λ(T) + γ>X(T)|]
≤ exp(|Λ(T)|)E[exp(|γ>X(T)|)] < ∞

Hence, in particular, we find thatE[|γ>X(T)|n] < ∞ for every n ∈ N. As ((γ>X(T))n)n∈N
therefore is a sequence in L1(P) and ∑∞

n=0
1
n!E[|γ>X(T)|n] < ∞, it follows from dominated

convergence theorem (see [38] (Theorem 2.25)) that

E[exp(λ(T) + γ>X(T)) | Ft] =
∞

∑
n=0

1
n!
E[(λ(T) + γ>X(T))n | Ft].
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By Lemma 1, we derive

E[(λ(T) + γ>X(T))n | Ft] = u>n+1E[Mn(λ(T) + γ>X(T)) | Ft]

= u>n+1Λn(λ(T))E[Mn(γ
>X(T)) | Ft].

Next, by Lemma 2 followed by the polynomial property of X yield,

E[Mn(γ
>X(T)) | Ft] = Γn,dE[Hn,d(X(T)) | Ft]

= Γn,d exp(Gn,d(T − t))Hn,d(X(t))

The result follows.

The Proposition above allows for stating the forward price as

F(t, T) =
∞

∑
n=0

1
n!

fn(t, T; X(t))

where x 7→ fn(t, T; x) ∈ Poln(Rd). In practical computations, one would of course truncate
the sum. One could also make use of the (truncated) sum in a regression study, where one
empirically could reveal the structure of the fn’s by regressing observed forward prices
against polynomials of X. Such a study requires knowledge of the state of X(t), which can
be recovered from the spot prices. Such recovery may involve stochastic filtering if d > 1.

The exponential integrability condition exp(|γ>X(T)|) ∈ L1(P) in Proposition 2 is
rather restrictive. Geometric Brownian motion, e.g., does not satisfy this condition for any
γ. From Example 2 of Filipović and Larsson [8], the GARCH diffusion process

dX(t) = κ(θ − X(t))dt +
√

2κX(t)dB(t)

for constants κ, θ ∈ R+ is a polynomial process with ergodic solution being inverse
Gaussian distributed with shape parameter 2 and 1/θ as scale. In the invariant case, X
does not have a finite variance and hence not being exponentially integrable either. By
letting θ be a geometric Brownian motion, the GARCH diffusion becomes the Pilipović
model (see Pilipović [19]) briefly discussed in Section 3. This model will not in general
be exponentially integrable. Ornstein–Uhlenbeck processes driven by compound Poisson
processes having exponential jumps will have a gamma distributed stationary solution.
This will also not be exponentially integrable, except under restrictive conditions on the
parameters.

4.2. Exotic Forward Prices

Next, consider CDD-forwards on temperature (or a floor electricity forward) with
price given in (12). We need some preparatory material on polynomial expansions of call
and put payoff functions. For n ∈ N0, let ξn(x) denote the nth Hermite polynomial (known
as the “probabilistic” Hermite polynomial) defined as

ξn(x) = (−1)n 1
w(x)

dn

dxn w(x) (18)

where
w(x) =

1√
2π

e−x2/2 (19)

is the density of the standard normal distribution function. We notice that ξ0(x) = 1.
Further, define

en(x) =
ξn(x)√

n!
, (20)
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for n ∈ N0 with the usual convention that 0! = 1. It is known that (en)n∈N0 is an ONB of
the Hilbert space L2

w := L2(R, w(x)dx). Considering f (x) = max(x− c, 0), we readily find
that f ∈ L2

w as f (x) = (x− c) for x > c and zero for x < c and w integrates any polynomial.
Moreover, for any f ∈ L2

w, we find that

| f |2w :=
∫
R

f 2(x)w(x)dx = E[ f 2(Y)]

with Y ∼ N (0, 1), a standard normal random variable. Moreover, from elementary
functional analysis, we have

f (x) =
∞

∑
n=0

∫
R

f (y)en(y)w(y)dy en(x).

The following simple result holds:

Lemma 3. Suppose f ∈ L2
w and denote by f m(x) := ∑m

n=0 fnen(x). Then, for Y ∼ N (0, 1),
( f m(Y))m∈N converges to f (Y) in L2(P). Moreover,

E[ f (Y)] =
∞

∑
n=0

fnE[en(Y)]

Proof. Obviously, f m ∈ L2
w and f − f m → 0 in L2

w as m→ ∞. The latter means

0 = lim
m→∞

| f − f m|2w

= lim
m→∞

∫
R
( f (x)− f m(x))2w(x)dx

= lim
m→∞

E[( f (Y)− f m(Y))2]

Hence, the first claim follows. For the second claim, the Cauchy–Schwarz inequality
implies

|E[ f (Y)]−
m

∑
n=0

fnE[en(Y)]|2 = |E[ f (Y)− f m(Y)]|2

≤ E[| f (Y)− f m(Y)|2].

Invoking the first claim proves the Lemma.

We extend the previous result to more general random variables Y in the next lemma:

Lemma 4. Suppose Y is a random variable with probability density φY satisfying φY(y) ≤
Cwa,b2(y) for a.e. y ∈ R, where C ≥ 1 is a constant and wa,b2 is the normal density function with
mean a and variance is b2 with 0 < b < 1. If f ∈ L2

w then

E[ f (Y)] =
∞

∑
n=0

fnE[en(Y)]

Proof. By the Cauchy–Schwarz inequality,

|E[ f (Y)]−
m

∑
n=0

fnE[en(Y)]|2 = |E[ f (Y)− f m(Y)]|2

≤ E[| f (Y)− f m(Y)|2]

=
∫
R
( f (y)− f m(y))2φY(y)dy
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≤ C
∫
R
( f (y)− f m(y))2wa,b2(y)dy

= C
∫
R
( f (y)− f m(y))2 wa,b2(y)

w(y)
w(y)dy.

Consider the positive function

u(y) :=
wa,b2(y)

w(y)
= exp

(
1
2

y2(1− b−2) +
a
b2 y− a2

2b2

)
As 0 < b < 1, it holds that 1− b−2 < 0 and thus u has a maximum value on R. It

follows that

|E[ f (Y)]−
m

∑
n=0

fnE[en(Y)]|2 ≤ C sup
y∈R

u(y)| f − f m|2w.

Since f ∈ L2
w and f m is its truncation in the basis representation, the result follows

after passing to the limit.

We recall that f (x) = max(x− c, 0) satisfies the requirement that f ∈ L2
w. Moreover,

CARMA(p, q)-processes driven by Brownian motion are normally distributed, and hence
the above result applies with φY being a normal distribution with variance less than 1.
We also recall from Ackerer et al. [9] that the Jacobi volatility process has a distribution
which is absolutely continuous with respect to the normal distribution. In addition, rather
than using the Taylor series representation exp(x) = ∑∞

k=0
1
k! xk, we may use the Hermite

polynomials as series expansion for the exponential function since obviously exp(x) ∈ L2
w.

The condition that the variance b is strictly less than one is very restrictive. However,
one can overcome this by a change in the Hermite basis or by appropriate rescaling the
function f . We provide a thorough discussion of this in Section 4.3, where we take a
more general perspective. For the moment, we note that Ackerer et al. [9] used an affine
transform of the Hermite polynomials as basis.

Remark 3. We notice that the condition on the probability density of Y in Lemma 4 implies that
the distribution ΦY(dy) := φY(y)dy is absolutely continuous with respect to wa,b2(y)dy. By
assuming instead that the distribution of Y, ΦY is dominated by that of wa,b2(y)dy, i.e., Φ(dy) ≤
Cwa,b2(y)dy in the sense ΦY(U) ≤ C

∫
U wa,b2(y)dy for every Borel set U ⊂ R, we find that there

exists an a.e. non-negative Radon–Nikodym density `Y ∈ L1(R, wa,b2(y)dy). In this case, we can
define a probability density φY(y) := `Y(y)wa,b2(y). However, then, φY(y) ≤ Cwa,b2(y), a.e. y ∈
R because, if this is not the case there exists a measurable set U with strictly positive mass such
φY(y) > Cwa,b2(y), y ∈ U, which implies that ΦY(U) =

∫
U φY(y)dy > C

∫
U wa,b2(y)dy being

a contradiction. Further notice that the constant C must be greater than or equal to 1 simply because
we have distributions with total mass 1 on both sides of the bound.

In the next subsection, we take a more general perspective where the distribution
of the polynomial process does not need to be bounded by a Gaussian but other suitable
classes of distributions for which we can associate polynomials. At the current stage of our
exposition, we focus on the Gaussian case as this is the most relevant in connection with
temperature forwards, where the underlying dynamics have empirical evidence for being
normally distributed (recall discussions in Section 3).

We next show a polynomial expression for the CDD-temperature forward price: to this
end, choose the basis Hn(x) = (e0(x), e1(x), . . . , en(x))> for Poln(R), where (en(x))n∈N0

are the normalised Hermite polynomials defined in (20). For Poln(Rd), we fix an arbitrary
basis Hn,d(x).

Proposition 3. Suppose the commodity spot dynamics is given by S(t) = λ(t) + γ>X(t) as in
(8), where X is a d-dimensional polynomial process. Assume that the random variable γ>X(T) has
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an Ft-conditional probability density which is bounded by a normal density wa,b2 as in Lemma 4.
Then, the forward price in (12) is given by

F(t, T) =
∞

∑
n=0

fnu>n+1CnΛn(λ(T))C−1
n Γn,d exp(Gn,d(T − t))Hn,d(X(t)),

where un+1 is the n + 1-canonical unit vector in Rn+1 (i.e., the vector with 1 in coordinate n + 1
and zero otherwise), Cn is given in (15), Γn,d in Lemma 2, Λn(λ) in Lemma 1 and Gn,d in (2).

Proof. We find that f (x) = max(x− c, 0) ∈ L2
w, and therefore

f (x) =
∞

∑
n=0

fnen(x)

From the condition on the density of γ>X(T) given Ft, it holds from Lemma 4 that
the conditional expectation is well-defined as integrability holds, and that we can commute
sum and conditional expectation. That is,

F(t, T) = E[max(λ(T) + γ>X(T)− c, 0) | Ft]

= E[ f (λ(T) + γ>X(T)) | Ft]

=
∞

∑
n=0

fnE[en(λ(T) + γ>X(T)) | Ft]

=
∞

∑
n=0

fnu>n+1E[Hn(λ(T) + γ>X(T)) | Ft]

By the translation of the monomial basis in Lemma 1, we find that

E[Hn(λ(T) + γ>X(T)) | Ft] = CnΛn(λ(T))C−1
n E[Hn(γ

>X(T)) | Ft]

Furthermore, invoking Lemma 2 gives

E[Hn(γ
>X(T)) | Ft] = Γn,dE[Hn,d(X(T)) | Ft].

Finally, applying the polynomial property of X, we find

E[Hn,d(X(T)) | Ft] = exp(Gn,d(T − t))Hn,d(X(t))

The result follows.

We remark in passing that the above Proposition could also have been developed for
other functions f than the one appearing for the CDD-temperature forwards. In fact, any
function f ∈ L2

w would do, with the only difference that the coefficients fn appearing in the
expression for F in Proposition 3 would change (as they depend explicitly on f , of course).
For example, using f (x) = exp(x), which defines a function in L2

w, Proposition 3 provides
an alternative forward price series expression to Proposition 2 for geometric spot price
models.

To efficiently compute the CDD-temperature forward price by exploiting the polyno-
mial structure of X, we truncate the infinite sum. All the matrices and vectors involved are
explicitly given, except the coefficient functions fn. We recall these to be defined as

fn :=
∫
R

max(x− c, 0)en(x)w(x)dx = E[max(Y− c, 0)en(Y)]

for Y being standard normally distributed. We can compute these coefficients once for a
given function f ∈ L2

w, as they are independent of the polynomial process X.
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Remark 4. In the market for temperature forwards, the contracts are settled over a pre-specified
period of time. In that case, a CDD-temperature forward is

F(t, T1, T2) =
∞

∑
n=0

fnu>n+1Cn

(
T2

∑
T=T1

Λn(λ(T))C−1
n Γn,d exp(Gn,d(T − t))

)
Hn,d(X(t))

after appealing to the Fubini–Tonelli theorem to commute sums.

If temperature follows a CARMA-dynamics driven by a Brownian motion, then the
dimension d will indicate the autoregressive order. Moreover, γ>X(t) will be Gaussian and
X a d-dimensional Ornstein–Uhlenbeck process, and thus the conditions in Proposition 3
hold. We recall that the temperature dynamics is conveniently modelled by a CAR(3)-
process (see [22]), which means that d = 3 and γ = u1, the canonical unit vector in R3 with
1 in first coordinate and zero otherwise.

Interestingly, Asian options are closely related to the above CARMA-situation by the
following argument: consider an Asian option with payoff max(T−1

∫ T
0 γ̃>X̃(s)ds− c, 0)

at exercise time T. Here, X̃ is a d-dimensional polynomial process and γ̃ ∈ Rd, with the
spot price being S(t) = γ̃>X̃(t) (we ignore seasonality here in this short discussion). Let
now X be the process in Rd+1 defined as X = (X̃, Xd+1), where

dXd+1(t) = γ̃>X̃(t)dt.

It follows that X is a polynomial process, and we have that the Asian option payoff
can be written as T−1 max(γ>X(T) − Tc, 0) with γ = ud+1, the canonical unit vector
in Rd+1 with one in the last coordinate and zero otherwise. In particular, assuming
that X̃ is a multivariate Gaussian Ornstein–Uhlenbeck process, we will have that X is a
Gaussian Ornstein–Uhlenbeck process and we find ourselves in a situation which is closely
resembling the forward price of a CDD-temperature contract analysed above.

4.3. A General Polynomial Approach to Forward Pricing

In this subsection, we take a general perspective on forward pricing, providing a
unifying expression for the forward price in markets with a polynomially based “spot”-
process. The approach requires some additional conditions on the polynomial process, but
on the other hand gives an attractive treatment of options on forwards, a topic which is
analysed in Section 5.

Suppose that the “spot price” dynamics is given by

S(t) = g(X(t); λ(t)) (21)

for some measurable function g : Rd × R → R, seasonality function λ and X being a
d-dimensional polynomial process. Examples of relevance can be

g(x; λ) := ξ(λ + γ>x)

for γ ∈ Rd, λ ∈ R and ξ being one of the following functions: ξ(x) = x (arithmetic spot
model), ξ(x) = exp(x) (geometric spot model) or ξ(x) = max(x− c, 0) (spot for an exotic
forward such as temperature futures). Our aim is to compute the forward price, defined as

F(t, T) = E[g(X(T); λ(T)) | Ft] (22)

To achieve this goal, we employ a multivariate generalisation of the space L2
w along

with an integrability assumption on the conditional probability distribution of X(T) given
Ft. In fact, without losing any generality for practical purposes in commodity and energy
markets, we assume that X is also a Markovian process. (Note that non-Markovian
polynomial jump diffusion processes exist, see., e.g., [8] (Page 71).)
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Let us start by introducing a multi-dimensional generalisation of the space L2
w. To this

end, let ρ be a probability density function on Rd, and for d ∈ N, denote by L2
ρ,d the Hilbert

space of real-valued functions on Rd for which

|g|2ρ,d :=
∫
Rd

g2(x)ρ(x)dx

with inner product

〈g, h〉ρ,d :=
∫
Rd

g(x)h(x)ρ(x)dx

Assume further that there exists an ONB for L2
ρ,d of polynomials, given by (vnd)nd∈Nd

0
using the multi-index notation nd := (n1, . . . , nd). We use the notation |nd| = n1 + · · ·+ nd
for the order of the multi-index, where it is supposed that vnd ∈ Pol|nd |(R

d). Furthermore,
(vnd)|nd |≤N is a basis of polynomials of order N, which we use as HN,d(x). Ranking the
basis functions vnd according to their polynomial order is convenient and natural when
doing approximations in practical applications of this theory.

Next, denote by φ(x, dy; t, T) the transition probability distribution on Rd of X(T)
given X(t) = x. Following Filipović and Larsson [8] (Sect. 7), introduce the likelihood ratio
as the function `(x, y; t, T) such that

φ(x, dy; t, T) = `(x, y; t, T)ρ(y)dy (23)

We assume that such a likelihood ratio of φ with respect to ρ exists. In the next theorem,
we state a general series representation in terms of polynomials for the forward price along
with a computationally convenient truncation.

Theorem 2. Assume that g(·; λ(T)) ∈ L2
ρ,d and `(x, ·; t, T) ∈ L2

ρ,d for any 0 ≤ t ≤ T < ∞ and
x ∈ R, where g and ` are defined, respectively, in (21) and (23). Then, we have that

FN(t, T)→ F(t, T)

(pointwise) when N → ∞, where F is the forward price in (22) with representation

F(t, T) = ∑
n∈Nd

0

gnd(λ(T))`nd(X(t); t, T)

while for any N ∈ N,

FN(t, T) = ∑
n∈Nd

0 ,|nd |≤N

gnd(λ(T))`nd(X(t); t, T).

Here,
gnd(λ(T)) =

∫
Rd

g(y; λ(T))vnd(y)ρ(y)dy

and
`nd(x; t, T) = u>nd

exp(G|nd |,d(T − t))H|nd |,d(x)

with und ∈ RK(|nd |,d)+1 is such that vnd(x) = u>nd
H|nd |,d(x). We recall K(n, d) = dim Poln(Rd)−

1, and G given in (2).

Proof. Notice first by the Markovian property of X that F(t, T) = f (X(t); t, T), where

f (x; t, T) := E[g(X(T); λ(T)) |X(t) = x].
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We find from the assumptions g(·; λ(T)), `(x, ·; t, T) ∈ L2
ρ,d that

f (x; t, T) =
∫
Rd

g(y; λ(T))φ(x, dy; t, T)

=
∫
Rd

g(y; λ(T))`(x, y; t, T)ρ(y)dy

= 〈g(·; λ(T)), `(x, ·; t, T)〉ρ,d

Therefore, by Parseval’s identity,

f (x; t, T) = ∑
nd∈Nd

0

gnd`nd(x; t, T)

where
gnd(λ(T)) := 〈g(·, λ(T)), vnd〉ρ,d

and
`nd(x; t, T) := 〈`(x, ·; t, T), vnd〉ρ,d

are the coefficients in the ONB representation of g(·; λ(T)) and `(x, ·; t, T) in L2
ρ,d, respec-

tively. Tracing back the definitions, we find

`nd(x; t, T) =
∫
Rd

vnd(y)φ(x, dy; t, T) = E[vnd(X(T)) |X(t) = x].

By assumption on the polynomial basis, vnd ∈ Pol|nd |(R
d). Thus, there is a vector with

length equal to the dimension of Pol|nd |(R
d) such that vnd(x) = u>nd

H|nd |,d(x). We then
conclude the desired form,

`nd(x; t, T) = u>nd
E[H|nd |,d(X(T)) |X(t) = x] = u>nd

exp(G|nd |,d(T − t))H|nd |,d(x)

after appealing to the polynomial property of X. This proves the representation of F(t, T).
Define for each N ∈ N the approximation

f N(x; t, T) := 〈g(·; λ(T)), `N(x, ·; t, T)〉ρ,d = ∑
nd∈Nd

0 ,|nd |≤N

gnd(λ(T))`nd(x; t, T)

with the notation
`N(x, ·; t, T) := ∑

nd∈Nd
0 ,|nd |≤N

`nd(x; t, T)vnd(·).

We observe that `N(x, ·; t, T) is nothing but y 7→ `(x, y; t, T) projected down on the
finite dimensional subspace of L2

ρ,d spanned by (vnd)nd∈Nd
0 ,|nd |≤N . This gives us FN(t, T).

Notice that by Parseval’s identity,

∞ > |`(x, ·; t, T)|2ρ,d = ∑
nd∈Nd

0

`2
nd
(x; t, T)

From the very definitions of f and f N , we find by the Cauchy–Schwarz inequality
and Parseval’s identity,

| f (x; τ, T)− f N(x; τ, T)|2 = |〈g, `(x, ·; τ, T)− `N(x, ·; τ, T)〉ρ,d|2

≤ |g|2ρ,d|`(x, ·; τ, T)− `N(x, ·; τ, T)|2ρ,d

≤ |g|2ρ,d ∑
nd∈Nd

0 ,|nd |>N

`2
nd
(x; t, T)
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In conclusion, f N(x; t, T) → f (x; t, T) for every x ∈ Rd when N → ∞. The proof is
complete.

We notice that the dependency on the seasonality component is merged into the
coefficients gnd(λ(T)) and is as such not material in the analysis above. We include it
simply because seasonality is present in relevant models, and we prefer to have it explicit.
Additionally, it highlights a difference with the other polynomial expansions which we
present in this section. Furthermore, we observe that we may compute the coefficients
gnd(λ(T)) by numerical integration methods, for example Gaussian quadrature or Monte
Carlo simulation. Indeed, we have

gnd(λ(T)) = E[g(Z; λ(T))vnd(Z)]

where Z is a d-dimensional random variable with probability density ρ.

Remark 5. In the case X is not a polynomial process, we see by inspection of the proof of Theorem 2
that we still have an interesting representation of the forward price in terms of the polynomial
moments of X(T) conditional on X(t). Indeed, removing the polynomial property, we see that all
conclusions in the theorem holds, except that

`nd(x; t, T) = E[vnd(X(T)) |X(t) = x],

which will not be explicit in terms of polynomials of x. Of course, we still need the regularity
assumptions of g and the likelihood ratio ` to hold. We can approximate the forward prices by
polynomial moments of the process up to a certain order.

The main assumption in our general approach to forward pricing is the existence
of a density ρ admitting a polynomial basis for L2

ρ,d, such that there is likelihood ratio
function being an element of this space. This problem is classical, and has a long history in
probability and physics, where we refer to the works of Asmussen, Goffard and Laub [39]
and Eggers [40] for some recent applications and studies. One thinks of ρ as the reference
measure, and for a target distribution φ the goal is to have a Gram–Charlier series with
efficiently computable polynomials. Following the discussion in Asmussen et al. [39], if ρ
in Dimension 1 has all moments finite, there exists an orthogonal sequence of polynomials,
which, moreover, defines a basis in L2

ρ,1 if ρ has finite exponential moment. One can
easily build up multivariate reference measures in general dimensions d by tensorising.
For example, we may define ρ(x) := w⊗d(x) := w(x1) · · ·w(xd). This will provide a
d-dimensional version of the space L2

w based on Hermite polynomials. In Rahman [41], a
general multivariate basis of Hermite polynomials are defined appealing to the Rodrigues
formula, i.e., based on the derivatives of the multivariate Gaussian distribution function
with mean zero and general covariance. A special case of this, choosing the covariance
matrix to be the identity, leads back to the definition of ρ(x) = w⊗d(x). Another example
could be a reference measure in d = 1 defined by the gamma-distribution (see the work of
Asmussen et al. [39], where Laguerre polynomials appear).

We discuss the case ρ(x) = w⊗d(x) in some more detail. We start by introducing a
multi-dimensional version of L2

w. To this end, for d ∈ N, denote by L2
w,d the Hilbert space

of real-valued functions on Rd for which

|g|2w,d :=
∫
Rd

g2(x)w⊗d(x)dx

with inner product

〈g, h〉w,d :=
∫
Rd

g(x)h(x)w⊗d(x)dx
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where we recall w⊗d(x) := w(x1) · · ·w(xd). An ONB for L2
w,d is given by (end)nd∈Nd

0
using the multi-index notation nd := (n1, . . . , nd), and end(x) := en1 ⊗ · · · ⊗ end(x) =
en1(x1) · · · end(xd). Here, we recall (en)n∈N0 to be an ONB of L2

w.
Let us look at some particular cases of the function g in the case of L2

w,d, which are of
relevance to commodity and energy markets. First, in an exponential spot price model, we
have

g(x; λ) = exp(λ + γ>x)

for γ, x ∈ Rd and λ ∈ R. Since R 3 y 7→ exp(2γiy)w(y) is integrable, we see that
g(·; λ) ∈ L2

w,d. We compute the coefficients gnd(λ(T)):

gnd(λ(T)) =
∫
Rd

exp(λ(T) + γ>x)end(x)w⊗d(x)dx

= eλ(T)
∫
Rd

eγ1x1 · · · eγdxd en1(x1) · · · end(xd)w(x1) · · ·w(xd)dx1 . . . dxd

= eλ(T)〈eγ1·, en1〉w · · · 〈e
γd ·, end〉w

In the arithmetic case, the spot takes the form

g(x, λ) = λ + γ>x,

with again x, γ ∈ Rd and λ ∈ R. Since R 3 y 7→ (γiy)2w(y) is integrable and g(·, λ) ∈ L2
w,d.

We find the coefficients in this arithmetic case as follows:

gnd(λ(T)) =
∫
Rd
(λ(T) + γ>x)end(x)w⊗d(x)dx

= λ(T)
∫
Rd

end(x)w⊗d(x)dx

+
d

∑
i=1

γi

∫
Rd

en1(x1)w(x1)dx1 · · ·
∫
Rd

eni−1(xi−1)w(xi−1)dxi−1

×
∫
R

xieni (xi)w(xi)dxi ×
∫
Rd

eni+1(xi+1)w(xi+1)dxi+1

· · ·
∫
R

end(xd)w(xd)dxd

= λ(T)〈e0, en1〉w · · · 〈e0, end〉w

+
d

∑
i=1

γi〈e0, en1〉w · · · 〈e0, eni−1〉w〈e1, eni 〉w〈e0, eni+1〉w · · · 〈e0, end〉w.

Now, for nj ≥ 1 it holds that
∫
R enj(y)w(y)dy = 〈e0, enj〉w = 0. Thus, the only non-zero

terms in the sum above are those where nd = (0, . . . , 0, 1, 0, . . . , 0), where 1 is appearing in
coordinate i, in which case gnd(λ(T)) = γi. All other nd will give gnd(λ(T)) = 0, except
nd = (0, . . . , 0) where we get gnd(λ(T)) = λ(T). This is a very unsurprising result, of
course.

Next, let us consider the case of a CDD-temperature forward or a floor electricity
forward, for which we have that g(x; λ) = ξ(λ + γ>x) for ξ(z) = max(z− c, 0). As the
max-function grows at most linearly, we have 0 ≤ g(x; λ) ≤ |λ|+ |γ>x|, and it follows
that g(·; λ) ∈ L2

w,d. We may represent the coefficients as

gnd(λ(T)) = E[max(λ(T)− c + γ>Z, 0)end(Z)]

for Z ∼ N (0, I) with I being the d× d identity matrix. By iterated conditional expectation,
conditioning on Zi, i = 1, . . . , d− 1, we can define for R being a standard normal random
variable

gd(z1, . . . , zd−1) := E[max(λ(T)− c + γ1z1 + · · · γd−1zd−1 + γdR, 0)end(R)]
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and iteratively backwards i = d− 1, d− 2, . . . , 1,

gi(z1, . . . , zi−1) := E[gi+1(z1, . . . , zi−1, R)eni (R)]

yielding gnd(λ(T)) = g1.
A more detailed discussion of the condition on the likelihood ratio is in place. We

first recall from Ackerer et al. [9] that the Jacobi volatility model has a likelihood ratio
with respect to the Gaussian density which satisfies the condition of square integrability.
Hence, the Jacobi volatility model allows itself to a series expansion in terms of the Hermite
polynomials, as conducted in detail by Ackerer et al. [9]. Many of the interesting polynomial
models are such that X(T)|Ft is Gaussian. For example, we have the two-factor models
of Lucia and Schwartz or CARMA-models driven by Brownian motion. This results in a
conditional distribution function φ(x, dy; t, T) being a Gaussian distribution with mean
µ ∈ Rd and covariance matrix V ∈ Rd×d. Here, we collapse the notation to make our
discussion more transparent. Hence, we find that the likelihood ratio is

ln `(x, y; t, T) ∼ −1
2
(y− µ)>V−1(y− µ) +

1
2

y>y

= −1
2

y>(V−1 − I)y + (µ>V−1)y− 1
2

µ>V−1µ.

Here, I is the d× d identity matrix. It is evident that the function y 7→ `(x, y; t, T) ∈
L2

w,d if and only if −(V−1 − I)− 1
2 I < 0, or, equivalently, V < 2I. This is not always true,

as we can have two-factor models with independent Brownian motions having variance
each strictly bigger that 2. Then, V is a diagonal matrix with variances on the diagonal
which is dominating 2I, and the required integrability of the likelihood ratio fails.

In such cases, we can re-scale the polynomial process X. To this end, let C be some
d× d matrix such that CVC> < 2I. If we have available such a matrix, we can define a
new stochastic process Y(t) := CX(t). Since any matrix transform of a polynomial process
again is a polynomial process, Y is a polynomial process. If further C is invertible, then
X(t) = C−1Y(t), and we have

g(x; λ) = g(C−1y; λ).

In Theorem 2, we assume that g(C−1·; λ(T)) ∈ L2
w,d. Furthermore, for the polynomial

process Y we find that the likelihood ratio function is (as a matrix transformation of the
Gaussian variable X(T)|Ft ),

ln `(x, y; t, T) ∼ −1
2
(y− Cµ)>(CVC>)−1(y− Cµ) +

1
2

y>y

= −1
2

y>((CVC>)−1 − I)y + (µ>C>(CVC>)−1)y

− 1
2

µ>C>(CVC>)−1Cµ

Hence, we have that y 7→ `(x, y; t, T) ∈ L2
w,d whenever C is such that CVC> < 2I.

Here is an example of a re-scaling: Let X(T)|Ft be bivariate Gaussian with covariance
matrix

V =

[
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

]
where σi, σ2 are two strictly positive constants (being the marginal standard deviations)
and −1 < ρ < 1 (which is the correlation). For example, this is the situation with the
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two-factor model of Lucia and Schwartz, or a CARMA-model in d = 2. Observe that a
diagonalisation of V is given by

V =

[
1 0

σ2
σ1

ρ
√

1− ρ2

][
σ2

1 0
0 σ2

2

][
1 σ2

σ1
ρ

0
√

1− ρ2

]

Let, for some positive constant c < 2

C :=
√

c
max(σ1, σ2)

[
1 0

σ2
σ1

ρ
√

1− ρ2

]−1

Then, we find

CVC> =
c

max(σ1, σ2)2

[
σ2

1 0
0 σ2

2

]
< 2I

since c < 2. In conclusion, we find a scaling C of the original polynomial process, for which
the covariance matrix can be dominated by 2 times the identity. Then, the likelihood ratio
has the desired integrability, but we must adjust slightly the integrability condition on g.
For most interesting functions g, this is not any added restriction, as for example the cases
considered above.

Rather than re-scaling, we could use the multivariate Hermite polynomials introduced
by Rahman [41] for a sufficiently big covariance matrix. In the above case of re-scaling, we
need to have some knowledge of the matrix C before doing the computations. However,
the advantage then is that one can simply apply the standard one-dimensional Hermite
polynomials as basis. An approach using the multivariate Hermite polynomials requires
knowledge of a suitable covariance matrix, which essentially is such that the target density
φ can be dominated by this. The multivariate Hermite polynomials can then be derived, a
task that must be tailor-made to the choice of matrix.

Next, we consider a case with non-Gaussian reference probability ρ, focussing on
the one-dimensional situation. We recall that factor models with Ornstein–Uhlenbeck
dynamics driven by jump processes are relevant for power price and wind speed modelling.
In particular, Ornstein–Uhlenbeck processes with exponential jump processes leading to
invariant Γ-distributions are applied (recall discussion from [4,26,28] in Section 4, say). In
addition, we have CIR-processes as a model for wind speeds as we recall from [27]. The
CIR-process is skewed χ2-distributed at each time instant, a distribution which is closely
related to the Γ-distribution. Let now ξ be the density of the Γ-distribution with scale r > 0
and shape m > 0, given as

ξ(y) =
1

Γ(r)mr yr−1e−y/m.

Suppose we have a target distribution φ which behaves as ys−1, s > 0 for y ∼ 0 and
e−y/k for y ∼ ∞, then the likelihood ratio will be ys−1/yr−1 close to zero, and exp(−(1/k−
1/m)y) for y ∼ ∞. However, integrating the square of the likelihood function against ξ,
yields finiteness whenever s > r/2 and k < 2m. Such conditions were found by Asmussen
et al. [39] as well. Thus, tuning the m to be sufficiently large and r to be sufficiently small,
we can obtain a target Γ-distribution such that the likelihood ratio is square integrable
with respect to ξ. Furthermore, as is well-known, the basis of orthogonal polynomials
for L2

ξ := L2(R+, ξ(y)dy) is the generalised Laguerre polynomials (see [42]). If we have
a two-factor model, with one Gaussian and one exponential jump Ornstein–Uhlenbeck
process, we can consider the tensorised space L2

ρ,2 with ρ(x) = w⊗ ξ(x1, x2) = w(x1)ξ(x2)
and the canonically generated polynomials from the respective marginal densities.

5. Pricing of Options on Forwards

This section is concerned with the problem of pricing options on forwards in the
framework of polynomial processes.
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5.1. Options on Plain-Vanilla Forwards

Consider a European option written on a plan-vanilla forward with payoff ζ(F(τ, T))
at time τ ≤ T for a payoff function ζ, with the forward price F(t, T) given as in Proposition 1;
that is, for some d, n ∈ N, we have

F(t, T) = h(t, T)>Hn,d(X(t)) (24)

where
h(t, T)> = pn(λ(T))>Γn,d exp(Gn,d(T − t)). (25)

In the formulation of Proposition 1, Hn,d(x) is some basis of the nth order polynomials
on Rd. It is convenient, however, for the purpose of option pricing, to turn to the polynomial
ONB (vnd(x))nd∈Nd

0
of L2

ρ,d, as used in Section 4.3 above. We fix Hn,d(x) to be the basis
(vnd(x))|nd |≤n from now on. Furthermore, we suppose that X is a Markovian process.

Let the price of the option (with risk-free interest rate set to zero) at time t ≤ τ be

P(t, τ, T) = E[ζ(F(τ, T)) | Ft] (26)

where we assume ζ(F(τ, T)) ∈ L1(P). The following result is essentially a repetition of
Theorem 2 and is therefore formulated as a corollary.

Corollary 1. Assume for all 0 ≤ t ≤ T that Rd 3 x 7→ ζ(h(t, T)>Hn,d(x)) ∈ L2
ρ,d with h given

as in (25). Let F be given in (24) with X being a polynomial process on Rd for which the likelihood
ratio function defined in (23) satisfies Rd 3 y 7→ `(x, y; t, T) ∈ L2

ρ,d. Then, we have that

PN(t, τ, T)→ P(t, τ, T)

(pointwise) when N → ∞, where P(t, τ, T) is the option price in (26) with representation

P(t, τ, T) = ∑
n∈Nd

0

ζnd(τ, T)`nd(X(t); t, τ)

while for any N ∈ N,

PN(t, τ, T) = ∑
n∈Nd

0 ,|nd |≤N

ζnd(τ, T)`nd(X(t); t, τ).

Here,
ζnd(τ, T) =

∫
Rd

ζ(h(τ, T)>y)vnd(y)w
⊗d(y)dy

and
`nd(x; t, τ) = u>nd

exp(G|nd |,d(τ − t))H|nd |,d(x)

with und ∈ RK(|nd |,d)+1 is such that vnd(x) = u>nd
H|nd |,d(x). We recall K(n, d) = dim Poln(Rd)−

1, and G given in (2).

Proof. The proof is identical to the argument of Theorem 2, but now using P(t, τ, T) =
f (X(t); t, τ, T) where

f (x; t, τ, T) := E[ζ(h(τ, T)>X(τ)) |X(t) = x]

Notice that τ now plays the role of T in the proof of Theorem 2, and that ζ is g. We
also observe that ζ(F(τ, T)) ∈ L1(P) under the assumptions on g and X.

If ζ(z) = max(z − K, 0), the payoff function of a call option, we find that 0 ≤
ζ(h(t, T)>Hn,d(x)) ≤ K + ‖h(t, T)‖‖Hn,d(x)‖, using the notation ‖ · ‖ for the Euclidean
2-norm on, e.g., Rd. This shows readily that ζ(h(t, T)>·) ∈ L2

ρ,d as long as L2
ρ,d supports
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polynomials of degree n. This is the case if we choose the space L2
w,d. Another popular class

of derivatives in commodity and energy markets is spread options, which we discuss next.
Assume we have two commodity forwards, with respective forward prices Fi(t, T),

i = 1, 2 which are given by (24) for two different functions hi(t, T), i = 1, 2. Thus, the
dynamics of both forward prices are driven by the same polynomial process X. The
spread option payoff at time τ is ζ(F1(τ, T1)− F2(τ, T2)), with τ ≤ min(T1, T2). Hence,
we have potentially two different maturities of the forwards. Notice also that the order
n and dimensionality d of Hn,d(x) are the same for both forwards, which is not a lack of
generality as we can extend the dimensionality of both canonically, if necessary. If x 7→
ζ((h1(t, T1)

> − h2(t, T2)
>)Hn,d(x)) ∈ L2

ρ,d, we can apply Corollary 1 with h(t, T1, T2) :=
h1(t, T1)− h2(t, T2). A typical example of a spread is ζ(F1 − F2) = max(F1 − F2, 0), which
satisfies the regularity condition for at least L2

w,d.
It is remarked in passing that we can also treat quanto options in a similar manner.

A quanto option pays ζ1(F1(τ, T1))ζ2(F2(τ, T2)) for two payoff functions ζ1 and ζ2. These
may be of the form of two calls, or a call and put, or two puts. Defining ζ(Hn,d(x); t, T) :=
ζ1(h1(t, T1)

>Hn,d(x))ζ2(h2(t, T2)
>Hn,d(x)) and assuming Rd 3 x 7→ ζ(Hn,d(x); t, T) ∈ L2

ρ,d
puts us again in the situation where Corollary 1 may be applied.

Remark 6. To include forward contracts with delivery period into the pricing framework is straight-
forward. Since we have

F(t, T1, T2) =
T2

∑
T=T1

F(t, T) =

(
T2

∑
T=T1

h(t, T)>
)

Hn,d(X(t))

we can simply redefine the meaning of h(t, T) in order to apply Corollary 1.

From a computational point of view, it is important to notice that the polynomial
representation of the price P in Corollary 1 is split into coefficients ζnd(τ, T) and `nd(x; t, τ).
The latter family of coefficients, `nd(x; t, τ), is only dependent on the underlying stochastic
model and the choice of polynomial basis, and thus can be computed irrespective of the
option in question. As noted by Ackerer et al. [9], these coefficients may be relatively
costly to compute, but one can do this once and apply the coefficients for the numerical
evaluation of different options. The option payoff is encoded in the parameters ζnd(τ, T).

At this instance, we make some further comments on the numerical implementation
and performance of polynomial pricing found in the literature. The already mentioned
paper by Ackerer et al. [9] presents three numerical case studies for the Jacobi stochastic
volatility model. Pricing a call option for given realistic model parameters for the stock
market, they show that the price error is accurate in two decimal points for N chosen
between 10 and 15, where the “exact” price is determined using Monte Carlo simulations.
They also considered a forward start call option and an Asian option, where dimension is
increased due to the payoff structure. In these two cases, the level N must be increased
to above 15, which requires rather many coefficients to be computed. In [9], various
approaches for the computation of the so-called Fourier coefficients (being ζnd(τ, T) in
our notation) are discussed, including recurrence relations based on properties of Hermite
polynomials and Gaussian cubature integration. Moreover, there are references to efficient
methods for the computation of matrix exponentials, which we encounter in the numerical
computation of `nd(x; t, τ) for rather high-dimensional matrices G|nd |,d. Further numerical
studies on polynomial volatility models and option pricing can be found in the work of
Ackerer and Filipović [43].

Related numerical studies based on polynomial processes are found in the works of
Kleisinger-Yu et al. [11] and Benth and Lavagnini [44]. Kleisinger-Yu et al. [11] computed
the quadratic risk minimising hedging strategy of long-term delivery forwards in the
power markets. For polynomial models, this entails in rather explicit expressions which are
efficiently computed for low-dimensional polynomial processes as stochastic models for the
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forward price dynamics. Benth and Lavagnini [44] aimed at the computation of correlators,
which occur for example in the iterative definition of discretely-sampled path-dependent
options or in a series expansion of Fourier-based pricing of options in stochastic volatility
models. Polynomial processes allow for explicit matrix representations of the correlators,
and numerical case studies show a good performance even for high-dimensional situations
compared with Monte Carlo methods.

5.2. A General Polynomial Approach to Option Pricing

In this subsection, we price options on forwards which have price expressions de-
veloped in the context of Section 4.3. To this end, for d ∈ N, recall the Hilbert space
L2

ρ,d introduced in the previous section. Consider the “doubled” space L2
ρ2,2d which is the

Hilbert space of real-valued functions on R2d for which

|g|2ρ2,2d :=
∫
R2d

g2(x, y)ρ2(x, y)dxdy

with inner product

〈g, h〉ρ2,2d :=
∫
R2d

g(x, y)h(x, y)ρ2(x, y)dxdy

where ρ2(x, y) := ρ⊗2(x, y) := ρ(x)ρ(y). An ONB for L2
ρ2,2d is given by (vnd ⊗ vkd

)(nd ,kd)∈N2d
0

where we recall (vnd)nd∈Nd
0

to be an ONB of L2
ρ,d. We also recall the notation g(·; λ(T)) from

(21) for the forward price

F(t, T) = E[g(X(T); λ(T)) | Ft]

in (22), where X is a polynomial process in Rd which in addition is assumed to be Marko-
vian. We further recall that we denote by φ(x, dy; t, T) the probability distribution function
of X(T) given X(t) = x ∈ Rd for t ≥ T. Under suitable conditions, Theorem 2 provides
an expression and approximation of F. Consider an option written on the forward with
exercise time τ ≤ T and payoff function ζ(F(τ, T)) for some function ζ : R→ R such that
ζ(F(τ, T)) ∈ L2(P). The arbitrage-free option price at time t ≤ τ (for risk-free interest rate
set to zero) is given by P(t, τ, T) as defined in (26).

Theorem 3. Assume g(·; λ(T)) ∈ L2
ρ,d and suppose that the likelihood function `(x, y; t, T)

defined in (23) satisfies Rd ×Rd 3 (x, y) 7→ `(x, y; t, T) ∈ L2
ρ2,2d for any 0 ≤ t ≤ T < ∞. If

ζ : R→ R is Lipschitz continuous and of linear growth, then

PN,K(t, τ, T)→ P(t, τ, T),

where
P(t, τ, T) = ∑

kd∈Nd
0

(ζ ◦ f )kd
(τ, T)`kd

(X(t); t, τ),

with
(ζ ◦ f )kd

(τ, T) := 〈ζ( f (·; τ, T)), vkd
〉ρ,d.

and, moreover,

PN,K(t, τ, T) = ∑
kd∈Nd

0 ,|kd |≤K

(ζ ◦ f N)kd
(τ, T)`kd

(X(t); t, τ)

Here, `kd
(x; t, τ) is defined in Theorem 2,

f (x; τ, T) = ∑
nd∈Nd

0

gnd`nd(x; τ, T)
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with
gnd = 〈g(·; λ(T)), vnd〉ρ,d

and
f N(x; τ, T) = ∑

nd∈Nd
0 ,|nd |≤N

gnd`nd(x; τ, T).

Proof. By assumption `(·, ·; t, T) ∈ L2
ρ2,2d and therefore y→ `(x, y; t, T) ∈ L2

ρ,d, a.e., x ∈ Rd.

Hence, since g(·; λ(T)) ∈ L2
w,d we find a polynomial expression of F as given in Theorem 2

along with an approximation FN . From the proof of Theorem 2, we also recall the function

f (x; τ, T) = E[g(X(T); λ(T)) | Fτ ]

along with its representation and series expansions found in the proof of that result.
Let us show that the map x 7→ f (x; τ, T) belongs to L2

ρ,d: indeed, by definition of
f (x; τ, T), we find from the Cauchy–Schwarz inequality,

| f (·; τ, T)|2ρ,d =
∫
Rd
|〈g(·; λ(T)), `(x, ·; τ, T)〉ρ,d|2ρ(x)dx

≤ |g|2ρ,d

∫
Rd

∫
Rd

`2(x, y; τ, T)ρ(y)ρ(x)dydx

= |g|2ρ,d|`(·, ·; τ, T)|2ρ2,2d

which is finite by the assumption on the likelihood ratio function. It follows that f (·; τ, T) ∈
L2

ρ,d. Moreover, from Theorem 2, we find that f N(·; τ, T)→ f (·; τ, T) in L2
ρ,d when N → ∞.

By assumption, ζ has linear growth. Hence, for some constant k > 0, it follows from
f (·; τ, T) ∈ L2

ρ,d that

∫
Rd

ζ( f (x; τ, T))2ρ(x)dx ≤ k
∫
Rd
(1 + f 2(x; τ, T))ρ(x)dx < ∞.

In other words, x 7→ ζ( f (x; τ, T)) ∈ L2
ρ,d. Hence,

c(x; t, τ, T) : = E[ζ( f (X(τ); τ, T)) |X(t) = x]

=
∫
Rd

ζ( f (y; τ, T))φ(x, dy; t, τ)

= 〈ζ( f (·; τ, T)), `(x, ·; t, τ)〉ρ,d

= ∑
kd∈Nd

0

(ζ ◦ f )kd
(τ, T)`kd

(x; t, τ)

where
(ζ ◦ f )kd

(τ, T) := 〈ζ( f (·; τ, T), vkd
〉ρ,d.

We find P(t, τ, T) = c(X(t); t, τ, T).
We truncate this sum at multi-indices of order up to K and consider the approximation

cN,K(x; t, τ, T) := 〈ζ( f N(·; τ, T)), `K(x, ·; t, τ)〉ρ,d.

By the triangle inequality, after subtracting and adding 〈ζ( f (·; τ, T)), `K(x, ·; t, τ)〉ρ,d,
we find from the Cauchy–Schwarz inequality

|c(x; t, τ, T)− cN,K(x; t, τ, T)| ≤ |〈ζ( f (·; τ, T)), `(x, ·; t, τ)− `K(x, ·; t, τ)〉ρ,d|
+ |〈ζ( f (·; τ, T))− ζ( f N(·; τ, T)), `K(x, ·; t, τ)〉ρ,d|

≤ |ζ( f (·; τ, T))|ρ,d|`(x, ·; t, τ)− `K(x, ·; t, τ)|ρ,d

+ |ζ( f (·; τ, T))− ζ( f N(·; τ, T))|ρ,d|`K(x, ·; t, τ)|ρ,d
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≤ |ζ( f (·; τ, T))|ρ,d|`(x, ·; t, τ)− `K(x, ·; t, τ)|ρ,d

+ k| f (·; τ, T)− f N(·; τ, T)|ρ,d|`K(x, ·; t, τ)|ρ,d

In the last inequality, we appealed to the Lipschitz-continuity of ζ (denoting the
Lipschitz constant k > 0). Recall by the definitions of `(x, y; t, τ) and `K(x, y; t, τ) and the
analysis in the proof of Theorem 2 that `K(x, ·; t, τ) → `(x, ·; t, τ) in L2

ρ,d when K → ∞.

Moreover, |`K(x, ·; t, τ)|ρ,d ≤ |`(x, ·; t, τ)|ρ,d (indeed, the norm of `K(x, ·; t, τ) converges to
that of `(x, ·; t, τ)!) To conclude, it remains to recall that f N(·; τ, T) converges to f (·; τ, T)
in L2

ρ,d, for N → ∞, as shown above.

To apply Theorem 3 in practice, we need to compute the coefficients (ζ ◦ f N)kd
for all

kd ∈ Nd
0 such that |kd| ≤ K. We have that f N is again a truncated sum, but the coefficients

gnd of this is available from the computation of forward prices (or approximations thereof).
This representation can be used to calculate (ζ ◦ f N)kd

, which require numerical integra-
tion or possibly Monte Carlo simulation by drawing from a random variable distributed
according to ρ.

Theorem 3 provides us with an approximation of call and put option prices on for-
wards that again have option-like structures, i.e., an approximation of compound op-
tions. As noted above, the options in the temperature market can be viewed as a class of
compound options, although we recall that temperature forwards have a measurement
(delivery) period which is not allowed for by a direct use of Theorem 3. However, we can
easily adjust the above arguments to account for a measurement (delivery) period in the
forward contract. In this case, we have that the option price in (26) is given by

P(t, τ, T1, T2) = E[ζ(
T2

∑
T=T1

F(τ, T)) | Ft]

To apply the arguments of Theorem 3, we must assume that ∑T2
T=T1

g(·; λ(T)) ∈ L2
ρ,d.

If g(·; λ(T)) ∈ L2
ρ,d for any T, then this condition holds as L2

ρ,d is a vector space. Tracing the
steps in the proof of Theorem 3 results in

P(t, τ, T1, T2) = ∑
kd∈Nd

0

(ζ ◦ f̃ )kd
(τ, T1, T2)`kd

(X(t); t, τ),

with

(ζ ◦ f̃ )kd
(τ, T) :=

〈
ζ(

T2

∑
T=T1

f (·; τ, T)), vkd

〉
ρ,d

.

On the other hand, as long as ζ is of bounded linear growth and Lipschitz continuous,
PN,K(t, τ, T1, T2)→ P(t, τ, T1, T2) with

PN,K(t, τ, T1, T2) = ∑
kd∈Nd

0 ,|kd |≤K

(ζ ◦ f̃ N)kd
(τ, T)`kd

(X(t); t, τ)

and where we find that

f̃ N(x; τ, T1, T2) = ∑
nd∈Nd

0 ,|nd |≤N

gnd

T2

∑
T=T1

`nd(x; τ, T).

In fact, f̃ N(x; τ, T1, T2) = ∑T2
T=T1

f N(x; τ, T), thus, to approximate the option price on
a temperature HDD or CDD futures, we simply add up a finite sum of terms f N(x; τ, T)
over T when computing the coefficients (ζ ◦ f̃ N)kd

rather than using only one f N(x; τ, T).
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The Greeks, or sensitivities with respect to different parameters of the option price, are
important for hedging purposes. The so-called “delta”, the derivative of the option price
with respect to the present value of the underlying asset, is readily computed in terms of
the derivatives of the polynomials `kd

(x; τ, T) with respect to x. This lowers the polynomial
order of `kd

(x; τ, T) by one, and we have available an explicit series representations and
approximation under appropriate conditions. Other Greeks, for example the sensitivity
with respect to the volatility, can also be represented as derivatives of these polynomials
as the volatility will be inherent in the specification of X. This further emphasises the
attractiveness of polynomial models and their expressions of option prices.

From a computational perspective, several challenging issues arise. Focussing on tem-
perature futures options, we note above that CARMA-processes are suitable for modelling
the temperature dynamics. This calls for higher-dimensional models, i.e., it is natural to
have the dimension d to be around 3 or even higher. If we were to specify the seasonality
also as a polynomial process, we would reach a much higher dimensionality of the under-
lying polynomial dynamics. As noted above, the numerical studies of Ackerer et al. [9]
indicate that one needs the order of re-scaled Hermite polynomials to be about N = 10 for
call options on a stochastic volatility model. In our situation, which is of greater dimension-
ality, we would expect even higher order to reach a satisfactory convergence. This at the
level of approximating the forward price, where, additionally, we need to aggregate up the
`nd(x; τ, T) over the delivery period. Then, on the next level, we again must approximate
a call option, where we also may need high-order polynomials. On the other hand, we
know from the theory that the sums are converging and thus the terms must tend to zero
despite the involved polynomials occurring in `nd(x; τ, T). The convergence speed for these
expressions should be further analysed. These are challenging computational problems
which we leave for future studies.

6. Conclusions and Outlook

We derive polynomial series representations for forward prices and options on for-
wards based on polynomial models of the spot dynamics in commodity markets. Com-
modity markets have special features such as seasonality and delivery period, as well as
exotic payment structures for forwards found in, e.g., power and temperature markets. In
a review of the literature on modelling of price risk in energy and commodity, we present
many different polynomial models, which we use as motivation and foundation for further
derivatives pricing. We also note some empirical facts on polynomial models and issues
and challenges concerning numerical applications.

When considering prices based on nonlinear payoff structures, such as those appearing
in temperature futures and options on forwards, the successful derivation of a polynomial
series expansion rests on the relationship between the generating probability density of a
class of polynomials, the probability distribution of the polynomial process and the square-
integrability of likelihood function. It is an interesting area of further research to gain a
deeper understanding of this connection. It is also interesting to analyse further numerical
implementations of some of the derivatives analysed in this paper, where dimensionality
becomes a challenge.
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