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Abstract: We study the local convergence analysis of a fifth order method and its multi-step version in
Banach spaces. The hypotheses used are based on the first Fréchet-derivative only. The new approach
provides a computable radius of convergence, error bounds on the distances involved, and estimates
on the uniqueness of the solution. Such estimates are not provided in the approaches using Taylor
expansions of higher order derivatives, which may not exist or may be very expensive or impossible to
compute. Numerical examples are provided to validate the theoretical results. Convergence domains
of the methods are also checked through complex geometry shown by drawing basins of attraction.
The boundaries of the basins show fractal-like shapes through which the basins are symmetric.

Keywords: local convergence; nonlinear equations; Banach space; Fréchet-derivative

1. Introduction

Let X, Y be Banach spaces and D ⊆ X be a closed and convex set. In this study, we
locate a solution x∗ of the nonlinear equation

G(x) = 0, (1)

where G : D ⊆ X → Y is a Fréchet-differentiable operator. In computational sciences,
many problems can be written in the form of (1). See, for example, [1–3]. The solutions of
such equations are rarely attainable in closed form. This is why most methods for solving
these equations are usually iterative. The most well-known method for approximating a
simple solution x∗ of Equation (1) is Newton’s method, which is given by

xm+1 = xm − G′(xm)
−1G(xm), for each m = 0, 1, 2, . . . (2)

and has a quadratic order of convergence. In order to attain the higher order of convergence,
a number of modified Newton’s or Newton-like methods have been proposed in the
literature (see [2–20]) and references cited therein. In particular, Sharma and Kumar [18]
recently proposed a fifth order method for approximating the solution of G(x) = 0 using
the Newton–Chebyshev composition defined for each n = 0, 1, 2, . . . by

ym = xm − ΓmG(xm),

zm = ym − ΓmG(ym),

xm+1 = zm −
(
2 I − Γn[zm, ym ; G]

)
ΓmG(zm),

(3)
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where Γm = G′(xm)−1, and [zm, ym ; G] is the first order divided difference of G. The
method has been shown to be computationally more efficient than existing methods of a
similar nature.

The important part in the development of an iterative method is to study its conver-
gence analysis. This is usually divided into two categories, namely the semilocal and local
convergence. The semilocal convergence is based on the information around an initial
point and gives criteria that ensure the convergence of iteration procedures. The local
convergence is based on the information of a convergence domain around a solution and
provides estimates of the radii of the convergence balls. Local results are important since
they provide the degree of difficulty in choosing initial points. There exist many studies
which deal with the local and semilocal convergence analysis of iterative methods such
as [3–5,7–11,13,16,19,21–23]. The semilocal convergence of the method (3) in Banach spaces
has been established in [18]. In the present work, we study the local convergence of this
method and its multi-step version, including the computable radius of convergence, error
bounds on the distances involved, and estimates on the uniqueness of the solution.

We summarize the contents of the paper. In Section 2, the local convergence (including
radius of convergence, error bounds, and uniqueness results of method (3)) is studied.
The generalized multi-step version is presented in Section 3. Numerical examples are
performed to verify the theoretical results in Section 4. In Section 5, the basins of attractors
are studied to visually check the convergence domain of the methods. Finally, some
conclusions are reported in Section 6.

2. Local Convergence

The local convergence analysis of method (3) is presented in this section. Let L0 > 0,
L > 0, L1 > 0, and M ≥ 0 be given parameters. It is convenient to generate some functions
and parameters for the local convergence study that follows. Define function g1(t) on
interval [0, 1

L0
) by

g1(t) =
Lt

2(1− L0t)

and parameter

r1 =
2

2L0 + L
<

1
L0

. (4)

Then, we have that g1(r1) = 1 and 0 ≤ g1(t) ≤ 1 for each t ∈ [0, r1). Moreover, define
the function g2(t) and h2(t) on interval [0, 1

L0
) by

g2(t) =
(

1 +
M

1− L0t

)
g1(t)

and
h2(t) = g2(t)− 1.

We have that h2(0) = −1 < 0 and h2(r1) =
M

1−L0r1
> 0. According to the intermediate

value theorem, function h2(t) has zeros in the interval (0, r1). Denote such zeros by r2.
Finally, define functions K(t), g3(t), and h3(t) on the interval [0, 1

L0
) by

K(t) = 1 +
1

1− L0t
(

L0 + L1t(g2(t) + g1(t))
)
t,

g3(t) =
(

1 +
MK(t)
1− L0t

)
g2(t)

and
h3(t) = g3(t)− 1.
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We have that h3(0) = −1 < 0 and h3(r2) =
MK(r2)
1−L0r2

> 0. According to the intermediate
value theorem, function h3(t) has zeros in (0, r2). Denote such zeros by r3 of function h3(t)
in interval [0, r2). Set

r = min{ri}, i = 1, 2, 3. (5)

Then, we obtain that
0 < r ≤ r1. (6)

Then, for each t ∈ [0, r)
0 ≤ g1(t) ≤ 1, (7)

0 ≤ g2(t) ≤ 1 (8)

and
0 ≤ g3(t) ≤ 1. (9)

Let U(v, ρ) and Ū(v, ρ) symbolise the open and closed balls in X, with a radius ρ > 0
and a centre v ∈ X.

Using the above notations, we then describe the local convergence analysis of method (3).

Theorem 1. Suppose G : D ⊆ X → Y is a Fréchet-differentiable function. Let [., .; G] : X×X →
L(Y) be the divided difference operator. Consider that there exist x∗ ∈ D, L0 > 0, L > 0, L1 > 0,
and M ≥ 1, such that for each x, y ∈ D

G(x∗) = 0, G(x∗)−1 ∈ L(Y, X), (10)

‖G′(x∗)−1(G′(x)− G′(x∗)
)
‖ ≤ L0‖x− x∗‖, (11)

‖G′(x∗)−1(G′(x)− G′(y)
)
‖ ≤ L‖x− y‖, (12)

‖G′(x∗)−1G′(x)‖ ≤ M, (13)

‖G′(x∗)−1([x, y; G]− G′(x∗)
)
‖ ≤ L1(‖x− x∗‖+ ‖y− x∗‖), (14)

and
Ū(x∗, r) ⊂ D, (15)

where r is defined by (5). Then, for each m = 0, 1, . . ., the sequence {xm} generated by method (3)
for x0 ∈ U(x∗, r)− {x∗} is well defined, stays in U(x∗, r), and converges to x∗. Furthermore, the
following estimates hold:

‖ym − x∗‖ ≤ g1(‖xm − x∗‖)‖xm − x∗‖ < ‖xm − x∗‖ < r, (16)

‖zm − x∗‖ ≤ g2(‖xm − x∗‖)‖xm − x∗‖ < ‖xm − x∗‖ < r (17)

and
‖xm+1 − x∗‖ ≤ g3(‖xm − x∗‖)‖xm − x∗‖, (18)

where the “g” functions are defined previously. Furthermore, if there exists T ∈ [r, 2
L0
) such that

Ū(x∗, T) ⊂ D, then x∗ is the only solution of G(x) = 0 in Ū(x∗, T).

Proof. We shall show the estimates (16)–(18) using mathematical induction. Using (4), (11),
and the hypotheses x0 ∈ U(x∗, r)− {x∗}, we obtain that

‖G′(x∗)−1(G(x0)− G(x∗)
)
‖ ≤ L0‖x0 − x∗‖ < L0r < 1. (19)

It follows from (19) and the Banach Lemma [3] that G′(x0)
−1 ∈ L(Y, X) and

‖G′(x0)
−1G′(x∗)‖ ≤ 1

1− L0‖x0 − x∗‖ <
1

1− L0r
. (20)
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Hence, y0 is well defined for m = 0. Then, by using (4), (7), (12), and (20), we have

‖y0 − x∗‖ ≤ ‖x0 − x∗ − G′(x0)
−1G(x0)‖

≤ ‖G′(x0)
−1G′(x∗)‖

∥∥∥ ∫ 1

0
G′(x∗)−1[G′(x∗ + θ(x0 − x∗))− G′(x0)]]

∥∥∥dθ

× ‖x0 − x∗‖

≤ L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)
= g1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r, (21)

which shows (16) for m = 0 and y0 ∈ U(x∗, r).
Notice that for each θ ∈ [0, 1] and ‖x∗ + θ(x0 − x∗)− x∗‖ = θ‖x0 − x∗‖ < r. That is,

x∗ + θ(x0 − x∗) ∈ U(x∗, r). We can write

G(x0) = G(x0)− G(x∗) =
∫ 1

0
G′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ. (22)

Then, using (13) and (21), we have

‖G′(x∗)−1G(x0)‖ =
∥∥∥ ∫ 1

0
G′(x∗)−1G′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ

∥∥∥
≤ M‖x0 − x∗‖. (23)

Similarly, we obtain

‖G′(x∗)−1G(y0)‖ ≤ M‖y0 − x∗‖, (24)

‖G′(x∗)−1G(z0)‖ ≤ M‖z0 − x∗‖. (25)

Using the second substep of method (3), (8), (20), (21), (27), and (24), we obtain that

‖z0 − x∗‖ ≤ ‖y0 − x∗‖+ ‖G′(x0)
−1G(y0)‖

= ‖y0 − x∗‖+ ‖G′(x0)
−1G′(x∗)‖‖G′(x∗)−1G(y0)‖

≤ ‖y0 − x∗‖+ M‖y0−x∗‖
1−L0‖x0−x∗‖

≤
(

1 + M
1−L0‖x0−x∗‖

)
‖y0 − x∗‖

≤
(

1 + M
1−L0‖x0−x∗‖

)
g1(‖x0 − x∗‖)‖x0 − x∗‖

≤ g2(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r.

(26)

Which shows (17) for m = 0 and z0 ∈ U(x∗, r).
Next, we have the linear operator A0 = 2I − G′(x0)

−1[y0, x0; G]; by using (11), (14),
and (20), we obtain
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‖A0‖ = ‖2I − G′(x0)
−1[z0, y0; G]‖

≤ 1 + ‖G′(x0)
−1(G′(x0)− [z0, y0; G]

)
‖

≤ 1 + ‖G′(x0)
−1G′(x∗)‖‖G′(x∗)−1(G′(x0)− [z0, y0; G])‖

≤ 1 + ‖G′(x0)
−1G′(x∗)‖‖G′(x∗)−1(G′(x0)− G′(x∗) + G′(x∗)− [z0, y0; G]

)
‖

≤ 1 + ‖G′(x0)
−1G′(x∗)‖

(
‖G′(x∗)−1(G′(x0)− G′(x∗))‖+ ‖G′(x∗)−1(G′(x∗)− [z0, y0; G])‖

)
≤ 1 + 2

1−L0‖x0−x∗‖

(
L0‖x0 − x∗‖+ L1

(
‖z0 − x∗‖+ ‖y0 − x∗‖

))
≤ 1 + 2

1−L0‖x0−x∗‖

(
L0‖x0 − x∗‖+ L1

(
g2(‖x0 − x∗‖) + g1(‖x0 − x∗‖)

)
‖x0 − x∗‖

)
≤ 1 + 2

1−L0‖x0−x∗‖

(
L0 + L1

(
g2(‖x0 − x∗‖) + g1(‖x0 − x∗‖)

))
‖x0 − x∗‖

= K(‖x0 − x∗‖).

(27)

Then, using Equations (4), (9), (25), and (26), we obtain that

‖x1 − x∗‖ ≤ ‖z0 − x∗‖+ ‖A0‖‖G′(x0)
−1G(z0)‖

= ‖z0 − x∗‖+ ‖A0‖‖G′(x0)
−1G′(x∗)‖‖G′(x∗)−1G(z0)‖

≤ ‖z0 − x∗‖+ MK(‖x0−x∗‖)‖z0−x∗‖
1−L0‖x0−x∗‖

≤
(

1 + MK(‖x0−x∗‖)
1−L0‖x0−x∗‖

)
‖z0 − x∗‖

≤
(

1 + MK(‖x0−x∗‖)
1−L0‖x0−x∗‖

)
g2(‖x0 − x∗‖)‖x0 − x∗‖

≤ g3(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

(28)

which proves the (18) for m = 0 and x1 ∈ U(x∗, r). By simply replacing x0, y0, z0, and
x1 by xm, ym, zm, and xm+1 in the preceding estimates, we arrive at (16)–(18). Then,
from the estimates ‖xm+1 − x∗‖ < ‖xm − x∗‖ < r, we deduce that limm→∞xm = x∗ and
xm+1 ∈ U(x∗, r).

Finally, we show the uniqueness part; let Q =
∫ 1

0 G′(y∗ + t(x∗ − y∗))dt for some
y∗ ∈ Ū(x∗, r) with G(y∗) = 0. Using (15), we obtain that

‖G′(x∗)−1(Q− G′(x∗)‖ ≤
∫ 1

0 L0‖y∗ + t(x∗ − y∗)− x∗‖dt

≤
∫ 1

0 (1− t)‖x∗ − y∗‖dt

≤ L0
2 T < 1.

(29)

It follows from (29) that Q is invertible. Then, from the identity 0 = G(x∗)− G(y∗) =
Q(x∗ − y∗), we deduce that x∗ = y∗.

Remark 1. By (11) and the estimate

‖G′(x∗)−1G′(x)‖ = ‖G′(x∗)−1(G′(x)− G′(x∗)) + I‖
≤ 1 + ‖G′(x∗)−1(G′(x)− G′(x∗))‖
≤ 1 + L0‖x− x∗‖

condition (13) can be dropped and be replaced by

M(t) = 1 + L0t
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or
M(t) = M = 2, since t ∈ [0,

1
L0

).

3. Generalized Method

The multistep version of (3) consisting of q + 1, (q ∈ N), steps is expressed as

z(0)m = ym − ΓmG(ym),

z(1)m = zm − ψ(xm, ym, zm)G(zm),

z(2)m = z(1)m − ψ(xm, ym, zm)G(z(1)m ),

. . . . . . . . . . . . . . . . . .

z(q−1)
m = z(q−2)

m − ψ(xm, ym, zm)G(z(q−2)
m ),

z(q)m = xm+1 = z(q−1)
m − ψ(xm, ym, zm)G(z(q−1)

m ),

(30)

where ym = xm − ΓmG(xm), z(0)m = zm, ψ(xm, ym, zm) = (2I − Γm[zm, ym ; G])Γm, and
Γm = G(xm)−1.

Next, we show that the generalized scheme (30) possesses convergence order 2q + 3.

3.1. Order of Convergence

The definition of divided difference is required to derive (30) convergence order.
Recalling the result of Taylor’s expansion on vector functions (see [24]) for this:

Lemma 1. G : D ⊂ Rn → Rn be r-times Fréchet differentiable in a convex set D ⊂ Rn then for
any x, h ∈ Rn, the following expression holds:

G(x + h) = G(x) + G′(x)h + 1
2! G′′(x)h2 + 1

3! G′′′(x)h3 + ... + 1
(r−1)! G(r−1)(x)hr−1 + Rr, (31)

where
||Rr|| ≤

1
r!

sup
0≤t≤1

||G(r)(x + th)|| ||h||r and hr = (h, h, r. . ., h).

The divided difference operator [·, · ; G] : D× D ⊂ Rn ×Rn −→ L(Rn) is defined by
(see [24])

[x + h, x ; G] =
∫ 1

0
G′(x + th) dt, ∀ x, h ∈ Rn. (32)

When we expand G′(x + th) in the Taylor series at point x and integrate, we obtain

[x + h, x ; G] =
∫ 1

0
G′(x + th) dt = G′(x) +

1
2

G′′(x)h +
1
6

G′′′(x)h2 + O(h3). (33)

where hi = (h, h, i. . ., h), h ∈ Rn.
Let em = xm − x∗. Expanding G(xm) in a neighbourhood of x∗ and assuming

Γ = G′(x∗)−1 exists, we obtain

G(xm) = G′(x∗)(em + A2(em)
2 + A3(em)

3 + A4(em)
4 + A5(em)

5 + O((em)
5)), (34)

where Ai =
1
i! ΓG(i)(x∗) ∈ Li(Rn,Rn) and (em)i = (em, em, i. . ., em), em ∈ Rn, i = 2, 3, . . .

Additionally,

G′(xm) = G′(x∗)(I + 2A2em + 3A3(em)
2 + 4A4(em)

3 + O((em)
4)), (35)

G′′(xm) = G′(x∗)(2A2 + 6A3em + 12A4(em)
2 + O((em)

3)), (36)
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G′′′(xm) = G′(x∗)(6A3 + 24A4em + O((em)
2)). (37)

The inversion of G′(xm) yields

G′(xm)−1 = (I −2A2em + (4A2
2 − 3A3)(em)2 − (4A4 − 6A2 A3 − 6A3 A2 + 8A3

2)(em)3

+O((em)4))Γ.
(38)

We are in a position to investigate scheme (30)’s convergence behaviour. As a result,
the following theorem is established:

Theorem 2. Suppose that
(i) G : D ⊂ Rn → Rn is many times differentiable mapping.
(ii) There exists a solution x∗ ∈ D of equation G(x) = 0 such that G′(x∗) is nonsingular.
Then, sequence {xn} generated by method (30) for x0 ∈ D converges to x∗ with order 2q + 3,
q ∈ N.

Proof. Employing (34) and (38) in the Newton iteration ym, we obtain that

ẽm = ym − x∗ = A2e2
m + (2A2

2 − A3)e3
m + (4A3

2 − 4A2 A3 − 3A3 A2 + 3A4)e4
m

−(8A4
2 + 6A2

3 + 6A2 A4 + 4A4 A2 − 8A2
2 A3 − 6A2 A3 A2 − 6A3 A2

2)e
5
m + O(e6

m).
(39)

The Taylor series of G(ym) about x∗ yields

G(ym) = G′(x∗)(ẽm + A2 ẽ2
m + A3 ẽ3

m + A4 ẽ4
m + O(ẽ5

m)), (40)

Substituting (38)–(40) in first step of (30), we obtain

ēm = zm − x∗ = 2A2
2e3

m + (4A2 A3 − 9A3
2 + 3A3 A2)e4

m + O(e5
m). (41)

Using Equations (35)–(37) in (33) for x + h = zm, x = ym, and h = ēm − ẽm, it
follows that

[ zm, ym; G ] = G′(x∗)
(

I + A2(ēm + ẽm) + O((ẽm)
2, (ēm)

2)
)

and

Γm[ zm, ym ; G ] = I − 2A2em + (4A2
2 − 3A3)(em)

2 + A2(ēm + ẽm) + O((em)
3).

As a result, we arrive at the conclusion

ψ(xm, ym, zm) =
(

I − 5A2
2(em)2 + 2(10A3

2 − 4A2 A3 − 3A3 A2)(em)3 + O((em)4))
)
G′(x∗)−1. (42)

In addition, we have

G(zm) = G′(x∗)(ēm + O((ēm)
2)). (43)

Using (42) and (43) in the second step of method (30), it follows that

z(1)m − x∗ = 10A4
2(em)

5 + O
(
(em)

6). (44)

The expansion of G(z(q−1)
m ) about x∗ yields

G(z(q−1)
m ) = G′(x∗)

(
(z(q−1)

m − x∗) + A2(z
(q−1)
m − x∗)2 + · · ·

)
. (45)
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Then, we have

ψ(xm, ym, zm)G(z(q−1)
m ) =

(
I − 5A2

2(em)2 + 2(10A3
2 − 4A2 A3 − 3A3 A2)(em)3 + O((em)4))

)
G′(x∗)−1

×G′(x∗)
(
(z(q−1)

m − x∗) + A2(z
(q−1)
m − x∗)2 + · · ·

)
= (z(q−1)

m − x∗)− 5A2
2(z

(q−1)
m − x∗)(em)2 + A2(z

(q−1)
m − x∗)2 + . . . .

(46)

Using (46) in (30), we obtain

z(q)m − x∗ = 5A2
2(z

(q−1)
m − x∗)(em)

2 − A2(z
(q−1)
m − x∗)2 + · · · . (47)

As we know from (44) that z(1)m − x∗ = 10A4
2(em)5 + O

(
(em)6), from (47) for q = 2, 3,

we therefore have

z(2)m − x∗ = 5A2
2(em)

2(z(1)m − x∗) + · · ·
= 50A6

2(em)
7 + O

(
(em)

8)
and

z(3)m − x∗ = 5A2
2(em)

2(z(2)m − x∗) + · · ·
= 250A8

2(em)
9 + O

(
(em)

10).
Proceeding by induction, it follows that

em+1 = z(q)m − x∗ = 2 · 5q A2q+2
2 (em)

2q+3 + O
(
(em)

2q+4).
This completes the proof of Theorem 2.

Remark 2. Note that method (3) utilizes three functions, one derivative, and one inverse operator
per full iteration and converges to the solution with the fifth order of convergence. The generalized
scheme (30) based on (3) (for q = 1) generates the methods with increasing convergence orders
5, 7, 9, . . . corresponding to q = 1, 2, 3, . . . at an additional cost of one function evaluation per each
iteration. This fulfils the main aim of developing higher order methods, keeping computational cost
under control.

3.2. Local Convergence

Along the same lines as method (3), we offer the local convergence analysis of method (30).
Define ḡ2, λ, µ, and hµ on the interval [0, r2) by

ḡ2(t) =
K(t)

1− w0(t)
,

λ(t) = 1 + ḡ2(t)M,

µ(t) = λq(t)g2(t)tλ−1

and
hµ(t) = µ(t)− 1.

We have that hµ(0) < 0. Suppose that

µ(t)→ +∞ or a positive number as t→ r−2 . (48)

Denote by r(q) the smallest zero on the interval (0, r2) of function hµ . Define r∗ by

r∗ = min{r1, r(q)}. (49)
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Proposition 1. Suppose that the conditions of Theorem 2 hold. Then, sequence {xm} generated
for x0 ∈ U(x∗, r∗)− {x∗} by method (30) is well defined in U(x∗, r∗), remains in U(x∗, r∗), and
converges to x∗. Moreover, the following estimates hold:

‖ym − x∗‖ ≤ g1(‖xm − x∗‖)‖xm − x∗‖ ≤ ‖xm − x∗‖ < r∗,

‖zm − x∗‖ ≤ g2(‖xm − x∗‖)‖xm − x∗‖ ≤ ‖xm − x∗‖,

‖z(i)m − x∗‖ ≤ λi(‖xm − x∗‖)‖zm − x∗‖

≤ λi(‖xm − x∗‖)g2(‖xm − x∗‖)‖xm − x∗‖λ

≤ ‖xm − x∗‖, i = 1, 2, . . . , q− 1,

(50)

and

‖xk+1 − x∗‖ = ‖z(q)m − x∗‖ ≤ λq(‖xm − x∗‖)‖zm − x∗‖

≤ µ(‖xm − x∗‖)‖xm − x∗‖.
(51)

Furthermore, x∗ is the only solution of G(x) = 0 in D1 = D ∩U(x∗, r∗).

Proof. Only new estimations (50) and (51) will be shown. We show the first two estimations
using the evidence of Theorem 1. Then, we will be able to obtain that

‖ψ(xm, ym, zm)G′(x∗)‖ ≤ ‖
(
2I − G′(xm)−1[zm, ym; G]

)
G′(xm)−1G′(x∗)‖

≤ ‖
(
2I − G′(xm)−1[zm, ym; G]

)
‖‖G′(xm)−1G′(x∗)‖

≤ K(‖xm−x∗‖)
1−w0(‖xm−x∗‖)

≤ ḡ2(‖xm − x∗‖).

(52)

Moreover, we have

‖z(1) − x∗‖ = ‖zm − x∗ − ψ(xm, ym)G(zm)‖
≤ ‖zm − x∗‖+ ‖ψ(xm, ym, zm)G′(x∗)‖‖G′(x∗)−1G(zm)‖
≤ ‖zm − x∗‖+ ḡ2(‖xm − x∗‖)M‖zm − x∗‖
≤ λ(‖xm − x∗‖)‖zm − x∗‖
≤ µ(‖xm − x∗‖)‖xm − x∗‖.

Similarly, we obtain

‖z(2)m − x∗‖ ≤ λ(‖xm − x∗‖)‖z(1)m − x∗‖
≤ λ2(‖xm − x∗‖)‖zm − x∗‖
. . . . . . . . . . . . . . . . . .

‖z(i)m − x∗‖ ≤ λi(‖xm − x∗‖)‖zm − x∗‖

‖xm+1 − x∗‖ ≤ ‖z(q)m − x∗‖ ≤ λq(‖xm − x∗‖)‖zm − x∗‖
≤ µ(‖xm − x∗‖)‖xm − x∗‖.

That is, we have xm, ym,zm, z(i)m ∈ U(x∗, r∗), i = 1, 2, . . . , q, and

‖xm+1 − x∗‖ ≤ c̄‖xm − x∗‖, (53)
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where c̄ = µ(‖x0 − x∗‖) ∈ [0, 1), so limm→∞ xm = x∗ and xm+1 ∈ U(x∗, r∗). The unique-
ness result is standard, as shown in Theorem 1.

4. Numerical Examples

Here, we shall demonstrate the theoretical results of local convergence which we have
proved in Sections 2 and 3. To do so, the methods of the family (30) of order five, seven,
and nine are chosen. Let us denote these methods by M5, M7, and M9, respectively. The
divided difference in the examples is computed by [x, y ; F] =

∫ 1
0 F′(y + θ(x− y))dθ. We

consider three numerical examples, which are presented as follows:

Example 1. Let us consider B = Rm−1 for natural integer m ≥ 2. B is equipped with the max-norm
‖x‖ = max1≤i≤m−1‖xi‖. The corresponding matrix norm is ‖A‖ = max1≤i≤m−1 ∑

j=m−1
j=1 |aij| for

A = (aij)1≤i,j≤m−1. Consider the two-point boundary value problem on interval [0, 1]:{
v′′ + v3/2 = 0,
v(0) = v(1) = 0.

(54)

Let us denote ∆ = 1/m, ui = ∆i, and vi = V(ui) for each i = 0, 1, . . . , m. We can write
the discretization of v

′′
at points ui in the following form:

v
′′
i '

vi−1 − 2vi + vi+1

∆2 for each i = 2, 3, . . . , m− 1.

Using the initial conditions in (54), we obtain that v0 = vm = 0, and (54) is equiva-
lent to the system of the nonlinear equation F(v) = 0 with v = (v1, v2, . . . , vm−1) in the
following form:{

∆2v3/2
1 − 2v1 + v2 = 0,

vi−1 + ∆2v3/2
i − 2vi + vi+1 = 0 for each i = 2, 3, . . . , m− 1.

(55)

Using (55), the Fréchet-derivative of operator F is given by

F′(v) =



3
2 ∆2v1/2

1 − 2 1 0 . . . 0

1 3
2 ∆2v1/2

1 − 2 1
. . . 0

0 1
. . . . . .

...
...

. . . . . . . . . 1
0 . . . 0 1 3

2 ∆2v1/2
1 − 2


.

Choosing m = 11, the corresponding solution is x∗ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , and we
have L0 = L = L1 = 3.942631477 and M = 2. The parameters using method (30) are given
in Table 1.

Table 1. Numerical results for example 1.

M5 M7 M9

r1 = 0.00791011 r1 = 0.00791011 r1 = 0.00791011
r(1) = 0.00470691 r(2) = 8.50886× 10−10 r(3) = 1.61122× 10−13

r∗ = 0.00470691 r∗ = 8.50886× 10−10 r∗ = 1.61122× 10−13

Thus, it follows that the above-considered methods of scheme (30) converge to x∗ and
remain in Ū(x∗, r∗).
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Example 2. Scholars have determined that the speed of blood in a course is an element of the
distance of the blood from the conduit’s focal pivot (Figure 1). As per Poiseuille’s law, the speed
(cm/s) of blood that is r cm from the focal hub of a supply route is given by the capacity

S(r) = C(R2 − r2), (56)

where R is the range of the course, and C is a consistent that relies upon the thickness of the blood
and the tension between the two closures of the vein. Assume that for a specific course,

C = 1.76× 105 cm/s

and
R = 1.2× 10−2 cm.

Figure 1. Cut-away view of an artery.

Using the numerical values, the problem reduces to

f2(x) = 25.344− 176,000x2 = 0,

where x = r.
The graph of the function f2(x) is shown in Figure 2.

2 4 6 8 10

-1.5´ 107

-1.0´ 107

-5.0´ 106

Figure 2. Graph of f2(x).

The zero of f2(x) = 0 is x∗ = 0.012; then, we have L0 = L = L1 = 84.2803 and
M = 5280. The parameters using method (30) are given in Table 2.

It follows that the above-considered methods of scheme (30) will converge to x∗ and
remain in Ū(x∗, r∗) if r∗ is chosen as shown in Table 2.
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Table 2. Numerical results for example 2.

M5 M7 M8

r1 = 0.169092 r1 = 0.169092 r1 = 0.169092
r(1) = 0.0724823 r(2) = 0.0331151 r(3) = 0.0140628
r∗ = 0.0724823 r∗ = 0.0331151 r∗ = 0.0140628

Example 3. Consider the quasi-one-dimensional isentropic flow of a perfect gas through a variable-
area channel, shown in Figure 3.

Figure 3. In quasi-one-dimension flows, the stream tube cross section area is allowed to vary in one
direction A = A(x).

The relationship between the Mach number M and the flow area A, derived by Zucrow
and Hoffman [25], is given by

ε =
A
A∗

=
1
M

( 2
γ + 1

(
1 +

γ− 1
2

M2
))(γ+1)/2(γ−1)

, (57)

where A∗ is the choking area (i.e., the area where M = 1), and γ is the specific heat ratio of
the flowing gas shown in Figure 4.

Figure 4. The area–Mach-number relation.

For each value of ε, two values of M exist, one less than unity (i.e., subsonic flow)
and one greater than unity (i.e., supersonic flow). For the values of ε = 5.00 and γ = 1.4,
Equation (57) becomes
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f3(x) = 5− 0.578704(1 + 0.2x2)3

x
. (58)

where x = M. The graph of the function f3(x) is shown in Figure 5, and the zero is
x∗ = 0.116689. Then, we have that

L = L0 = L1 = 8.137146, and M = 0.610065.

2 4 6 8 10

-500

-400

-300

-200

-100

Figure 5. Graph of f3(x).

The parameters using method (30) are given in Table 3.

Table 3. Numerical results for example 3.

M5 M7 M9

r1 = 0.0819303 r1 = 0.0819303 r1 = 0.0819303
r(1) = 0.050974 r(2) = 0.0355748 r(3) = 0.0254287
r∗ = 0.050974 r∗ = 0.0355748 r∗ = 0.0254287

The computed values of r∗ show that the considered methods of the scheme (30) will
converge to x∗ and remain in Ū(x∗, r∗).

5. Study of Complex Dynamics of the Method

To view the geometry of the methods of the family (30) of five, seven, and nine
order methods, in the complex plane, we present the attraction of basins of the roots by
performing the methods on some functions (see Table 4). The basins are displayed in
Figures 6–8 concerning capacities. To draw basins, we use square shapes R ∈ C of size
[−2, 2]× [−2, 2] and allot various shadings to the basins. The dark region is appointed to
the focuses for which the strategy is disparate.

Table 4. Comparison of performance based on basins of attraction of methods.

S. No. Test Problems Roots Color of Fractal Best Performer Poor Performer

1 P1(z) = z2 − 4 −2 red M5, M7, M9
2 green

2 P2(z) = z3 − z −1 red M5 M7, M9
0 green
1 blue

3 P3(z) = z6 + 15
7 z5 + 5z4 −0.8277 . . . cyan M5, M7 M9

+ 7
3 z3 − z2 + z + 1 −0.7654− 1.9514i yellow

−0.6562 . . . purple
−0.7654 + 1.9514i blue
0.4357− 0.4786i green
0.4357 + 0.4786i red
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-2. -1. 0. 1. 2.

2.

1.

0.

-1.

-2.

M5.
-2. -1. 0. 1. 2.

2.

1.

0.

-1.

-2.

M7.
-2. -1. 0. 1. 2.

2.

1.

0.

-1.

-

M9.

Figure 6. Basins of attraction of M5, M7, and M9 for polynomial P1(z).

-2. -1. 0. 1. 2.

2.

1.

0.

-1.

-

M5.
-2. -1. 0. 1. 2.

2.

1.

0.

-1.

M7.
-2. -1. 0. 1. 2.

2.

1.

0.

-1.

-

M9.

Figure 7. Basins of attraction of M5, M7, and M9 for polynomial P2(z).

-2. -1. 0. 1. 2.

2.

1.

0.

-1.

-

M5.
-2. -1. 0. 1. 2.

2.

1.

0.

-1.

-

M7.
-2. -1. 0. 1. 2.

2.

1.

0.

-1.

M9.

Figure 8. Basins of attraction of M5, M7, and M9 for polynomial P3(z).

6. Conclusions

In this work, we have extended the utilization of technique (3) by introducing its
assembly investigation and complex elements. Rather than using different procedures
depending on the higher subordinate request just as a Taylor series, we have utilized only
a subsidiary of request one, since this actually shows up in the technique. One more benefit
of our methodology is the calculation of uniqueness balls where the repeats lie just as
appraisals on ‖xn − x∗‖. These objectives are accomplished utilizing our Lipschitz-like
conditions. The hypothetical outcomes so determined are confirmed on some useful issues.
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Finally, we have checked the security of the technique through utilizing a complex element
apparatus, specifically a bowl of fascination.
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