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Abstract: Medical studies often involve a comparison between two outcomes, each collected from
a sample. The probability associated with, and confidence in the result of the study is of most
importance, since one may argue that having been wrong with a percent could be what killed a patient.
Sampling is usually done from a finite and discrete population and it follows a Bernoulli trial, leading
to a contingency of two binomially distributed samples (better known as 2× 2 contingency table).
Current guidelines recommend reporting relative measures of association (such as the relative risk
and odds ratio) in conjunction with absolute measures of association (which include risk difference
or excess risk). Because the distribution is discrete, the evaluation of the exact confidence interval for
either of those measures of association is a mathematical challenge. Some alternate scenarios were
analyzed (continuous vs. discrete; hypergeometric vs. binomial), and in the main case—bivariate
binomial experiment—a strategy for providing exact p-values and confidence intervals is proposed.
Algorithms implementing the strategy are given.

Keywords: binomial distribution; confidence interval; contingency table; binomial proportion; excess
ratio; odds ratio; relative risk

MSC: 62F25; 91G70; 62P10

1. Introduction

Evaluation of the odds and the risks associated with diseases becomes more actual than
never in the recent context of COVID-19 [1,2]. The proper evaluation of these parameters
as well as their confidence intervals have a great impact [3]. The term odds denotes the
probability that an event will occur divided by the probability that an event will not occur
while the ‘Risk’ is the probability that an outcome will occur, expressed as the number
of positive outcomes divided by the total number of outcomes; relative risk and odds
ratios are simply the risk or odds, respectively, of an outcome in one group (exposed
group, case group) divided by the risk or odds of the outcome in another group (control
group, reference group). Current guidelines recommend reporting relative measures of
association (such as the relative risk and odds ratio) in conjunction with absolute measures
of association (which include risk difference or excess risk) [4]; Table 4 in [4] should be
consulted for a detailed comparison between them.

There are no interpretations of these concepts that are at once simple, intuitive, correct,
and foolproof; correct use and interpretation of these statistics requires an attention to
detail which seems to tax the patience of working scientists [5]. A recent study noted that
assessment of intervention effects in systematic reviews with meta-analysis deserves greater
rigor with respect to insufficiently demonstrated traditional 95% confidence intervals and
p-values [6] suggesting that the primary step of reporting the 95% confidence interval,
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and/or the p-value should be continued with other four steps (investigating statistical and
clinical heterogeneity; dealing with problems of multiplicity due to multiple outcomes;
trial sequential analysis; and Bayes factor analysis). In addition, to avoid erroneous
interpretations, researchers should account for the potential impact of systematic errors
(bias) on the meta-analysis results and publication bias due to statistical significance and
clinical significance. The assessment of the clinical significance of an intervention effect
should only be assessed if statistical significance has been obtained, but on the other hand,
if statistical significance has been reached, then clinical significance must be assessed [6].
There is no doubt that in research practice and in training of researchers, we must engage
appropriate methods including calculation of the confidence intervals within individual
studies, and meta-analysis in the integration of multiple studies, in order to produce final
conclusions [7].

Even if providing an accurately calculated confidence interval (CI) might strongly
support the conclusions of a study, people are still reticent to use exact methods of calculat-
ing the CIs. Furthermore, some reputed statisticians suggest that “approximate is better
than exact” [8]. To follow the same route, one could say “this concludes the needed proof”.

The aforementioned reticence is in the majority of cases due to the complexity of
the calculation. For example, deciphering how Casella ([9] refining a previous work [10])
calculated the famous BSC interval for the binomial proportion is a challenge for someone
not quite familiarized with mathematics, statistics and informatics. To briefly exemplify,
one should assume that, generally, the people developing a method and the people meant
to use it are not the same, and worse yet, may not have the same background.

New findings showed that the bias associated with the usual estimator of odds ratio
and the relative risk may be substantial for rare events [11]. Further developments are
expected from machine learning enabling the development of algorithms with minimal
dependence or parametric assumptions [12].

2. Research Aim

When dealing with sampling, usually from a finite and discrete population, Value–
Probability and Interval–Confidence facets for the 2× 2 contingency measures of association
require a much better explanation in order to be thoroughly understood, and “at key
solutions” need to be provided. Here, it is proposed that starting from the study design
(Figure 1), first, to calculate the probability mass functions associated with the two binomial
samples, second, to calculate the probability mass function of the case vs. control bivariate
binomial experiment, and finally, to extract the parameters of interest (please note that
most of the studies require calculation of at least two parameters). Cumulative distribution
function and confidence intervals and/or p-values are calculated in a succession of two
more steps (Figure 1); later, algorithms are given (Algorithms 1–5).
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Algorithm 1: Probability mass function (PMF) for binomial distribution, Equation (9).
Input: z, o //z←x or y, o←m or n

procedure PMF_B(z, o, &r)
If(z ∗ (o− z) = 0)

for( w← o; w ≥ 0; w−−) r[w]← 0; if(x = 0) r[0]← 1.0 else r[o]← 1.0; EXIT

EndIf
r[z]← z ∗ LOG(z/o) + (o− z) ∗ LOG(1− z/o)
If(z < o/2)

for( w← z; w > 0; w−−) r[z]← r[z] + LOG(o− z + w)− LOG(w)
Else

for( w← o− z; w > 0; w−−) r[z]← r[z] + LOG(z + w)− LOG(w)
EndIf
r[z]← EXP(r[z])
for(w← z− 1; w ≥ 0; w−−) r[w]← r[w + 1] ∗ (o− z) ∗ (w + 1)/z/(o− w)
for(w← z + 1; w ≤ m; w++) r[w]← r[w− 1] ∗ x ∗ (o− w + 1)/w/(o− z)
end procedure

Output: r //r → fBS(0; x, m), ..., fBS(m; x, m) or fBS(0; y, n), ..., fBS(n; y, n)

Algorithm 2: Expression for ER, OR, RR (Equations (10)–(12)) as irreducible fraction.
Input: x, m, y, n //x←x, m←m,y←y, n←n

procedure FR(a, b, &c, &d)
c← a; d← b;
If(d = 0) if(c = 1) d = 1; c = 1; EXIT EndIf
if(c = 0) d← 1; if(d < 2) EXIT; if(a < 0) a← −a
For( ; b > 0;)

t← b; b← a % b; a← t //% is the modulo operator
EndFor //a is the greatest common divisor
c← c/a; d← d/a //c/d is irreducible fraction

end procedure
procedure ER(x, y, m, n, &c, &d) //excess risk, ER

FR(x*n - y*m, m*n, c, d)
end procedure //c/d→ ER (Equation (10))
procedure OR(x, y, m, n, &c, &d) //odds ratio, OR

FR(x*(n-y), y*(m-x), c, d)
end procedure //c/d→ OR (Equation (11))
procedure RR(x, y, m, n, &c, &d) //relative risk, RR

FR(x*n, y*m, c, d)
end procedure //c/d→ RR (Equation (12))

Output: c, d // c
d is a irreducible fraction

Algorithm 3: Bivariate binomial experiment, Equation (14).
Input: x, y, m, n, F //x←x, y←y, m←m, n←n, F ← ER, OR or RR

procedure B2F(x, y, m, n, F, &p, &g, &h)
PMF_B(x, m, r1); PMF_B(y, n, r2); p← []; g← []; h← []
For( u← m; u ≥ 0; u−−) For( v← n; u ≥ 0; v−−)

p[]← r1[u] ∗ r2[v]; F(x, y, m, n, c, d); g[]← c; h[]← d
EndFor EndFor
end procedure

Output: p, g, h //p[] probabilities; g[] numerators; h[] denominators
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Algorithm 4: PMF for bivariate binomial expressions (B2E), Equation (15).
Input: k, p, g, h //k←k, p←p, g←g, h←h

procedure PMF_B2E(&k, &p, &g, &h)
procedure S0FR(l,r)

i← l; j← r; t← DIV(l + r, 2)
For( ; i > j;)

for( ; g[i]/h[i] < g[t]/h[t]; i++); for( ; g[t]/h[t] < g[j]/h[j]; j−−);
If(i ≤ j)

y← g[i]; g[i]← g[j]; g[j]← y; y← h[i]; h[i]← h[j]; h[j]← y
y← p[i]; p[i]← p[j]; p[j]← y; i← i + 1; j← j− 1

EndIf
EndFor
if(l < j) S0FR(l, j); if(i < r) S0FR(i, r)

end procedure
S0FR(0, k− 1); p1← []; g1← []; h1← []; k1← 0
For( i← 0; i < k;)

s← g[i]
For( j← i + 1; j < k;)

if(g[j] 6= g[i]) BREAK; if(h[j] 6= h[i]) BREAK; s← s + p[j]
EndFor
p1[]← s; g1[]← g[i]; h1[]← h[i]; i← j; k1← k1 + 1

EndFor
k← k1; p← p1; g← g1; h← h1

end procedure
Output: k, p, g, h //k→k, p→p, g→g, h→h

Algorithm 5: CIs in increasing coverage for B2E.
Input: nu, de, k, p, g, h //nu←nu, de←de, k←mn, p←p, g←g, h←h

function CC(&g, &h, k, i, j)
a← “[” ; b← “]”
If(k > 0) if(i > 0) i−−; a← “(“ endif; if(j < k) j++; b← ”)” endif EndIf
u← CONCATENATE(g[i], “/”, h[i]); if(h[i] = 1) u← g[0]; if(h[i] = 0) u← 0
v← CONCATENATE(g[j], “/”, h[j]); if(h[j] = 1) v← g[0]; if(h[j] = 0) v← 0
w← CONCATENATE(a, u, “, ”, v, b); RETURN(w)
end function
procedure CI_B2E(nu, de, &k, &p, &g, &h, &ci)
i0← −1; for( i← k− 1; i ≥ 0; i−−) if(( nu = g[i])AND( de = h[i])) i0← i
it← 0; i1← i0; i2← i0; iq← 0; r ← p[i0]; q← 1.0− p[i0]
For( ; ;)

if(r < 0.5) q← 1− r else r ← 1− q; c0← CC(g, h, 0, i1, i2); c1← CC(g, h, k, i1, i2)
ci[it]← ARRAY(c0, c1, r, q); it← it + 1; if((i1 = 0) AND (i2 = k)) BREAK

if(i1 = 0) i2← i2 + 1; r ← r + p[i2]; q← q− p[i2]; CONTINUE endif
if(i2 = k) i1← i1− 1; r ← r + p[i2]; q← q− p[i2]; CONTINUE endif
If(p[i1− 1] = p[i2 + 1])

i1← i1− 1; i2← i2 + 1; r ← r + p[i1] + p[i2]; q← q− p[i1]− p[i2]; CONTINUE

EndIf
if(p[i1− 1] > p[i2 + 1]) i1← i1− 1; r ← r + p[i1]; q← q− p[i1]; CONTINUE endif
if(p[i1− 1] < p[i2 + 1]) i2← i2 + 1; r ← r + p[i2]; q← q− p[i2]; CONTINUE endif

EndFor
k← it
end procedure

Output: ci //ci[i] array (ci_min, ci_max, coverage, 1-coverage)
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3. Background

Since ratio scale statistics are widely known, those shall be used for comparison. A
long time ago [13], Carl Friedrich Gauss wrote the formula for the distribution of the
population statistic known presently as “Normal”-Gauss distribution. Some readers may
believe that Gauss was the first to address this issue, which is not quite true. With a
reasonable confidence, one should say that Newton’s foundational work [14] has inspired
many people. Drawing from this, Bernoulli [15] put forward a piece of proof for the
expansion formula of the Newton binomial; thus, the Binomial distribution was invented
( fB, Equation (1), where Γ(o + 1) = o!).

1 = (p + 1− p)n =
n

∑
k=0

(
n
k

)
pk(1− p)n−k =

n

∑
k=0

fB(k; n, p),

fB(k; n, p) =
Γ(n + 1)

Γ(k + 1)Γ(n− k + 1)
pk(1− p)n−k (1)

The first to look for asymptotic formulas to be used for the approximation of Binomial
distribution was De Moivre [16]. Merely approximately 100 years later, Gauss [13] looked
over the Gaussian function in an ampler manner ( fG, Equation (2); where
a = σ−1(2π)−1/2, b = µ, c = σ for Normal distribution, fN in Equation (3)).

fG(x; a, b, c) = a · exp
(
− (x− b)2

2c2

)
(2)

fN(x; µ, σ) =
1

σ(2π)1/2 exp
(
− (x− µ)2

2σ2

)
, (3)∫ ∞

−∞
fN(x; µ, σ)dx = 1

Occurring in most of the natural phenomena, the Gauss distribution is used to model
observed data collected on a ratio scale. To elaborate, it is a continuous distribution,
which means that it starts from the assumption that there is an infinite diversity in the
population of the data, and in between any two distinct values, one more (distinct value)
still exists. Anyone should recognize that it is a very strong requirement, since most
of the instrumentation is normally trained to collect the data with no more than four
significant digits (leading to a universe build up from populations of only thousands
of distinct individuals). Nevertheless, sampling (in which the limited instrumentation
filters the collected data with a limited number of digits) generally operates on small-sized
drawings (even smaller than thousands) from the population. Consequently, the population
distribution is actually never reconstituted from any number of repeated samples. In other
words, by sampling, Normal distribution is never resampled. In fact, through sampling
one sees the population distribution differently (than the one which actually exists). In
summary, this is the sampling distribution. For the Gauss distribution, the first to propose
its sampling distribution was Gosset [17], and that is Student’s t distribution (Equation (4)).

ft(x; ν) =
Γ( ν+1

2 )

(νπ)1/2Γ( ν
2 )

(
1 +

x2

ν

)− ν+1
2

(4)

In a universe overwhelmed by its infinity, Gauss distribution is also what a proportion
will follow (see Equation (5); see Figure 2—Student’s t and Binomial against Normal).

fN(x; 0, 1)− ft(x; ν)
ν→∞−−−→ 0, fN(x; np,

√
np(1− p))− fB(x; n, p) n→∞−−−→ 0 (5)
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t10(x) = ft(x;10); g_t(x) = fN(x;0,1); b10(k) = fB(x;10,0.5); g_b(k) = fN(x; 10∙0.5, 5.05.010  ) 
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Figure 2. Normal approximations for Student’s t (left, ν = 10) and Binomial (right, n = 10) distributions.

The same problem—asymptotic formulas for very large populations—was addressed
in Physics and Chemistry as well, when important progress was being made to the
Maxwell–Boltzmann [18–20], Bose–Einstein [21–23] and Fermi–Dirac [23–25] distributions
(all discrete, all with “continuity correction”—to borrow the binomial related language—
approximations intended to work only for large numbers [26])—but those were very lucky
cases, since the population of atoms and molecules is indeed enormous (NA, about 6·1023

molecules exist in normal conditions in a relatively small amount of one mol of substance;
NA—Avogadro’s [27] number). Still, it is very useful to learn how physicists arrived to
the continuous case. Thus, extracting relevant equations from [20], the following is a
short route:

• For a closed system with indistinguishable particles and K energy states, the event
to observe a certain configuration (n1, . . . , nK) is a multinomial distribution ([28];
Equation (6)):

fM(n1, ..., nK; p1, . . . , pK) =
∏K

i=1 pni
i

∏K
i=1 ni!

(
K

∑
i=1

ni

)
! (6)

• A closed system with no chemical changes [29] is under two constrains, N = ∑K
i=1 ni

and E = ∑K
i=1 eini; by maximizing the likelihood [30], according to Lagrange multi-

plier’s method [31]: ψ(ni + 1) = ln(pi)− α− βei (where ψ is the digamma function);
• If ni � 1 (see [32]) then ψ(ni + 1)− ln(ni)

ni→∞−−−→ γ (Euler’s gamma constant [33]) and
the discrete Maxwell–Boltzmann distribution of particles by energies is obtained (pi in
Equation (7); where ∑K

j=1 e−βej is the partition function (introducing the entropy [34]).
• For an ideal gas, the value of a speed component (for instance x) takes (hypothetically)

any value from (−∞, ∞), so (Σ→
∫

) continuous Maxwell–Boltzmann distribution of
particles by speed components is obtained, which is a Gaussian ( fGMB in Equation (7));

• Ultimately, for a speed s constituted from J components, the formula for continu-
ous Maxwell–Boltzmann distribution becomes ( fMBJ in Equation (7); Equation (29)
in [20]):

pi =
ni
N e−βei

∑K
j=1 e−βej

, fMBG(x) = ae−bx2
, fMBJ(s; a, J) =

π J/2

2J−1Γ(J/2)
sJ−1aJe−πa2s2

(7)

However, since at least the sample sizes are finite (if not the populations too), one
needs to address the sample size here as well.

To cite Alan Agresti—the (U.S.) Statistician of year 2003—who recommends “using
confidence methods for proportions, for the difference between proportions, and for odd
ratios in three situations: when a lower bound on a coverage probability (CP) is desired,
when an actual CP near the nominal level is desired, and when teaching in a classroom.”
Following [35], one could say “this is considered true with ’a certain level of confidence”.

Calling for the use of the exact method for the calculation of the CI at the difference of
two binomial proportions, the authors of [36] made progress in a series of studies [37–41],
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but again, in most of the cases, the inverse problem is needed to find the probability
associated with a certain difference or ratio of two proportions [42–47].

4. Material and Method

Independently of the fact that the difference of the proportions was expressed in
percentages or absolute values, its limits are to be derived from the model of the research
question in case. Taking into consideration the case of one proportion, there are three
distinct cases (where α is the risk of being in error):

• Continuous asymptotic (normal) case, when CI is given by the inverse of the cumula-
tive distribution function also called the percent-point function or quantile function:
±σ · z(α) (where σ2 is the variance); for the occurrence of the proportion in a sample
of size n, CI is ±σ · z(α)/

√
n;

• Continuous non-asymptotic (student) case, proportion coming from a measurement
through sampling of size m, when CI is given with Student t-value instead of the
z-value: ±σ · t(α, m); for the incidence in a sample of size n, CI is ±σ · t(α, m)/

√
n;

• Discrete case, when a proportion comes from a sample in a (no matter how large)
population, one needs to know the value of the binomial variable (x) and the sam-
ple size (m) in order to express its CI; it always becomes suitable to use the bi-
nomial distributed CI in the calculation; one of the first proposed CI is in [48]
(InvCDFβ(1 − α/2, r + 1, m − r), where fβ(x; α1, α2) = Γ(α1 + α2) · Γ(α1)

−1 ·
Γ(α2)

−1 · xα1−1 · (1 − x)α2−1), and InvCDFβ is its inverse—providing a CI at least as
large as it is supposed to be and being most of the time too large; since the discrete-
ness transforms the matter of integration (back) into a matter of summation and the
calculation of each CI is a problem of combinatorics; there is no unique solution. One
alternative is given in [9] and another one in [49], both of those alternatives have no
analytical formula, only recipes (algorithms) leading to the solution.

Thus, when a difference of two proportions is done, it is actually a full factorial design
of the cases given above, each of the two proportions possibly falling in one of the three
categories given above.

• At least one continuous asymptotic (normal) case. When comparing two true values
in a (very) large population (of an unknown size), then both proportions fall into the
asymptotic continuous case; it may be suitable to use the z-value in the calculation
(for studies involving z-value, z-statistics, z-test, see [50–53]);

• At least one continuous non-asymptotic (student) case. When comparing two true
values obtained from a large number of repeated samplings (of known size) in a (very)
large population, then both proportions fall into the continuous but not asymptotic
case; it is much more suitable (than the call for the previous case) to use the Student
t-value (for some typical cases, see [54–57]);

• 2 × 2 discrete asymptotic case. When comparing with a true value in a (very) large
population (of an known or unknown size), it is a typical case of involving an asymp-
totic method (see the methods given in [58–60]);

• 2 × 2 discrete case. In most of the cases, the results compared are coming from
two samples (of necessary known sizes), when actually a bidimensional binomial
distribution is involved and the probability for the difference is to be calculated from
it [36]. This case is detailed in the next paragraph and in the remainder of the paper.

Under different arrangements (see a different arrangement in [61]), a contingency
table ([62,63]; a confusion matrix in [64]; an error matrix in [65]) collects observed frequen-
cies at the contingency of two multinomial distributed variables. The simplest case, 2 × 2
contingency, is for two dichotomies (fourfold table in [63]; 2 × 2 table in [66]).

The 2 × 2 contingencies are used in at least two different contexts (see Figure 3).
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Predicted Positive and Predicted Negative, respectively. In the context of Comparing outcomes of two (or more)
samples, C1 is the desired (success, “+”) case while C2 is its complement (failure, “–”) case.

Figure 3. The 2 × 2 contingency in two contexts (Actual vs. Predicted & Comparing outcomes).

Any repeated draw u from the population in respect to the sample S1 (see Equation (1);
see Figure 3) has a probability of occurrence fS1, and fS2 for v in respect to S2 (Equation (8)).

fBS(w; z, o) =
o!

z!(o− z)!

( z
o

)w(
1− z

o

)o−w
, fS1 ← fBS(u; x, m), fS2 = fBS(v; y, n) (8)

A replica (u/m, v/n) of the binomial experiment (x/m, y/n) will be produced with a
probability (which is the bivariate binomial, with a probability given by the product of the
two binomial probabilities fS1 and fS2), Equation (9):

fB2E(u, v; x, y, m, n) =
m!

u!(m− u)!

(x
m

)u(
1− x

m

)m−u n!
v!(n− v)!

(y
n

)v(
1− y

n

)n−v
(9)

Equation (9) can be perceived by some as slightly intimidating, but it actually expresses
a state of facts: any event involving u and v as possible outcomes has a conditional
probability of the already observed (x and y) outcomes.

Excess risk (ER, Equation (10)), Odds ratio (OR, Equation (11)) and Relative risk (RR,
Equation (12)) are algebraic expressions of the two proportions (x/m and y/n) followed
up in the study (Figure 3):

ER = ER(x, y; m, n) =
x
m
− y

n
, (10)

OR = OR(x, y; m, n) =
x(n− y)
y(m− x)

, (11)

RR = RR(x, y; m, n) =
xn
ym

(12)

Since the samples are independent draws from the population, with no further means
to provide estimates of the characteristics of interest in the population (the x/m and y/n
proportions, are of positive outcomes, and are the characteristics of interest), each of the two
proportions (x/m and y/n) comes from typically binomial distributed variables (outcome
x having as domain {0, 1, . . . , m} and outcome y having as domain {0, 1, . . . , n}) and, thus,
each follows a binomial distribution while together they generate a bidimensional (or
bivariate) binomial distribution.

There are essential differences between the concepts. The absolute risk reduction
reflects the probability of getting a disease in the first place, for instance, while reporting
only relative risk reduction, one would run into the risk that readers exaggerate the
effectiveness of a treatment [67].

5. Results and Discussion

As given in the Research design schema (Figure 1), the solution to the confidence
interval and/or p-value problem should always follow a series of steps.

Calculation of the CI for the discrete case is a problem of combinatorics. Therefore,
a paramount issue is to have an efficient (in terms of the execution time) and accurate
(in terms of the calculation errors) algorithm for the calculation of the probability from a
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bivariate binomial distribution (Equation (10)). Several variants were tried and several
strategies were tested. Below are given some acquired tips:

• It is not efficient to directly evaluate Equation (10); the complexity of the evaluation
is O(m2n2) and, for large values of the samples sizes (m and n), one will never see
the result of the direct evaluation of Equation (10) (if for m = n = 100 the evaluation
takes 4 s, then for m = n = 10,000, it takes 40,000 s, which is over 11 h);

• It is not advisable to blindly use a recursion formula either (see, for example, the
recursion formulas below, Equation (13)); for instance, for m = n = 300, x = 15 and
y = 30, by using a recursion formula starting from fB2E(m, n; x, y, m, n) and going
to fB2E(0, 0; x, y, m, n) by using a series of recursion formulas (such as the ones in
Equation (13)), one will evaluate everything to 0 in a double (8 bytes, 64 bits) floating
point precision for the simple reason that fB2E(m, n; x, y, m, n) is already lower (4.9 . . . ·
10−691) than the lowest absolute value on the scale (4.9 . . . · 10−324) and is evaluated to
0 on any platform operating on IEEE 754 double-storage format;

• It is inefficient to use the general formula Equation (10) for the evaluation since
for each u (or v) the same half-part fBS(u; x, m) (or fBS(v; y, n), respectively) of it
is used m (or n, respectively) times, thus inducing an inflation of the calculations
by m (or n, respectively) times; it is much more convenient to evaluate (and store)
the fBS(u; x, m) and fBS(v; y, n) probabilities first, and later to simply multiply them
( fB2E(u, v; x, y, m, n)← fBS(u; x, m) · fBS(v; y, n)).

A major observation is that fB2E(u, v; x, y, m, n) is at maximum when u = x and v = y
and this maximum is still a subunitary number. Thus, independently of the magnitude of
the sample sizes, the probability will be concentrated around the point of the coordinates
(x, y) located in the {0, 1, . . . , m} × {0, 1, . . . , n} grid. Therefore, an iterative evaluation (of
fBS(u; x, m) and fBS(v; y, n) probabilities, see above) beginning from (x, y) and iterating
(descending) to (0, 0) and (ascending to) (m, n) will propagate through repeated multi-
plications and divisions the smallest amount of error in the most significant part of the
probability (see Figure 4). Thus, both of the following recurrences are used (Equation (13)):

fBS(u; x, m) = fBS(u− 1; x, m)
x(m− u + 1)

u(m− x)
, fBS(u; x, m) = fBS(u + 1; x, m)

(m− x)(u + 1)
x(m− u)

fBS(v; y, n) = fBS(v− 1; y, n)
y(n− v + 1)

v(n− y)
, fBS(v; y, n) = fBS(v + 1; y, n)

(n− y)(v + 1)
y(n− v)

(13)
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Image made with the Wolfram Mathematica (v. 12.0) software. Red dot is fB2E (3, 4, 3, 4, 10, 10). Even for very
small sample sizes (m = n = 10 here), the most important part of the probability is located around the observed
configuration (x = 3 and y = 4 here).

Figure 4. fB2E(x, y, 3, 4, 10, 10) probability mass function.

5.1. The Expressions of Two Binomials and Their CIs

Following up the notation from Figure 3, x defines the number of successes occurring
in a number of m successive draws from a population, while y defines the number of
successes occurring in a number of n successive draws. The bridge between the two is the
population, supposedly being the same, each of the two experiments following a different
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characteristic of interest. Therefore, each sample comes from a binomial experiment, while
together they form a bidimensional or bivariate binomial experiment.

A draw in the sample S1 (or in any of its replica; following up one characteristic
in the population) is independent from a draw in the sample S2 (or in any of its replica;
following up (the) other characteristic in the population). Thus, if (u, v, m, n) is a replica
of the (x, y, m, n) experiment, then it is safely decomposed in two binomial ones, (u, m)
as replica of (x, m) (having m + 1 possible outcomes, from u = 0 to u = m), and (v, n) as
replica of (y, n) (having n + 1 possible outcomes, from u = 0 to u = m), each event having
associated a probability (see Table 1).

Table 1. Probability mass functions for the replica (u, v, m, n) of the 2 × 2 contingency (x, y, m, n).

Events Probability Mass Function

(u, m) replica of (x, m) { fBS(0; x, m), fBS(1; x, m), . . . , fBS(u; x, m), . . . , fBS(m; x, m)}
(v, n) replica of (y, n) { fBS(0; y, n), fBS(1; y, n), . . . , fBS(v; y, n), . . . , fBS(n; y, n)}

For the expressions of fBS(u; x, m) and fBS(v; y, n), see Equation (8). The probability for (u, v, m, n) as replica of
(x, y, m, n) is, again, fB2E(u, v; x, y, m, n) from Equation (9).

One should know that following the design of Table 1, the CI will be provided for the
sampled (the one collected in the 2 × 2 contingency, see Figure 3) with no assumption of
the expected value in the population, or, more importantly, if the population is finite or
infinite (usually an assumption leading to ’asymptotic CIs’). Turning back to the Gauss
vs. Student challenge from the beginning of this paper (Equation (3) vs. Equation (4)),
one could say that what is proposed in this case is a Student-type correction (for a finite
repeated resampling) against an infinite (size) Gauss sampling.

An example will be provided and continued below. For x = 2, y = 1, m = 6 and n = 4
as a particular case of a bivariate binomial experiment, the probability mass functions are
given in Table 2.

Table 2. Example: probability mass functions for x = 2, y = 1, m = 6 and n = 4 bivariate binomial
experiment case.

fBS 0 1 2 3 4 5 6

fBS(u; 2, 6) 8.78·10−2 2.63·10−1 3.29·10−1 2.19·10−1 8.23·10−2 1.65·10−2 1.37·10−3

fBS(v; 1, 4) 3.16·10−1 4.22·10−1 2.11·10−1 4.69·10−2 3.91·10−3

The numeric values are given with three significant figures. However, the calculations and the actual values
must be done with machine-like precision. BS(u; 2, 6) has seven possible outcomes (u ∈ {0, 1, 2, 3, 4, 5, 6}) while
BS(v; 1, 4) has five (v ∈ {0, 1, 2, 3, 4}).

Probability mass functions for expressions of two proportions. If B2E(x, y, m, n)
is the bivariate binomial experiment, then it has (m + 1) × (n + 1) possible outcomes
(not necessarily seen distinctly through an evaluation function as the ones given in
Equations (10)–(12) but necessary), each controlled by a probability given by
fB2E(u, v; x, y, m, n). A list of (m + 1)× (n + 1) paired values should be collected at this
stage. By using a simplified notation: f1,2(u, v) = fB2E(u, v; x, y, m, n) and h1,2(x, y) =
F2(x, y, m, n), where F2(x, y, m, n) is a generic notation for any expression involving two
binomial proportions (including the ones given in Equations (10)–(12)), the result of the
pairing is as given below (Equation (14)):

{(h1,2(0, 0), f1,2(0, 0), . . . , (h1,2(0, v), f1,2(0, v)), . . . , (h1,2(0, n), f1,2(0, n)),

. . .

(h1,2(u, 0), f1,2(u, 0)), . . . ., (h1,2(u, v), f1,2(u, v)), . . . , (h1,2(u, n), f1,2(u, n)), (14)

. . .

(h1,2(m, 0), f1,2(m, 0)), . . . , (h1,2(m, v), f1,2(m, v)), . . . , (h1,2(m, n), f1,2(m, n))}
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Following up the example in Table 2, the Appendix Table A1 gives the ER and their
associated probabilities while Tables A2 and A3 do the same for OR and RR.

It may be stated (as a Theorem) that, in the previously given list, for any equation
from (10) to (12), there is always a duplicate but the proof is immediate if one checks that
ER(0, 0, m, n) = 0 = ER(m, n, m, n) (for ER), OR(0, v, m, n) = 0 = OR(u, n, m, n) (for OR, for
any u, v 6= 0), and RR(0, v, m, n) = 0 (for RR, for any v 6= 0). Undoubtedly, the number of
the duplicates is favored by the common factors in the values of the sample sizes. It can be
effortlessly proved that in the same list above there are at least 2 ·max(m, n) values (and
the minimum is reached when m = n). This fact supports the necessity of grouping (of
the above given pairs) by the value of calculated expression (h1,2 function above) when
the probabilities ( f1,2 function above) are summed. To ease up the grouping process, but
also as is needed later, the resulted list of pairs is sorted (ascending) by the values of the
calculated expression. At this point, it is no longer relevant which values of the freshly
sampled binomial variates (u and v) produced the outcomes; thus, the values in this new
list are labeled by their position (from 1 to k, k being the number of h1,2(u, v) distinct
values), Equation (15):

{(h1, f1), . . . , (hk, fk)} (15)

The grouping and sorting for the example case is illustrated in Table A4 for ER, in
Table A5 for OR and Table A6 for RR (to be found in the Appendix A).

Cumulative distribution functions and CIs. Equation (15) (illustrated for the se-
lected case in Tables A4–A6) is the cornerstone for any CI evaluation associated with any
expression of two binomial proportions (including Equations (10)–(12)). Thus,

• If one wants a CI of α (say, 5%) risk of being in error, then it may start from the pair
cumulating the probability for u = x and v = y (it will always be a unique entry
for it in (hi, fi), i = 1, ..., k list, the one for which hi is the irreducible fraction of the
expression subjected to analysis). Let’s label that index with i0 (for instance i0 = 13 in
Table A4 since ER(2, 6, 1, 4) = 1

12 , i0 = 10 in Table A5 since OR(2, 1, 6, 4) = 3
2 , and i0 = 12

in Table A6 since RR(2, 1, 6, 4) = 4
3 ). Let us use a variable to cumulate the probability,

pi1,i2 (pi1,i2 ← 0). The open interval (hi0−1, hi0+1) contains exactly one possibility
(when u = x and v = y) and has the probability to appear fi0 ; thus, pi1,i2 ← pi1,i2 + fi0 .
By using two pointers (i1 ← i0 and i2 ← i0) to move down (i1 ← i1 − 1) and up
(i2 ← i2 + 1) the CI (hi1 , hi2) is expanded (when i1 ← i1 − 1 also pi1,i2 ← pi1,i2 + fi1 ,
and when i2 ← i2 + 1 also pi1,i2 ← pi1,i2 + fi2 ) until (and no further than) 1− pi1,i2 < α.
Regarding the data given in Tables A4–A6 as example, the 1− α CI is to be obtained
(in each case) by summing the fi values for a block delimited by two boundaries; all
the work is exemplified in the (next) series of three tables (Tables 3 and A8).

• In order to gain a better understanding, another case is added here: the list of the
successive expanding of the CI along with its CP. This is essentially the previous
case with no stop limit and it is a more convenient arrangement of the data from
Equation (15). Reviewing the described algorithm (Equation (16)):

fL ←
i0−1

∑
i1←L

fi1 , fU ←
U

∑
i2←i0+1

fi2 , CIL,U ← [hL, hU ], pL,U ← fL + fi0 + fU (16)

The example case listed in Table A4 (excess risk) is continued with the result of the
above given recipe in Table 3. Examining entry 14 in Table 3, any interval between
[− 7

12 , 1
2 ] and (− 2

3 , 7
12 ) will produce the closest to (and greater than) the 95% (probabil-

ity) coverage (which is about 95.40%, see entry 14 in Table 3); similarly, if one wants a
2% risk of being in error (a 98% CI), one should look to the entry 16 in Table 3; if 1% is
the accepted level of risk of being in error, then the answer is on line 18 in Table 3 and,
finally, for 1‰ the answer is in line 21 in Table 3.
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Table 3. CIs in increasing coverage for ER (data from Table A4).

i MinCI MaxCI pCI 1 − pCI i MinCI MaxCI pCI 1 − pCI

0 [ 1
12 , 1

12 ] (0, 1
6 ) 0.1397 0.8603 12 [− 1

2 , 1
2 ] (− 7

12 , 7
12 ) 0.9417 0.0583

1 [ 1
12 , 1

6 ] (0, 1
4 ) 0.2404 0.7596 13 [− 7

12 , 1
2 ] (− 2

3 , 7
12 ) 0.9540 0.0460

2 [ 1
12 , 1

4 ] (0, 1
3 ) 0.3330 0.6670 14 [− 7

12 , 7
12 ] (− 2

3 , 2
3 ) 0.9610 0.0390

3 [ 1
12 , 1

3 ] (0, 5
12 ) 0.4407 0.5593 15 [− 7

12 , 2
3 ] (− 2

3 , 3
4 ) 0.9870 0.0130

4 [0, 1
3 ] (− 1

12 , 5
12 ) 0.5147 0.4853 16 [− 2

3 , 2
3 ] (− 3

4 , 3
4 ) 0.9883 0.0117

5 [− 1
12 , 1

3 ] (− 1
6 , 5

12 ) 0.6297 0.3703 17 [− 3
4 , 2

3 ] (− 5
6 , 3

4 ) 0.9924 0.0076
6 [− 1

6 , 1
3 ] (− 1

4 , 5
12 ) 0.6992 0.3008 18 [− 5

6 , 2
3 ] (−1, 3

4 ) 0.9934 0.0066
7 [− 1

4 , 1
3 ] (− 1

3 , 5
12 ) 0.7465 0.2535 19 [− 5

6 , 3
4 ] (−1, 5

6 ) 0.9940 0.0060
8 [− 1

3 , 1
3 ] (− 5

12 , 5
12 ) 0.8024 0.1976 20 [− 5

6 , 5
6 ] (−1, 1) 0.9992 0.0008

9 [− 1
3 , 5

12 ] (− 5
12 , 1

2 ) 0.8371 0.1629 21 [− 5
6 , 1] (−1, 1] 0.9997 0.0003

10 [− 1
3 , 1

2 ] (− 5
12 , 7

12 ) 0.9069 0.0931 22 [−1, 1] [−1, 1] 1.0000 0.0000
11 [− 5

12 , 1
2 ] (− 1

2 , 7
12 ) 0.9223 0.0777

i is the iteration, MinCI is the smallest possible CI for the given CP and is always closed, MaxCI is the largest
possible CI for the given CP and is open whenever is possible, and pCI is the CP. The probabilities are given with
four significant figures, however, the calculations and the actual values must be done with machine-like precision.
The CI boundaries are given as irreducible fractions, and also for convenience, the integer fraction is reduced.

Moving on to the example cases listed in the appendix in Table A5 (OR) and in
Table A6 (RR), the results of the above given recipe are listed in Tables A7 and A8,
respectively (in the appendix too). For both (OR and RR of (x = 2, y = 1, m = 6, n = 4)
configuration), the CI at no more than 5% risk of being in error is identical with the
ones at 2%, 1% and 1‱covering all possible cases, [0, ∞] (see entries 15 and 16 in
Table A7 and 16 and 17 in Table A8).

• If someone wants to assess the probability of a no excess risk (ER, Equation (10), data
arranged as in Equation (15)), that is the probability to pass through 0 trying to express
the confidence; that is, in a much common language, the probability to be different
from 0; then, the results given in the form of Equation (16) must be inspected. If ER
(← xn−ym

mn ) is positive, then any positive hi (← un−vm
mn ) will satisfy the requirement

and the associated probability is ∑hi>0 fi and if ER < 0, then any hi < 0 will satisfy the
requirement and the probability is ∑hi<0 fi. Inspecting Table 3, the last interval not
containing 0 is at entry (iteration) 4, and its CP is 44.07%; the first interval containing
0 is at entry 5 in Table 3 and its CP is 51.47%; since the case of being 0 is the undesired,
one should be excluded and, thus, the probability (for the excess risk, calculated at 1

12 ,
to be different from 0 for (x = 2, y = 1, m = 6, n = 4) configuration) is the one given at
entry 4 in Table 3, 44.07%.

• Similarly, if someone wants to assess the probability of different odds (OR, Equation (11),
data arranged as in Equation (15)), then again the results given in the form of
Equation (16) must be inspected. If OR > 1, then any hi > 1 will satisfy the requirement
and the associated probability is ∑hi>1 fi and if OR < 1, then any hi < 1 will satisfy the
requirement and the probability is ∑hi<1 fi. Inspecting Table A7, the last interval not
containing 1 is at entry (iteration) 0, and its CP is 13.89%, thus giving a probability (for
the OR, calculated at 3

2 , to be greater than 1 for (x = 2, y = 1, m = 6, n = 4) configuration)
of 13.89%.

• The same is for a non-equal risk (RR, Equation (12), data arranged as in Equation (15)),
the results given in Equation (16) providing the answer. If RR > 1, then any hi > 1 will
satisfy the requirement and the probability is ∑hi>1 fi and if RR < 1, then any hi < 1
will satisfy the requirement and the probability is ∑hi<1 fi. Inspecting Table A8, for
the RR calculated at 4

3 , the last interval not containing 1 is at entry (iteration) 1, thus
giving a probability (for RR > 1 for the (x = 2, y = 1, m = 6, n = 4) configuration) of
15.98%.
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5.2. The Needed Algorithms for CIs of the Expressions of Two Proportions

Each step leading to the CIs for the expressions of two proportions is rigorously
controlled by an algorithm. In this section, the five algorithms (Algorithms 1–5) are
discussed and used to provide the results for x = 2, y = 1, m = 6 and n = 4 example. Thus,

• Algorithm 1 calculates the binomial probability mass function; the results of B(2, 6, b1)
and B(1, 4, b2) (B(z, o, r) in Algorithm 1) are in Table 2;

• Algorithm 2 calculates the ER (Equation (10), ER(x, y, m, n, c, d)), (OR (Equation (11),
with OR(x, y, m, n, c, d)), and RR (Equation (12), with RR(x, y, m, n, c, d)) as irreducible
fractions (with FR(a, b, c, d)) used in Algorithm 3 and later in succession with
Algorithm 5; ER(2, 1, 6, 4, c, d) evaluates the ER with c

d at c = 1 and d = 12;
OR(2, 1, 6, 4, c, d) evaluates the OR with c

d at c = 3 and d = 2; RR(2, 1, 6, 4, c, d)
evaluates the RR with c

d at c = 4 and d = 3;
• Algorithm 3 collects all possible drawings from the bivariate binomial distribution and

pairs the probabilities with one (at the time) defined function operating on binomial
proportion; the output of B2F(x, y, m, n, F, p, g, h) is a (m + 1)× (n + 1) entries list
(Equation (14)); the output of B2F(2, 1, 6, 4, F, p, g, h) for F← ER is listed in Table A1,
F← OR in Table A2, and F← RR in Table A3;

• Algorithm 4 with PMF_B2E(k,p,g,h) sorts and groups values and their associated
probabilities; an output of it is formally given in Equation (15). Through it, data from
Table A1 become the data in Table A4, from Tables A2 to A5, and from Tables A3 to A6;

• Algorithm 5 constructs CIs in increasing coverage and its output is formally given
as Equation (16); the result of the evaluation of CI_B2E(nu, de, k, p, g, h) of the data
in Table A4 (with nu = 1, de = 12) is listed in Table 3, of the data in Table A5 (with
nu = 3, de = 2) in Table A7 and of the data in Table A6 (with nu = 4, de = 3) in
Table A8.

In order to provide the desired output, the algorithms need to be chained together
properly. Thus,

• So as to evaluate the ER (Equation (10)) for a certain (x, y, m, n) contingency (Figure 3),
one should follow the sequence: B2F(x, y, m, n, ER, p, g, h); mn ← (m + 1) · (n + 1);
PMF_B2E(mn, p, g, h); ER(x, y, m, n, r1, r2); CI_B2E(r1, r2, mn, p, g, h, ci) having then
as output (ci) all the information required to construct Table 3;

• Similarly, in order to evaluate the OR (Equation (11)) for (x, y, m, n) contingency,
one should follow the sequence: B2F(x, y, m, n, OR, p, g, h); mn← (m + 1) · (n + 1);
PMF_B2E(mn, p, g, h); OR(x, y, m, n, r1, r2); CI_B2E(r1, r2, mn, p, g, h, ci) having then
as output (ci) all the information required to construct Table A7;

• Finally, in order to evaluate the RR (Equation (11)) for (x, y, m, n) the observed config-
uration, one should successively: B2F(x, y, m, n, RR, p, g, h); mn← (m + 1) · (n + 1);
PMF_B2E(mn, p, g, h); RR(x, y, m, n, r1, r2); CI_B2E(r1, r2, mn, p, g, h, ci), when the
output (ci) is all the information required to construct Table A8.

5.3. Properties of the CIs

Some common beliefs about the CIs are that they should be larger in the middle
(largest for values of x and y in the middle of {0, . . . , m} and {0, . . . , n}, respectively),
shorter at the ends (shortest for x = 0, m and y = 0, n). In addition, they become shorter
with the increase of the sample size (true if divided by the sample size), and their ends to
be monotonic (slightly more complicated to keep the score here). As expected, most of the
beliefs are true, but, even more so, some special properties were identified for the CIs. Thus,
if CIER,α(x, y, m, n) = [CILER,α(x, y, m, n), CIUER,α(x, y, m, n)] (here the property is stated
for the minimal CI, MinCI in Table 3 but is as well as true for the maximal one, MaxCI in
Table 3), then CILER,α(x, y, m, n) + CIUER,α(m− x, n− y, m, n) = 0 and CIUER,α(x, y, m, n)
+ CILER,α(m− x, n− y, m, n) = 0 such that one could say that it is an odd function (in (m, n)
modulo for (x, y)) and possessing in the middle some sort of antisymmetry too (see (3, 2)
cell in Figure 5). This is an expected property since the excess risk itself possesses the same
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property (ER(x, y, m, n) + ER(m− x, n− y, m, n) = 0) and the construction of the CI (see the
iteration for p[i1− 1] = p[i2 + 1] in Algorithm 5) gives the same chance to the bounds to
be expanded.

t10(x) = ft(x;10); g_t(x) = fN(x;0,1); b10(k) = fB(x;10,0.5); g_b(k) = fN(x; 10∙0.5, 5.05.010  ) 

3- 2- 1- 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

t10 x( )

g_t x( )

x
 

0 2 4 6 8 10
0

0.1

0.2

0.3

b10 k( )

g_b k( )

k  
 

Actual (observed) vs. Predicted (expected) Comparing outcomes of two samples 
Actual \ Predicted Positive (PP) Negative (PN) 

Positive (AP) TP FN 
Negative (AN) FP TN  

Sample\Case C1 C2 
S1 (m) a (x) b (m-x) 
S2 (n) c (y) d (n-y)  

 
true positive rate 

(sensitivity, recall, hit rate) FNTP

TP

AP

TP
TPR


  FNR

AP

FN

FNTP

FN



 false negative rate 

(miss rate) 

true negative rate 
(specificity, selectivity) FPTN

TN

AN

TN
TNR


  FPR

AN

FP

FPTN

FP



 false positive rate 

(fall-out) 

positive predictive value 
(precision) FPTP

TP

PP

TP
PPV


  FDR

PP

FP

FPTP

FP



 false discovery rate 

negative predictive value 
FNTN

TN

PN

TN
NPV


  FOR

PN

FN

FNTN

FN



 false omission rate 

 

5

10

5

10

0.00

0.02

0.04

0.06

 
 

  0 1 2 3 4 
0 [0/12, 0/12] [−9/12, 2/12] [−12/12, 0/12] [−12/12, −3/12] [−12/12, −12/12] 
1 [−1/12, 6/12] [−7/12, 4/12] [−10/12, 4/12] [−12/12, −1/12] [−12/12, −6/12] 
2 [0/12, 8/12] [−7/12, 6/12] [−9/12, 5/12] [−12/12, 1/12] [−12/12, −4/12] 
3 [2/12, 10/12] [−5/12, 9/12] [−8/12, 8/12] [−9/12, 5/12] [−10/12, −2/12] 
4 [4/12, 12/12] [−1/12, 12/12] [−5/12, 9/12] [−6/12, 7/12] [−8/12, 0/12] 
5 [6/12, 12/12] [1/12, 12/12] [−4/12, 10/12] [−4/12, 7/12] [−6/12, 1/12] 
6 [12/12, 12/12] [3/12, 12/12] [0/12, 12/12] [−2/12, 9/12] [0/12, 0/12] 

 CIs at 5% risk of being in error for excess risk in x, y, m = 6, n = 4 group of binomial experiment configurations (x
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color is a twin in values as well.

Figure 5. CIER,5%(0..6, 0..4, 6, 4).

A similar property possesses OR too (see Figure 6) but not RR (see Figure 7).
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CIs at 5% risk of being in error for odds ratio in x, y, m = 6, n = 4 group of binomial experiment configurations (x
ranging from 0 to m and y from 0 to n). Each twin in color is a twin in values as well.

Figure 6. CIOR,5%(0..6, 0..4, 6, 4).

For the OR (see Figure 6) if [ CIL0OR,α(x,y,m,n)
CIL1OR,α(x,y,m,n) , CIU0OR,α(x,y,m,n)

CIU1OR,α(x,y,m,n) ] is the (minimal, see Table A7;
the same applies for the maximal) CI for the OR in the (x, y, m, n) bivariate binomial experi-
ment, then CIL0OR,α(x, y, m, n) = CIU1OR,α(m− x, m− y, m, n) and CIL1OR,α(x, y, m, n) =
CIU0OR,α(m− x, m− y, m, n) as well as CIU0OR,α(x, y, m, n) = CIL1OR,α(m− x, n− y, m, n)
and CIU1OR,α(x, y, m, n) = CIL0OR,α(m − x, n − y, m, n) such that the multiplication be-

tween CIL0OR,α(x,y,m,n)
CIL1OR,α(x,y,m,n) and CIU0OR,α(m−x,n−y,m,n)

CIU1OR,α(m−x,n−y,m,n) is formally 1 (and as well for CIU0OR,α(x,y,m,n)
CIU1OR,α(x,y,m,n)

and CIL0OR,α(m−x,n−y,m,n)
CIL1OR,α(m−x,n−y,m,n) ). A simple check shows that this property is consistent with the

property of OR: OR(x, y, m, n) · OR(m− x, n− y, m, n) = 1.
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CIs at 5% risk of being in error for RR in x, y, m = 6, n = 4 group of binomial experiment configurations (x is from
0 to m, y from 0 to n). Each twin in color is a twin in values too.

Figure 7. CIRR,5%(0..6, 0..4, 6, 4).

For small sample sizes (such as n = 4 and m = 6 from the selected example), the
difference between the imposed level (α) of being in error and the actual level of being in
error can be big (see Figures 8–10; but also cannot be bigger than the imposed level).
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Figure 8. Non-CP for CIER,5%(0..6, 0..4, 6, 4).
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Non-CP of CIs for OR in x, y, m = 6, n = 4 group of binomial experiment configurations (x from 0 to m, y from 0
to n) when α = 0.05. Produced with the stem3 function in Matlab.

Figure 9. Non-CP for CIOR,5%(0..6, 0..4, 6, 4).
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Non-CP of CIs for RRs in x, y, m = 6, n = 4 group of binomial experiment configurations (x from 0 to m, y from 0
to n) when α = 0.05. Produced with the stem3 function in Matlab.

Figure 10. Non-CP for CIRR,5%(0..6, 0..4, 6, 4).

Figures 8–10 show the real (actual) risks of being in error in constructing the CIs of ER
(Figure 8), OR (Figure 9) and RR (Figure 10) for the selected example (CIs in Figures 5–7).
Since the process of constructing the CI is completely controlled (Algorithm 5), selecting
the CI is easily set such that the actual error is the closest and smaller choice to the imposed
level (see entry 14 in Table 3, entry 16 in Table A7 and entry 17 in Table A8). The difference
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between the imposed and actual level of being in error is dramatically diminished with
the increase of the samples sizes. For comparison (with Figure 8), the next figure is given
(Figure 11) in which it is visible that big departures (equal with the imposed level) occur
only in the corners (x = 0, m and y = 0, n) while the vast majority of the actual errors is in
the [4.5%, 5.0%] range.
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Non-CP of CIs for excess risks in x, y, m = 60, n = 50 group of binomial experiment configurations (x from 0 to m,
y from 0 to n) when the imposed level is set to 0.05 (5%). Produced with the stem3 function in Matlab.

Figure 11. Non-CP for CIER,5%(0..60, 0..50, 60, 50).

To be more precise, over 87% of the cases in the x, y, m = 60, n = 50 group of binomial
experiment configurations depicted in Figure 11 have actual non-coverage probabilities in
the [4.5%, 5.0%] range and about 95% of the cases have actual non-coverage probabilities
in the [4.0%, 5.0%] range (2955 out of 3111 to be exact, the blue bullets in Figure 11).
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Non-CP of CIs for OR in x, y, m = 60, n = 50 group of binomial experiment configurations (x from 0 to m, y from
0 to n) when the imposed level is set to 0.05 (5%). Produced with the stem3 function in Matlab.

Figure 12. Non-CP for CIER,5%(0..60, 0..50, 60, 50).
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Non-CP of CIs for RRs in x, y, m = 60, n = 50 group of binomial experiment configurations (x from 0 to m, y from
0 to n) when the imposed level is set to 0.05 (5%). Produced with the stem3 function in Matlab.

Figure 13. Non-CP for CIER,5%(0..60, 0..50, 60, 50).

There is no significant change in the shape of the actual coverage when changing from
ER (Figure 11) to OR (Figure 12) and RR (Figure 13). For the ORs of x, y, m = 60, n = 50
group of binomial experiments depicted in Figure 12, the actual non-CPs fall in the [4.5%,
5.0%] range for 2775 cases (out of 3111, about 89%) and 2883 (over 92%) fall in the [4.0%,
5.0%] range (the blue bullets in Figure 12) while for the RRs (depicted in Figure 13), 2505
cases (about 80%) fall in the [4.5%, 5.0%] range and 2834 cases (about 91%) fall in the [4.0%,
5.0%] range (the blue bullets in Figure 13).

Considering that 220 cases from the x, y, m = 60, n = 50 group of binomial experi-
ments have either x or y at the limits (0 or m and n, respectively) for which the non-coverage
is very poor (only in 4 cases, CI at the limits for OR is in the [4.0%, 5.0%] range and in 62
for RR), for the rest of the cases (x ∈ {1, . . . , m}, y ∈ {1, . . . , n}), the accuracy is very good.

5.4. General Discussion

When dealing with finite populations, sampling strategy is foundational. Essentially,
after extracting an individual (case) from a population, one can choose to put it back in the
population (having a non-null likelihood to be extracted again in the future), or to throw it
out. When the individual is returned to the population, a sampling with replacement is
conducted, while when it is not returned to the population, a sampling without replacement
is conducted.

Sampling with replacement is the one leading to the binomial distribution (by follow-
ing a Bernoulli trial, counting successes vs. failures; given in Equation (1)). The alternative,
sampling without replacement, leads to the hypergeometric distribution (Equation (17)).

fH(k; n, K, N)←
(K

k)(
N−K
n−k )

(N
n )

(17)

When sampling without replacement (Equation (17)) the population (of size N in
Equation (17)) is constantly diminished, so its size as well as the number of successes in the
population (K) matters for the sample too (n—size; k—successes). Fisher has shown [68]
that under sampling without replacement, the bivariate binomial experiment is transformed
into a hypergeometric one; population is the union of the two samples. One alternative is
to engage the sampling without replacement to extract from the population (N → m + n)
the first sample (K → m) when sampling brings out from the total number of successes
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(n→ x + y) the successes from the (first) sample k→ x, when the probability (Fisher, fF)
to observe (x, y, m, n) experimental configuration is given in Equation (18).

fF(x; y, m, n)← fH(x; x + y, m, m + n) =
(x + y)!(m + n− x− y)!m!n!
x!(m− x)!y!(n− y)!(m + n)!

(18)

It must be noted that Equation (18) is symmetrical in a = x, b = y, c = m− x, d =
n− y, which means that there exists an alternative way of engaging the sampling without
replacement to extract from the population (N → m + n) the same number (x) of successes.
Sampling without replacement introduces a supplementary constraint to the experiment,
such that dimensionality is reduced to 1 (Equation (19), Fisher Exact) and u ranges from 0
to min(m, n, x + y, m + n− x− y):

fFE(u; x, y, m, n)← (x + y)!(m + n− x− y)!m!n!
u!(m− u)!(x + y− u)!(n + u− x− y)!(m + n)!

(19)

One should notice that by substituting x with u and y with v in Equation (18), the
right expression in Equation (18) becomes: (u+v)!(m+n−u−v)!m!n!

u!(m−u)!v!(n−v)!(m+n)! and up to this point, two
constrains have been used: the number of trials (draws) in the first experiment is m, and
the number of trials (draws) in the second experiment is n; the supplementary constraint
mentioned before is x + y = u + v, which when used leads to Equation (19). Fisher was the
first to notice that the significance level is build up from the cases where the arrangement
is as extreme as the observed arrangement, or more so. Some authors suggest that, when
changing from evaluation of ER to OR or RR, to also change (see §1 in [61]) the study
design and its associated statistical analysis (for Fisher Exact, see [69]) while others keep
the bivariate binomial assumption even when some data are missing (see §2 in [70]). It is
possible to argue that changing from m and n to m + n does not change the nature of the
phenomena (successions of Bernoulli trials) nor the independence between the samples;
thus, Equation (9) is slightly changed replacing n and m with m + n everywhere, but the
increase of the cases leads to the increase in density of the points inside of the domain
of the evaluated function and has as effect the increase of the CIs accuracy as well (for
instance, for the case depicted in Figure 11, the increase is from 2995 to 3072 cases out of
3111 falling in the [4%, 5%] range).

Drawing with or without replacement from an infinite population should produce the
same effect.

The proposed methodology (see Sections 2, 5.1 and 5.2) is not significantly changed
when the distribution is changed. Independent of the distribution, the methodology is:

• To collect all possible drawings and their associated probabilities (by using a pos-
sibly modified form of B2F(x, y, m, n, F, p, g, h) from Algorithm 3) for one (at the
time) defined function F (ER, Equation (10), ER(x, y, m, n, c, d); OR, Equation (11),
OR(x, y, m, n, c, d); RR, Equation (12), RR(x, y, m, n, c, d) – all defined in Algorithm 2);
the result is formally defined by Equation (14);

• Sort and group values and their associated probabilities (construct the probability
mass function with PMF_B2E(k,p,g,h) from Algorithm 4); the result is formally defined
by Equation (15);

• Construct the cumulative distribution function from which the CIs in increasing
coverage (with nu and de from the evaluation of the selected (one of ER, OR, and
RR) defined function (with CI_B2E(nu, de, k, p, g, h) from Algorithm 5); the result is
formally defined by Equation (16).

In order to showcase the invariance of the strategy when the distribution is changed
and to illustrate the alternating behavior of the actual non-CP, teeth-like plots, preferred by
some authors (see Figure 4 in [8]), the actual non-CP calculated for the m = 9 and n = 11
group of experiment configurations (x from 0 to m and y from 0 to n) is depicted for three
scenarios (Figures 14–16) as function of the excess risk (x/m− y/n) when the imposed
level of the non-CP was set to 5%.
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Non-CP of CIs for ER (x/m− y/n), as function of ER, for m = 9, n = 11, x from 0 to m, y from 0 to n group
of experiment configurations when the imposed level is set to 0.05 (5%). Here, (u, v) sampling is ruled by the
bivariate binomial with the probability BS(u; x, m) · BS(v; y, n).

Figure 14. CIER,5%(0..9, 0..11, 9, 11) non-CP for sampling with replacement.
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Non-CP of CIs for ER (x/m− y/n), as function of ER, for m = 9, n = 11, x from 0 to m, y from 0 to n group of
experiment configurations when the imposed level is set to 0.05 (5%). Here, (u, v) sampling is ruled by bivariate
binomial with the probability BS(u; x, m + n) · BS(v; y, m + n).

Figure 15. CIER,5%(0..9, 0..11, 9, 11) non-CP for m + n as common constraint as suggested in [61].
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Non-CP of CIs for excess risks in x, y, m = 9, n = 11 group of experiment configurations (x from 0 to m, y from
0 to n) when the imposed level is set to 0.05 (5%). Here, (u, v) sampling is ruled by marginal totals with the
probability given by Equation (19) (and v← x + y− u).

Figure 16. CIER,5%(0..9, 0..11, 9, 11) non-CP for sampling without replacement.

Inspecting the Figures 14–16, it is noticeable that the symmetry is kept in Figures 14
and 16. Additionally, since the coverage and non-coverage probabilities are cumulative
from different number of cases, the accuracy of the coverage is different and it is improved
by the number of draws (about 4.2% for the data in Figure 15, 52,920 = 10 · 12 · 212 draws;
about 3.66% for the data in Figure 14, 14,400 = 102 · 122 draws; about 2.02% for the data in
Figure 16, 1200 = 10 · 12 · 10 draws).

The calculation of the exact CIs is of interest for other expressions of two proportions
as well [71]. For a recent review of expressions involving two binomial proportions, one
should consult [72], and when stratification is involved [73].

6. Conclusions

A strategy for providing exact confidence intervals for expressions of binomial propor-
tions is elaborated (Figure 1). Algorithms for calculating the confidence intervals and/or
p-values in the case of excess risk, odds ratio and relative risk are given (Algorithms 1–5)
and exemplified. Extension of the findings for other distributions (continuous: Student t,
Gaussian Normal; discrete: hypergeometric, joined samples binomial) is discussed.
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Appendix A

In Tables A1–A6, the probabilities are given with three significant figures. However,
the calculations and the actual values must be done with machine-like precision.

In Table A1, ERs (h1,2) are given as raw (non-evaluated) data (Equation (10)) to better
reflect each distinct possibility; distinct values of the ERs are about two thirds (see Table A4).
It must be noted that, for instance, 0

6 −
2
4 = 3

6 −
4
4 = − 1

2 . In Table A2, ORs (h1,2) are given as
raw (non-evaluated) data (Equation (11)) to better reflect each distinct possibility; distinct
values of the ORs are about half (see Table A5). In Table A3, the RRs (h1,2) are given as
raw (non-evaluated) data (Equation (12)) to better reflect each distinct possibility; distinct
values of the RRs are about half (see Table A6).

In Table A4, ERs, in Table A5, ORs and in Table A6, the hj columns are given as
irreducible fractions while associated probabilities (the f j columns) are the sums of the
probabilities given in Tables A1–A3 for each Tables A4–A6 group member.

For instance, in Table A4, f6 (1.94 · 10−2) is the sum of 8.57 · 10−4 (in the cell for u = 3
and v = 4 in Table A1) and 1.85 · 10−2 (in the cell for u = 0 and v = 2 in Table A1).

In Tables A7 and A8, i is Iteration, MinCI is the smallest possible CI for the given
CP and is always closed, MaxCI is the largest possible CI for the given CP and is open
whenever is possible, and pCI is CP. The probabilities are given with four significant
figures but however, the calculations and the actual values must be done with machine-like
precision. The CI boundaries are given as irreducible fractions, and also for convenience,
the integer fraction is reduced.

Table A1. Pairs of possible ERs and their associated probabilities (h1,2, f1,2) for the data in Table 2.

u vs. v 0 1 2 3 4

0 ( 0
6−

0
4 , 2.78·10−2) ( 0

6−
1
4 , 3.70·10−2) ( 0

6−
2
4 , 1.85·10−2) ( 0

6−
3
4 , 4.12·10−3) ( 0

6−
4
4 , 3.43·10−4)

1 ( 1
6−

0
4 , 8.33·10−2) ( 1

6−
1
4 , 1.11·10−1) ( 1

6−
2
4 , 5.56·10−2) ( 1

6−
3
4 , 1.23·10−2) ( 1

6−
4
4 , 1.03·10−3)

2 ( 2
6−

0
4 , 1.04·10−1) ( 2

6−
1
4 , 1.39·10−1) ( 2

6−
2
4 , 6.94·10−2) ( 2

6−
3
4 , 1.54·10−2) ( 2

6−
4
4 , 1.29·10−3)

3 ( 3
6−

0
4 , 6.94·10−2) ( 3

6−
1
4 , 9.26·10−2) ( 3

6−
2
4 , 4.63·10−2) ( 3

6−
3
4 , 1.03·10−2) ( 3

6−
4
4 , 8.57·10−4)

4 ( 4
6−

0
4 , 2.60·10−2) ( 4

6−
1
4 , 3.47·10−2) ( 4

6−
2
4 , 1.74·10−2) ( 4

6−
3
4 , 3.86·10−3) ( 4

6−
4
4 , 3.22·10−4)

5 ( 5
6−

0
4 , 5.21·10−3) ( 5

6−
1
4 , 6.94·10−3) ( 5

6−
2
4 , 3.47·10−3) ( 5

6−
3
4 , 7.72·10−4) ( 5

6−
4
4 , 6.43·10−5)

6 ( 6
6−

0
4 , 4.34·10−4) ( 6

6−
1
4 , 5.79·10−4) ( 6

6−
2
4 , 2.89·10−4) ( 6

6−
3
4 , 6.43·10−5) ( 6

6−
4
4 , 5.36·10−6)
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Table A2. Pairs of possible ORs and their associated probabilities (h1,2, f1,2) for the data in Table 2.

u vs. v 0 1 2 3 4

0 ( 0∗4
0∗6 , 2.78·10−2) ( 0∗3

1∗6 , 3.70·10−2) ( 0∗2
2∗6 , 1.85·10−2) ( 0∗1

3∗6 , 4.12·10−3) ( 0∗0
4∗6 , 3.43·10−4)

1 ( 1∗4
0∗5 , 8.33·10−2) ( 1∗3

1∗5 , 1.11·10−1) ( 1∗2
2∗5 , 5.56·10−2) ( 1∗1

3∗5 , 1.23·10−2) ( 1∗0
4∗5 , 1.03·10−3)

2 ( 2∗4
0∗4 , 1.04·10−1) ( 2∗3

1∗4 , 1.39·10−1) ( 2∗2
2∗4 , 6.94·10−2) ( 2∗1

3∗4 , 1.54·10−2) ( 2∗0
4∗4 , 1.29·10−3)

3 ( 3∗4
0∗3 , 6.94·10−2) ( 3∗3

1∗3 , 9.26·10−2) ( 3∗2
2∗3 , 4.63·10−2) ( 3∗1

3∗3 , 1.03·10−2) ( 3∗0
4∗3 , 8.57·10−4)

4 ( 4∗4
0∗2 , 2.60·10−2) ( 4∗3

1∗2 , 3.47·10−2) ( 4∗2
2∗2 , 1.74·10−2) ( 4∗1

3∗2 , 3.86·10−3) ( 4∗0
4∗2 , 3.22·10−4)

5 ( 5∗4
0∗1 , 5.21·10−3) ( 5∗3

1∗1 , 6.94·10−3) ( 5∗2
2∗1 , 3.47·10−3) ( 5∗1

3∗1 , 7.72·10−4) ( 5∗0
4∗1 , 6.43·10−5)

6 ( 6∗4
0∗0 , 4.34·10−4) ( 6∗3

1∗0 , 5.79·10−4) ( 6∗2
2∗0 , 2.89·10−4) ( 6∗1

3∗0 , 6.43·10−5) ( 6∗0
4∗0 , 5.36·10−6)

Table A3. Pairs of possible RRs and their associated probabilities (h1,2, f1,2) for the data in Table 2.

u vs. v 0 1 2 3 4

0 ( 0∗4
0∗6 , 2.78·10−2) ( 0∗4

1∗6 , 3.70·10−2) ( 0∗4
2∗6 , 1.85·10−2) ( 0∗4

3∗6 , 4.12·10−3) ( 0∗4
4∗6 , 3.43·10−4)

1 ( 1∗4
0∗6 , 8.33·10−2) ( 1∗4

1∗6 , 1.11·10−1) ( 1∗4
2∗6 , 5.56·10−2) ( 1∗4

3∗6 , 1.23·10−2) ( 1∗4
4∗6 , 1.03·10−3)

2 ( 2∗4
0∗6 , 1.04·10−1) ( 2∗4

1∗6 , 1.39·10−1) ( 2∗4
2∗6 , 6.94·10−2) ( 2∗4

3∗6 , 1.54·10−2) ( 2∗4
4∗6 , 1.29·10−3)

3 ( 3∗4
0∗6 , 6.94·10−2) ( 3∗4

1∗6 , 9.26·10−2) ( 3∗4
2∗6 , 4.63·10−2) ( 3∗4

3∗6 , 1.03·10−2) ( 3∗4
4∗6 , 8.57·10−4)

4 ( 4∗4
0∗6 , 2.60·10−2) ( 4∗4

1∗6 , 3.47·10−2) ( 4∗4
2∗6 , 1.74·10−2) ( 4∗4

3∗6 , 3.86·10−3) ( 4∗4
4∗6 , 3.22·10−4)

5 ( 5∗4
0∗6 , 5.21·10−3) ( 5∗4

1∗6 , 6.94·10−3) ( 5∗4
2∗6 , 3.47·10−3) ( 5∗4

3∗6 , 7.72·10−4) ( 5∗4
4∗6 , 6.43·10−5)

6 ( 6∗4
0∗6 , 4.34·10−4) ( 6∗4

1∗6 , 5.79·10−4) ( 6∗4
2∗6 , 2.89·10−4) ( 6∗4

3∗6 , 6.43·10−5) ( 6∗4
4∗6 , 5.36·10−6)

Table A4. Sorted and grouped ERs (hj) and their associated probabilities ( f j) for the data in Table A1.

j hj fj Group j j hj fj Group j j hj fj Group j

1 −1
1 3.43·10−4 { 0

6−
4
4 } 9 −1

4 4.73·10−2 { 3
6−

3
4 , 0

6−
1
4 } 17 5

12 3.47·10−2 { 4
6−

1
4 }

2 −5
6 1.03·10−3 { 1

6−
4
4 } 10 −1

6 6.95·10−2 { 5
6−

4
4 , 2

6−
2
4 } 18 1

2 6.97·10−2 { 6
6−

2
4 , 3

6−
0
4 }

3 −3
4 4.12·10−3 { 0

6−
3
4 } 11 −1

12 1.15·10−1 { 4
6−

3
4 , 1

6−
1
4 } 19 7

12 6.94·10−3 { 5
6−

1
4 }

4 −2
3 1.29·10−3 { 2

6−
4
4 } 12 0

1 7.41·10−2 { 6
6−

4
4 , 0

6−
0
4 , 3

6−
2
4 } 20 2

3 2.60·10−2 { 4
6−

0
4 }

5 −7
12 1.23·10−2 { 1

6−
3
4 } 13 1

12 1.40·10−1 { 5
6−

3
4 , 2

6−
1
4 } 21 3

4 5.79·10−4 { 6
6−

1
4 }

6 −1
2 1.94·10−2 { 3

6−
4
4 , 0

6−
2
4 } 14 1

6 1.01·10−1 { 4
6−

2
4 , 1

6−
0
4 } 22 5

6 5.21·10−3 { 5
6−

0
4 }

7 −5
12 1.54·10−2 { 2

6−
3
4 } 15 1

4 9.27·10−2 { 6
6−

3
4 , 3

6−
1
4 } 23 1

1 4.34·10−4 { 6
6−

0
4 }

8 −1
3 5.59·10−2 { 4

6−
4
4 , 1

6−
2
4 } 16 1

3 1.08·10−1 { 5
6−

2
4 , 2

6−
0
4 }

Table A5. Sorted and grouped ORs (hj) and their associated probabilities ( f j) for the data in Table A2.

j hj fj Group j j hj fj Group j j hj fj Group j

1 0
1 6.36·10−2 Group 0 7 3

5 1.11·10−1 { 1∗3
1∗5 } 13 3

1 9.26·10−2 { 3∗3
1∗3 }

2 1
15 1.23·10−2 { 1∗1

3∗5 } 8 2
3 3.86·10−3 { 4∗1

3∗2 } 14 5
1 3.47·10−3 { 5∗2

2∗1 }

3 1
6 1.54·10−2 { 2∗1

3∗4 } 9 1
1 7.41·10−2 { 6∗0

4∗0 , 0∗4
0∗6 , 3∗2

2∗3 } 15 6
1 3.47·10−2 { 4∗3

1∗2 }

4 1
5 5.56·10−2 { 1∗2

2∗5 } 10 3
2 1.39·10−1 { 2∗3

1∗4 } 16 15
1 6.94·10−3 { 5∗3

1∗1 }

5 1
3 1.03·10−2 { 3∗1

3∗3 } 11 5
3 7.72·10−4 { 5∗1

3∗1 } 17 1
0 2.90·10−1 Group 17

6 1
2 6.94·10−2 { 2∗2

2∗4 } 12 2
1 1.74·10−2 { 4∗2

2∗2 }

Group 0 is { 5∗0
4∗1 , 4∗0

4∗2 , 0∗0
4∗6 , 3∗0

4∗3 , 1∗0
4∗5 , 2∗0

4∗4 , 0∗1
3∗6 , 0∗2

2∗6 , 0∗3
1∗6 }. Group 17 is { 6∗1

3∗0 , 6∗2
2∗0 , 6∗4

0∗0 , 6∗3
1∗0 , 5∗4

0∗1 , 4∗4
0∗2 , 3∗4

0∗3 , 1∗4
0∗5 , 2∗4

0∗4 }.
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Table A6. Sorted and grouped relative risks (hj) and their associated probabilities ( f j) for the data in Table A3.

j hj fj Group j j hj fj Group j j hj fj Group j

1 0
1 6.00·10−2 { 0∗4

4∗6 , 0∗4
3∗6 , 0∗4

2∗6 , 0∗4
1∗6 } 7 2

3 1.91·10−1 { 4∗4
4∗6 , 3∗4

3∗6 , 2∗4
2∗6 , 1∗4

1∗6 } 13 5
3 3.47·10−3 { 5∗4

2∗6 }

2 1
6 1.03·10−3 { 1∗4

4∗6 } 8 5
6 6.43·10−5 { 5∗4

4∗6 } 14 2
1 9.29·10−2 { 6∗4

2∗6 , 3∗4
1∗6 }

3 2
9 1.23·10−2 { 1∗4

3∗6 } 9 8
9 3.86·10−3 { 4∗4

3∗6 } 15 8
3 3.47·10−2 { 4∗4

1∗6 }

4 1
3 5.68·10−2 { 2∗4

4∗6 , 1∗4
2∗6 } 10 1

1 7.41·10−2 { 6∗4
4∗6 , 0∗4

0∗6 , 3∗4
2∗6 } 16 10

3 6.94·10−3 { 5∗4
1∗6 }

5 4
9 1.54·10−2 { 2∗4

3∗6 } 11 10
9 7.72·10−4 { 5∗4

3∗6 } 17 4
1 5.79·10−4 { 6∗4

1∗6 }

6 1
2 8.57·10−4 { 3∗4

4∗6 } 12 4
3 1.56·10−1 { 6∗4

3∗6 , 4∗4
2∗6 , 2∗4

1∗6 } 18 1
0 2.89·10−1 { 6∗4

0∗6 , 5∗4
0∗6 , 4∗4

0∗6 , 3∗4
0∗6 , 1∗4

0∗6 , 2∗4
0∗6 }

Table A7. Confidence intervals in increasing coverage for OR (data from Table A5).

i MinCI MaxCI pCI 1 − pCI i MinCI MaxCI pCI 1 − pCI i MinCI MaxCI pCI 1 − pCI

0 [ 3
2 , 3

2 ] (1, 5
3 ) 0.1389 0.8611 6 [ 1

5 , 3
2 ] ( 1

6 , 5
3 ) 0.4632 0.5368 12 [0, 1] [0, 1) 0.6653 0.3347

1 [1, 3
2 ] ( 2

3 , 5
3 ) 0.2130 0.7870 7 [ 1

6 , 3
2 ] ( 1

15 , 5
3 ) 0.4787 0.5213 13 [0, 1] [0, 1) 0.6688 0.3312

2 [ 2
3 , 3

2 ] ( 3
5 , 5

3 ) 0.2168 0.7832 8 [ 1
15 , 3

2 ] (0, 5
3 ) 0.4910 0.5090 14 [0, 1] [0, 1) 0.7035 0.2965

3 [ 3
5 , 3

2 ] ( 1
2 , 5

3 ) 0.3279 0.6721 9 [0, 3
2 ] [0, 5

3 ) 0.5546 0.4454 15 [0, 1] [0, 1
0 ) 0.7104 0.2896

4 [ 1
2 , 3

2 ] ( 1
3 , 5

3 ) 0.3974 0.6026 10 [0, 5
3 ] [0, 1) 0.5553 0.4447 16 [0, 1

0 ] [0, 1
0 ] 1.0000 0.0000

5 [ 1
3 , 3

2 ] ( 1
5 , 5

3 ) 0.4077 0.5923 11 [0, 1] [0, 1) 0.5727 0.4273

Table A8. Confidence intervals in increasing coverage for RR (data from Table A6).

i MinCI MaxCI pCI 1 − pCI i MinCI MaxCI pCI 1 − pCI i MinCI MaxCI pCI 1 − pCI

0 [ 4
3 , 4

3 ] ( 10
9 , 5

3 ) 0.1563 0.8437 6 [1, 10
3 ] ( 8

9 , 1) 0.3692 0.6308 12 [ 1
2 , 1

0 ] ( 4
9 , 1

0 ] 0.8543 0.1457

1 [ 4
3 , 5

3 ] ( 10
9 , 1) 0.1598 0.8402 7 [ 8

9 , 10
3 ] ( 5

6 , 1) 0.3730 0.6270 13 [ 4
9 , 1

0 ] ( 1
3 , 1

0 ] 0.8698 0.1302

2 [ 4
3 , 1] ( 10

9 , 8
3 ) 0.2527 0.7473 8 [ 8

9 , 1] ( 5
6 , 1

0 ) 0.3736 0.6264 14 [ 1
3 , 1

0 ] ( 2
9 , 1

0 ] 0.9266 0.0734

3 [ 4
3 , 8

3 ] ( 10
9 , 10

3 ) 0.2874 0.7126 9 [ 8
9 , 1

0 ] ( 5
6 , 1

0 ] 0.6623 0.3377 15 [ 2
9 , 1

0 ] ( 1
6 , 1

0 ] 0.9390 0.0610

4 [ 4
3 , 10

3 ] ( 10
9 , 1) 0.2943 0.7057 10 [ 5

6 , 1
0 ] ( 2

3 , 1
0 ] 0.6623 0.3377 16 [ 1

6 , 1
0 ] (0, 1

0 ] 0.9400 0.0600

5 [ 10
9 , 10

3 ] (1, 1) 0.2951 0.7049 11 [ 2
3 , 1

0 ] ( 1
2 , 1

0 ] 0.8535 0.1465 17 [0, 1
0 ] [0, 1

0 ] 1.0000 0.0000
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nail psoriasis. Med. Ultrason. 2016, 18, 312. [CrossRef] [PubMed]
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