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Abstract: µ-synthesis is a NP-hard optimization problem based on the generalized Robust Control
framework which manages to find a controller which fulfills both robust stability and robust per-
formance. In order to solve such problems, nonsmooth optimization techniques are employed to
find nearly-optimal parameters values. However, the free parameters available for tuning must be
involved only in classical arithmetic operations, which leads to a problem for the fractional-order
operator or for its integer-order approximation, exponential operations being involved. The main
goal of the current article consists of presenting a possibility to integrate a fixed-structure multiple-
input-multiple-output (MIMO) fractional-order proportional-integral-derivative (FO-PID) controller
in the µ-synthesis optimization problem. The solution consists in a possibility to find a set of tunable
parameters isomorphic with the fractional-order such that the coefficients involved in the approxi-
mation of the fractional element, along with the formulation of a fixed-structure mixed-sensitivity
loop shaping µ-synthesis control problem. The proposed design procedure is applied to a twin rotor
aerodynamic system (TRAS) using both MATLAB numerical simulation and practical experiments on
laboratory scale equipment. Moreover, a comparison with the unstructured µ-synthesis is performed,
highlighting the advantages of the proposed solution: simpler form and guaranteed robust stability
and performance.

Keywords: robust control; mixed-sensitivity; µ-synthesis; fractional-order control; FO-PID; twin
rotor aerodynamic system

1. Introduction

One of the fundamental problems studied in Control Engineering concerns robustness,
which characterizes the sensitivity of the closed loop system to the variation of plant
parameters. One of the most used performance measures is theH∞ norm. Starting from
the approach of synthesizing aH∞ controller by solving two Algebraic Riccati Equations
(AREs) as in [1], a more numerically stable solution can be obtained using Popov triplets [2].
Alternatively, due to the limitations of this approach represented by the impossibility of
solving singular problems, the AREs were replaced with Algebraic Riccati Inequalities
(ARIs) and were solved using Linear Matrix Inequalities (LMIs) [3]. The last two approaches
have been recently implemented in open-source manners in [4,5]. However, the classical
H∞ control problem manages to ensure nominal stability and nominal performance only.
In order to consider dynamic and parametric uncertainties, the plant is formulated as an
upper linear fractional transform with such an uncertainty block and the µ-synthesis can
be used for computing a robust controller based on the classical D–K iterations [6]. The
major concern about these methods consists of the fact that the controller is usually of high
order. However, imposing a fixed structure leads to a non-convex problem which cannot
be approximated as in the case of µ-synthesis. The solutions, initially proposed for H∞
problem [7], and then for µ-synthesis [8] as well, are based on nonsmooth optimization
techniques. A CACSD toolbox that manages to offer an end-to-end solution for designing
a robust controller starting from a given plant is presented in [9].
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The most well-known controller structure, which is highly used in industry, is the
proportional-integral-derivative (PID) regulator. Its form is generally given as an example
for fixed-structure controllers and nonsmooth optimization methods were designed around
it [10]. An extension with two extra degrees of freedom is represented by fractional-order
PID (FO-PID), which improves the robustness of the closed loop system. As tuning
methods, the well-known methods used for designing integer-order controllers were
extended for fractional-order controllers as well. As such, two generalized versions of
Kessler’s magnitude methods were presented in [11,12], while a fractional-order internal
model controller with event-based implementation was developed in [13]. A fractional-
order integrator was used as a model for the servo problem in [14], while the same structure
was used as a speed controller for a DC motor in [15]. In [16] crone control methodologies
were presented, along with LMI formulation for theH∞ fractional-order control problem.
An artificial bee colony optimization for a MIMO FO-PID controller design by solving the
mixed-sensitivity µ-synthesis control problem is presented in [17].

The twin rotor aerodynamic system (TRAS) is a well-known benchmark system used
to illustrate the control methods designed in literature. A two degrees of freedom (2-DOF)
discrete-time µ-synthesis controller of order 24 was presented in [18]. A decentralized fixed-
structure PID controller designed usingH∞ is presented in [19], along with a comparison
between the full-order H∞ controller. After the linearization and decoupling steps, 2-
DOF continuous and discrete-time controllers were designed usingH∞ in [20]. A hybrid
architecture using both H∞ and Iterative Learning Control is described in [21]. A linear
quadratic regulator (LQR) for MIMO TRAS problem was designed using particle swarm
optimization in [22], while a frequency-based PID controller was combined with a lead
compensator designed using root locus in [23]. An approach that further details the
controller implementation with quantization aspects taken into consideration for the same
family of processes is presented in [24].

In this paper, we present a design procedure that manages to optimize the controller
parameters instead of tuning them. As such, we present a method for finding the parame-
ters of a MIMO fractional-order PID (FO-PID) robust controller by solving a fixed-structure
mixed-sensitivity loop shaping µ-synthesis control problem. Although the resulting control
problem is nonconvex in terms of the controller’s free parameters, the nonsmooth optimiza-
tion techniques implemented in MATLAB’s Robust Control Toolbox can be used. However,
the realp object used for these free parameters does not support exponential operations
necessary in the approximation of a fractional-order element. Therefore, we present in this
paper an algorithm to construct the approximation function of a fractional-order element
using integer-order elements and supported arithmetic operations applied on a free pa-
rameter isomorphic to the desired fractional order. As such, we successfully manage to
formulate the problem of optimizing the parameters of a MIMO FO-PID such that the avail-
able techniques can be used. Moreover, we illustrate our design method on the twin rotor
aerodynamic system stand, having both MATLAB simulations and physical experiments.

The remainder of this paper is organized as follows: Section 2 summarizes the main
mathematical background in terms of available results in both Robust and Fractional-Order
Control, along with the description of the proposed method in terms of the algorithm for
approximation of the fractional order element and of the optimization problem; Section 3
starts with the presentation of the simplified nonlinear mathematical model of the TRAS
system, the linearized mathematical model around an equilibrium point, and a list of
parameters with their numerical values and tolerances which manages to encompass
the nonlinearities; in Section 4, the numerical results are presented, starting from the
augmentation step, followed by the proposed structure of the controller and the obtain
results in MATLAB and on the experimental stand; Section 5 presents the discussions of
the obtained results and a comparison with another method for solving the optimization
problem, while in Section 6 there are some conclusions and possible research directions.
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2. Proposed Method

In this section, the mathematical background for the proposed controller design
method in terms of Robust Control Framework in Section 2.1 and Fractional-Order Control
Framework in Section 2.2 is firstly presented, while in Section 2.3 the method for optimizing
the controller parameters using a different approach as against the procedure presented
in [17] is described.

2.1. Robust Control

The generalized Robust Control Framework [25] has, besides the control input vector
u ∈ Rnu , two extra inputs: the exogenous input vector w ∈ Rnw and disturbance input
vector d ∈ Rnd . Additionally, besides the output vector y ∈ Rny , the generalized plant
contains two extra outputs: the performance vector z ∈ Rnz and the disturbance output
v ∈ Rnv . The input and output disturbance vectors encompass both parametric and
unstructured uncertainties, which are generally modeled by the following set:

∆ =
{

diag
(

δ1 In1 , . . . , δs Ins , ∆1, . . . , ∆ f

)
|δk ∈ R, ∆j ∈ Rmj×mj , k = 1, s, j = 1, f

}
, (1)

where In denotes the identity matrix of order n.
The uncertainty block ∆ is interconnected with the generalized plant P∆ via an upper

linear fractional transformation (ULFT), while the controller K is interconnected via a lower
linear fractional transformation (LLFT) with P∆, as noticed in Figure 1.

Figure 1. Generalized plant interconnection with the controller and uncertainty blocks [17].

The state-space representation of the generalized plant P∆ is:

P∆ :


ẋ(t)
v(t)
z(t)
y(t)

 =


A Bd Bw Bu
Cv Dvd Dvw Dvu
Cz Dzd Dzw Dzu
Cy Dyd Dyw Dyu




x(t)
d(t)
w(t)
u(t)

. (2)

For robustness analysis, the singular value notion used forH∞ synthesis was extended
to the structural singular value, defined for the LLFT interconnection between the plant P∆
and the controller K according to the uncertainty block ∆ as:

µ∆(LLFT(P∆, K)) = sup
ω∈R+

1
min
∆∈∆
{σ(∆)|det(I − LLFT(P∆, K)(jω)∆) = 0} . (3)

Given that the problem of explicitly computing such structural singular values is NP-hard,
an approximation must be used. The classicalH∞ control problem can be extended to the
following optimization problem:

inf
K stab.

sup
ω∈R+

µ∆(LLFT(P∆, K)(jω)), (4)
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which can be considered solved if there is a controller K such that µ∆(LLFT(P∆, K)) < 1,
according to main loop theorem. As such, an upper bound is necessary for µ∆(·) [6]:

µ∆(LLFT(P∆, K)(jω)) ≤ inf
D∈D

σ
(

D · LLFT(P∆, K)(jω) · D−1
)

, (5)

where the set D is defined according to the uncertainty block ∆ as follows [6]:

D =
{

diag
(

D1, . . . , Ds, d1 Im1 , . . . , d f Im f

)
|Dk = D>k ∈ Rnk×nk , dj > 0, k = 1, s, j = 1, f

}
. (6)

Summarizing, robust stability and robust performance are achieved through a con-
troller K obtained as a solution of the optimization problem (4) which manages to obtain
an objective value lower than 1. But this NP-hard problem can be approximated by the
following quasi-convex problem:

inf
K stab.

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(P∆, K)(jω) · (D(jω))−1
)

. (7)

As already known, the last optimization problem can be solved using the so-called
D–K iteration [9,17]. This iterative procedure starts with a fixed D (usually considered the
unitary system) and alternatively computes the controller K, by solving the H∞ control
problem with fixed D, and the D-scale factor, by solving the Parrot problem, as defined
in [6], for each point from a frequency set Ω = {ωl = ω1 < · · · < ωN = ωu} followed an
approximation of the obtained solutions with a minimum phase system. Therefore, after
setting the initial D-scale step as D = I, the following steps are successively applied:

1: The D-scale step is fixed and the controller can be computed as:

K = arg inf
K stab.

‖LLFT(P∆, K)‖∞. (8)

2: The controller K is fixed and the following set of convex problems must be solved:

D(jω) = arg inf
D∈D

σ
(

D · LLFT(P∆, K)(jω) · D−1
)

, (9)

for a given frequency range Ω and, then, a stable minimum phase transfer matrix
D(s) is fitted.

Steps 1 and 2 are executed in a loop sequence until the difference between two
consecutive H∞ norms is less than a prescribed tolerance, the maximum number of it-
erations is reached, or the improvement after a prescribed number of steps is under an
imposed tolerance.

2.2. Fractional-Order Control

The domain of Fractional-Order Control has recently gained more attention due to
their robustness. The fractional integral operator used in Control Engineering is [26]:

Iα{ f (t)} = 1
Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ, t > 0, α ∈ R+, (10)

where Γ(·) : C+ → C is the Euler Gamma function. In a similar manner with the inte-
ger order integral operator, the fractional order integral operator Iα has the following
Laplace transform:

L{Iα{ f (t)}}(s) = s−αL{ f (t)}(s). (11)

As previously stated, the fractional-order calculus can be used to extend the classical
3-DOF proportional-integral-derivative (PID) controller to a fractional-order PID (FO-PID)
having two extra DOF λ, µ ∈ R+ – the order of the integral operator and the order of the
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derivative operator, respectively. As such, based on the error signal ε(t), the command
signal c(t) has the following expression:

c(t) = KP · ε(t) + KI · Iλ{ε(t)}+ KD · I−µ{ε(t)}, (12)

where c(t) would be u(t) and ε(t) would be r(t) − y(t) according to the generalized
framework from Figure 1, while the differences between the transfer functions of these two
controllers are:

HPID(s) = KP +
KI
s

+ KDs ⇒ HFO−PID(s) = KP +
KI

sλ
+ KDsµ. (13)

The main drawback of the FO-PID revolves around the implementation of the frac-
tional order elements. One possible solution is the Oustaloup recursive approximation
(ORA) introduced in crone toolbox [16]. The approximation of a fractional-order element
sλ with an integer-order one is detailed for λ ∈ (0, 1), but it can be easily extended for
λ ∈ R. The ORA representation receives as inputs three parameters: the order N of the LTI
system which approximates the fractional-order element, along with the lower bound ωl
and the upper bound ωu of the frequency range where the approximation is valid. The LTI
approximation is:

sλ ≈
N

∏
k=1

1 + s/ω̊k
1 + s/ω̂k

, (14)

where the poles and zeros frequencies can be computed using two coefficients:

ε =

(
ωu

ωl

) λ
N

and η =

(
ωu

ωl

) 1−λ
N

, (15)

followed by the recursive relations:

ω̊1 = ωl
√

η, (16a)

ω̂k = ω̊k · ε, k = 1, N, (16b)

ω̊k+1 = ω̂k · η, k = 1, N − 1. (16c)

The MATLAB object realp used for fixed-structure robust synthesis does not allow
the use of operations other than classical arithmetic operations. Therefore, the recursive
fractional-order approximation (14) cannot be used as is in order to compute the fractional-
order of the integrative and derivative effects. In Section 2.3 we will give a possible
implementation in order to use the realp object for optimizing the controller parameters.

2.3. Controller Design Procedure

Although the controller which results by solving the quasi-convex problem (7) man-
ages to fulfill the robust stability and robust performance, the major drawback consists in
the fact that the controller is of high-order and cannot be easily implemented. As such,
the problem should be constrained to use a specific controller structure. After imposing a
fixed-structure family K, the problem (7) can be written as:

inf
K∈K

K stab

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(P∆, K)(jω) · (D(jω))−1
)

. (17)

The above problem is non-convex in terms of the free tuning parameters of the
controller K ∈ K. However, the problem (17) can also be solved using the D–K iteration
approach, where the K step from (8) is replaced with the following KK step:

K = arg inf
K∈K

K stab

‖LLFT(P∆, K)‖∞. (18)
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In the MATLAB environment there exists the realp object which can be used to
construct a desired family of controllers K and then the closed loop system contains
both uncertainties and free tunable parameters alike. Using nonsmooth optimization
techniques presented in [8] and implemented in [25], the fixed-structure µ-synthesis control
problem can be solved. For the purpose of this paper, we consider the fixed structure
controller family:

K =

Kθ(s) =


K1,1(s) K1,2(s) . . . K1,ny(s)
K2,1(s) K2,2(s) . . . K2,ny(s)

...
...

. . .
...

Knu ,1(s) Knu ,2(s) . . . Knu ,ny(s)

| θ ∈ D

, (19)

where each controller Ki,j has the form:

Ki,j(s) = K(i,j)
P +

K(i,j)
I

sλ(i,j) + K(i,j)
D sµ(i,j)

, (20)

having the free parameters:

θi,j =
(

K(i,j)
P K(i,j)

I K(i,j)
D λ(i,j) µ(i,j)

)
∈ R5. (21)

However, the tunable parameters λ(i,j) and µ(i,j) cannot be used as realp objects, due
to exponential operations not supported. As a solution, ORA is used with the tunable
parameter being θλ ≡

√
η from (15). The transfer function (14) can be implemented using

θλ as in Algorithm 1.

Algorithm 1: Construct Fractional-Order Element
Input: θλ, N, ωu, ωl
Output: Hsλ(s)

1 ε =
(

ωu
ωl

) 1
N · 1

θ2
λ

2 ω̊1 = ωl · θλ

3 Hsλ(s) = 1
4 for k = 1, N − 1 do
5 ω̂k = ω̊k · ε
6 ω̊k+1 = ω̂k · θ2

λ
7 end
8 ω̂N = ω̊N · ε

9 Hsλ(s) =
N

∏
k=1

s/ω̊k + 1
s/ω̂k + 1

Therefore, the tunable parameters for each controller Ki,j(s) are:

θ̂i,j =
(

K(i,j)
P K(i,j)

I K(i,j)
D θλ(i,j) θµ(i,j)

)
∈ R5, (22)

with the special mention that the parameters θλ(i,j) and θµ(i,j) must be in the domain[
1,
(

ωu
ωl

) 1
N
]

. If a desired fractional order λ is out of the admissible domain, extra in-

tegrator/derivative terms can be added. Therefore, the fixed-structure µ-synthesis control
problem can be solved in MATLAB from the desired family K from (19).

Additionally, the control problem will be posed in a mixed-sensitivity loop shaping
µ-synthesis formulation. The main reason for this choice consists in the fact that the
mixed-sensitivity loop shaping allows an adequate trade-off between robustness and
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performance. In the optimization process, the following functions will be used for the loop
shaping procedure: the sensitivity function S, the complementary sensitivity function T,
and the control effort KS. For each performance function, a set of performance outputs are
considered, while the performance inputs are considered as the references.

On one hand, large magnitude in the open loop system implies good reference tracking,
disturbance rejection, and unstable plant stabilization. On the other hand, small magnitude
of the open loop system ensures robust stability and mitigation of measurement noise.
Moreover, a small magnitude of the control effort is necessary to relieve actuator stress.
Although all these magnitude requirements seem to lead to an impossible combination,
the target frequency ranges for each component are disjunctive. Through the loop shaping
mechanism, the engineer is supposed to find three weighting functions, one for each of the
previously-mentioned closed loop performances and the frequency performance imposed
by the weighting functions is strongly correlated to the corresponding time performance.

For the sensitivity function, the frequency performance indicators of the weighting
function are the minimum bandwidth frequency ωB, which is inversely proportional with
the rise time, the maximum magnitude AS at low frequencies, which imposes the maximum
steady-state error, the peak magnitude MS, which limits the overshoot of the system, along
with the imposed slope nS of the sensitivity function at low and medium frequencies [9]:

WS(s) =


1

M
1/nS
S

s + ωB

s + ωB A1/nS
S


nS

. (23)

Similarly, the complementary sensitivity’s weighting function can be constructed using
the peak amplitude MT , the maximum magnitude at high frequencies AT , the minimum
bandwidth ωBT and the roll-off nT :

WT(s) =

(
s + ωBT

A1/nT
T s + ωBT M1/nT

T

)nT

. (24)

The control effort is generally weighted by imposing the magnitude at low and high
frequencies, along with an intermediate point of interest. However, the main goal is to
maintain the control effort in the range given by the saturation of the physical actuator.
For MIMO systems, the weighting matrices are diagonal concatenations of the weighting
functions described above. Now the optimization problem that needs to be solved for the
proposed method is the mixed-sensitivity fixed-structure loop shaping µ-synthesis:

min
K∈K

K stab

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(P, K)(jω) · (D(jω))−1
)

s.t. ‖
(
WSS WTT WKSKS

)
‖∞ < 1

. (25)

3. Mathematical Model of a TRAS

The TRAS model is of sixth order with four inputs and two outputs. The state variables
considered are the rotational speed of the tail rotor (ωh), the rotational speed of the main
rotor (ωv), the azimuth velocity of TRAS beam (Ωh), the pitch velocity of TRAS beam (Ωv),
the azimuth position (αh), and the pitch position (αv), the state vector being:

x =
(
ωh ωv Ωh Ωv αh αv

)> ∈ R6. (26)

There are two control inputs, uh and uv, representing the normalized horizontal and vertical
DC-motor PWM duty cycles, while the considered outputs will be the azimuth and pitch
positions of the TRAS beam:

u =
(
uh uv

)
∈ R2, y =

(
αh αv

)
∈ R2. (27)
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The TRAS model is strongly nonlinear even under some simplifying assumptions, as
stated in [27]. One simplification is regarding to the characteristics of the two rotors: their
models are supposed to be of first order containing the moment of inertia and the velocity
gain for each rotor. Moreover, the angular velocities of the TRAS beam is influenced by the
aerodynamic force of each rotor, which is nonlinear in terms of its rotational speed, by the
aerodynamic damping torque and by the cross momentum. Moreover, the azimuth velocity
is strongly influenced by the pitch angle position, while the pitch velocity is influenced by
the pitch angle as well by the return torque. The nonlinear model after some simplifying
assumptions can be written as:

ω̇h = − 1
Ih

f1(ωh) +
1
Ih

uh (28)

Ω̇h =
lt·

k1 · cos2(αv) + k2
f2(ωh) · cos(αv)−

k f h

k1 · cos2(αv) + k2
Ωh −

kvh
k1 · cos2(αv) + k2

cos(αv) · uv (29)

α̇h = Ωh (30)

ω̇v = − 1
Iv

f3(ωv) +
1
Iv

uv (31)

Ω̇v =
lm
Jv

f4(ωv)−
k f v

Jv
Ωv −

k3 cos(αv) + k4 sin(αv) + k5 sin(αv) cos(αv)

Jv
+

khv
Jv

uh (32)

α̇v = Ωv (33)

All parameters of both linearized an nonlinear systems are described in Table 1. The
first step of the linearization process is to find approximations for the functions f1 and f3
such that the two systems from inputs to rotational speeds of the rotors are of first order.
In order to obtain this scenario, these functions are estimated as f1(ωh) = kHh · ωh and
f3(ωv) = kHv ·ωv, while the nonlinerity is treated using the sector bound technique, being
included in the tolerance of each velocity gain. Moreover, the forces developed by each
axis are also nonlinear in terms of rotational speeds of the rotors and can be approximated
f2(ωh) = kFh · ωh and f4(ωv) = kFv · ωv, where the trust coefficients encompass the
nonlinearities in their tolerances. All sector bound nonlinearites described above are
depicted in Figure 2.

Figure 2. The tolerances of the parameters kHh, kHv, kFh, kFv which encompass the behaviour of the nonlinear functions
f1, f2, f3 and f4 into sector bound nonlinearities.
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Table 1. Twin rotor aerodynamic system physical parameters, values and tolerances.

Symbols Description Nominal Value Tolerance

Ih moment of inertia of the tail rotor 1/37,000 (kg·m2) -
Iv moment of inertia of the main rotor 1/6100 (kg·m2) -
Jh moment of inertia with respect to the vertical axis 0.0268 (kg·m2) ±10[%]
Jv moment of inertia with respect to the horizontal axis 0.0268 (kg·m2) -

kHh velocity gain of the tail rotor 7.0742× 103 (rad/s) ±10[%]
kHv velocity gain of the main rotor 5.1574× 103 (rad/s) ±10[%]
kFh thrust coefficient of the tail rotor 1.3218× 10−4 (Ns/rad) ±10[%]
kFv thrust coefficient of the main rotor 2.0124× 10−4 (Ns/rad) ±10[%]
k fh friction coefficient in the vertical axis 5.889× 10−3 (Nms/rad) ±5[%]
k fv friction coefficient in the horizontal axis 1.271× 10−2 (Nms/rad) ±5[%]
khv coefficient of the cross moment from tail rotor to pitch angle 4.175× 10−3 (Nm) ±5[%]
kvh coefficient of the cross moment from main rotor to azimuth angle −1.782× 10−2 ±5[%]
Rv coefficient of the return torque 9.360078× 10−2 (Nm) ±10[%]
lt length of the tail part of the beam 0.2165 (m) -
lm length of the main part of the beam 0.202 (m) -
k1 coefficient of Jh 2.379× 10−2 (kg·m2) -
k2 coefficient of Jh 3.009× 10−3 (kg·m2) -
k3 coefficient of Rv 5.006× 10−2 (Nm) -
k4 coefficient of Rv 9.361× 10−2 (Nm) -
k5 auxiliary coefficient 0.010624 (Nm) -

After this first step, the nonlinear model can be now linearized around an equi-
librium point. The forced equilibrium point has been chosen such that the outputs
are αh = αv = 0 [rad], i.e., plant stabilization problem. In order to obtain this point, the
state vector has the rest of the components ωh = −1336 [rad/s] , ωv = 1803.45 [rad/s],
Ωh = 0 [rad/s], Ωv = 0 [rad/s] , while the input vector has the components uh = −0.1492
and uv = 0.30559. According to [27], the moment of inertia with respect to the horizontal
axis is constant, while around the vertical axis the moment of inertia is nonlinear, having the
expression Jh = k1 · cos2(αv) + k2. In practice, we will consider this parameter uncertain,
having the nominal value Jh = k1 · cos(αv) + k2, along with a tolerance of ±10[%]. The
uncertainties from the thrust coefficients of the tail and the main rotors are necessary in
order to compensate the nonlinearity of the aerodynamic forces from these rotors. The
friction coefficients in the axes and the cross moments coefficients also present uncertainties
in order to compensate the nonlinearities presented in the angular velocity parts and the
interconnections between the two rotations. The return torque coefficient is a nonlinear
function in terms of pitch position and velocity, which can be approximated by an uncertain
parameter having the nominal value Rv = k3 sin(αv)− k4 cos(αv), and a tolerance of±10%.
As such, the linearized state-space model can now be written as:

ẋ(t) =



− 1
Ih ·kHh

0 0 0 0 0
lt ·kFh

·cos(αv)

Jh
−

k fh
Jh

0 0 0 − lt ·kFh
·sin(αv)+kvh ·sin(αv)·uv

Jh
0 1 0 0 0 0
0 0 0 − 1

kHv ·Iv
0 0

0 0 0 lm ·kFv
Jv

− k fv
Jv

− Rv+2k5 cos(2αv)
Jv

0 0 0 0 1 0


x(t) +



1
Ih

0

0 − kvh ·cos(αv)
Jh

0 0
0 1

Iv
khv
Jv

0
0 0


u(t); (34a)

y(t) =
(

0 0 0 0 1 0
0 0 0 0 0 1

)
x(t) +

(
0 0
0 0

)
u(t). (34b)

The singular values of the twin rotor aerodynamic system plant having the parameters
presented in Table 1, before augmentation, are presented in Figure 3.
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Figure 3. Singular value plot of the twin rotor aerodynamic system.

4. Numerical Results

The controller design procedure proposed in this paper will be applied on a twin
rotor aerodynamic system (TRAS). The physical stand from INTECO [27] is presented in
Figure 4. The numerical values of the parameters described in Section 3 are presented in
Table 1, along with their nominal values and tolerances.

Figure 4. Twin rotor aerodynamic system used for practical experiments.

In order to illustrate the power of the proposed method, a comparison between the
numerical simulations for the linearized system using MATLAB and the experimental
results on the physical stand has been performed. For the numerical results, the block
diagram is presented in Figure 5, where the reference signals w1 ≡ r =

(
α?h α?v

)> are
considered the inputs of the linearized system, while the performance output vector is:

z =
(
zS,αh zS,αv zT,αh zT,αv zKS,αh zKS,αv

)
. (35)
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Figure 5. The block diagram of the proposed experiment containing the augmented plant which
contains as inputs the reference signals only.

For the numerical simulation part, the plant augmentation has been done with the
following weighting functions parameters: ωB,αh = 0.2 [rad/s], ωB,αv = 0.05 [rad/s],
AS,αv = AS,αh = 1× 10−2, MS,αv = MS,αh = 2, nS,αv = nS,αh = 1 (the reference is considered
to be a unity step signal), ωBT,αh = 20 [rad/s], ωB,αv = 5 [rad/s], AT,αv = AT,αh = 1× 10−2,
MT,αv = MT,αh = 2, nT,αv = nT,αh = 1, while the DC component of the control effort
weighting functions is 1, being the maximum value of the command signal, and the
maximum value at high-frequency is of magnitude 5. The weighting functions result
as follows:

WS(s) =
(

WS,αh(s) 0
0 WS,αv(s)

)
, where WS,αh(s) =

0.5s + 0.2
s + 2× 10−3 , WS,αv(s) =

0.5s + 0.05
s + 5× 10−4 , (36)

WT(s) =
(

WT,αh(s) 0
0 WT,αv(s)

)
, where WT,αh(s) =

s + 20
0.01s + 40

, WT,αv(s) =
s + 5

0.01s + 10
, (37)

WKS(s) =
(

WKS,αh(s) 0
0 WKS,αv(s)

)
, where WKS,αh(s) = WKS,αv(s) =

0.2s + 0.8532
s + 0.8532

. (38)

As noted in Figure 3, the frequency range is between ωl = 1× 10−2 [rad/s] and ωu =
1× 103 [rad/s], which will be also used for ORA, along with the order of approximation
N = 5. Using the augmented plant presented in Figure 5, the fixed-structure mixed-
sensitivity loop shaping µ-synthesis problem (25) is solved using the musyn command from
MATLAB with the following specifications: the maximum number of D–K iterations is 10,
the threshold for the upper bound of the µ∆(LLFT(Paug, K)) is 1, and the maximum number
of iterations for asserting the lack of progress is 4.

The fixed-structured µ-synthesis control problem was solved using three D–K iter-
ations, having the upper bound of the structured singular value µ∆(LLFT(Paug, K)) ≤
0.9902 < 1, which means that the resulting FO-PID controller manages to fulfill both robust
stability and robust performance. The resulting FO-PID controller is:

Kθ?

FO−PID(s) =

(
0.1149 + 0.0603 · s−1.267 + 0.0909 · s1.1442

0.1154s+1 −7.1329 + 5.0864× 103 s1.0001

712.97s+1
0.0315− 0.0832 s1.2251

27.3377s+1 −0.0297 + 0.1013 · s−1.0001 + 0.0232 · s1.2851

0.149s+1

)
, (39)

where the low-pass component needs to be added in order to implement the derivative
element of order greater than 1 having one extra degree of freedom for each such element.
The results obtained after each step are summarized in Table 2, where after x steps the
controller design problem has been successfully solved. The upper bound of the structural
singular value is presented in Figure 6.
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Table 2. The evolution of the structural singular value in the D–K iteration procedure used to solve
the mixed-sensitivity fixed structure µ-synthesis problem for the case study—FO-PID structure.

D–K Iteration Number 1 2 3 4

Peak Value of µ (FO-PID) 2.657 1.066 1.007 0.9902

Figure 6. Upper bound of the structural singular value µ∆(LLFT(Paug, K)(jω)) for the frequency
range used for solving the Parrot problems.

In order to illustrate the frequency-domain performance, the sensitivity function, com-
plementary sensitivity function and control effort are presented in Figure 7. The nominal
plant has been analyzed along with 100 Monte Carlo simulations for the given uncertainty
range. Also, in order to underline that the control problem has been successfully solved, the
weighting functions are also depicted and it can be noticed that all the simulated functions
are under the imposed thresholds. Additionally, the Bode magnitude characteristics of the
resulting controller are provided in Figure 8.

Figure 7. Sensitivity, control effort and complementary sensitivity functions for the TRAS design phase: specified
and synthesized.



Mathematics 2021, 9, 2504 13 of 18

Figure 8. Bode magnitude characteristic of the resulting controller (39).

The time-domain performance of the lower linear fractional transform between the
linearized plant and the controller are presented using a step response in Figure 9. In a
similar manner, the nominal plant is illustrated along with 100 Monte Carlo simulations.
The rise time for the azimuth position varies between 0.796 [s] and 1.05 [s], having a settling
time between 14.8 [s] and 16.1 [s] and an overshoot between 16.9 [%] and 24.2 [%], with
no steady-state error. Similarly, the rise time for the pitch position is between 6.79 [s]
and 11.7 [s], having a settling time between 10.7 [s] and 19 [s], with no overshoot and no
steady-state error.

Figure 9. Closed-loop simulated step responses for azimuth and pitch positions, respectively.

Numerical results will further be compared with the experimental results. The first
set of experiments, shown in Figure 10, have been made for a square reference with an
amplitude of ±0.1 [rad] and a period of 100 [s] for both axes. The initial conditions were
varied in practice in order to illustrate the capability of the method. It can be noticed that
for the azimuth position, the practical overshoot is a bit higher than in the linear case, with
a comparable settling time and near-zero steady-state error due to the quantization effects.
The pitch position presents overshoot for the initial step, while for the second step the
behavior is similar to that of the linear system, with no overshoot, no steady-state error
and comparable settling time.



Mathematics 2021, 9, 2504 14 of 18

Figure 10. Practical experimental results for reference tracking using various initial conditions.

The second set of experiments are made for the stabilization problem, where the
reference for both axes is α?h = α?v = 0.1 [rad]. It can be noticed that the azimuth position
presents an initial overshoot comparable to that obtained for the linear system, while the
second part of the oscillation is more aggressive, underling the influence of the nonlinear
components. In a similar manner, the pitch position presents an overshoot along with
several oscillations, while the settling time is comparable with the linear case’s. The experi-
mental results are shown in Figure 11. Moreover, three different disturbances have been
applied after 50 [s]: a perturbation on the vertical axis which leads the pitch position at the
maximum value (blue), a perturbation on the horizontal axis with the same characteristics
(cyan), and another small perturbation on the horizontal axis (black). It can be noticed that
all disturbances have been successfully rejected.

Figure 11. Practical experimental results for disturbance rejection, by alternatively perturbing both the azimuth and pitch
axes alike.

Finally, the third set of experiments, depicted in Figure 12, illustrates the behaviour of
the proposed method for an operating point far from the forced equilibrium point used in
the linearization procedure and controller synthesis. As such, a step of α?h = α?v = 0.7 [rad]
has been initially applied, with a different pair α?h = α?v = −0.3 [rad] applied at the moment
t1 = 50 [s]. For the horizontal axis, the overshoot is a bit higher than in the linear case, but
with similar settling time and no steady-state error. Also, for the vertical axis, the overshoot
is negligible for the first step and zero for the second step, having comparable settling times
and no steady-state error. Therefore, the controller can be used for other operating points.
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Figure 12. Practical experimental results for reference tracking using high-valued reference signals and, as such, validating
the controller for variable plant operating points.

5. Discussion

In order to compare the current iteration of FO-PID µ-synthesis with previous meth-
ods, the fixed-structure part of the µ-synthesis mixed-sensitivity loop shaping control
problem (25) is solved using the artificial bee colony (ABC) approach presented in [17]. The
hyperparameters used for this experiment are: the swarm dimension N = 50, the maxi-
mum number of ABC cycles 50, the maximum number of cycles with no improvements 10,
the limit for the abandonment counter 10, the maximum number of D–K iterations 10, the
maximum window length for assessing lack of progress 4, while the parameters for the cost
functions are α = 1 and β = 105. Using this setup, the fixed-structure mixed-sensitivity
loop shaping µ-synthesis problem (25) is solved using five D—K iterations. The resulting
controller is:

Kθ?

FO−PID,ABC(s) =

(
0.1642 + 0.0892 · s−1.1834 + 0.0913 · s1.1209

0.1173s+1 −0.0016 + 0.8355 s1.0001

104.8s+1
0.0106− 6.769× 10−4 s1.4938

100s+1 −0.0741 + 0.0981 · s−1.185 + 0.001 · s1.157

0.0735s+1

)
, (40)

Additionally, an experiment with unstructured µ-synthesis has also been performed,
leading to an upper bound of the structured singular value of 99.86 and a controller of 34th
order, which means that robust stability and robust performance are not guaranteed, with
the controller additionally of high order. The optimization algorithm has been stopped after
three iterations because the diverging stopping criteria has been reached. A summary of
the obtained results with the proposed method, the ABC method [17] and the unstructured
µ-synthesis is presented in Table 3.

Table 3. A comparison between the evolution of the structural singular values in the D–K iteration procedure used to solve
the mixed-sensitivity fixed structure µ-synthesis problem for the case study.

D–K Iteration Number 1 2 3 4 5
Peak Value of µ (FO-PID) 2.657 1.066 1.007 0.9902 -

Peak Value of µ (unstructured) 100 99.8 99.4748 - -
Peak Value of µ (ABC approach [17]) 105.7741 2.4095 1.2452 1.1255 0.9989

As such, the unstructured version of the µ-synthesis control problem could not be
solved, resulting a high-order controller which does not guarantee robust stability and
performance. On the other hand, both remaining methods managed to solve the control
problem described in (25). The new method introduced in this paper manages to solve
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the problem faster due to the advantages of the nonsmooth optimization techniques
implemented in MATLAB.

As a future iteration, we propose to find a decentralized controller having a nonlinear
component and a linear and time-invariant (LTI) robust component. The nonlinear compo-
nent needs to be designed such that the lower linear fractional transform interconnection
between the plant and such a component is asymptotically stable, as in [28], where the
passivity-based control framework has been extended for quasi-linear input-affine sys-
tems. Additionally, the LTI robust controller can be designed using the proposed method,
the decentralized controller managing to ensure robust stability and performance for the
nonlinear system. Moreover, the fractional-order element can be approximated using the
presented ORA method only for sλ, with λ ∈ (0, 1). As such, another research direction
is to find a method to integrate all positive values of λ ∈ R+. On the other hand, the
presented methods were considered in the continuous-time domain, although, for practical
implementation, the controller must be discretized and also quantized. A starting point for
this aspect could be the work presented in [24].

6. Conclusions

The current paper presents an algorithm which manages to integrate the MIMO
fractional-order PID (FO-PID) controller in the fixed-structure mixed-sensitivity loop shap-
ing µ-synthesis control problem by constructing an element isomorphic with the fractional
order. In order to expose the method capacity and potential, a twin rotor aerodynamic
system experimental stand has been utilized. After the simplified nonlinear and linearized
models were presented, the linear system has been augmented with weighting functions
which managed to impose the desired performance. The fixed-structure µ-synthesis control
problem has been successfully solved using four D–K iterations, resulting a controller
which manages to ensure both robust stability and robust performance. A comparative
analysis between the results obtained with the designed controller used for the linearized
plant and for the practical experimental stand has also been performed.

As future work, the proposed design method will be added into a next iteration of the
toolbox initially proposed in [9] in order to automatically perform the fractional-order fixed-
structure µ-synthesis. Also, the proposed method can be integrated into a control scheme
with a decentralized controller having an extra nonlinear component which ensures that
the robust stability and robust performance are also guaranteed for the nonlinear system.
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The following abbreviations are used in this manuscript:

CACSD Computer-Aided Control System Design
DOF Degrees of Freedom
FO-PID Fractional-Order PID
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LLFT Lower Linear Fractional Transform
LMI Linear Matrix Inequality
LTI Linear and Time-Invariant
MIMO Multiple-Input Multiple-Output
NP Non-Deterministic Polynomial-Time
PID Proportional-Integral-Derivative
TRAS Twin Rotor Aerodynamic System
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