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Abstract: We consider the Koopman operator theory in the context of nonlinear infinite-dimensional
systems, where the operator is defined over a space of bounded continuous functionals. The proper-
ties of the Koopman semigroup are described and a finite-dimensional projection of the semigroup
is proposed, which provides a linear finite-dimensional approximation of the underlying infinite-
dimensional dynamics. This approximation is used to obtain spectral properties from the data,
a method which can be seen as a generalization of the Extended Dynamic Mode Decomposition
for infinite-dimensional systems. Finally, we exploit the proposed framework to identify (a finite-
dimensional approximation of) the Lie generator associated with the Koopman semigroup. This
approach yields a linear method for nonlinear PDE identification, which is complemented with
theoretical convergence results.

Keywords: Koopman operator; infinite-dimensional systems; partial differential equations; spectral
analysis; nonlinear identification

1. Introduction

The Koopman operator theory is a powerful framework which provides an alterna-
tive approach to dynamical systems. Through the so-called Koopman (or composition)
operator [1], nonlinear dynamical systems are approximated by linear, higher-dimensional
systems, that are amenable to systematic analysis. Under the inspiration of the seminal
work by [2], the Koopman operator framework has grown in popularity over the last
decade in dynamical systems theory, and more recently has attracted attention in control
theory (see [3], and references therein). However, the research effort has focused on finite-
dimensional systems, and little work has been devoted to infinite-dimensional dynamical
systems, such as nonlinear partial differential equations (PDEs). In this context, one can
mention the early work by [4], where an equivalent of the Koopman operator was defined
on a separable L2 space of functionals (themselves defined on a Hilbert space). Later
on, ref. [5] followed a different path, defining the composition operator in the space of
bounded continuous functionals and investigating the properties of the associated Lie
generator. In recent work by [6], this approach was pushed further and leveraged in
the framework of strongly continuous semigroups by considering a space of bounded
continuous functionals equipped with a mixed topology. Finally, it is also recently that the
Koopman operator framework has been considered for studying the spectral properties of
nonlinear PDEs [7,8].

In this paper, we further exploit and investigate the Koopman operator framework
for systems described by infinite-dimensional differential equations. We do not rely on
the strongly continuous semigroup theory, but rather adopt the approach proposed by [5].
In this context, the Lie generator is shown to be related to a Gâteaux derivative and a
finite-dimensional approximation of the Koopman operator is presented, which allows
us to approximate a nonlinear, infinite-dimensional system by a linear, finite-dimensional
one. Based on this framework, our main contributions are twofold. First, we complement
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the spectral analysis in [8] by developing a data-driven method to compute the spectral
properties of the Koopman operator. This method is a generalization of the Extended
Dynamic Mode Decomposition (EDMD) method [9] to infinite-dimensional systems and is
more general than the mere application of standard EDMD to spatially discretized PDEs.
In fact, while the method was developed for general basis functionals, it narrows down
to the EDMD method only for a specific choice of basis functionals. Second, combining
our previous work [10] with the above framework, we propose a novel method for the
nonlinear identification of infinite-dimensional systems. This method relies on a linear
estimation of the Koopman generator, similar to [11–13] in the context of finite-dimensional
(possibly stochastic) systems; in contrast, however, our proposed method does not require
the evaluation of time derivatives. In this sense, it is an indirect alternative method for the
data-driven discovery of nonlinear PDEs [14–17].

The rest of the paper is organized as follows. In Section 2, we introduce the Koopman
operator framework for infinite-dimensional systems, with a focus on the Lie generator
and finite-dimensional approximations. Section 3 is devoted to spectral analysis and
presents the generalized Extended Dynamic Mode Decomposition (EDMD) method. The
identification method for infinite-dimensional systems is presented in Section 4, along with
theoretical convergence results and numerical examples. Finally, concluding remarks are
given in Section 5.

2. Koopman Operator Theory for Infinite-Dimensional Systems
2.1. Koopman Semigroup

We consider (infinite-dimensional) dynamical systems of the form:

u̇ = W(u) , u ∈ U (1)

where U is a separable Hilbert space and W : D(W) → U is a nonlinear operator, with
D(W) being the domain of W. If the system is described by a PDE, then W is typically
a differential operator. Moreover, we assume that W generates a (possibly nonlinear)
semiflow (ϕt)t≥0 : U → U , i.e., u(t) = ϕt(u), that is a classical solution to the abstract
differential Equation (1) associated with the initial condition u0 ∈ D(W). We also make the
standing assumption that each map ϕt : U → U , t ≥ 0, is continuous and that the mapping
t 7→ ϕt(u) is continuous from R+ into U (strong continuity).

The semigroup of Koopman operators (or Koopman semigroup in short) associated
with (1) is defined on a space of “observable-functionals”.

Definition 1 (Koopman semigroup). Consider the space E of complex-valued functionals ζ :
U → C, where the definition domain U ⊂ D(W) is invariant under ϕt. The semigroup of Koopman
operators (Kt)t≥0 associated with the semiflow (ϕt)t≥0 is defined by Ktζ = ζ ◦ ϕt, ζ ∈ E .

In the rest of the paper, E is the space of bounded continuous functionals, endowed
with the supremum norm ‖ζ‖ = supu∈U |ζ(u)|, i.e., E = C(U ).

2.2. Lie Generator

Following the work by [5], we define the Lie generator of the Koopman semigroup.

Definition 2 (Lie generator). The Lie generator of the semigroup (Kt)t≥0 is the linear operator
L : D(L)→ E that satisfies:

Lζ(u) = lim
t↓0

Ktζ(u)− ζ(u)
t

ζ ∈ D(L) (2)

for all u ∈ U .
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Remark 1 (Infinitesimal generator). The Lie generator is reminiscent of the infinitesimal genera-
tor of strongly continuous semigroups [18]. However, the limit in (2) is defined pointwise, while
it is defined in the strong sense in the case of the infinitesimal generator. In fact, the infinitesimal
generator of the Koopman semigroup cannot be defined unless the Koopman semigroup is strongly
continuous (i.e., limt↓0 ‖Ktζ − ζ‖ = 0 ∀ζ ∈ E ). This property does not hold in our setting, but
can be satisfied with the mixed topology on C(U ), as shown in [6].

The Lie generator enjoys a few properties (e.g., a dense domain and bounded resolvent)
and we refer to [5] for more details. In the case of a Koopman semigroup associated with a
semiflow generated by the abstract differential Equation (1), it follows from the chain rule
property that the Lie generator is given by:

Lζ(u) = lim
t↓0

ζ(ϕt(u))− ζ(u)
t

= DDt ϕt(u)ζ(u) = DW(u)ζ(u)

where DW(u)ζ(u) denotes the Gâteaux derivative of ζ at u in the direction W(u):

DW(u)ζ(u) = lim
λ→0

ζ(u + λW(u))− ζ(u)
λ

.

Note that this can be interpreted as the Lie derivative associated with the infinite-dimensional
vector field W(·).

2.3. Finite-Dimensional Representation

It is convenient to approximate the Koopman semigroup Kt or the Lie generator L in
a finite-dimensional subspace of E . Toward that end, we can consider the compressions
Kt

n = PnKt|En and Ln = PnL|En , where En ⊂ D(L) is a n-dimensional subspace of E and
Pn : E → En is a projection operator. Suppose that En is spanned by the basis of functionals
{ζi}n

i=1. In this basis, the finite-dimensional operators Kt
n and Ln can be represented by the

matrices K ∈ Rn×n and L ∈ Rn×n, respectively, which are defined so that:

Kt
nζ j =

n

∑
i=1

Kijζi and Lnζ j =
n

∑
i=1

Lijζi . (3)

The choice of the basis functions is crucial, as it affects the accuracy of the approx-
imation and the performance of the methods based on this approximation (see below).
However, finding the optimal set of basis functions is not trivial, and may require a priori
knowledge of the system.

3. Spectral Analysis and Extended Dynamic Mode Decomposition

The spectral properties of the Koopman operator reveal important geometric proper-
ties of the underlying dynamics (see, e.g., [2], and [19,20], in the context of phase reduction).
In this section, we exploit the proposed framework for infinite-dimensional systems and
compute the spectrum of the Koopman operator from the data. This yields a generalization
of the Extended Dynamical Mode Decomposition method for infinite-dimensional systems.

3.1. Spectrum of the Koopman Operator

We consider the spectrum of the Lie generator (2), i.e., the set of (Koopman) eigenval-
ues λ such that Lζλ = λ ζλ for some (Koopman) eigenfunctional ζλ ∈ E .

Case of Linear Systems

It is well-known that the spectrum of linear finite-dimensional systems is contained in
the spectrum of the related Koopman operator. As shown in [7,8], this result also holds for
infinite-dimensional systems. Consider a linear system u̇ = Au, u ∈ U , and suppose that λ
is an eigenvalue of A, so that there exists an eigenfunction wλ ∈ D(A∗) with A∗wλ = λ̄wλ,
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where A∗ denotes the adjoint operator of A and λ̄ is the complex conjugate of λ. Then the
functional ζλ(·) = 〈·, wλ〉 satisfies:

Lζλ(u) = DAu〈u, wλ〉 = 〈Au, wλ〉 = 〈u, A∗wλ〉 = 〈u, λ̄wλ〉 = λ ζλ(u) ,

so that λ is a Koopman eigenvalue. Moreover, it is easy to verify that (ζλ)
α is a Koopman

eigenfunction associated with the Koopman eigenvalue αλ, provided that it belongs to
the space E . If A generates a strongly continuous (linear) semigroup (ϕt)t≥0 = (Tt)t≥0,
then the spectral mapping theorem implies that eλt is an eigenvalue of the operator Tt (see,
e.g., [18], Chapter IV). It follows that:

Ktζλ = 〈Ttu, wλ〉 = 〈u, (Tt)∗wλ〉 = 〈u, eλ̄twλ〉 = eλt ζλ

and eλt is also an eigenvalue of Kt.

3.2. Extended Dynamic Mode Decomposition for Infinite-Dimensional Systems

Extended Dynamic Mode Decomposition (EDMD) is a data-driven method that builds
a finite-dimensional approximation of the Koopman semigroup and computes the ap-
proximate spectral properties of the operator [9]. It can be easily extended to the infinite-
dimensional framework that we consider here.

Suppose we have access to a set of m pairs (uk, ϕts(uk)) ∈ U
2
, where ts is a sampling

time, in such a way that we can measure the values of n functionals (ζi(uk), ζi(ϕts(uk))) ∈
R2 for all i ∈ {1, . . . , n}. The generalized EDMD method proceeds with the following steps.

1. Compute the data matrices:

Θ1 =

 ζ1(u1) · · · ζn(u1)
...

...
ζ1(um) · · · ζn(um)

 (4)

and:

Θ2 =

 ζ1(ϕts(u1)) · · · ζn(ϕts(u1))
...

...
ζ1(ϕts(um)) · · · ζn(ϕts(um))

 . (5)

2. Provided that m ≥ n, a matrix approximation of Kts
n = PnKts |En is given by the least

squares solution K = Θ†
1Θ2, where Θ† denotes the Moore-Penrose pseudoinverse of

Θ. Note that, in this case, Pn is the discrete orthogonal projection:

Pnζ = argmin
ζ̃∈En

m

∑
k=1
|ζ(uk)− ζ̃(uk)|2 . (6)

3. The eigenvalues λK of Kts are approximated by the eigenvalues of K and estimates
of the eigenvalues λL of the Lie generator are given by λL = log(λK)/ts. More-
over, Koopman eigenfunctionals are approximated in the basis of functionals by the
components of the corresponding (right) eigenvectors of K.

Remark 2. The method is more general than the standard EDMD method in that it only requires the
samples uk be known in a weak sense, i.e., through the values ζ j(uk) of a finite number of functionals.
For instance, these values could be the weighted averages of uk : X → R over the definition domain
X. For the specific choice of evaluation functionals ζ j(u) = u(xj) with the sample points xj ∈ X,
we recover the classical DMD method [21] applied to a spatially discretized version of the infinite-
dimensional system (1). Similarly, evaluation functionals of the form ζ j(u) = ψ(u(xj)), where ψ is
a basis function, yield the EDMD method [9] applied to the discretized infinite-dimensional system.
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Remark 3 (Convergence properties). The EDMD method must be used with some care since it
might yield spurious eigenvalues. Similar to [22], convergence properties should be characterized
as m, n→ ∞ and the general validity of the spectral mapping theorem should be investigated. We
leave these questions for future research.

3.3. Numerical Example

We illustrate the generalized EDMD method with the Burgers equation:

u̇ = −u
∂u
∂x

+
∂2u
∂x2 u ∈ L2([−1, 1]) (7)

associated with homogeneous Dirichlet boundary conditions u(−1) = u(1) = 0. The
dynamics (7) are conjugated to the linear diffusion dynamics v̇ = ∂2v/∂t2 through the so-
called Cole-Hopf transformation [23]. As explained in [8,24], this implies that the Koopman
spectrum, associated with Burgers dynamics, coincides with the Koopman spectrum
associated with linear diffusion dynamics. Thus, it follows that Koopman eigenfunctions
are related to the eigenfunctions of the diffusion operator (see Section 3.1) and, in particular,
they are of the form ζ(v) = 〈sin(kπx/2), v(x)〉α (in the new variable v). The associated
Koopman eigenvalues are given by λ = α(kπ/2)2.

We use the dynamics (7) to generate m = 50 data-pairs taken from 10 trajectories (with
random, arbitrarily chosen initial conditions of the form (x2− 1) cos(aπx+ bπ), a, b ∈ [0, 1],
which satisfy the boundary conditions). The sampling time is ts = 0.2. Estimates of the
Koopman eigenvalues are computed through our generalized EDMD method, with n = 27
basis functionals ζ j,k,l = 〈cos(aj(πx/2) + bjπ/2), (u(x))k〉l , with (j, k, l) ∈ {1, 2, 3}3 and
where aj, bj are randomly chosen over the interval [0, 1]. As shown in Figure 1, dominant
eigenvalues −α(π/2)2, α ∈ N, are captured. This is consistent with the results presented
in [24] and shows the importance of selecting an augmented basis of nonlinear functionals
to capture eigenvalues other than the principal ones of the form (kπ/2)2, k ∈ N. Note
that other (complex) eigenvalues may appear over different numerical tests. They should
be considered in light of future theoretical analyses (see Remark 3), and more advanced
methods should be proposed to distinguish true eigenvalues from spurious ones.

75 50 25 0
Re  

5.0

2.5

0.0

2.5

5.0

Im
 

exact
estimated

Figure 1. The generalized EDMD method is used to compute the Koopman eigenvalues associated
with the Burgers dynamics (7). Dominant eigenvalues −α(π/2)2, α ∈ N (blue circles) are correctly
estimated (red crosses).

4. Identification of Infinite-Dimensional Systems

In this section, we use the Koopman operator framework for infinite-dimensional
systems in the context of identification. Our goal is to identify the coefficients ci ∈ R of the
infinite-dimensional dynamics,

u̇ = W(u) = ∑
i

ciWi(u) , (8)
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with u ∈ U = L2(X) (where X ⊂ Rp is a compact set), using m data pairs (uk, ϕts(uk))
generated by the dynamics (8). We assume that the operators Wi : D(Wi)→ U are known
a priori, so that this can be seen as a parameter estimation problem. Note that (8) may be
described by a partial differential equation, but the proposed method is not limited to that
case (see Section 4.4).

4.1. Lifting Identification Method

The lifting identification method proposed in our previous work [10] is generalized to
the case of infinite-dimensional systems. This method consists of three steps.

1. Lifting of the data. We compute the data matrices (4) and (5) with the basis of function-
als:

ζi(u) = 〈Wi(u), w〉 (9)

where 〈·, ·〉 denotes the inner product in L2(X) and w ∈ L2(X) is a weighting function.
We suppose without loss of generality that W1(u) = u (possibly with the coefficient
c1 = 0 in (8)), so that the linear functional ζ1(u) = 〈u, w〉 belongs to En.

2. Identification of the Lie generator. We compute the matrix representation K = Θ†
1Θ2 of

the compression Kts
n in the subspace En = span(ζ1, . . . , ζn) (step 2 in Section 3.2). Then

we obtain a finite-dimensional approximation L̃(ts) of the Lie generator by taking the
matrix logarithm:

L̃(ts) =
1
ts

log(Θ†
1Θ2) . (10)

Note that this approximation is not equal to the matrix representation L of the Ln (see (3)).

3. Identification of the coefficients. Estimates ĉi of the coefficients ci are given by the entries

of the first column of L̃(ts), i.e., ĉi = L̃(ts)
i1 .

Remark 4. For the specific choice of basis functionals of the form ζ j(u) = ψ(u(xj)), with xj ∈ X
and where ψ is a basis function, one recovers the original lifting identification method [10] applied
to a spatially discretized version of the infinite-dimensional system. The proposed method is more
general since it allows any basis functionals.

The lifting identification method does not require to compute time derivatives and is
therefore an alternative to direct methods for PDE identification such as those proposed
in [14–17]. It is also noticeable that the use of basis functionals of the form (9) bears similar-
ity to the method developed in [14], which makes a clever use of a weak formulation of the
data in space and time. We note that this method requires sufficiently long time-series to
allow accurate time integration, while our method can deal with data pairs belonging to
different trajectories.

4.2. Convergence Results

Now we show that the estimated coefficients converge to the true coefficients as ts → 0.
This is summarized in the following proposition.

Proposition 1. Let ϕt be the continuous flow generated by (8) and let En ⊂ D(L) be the subspace
spanned by the basis functionals ζi(·) = 〈Wi(·), w〉 ∈ C(U ), with ζ1(·) = 〈·, w〉. Assume that
the pairs (uk, ϕts(uk)) ∈ U

2 are such that the n ≤ m vectors (ζi(u1), . . . , ζi(um)), i = 1, . . . , n,
are linearly independent. Then,

lim
ts→0

L̃(ts)
i1 = ci

where L̃(ts) is given by (10).
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Proof. The discrete orthogonal projection Pn (6) is well-defined since the vectors
(ζi(u1), . . . , ζi(um)), i = 1, . . . , n, are linearly independent. It is clear that:

1
ts

log Kts
n ζ1(u) =

n

∑
i=1

L̃(ts)
i1 ζi(u)

and we also have:

Lζ1(u) = DW(u)〈u, w〉 = 〈W(u), w〉 =
n

∑
i=1

ciζi(u) . (11)

Since Pnζi = ζi for all i = 1, . . . , n, it follows that:∣∣∣∣∣ n

∑
i=1

(
L̃(ts)

i1 − ci

)
ζi(u)

∣∣∣∣∣ =
∣∣∣∣( 1

ts
log Kts

n − PnLPn

)
ζ1(u)

∣∣∣∣.
For ts small enough, one has log Ats

n = PnLPn, where Ats
n = En → En is the finite-

dimensional operator Ats
n := etsPn LPn , so that:∣∣∣∣∣ n

∑
i=1

(
L̃(ts)

i1 − ci

)
ζi(u)

∣∣∣∣∣ = 1
ts

∣∣(log Kts
n − log Ats

n
)
ζ1(u)

∣∣. (12)

Since the basis functionals ζi are linearly independent,

lim
ts→0

1
ts
|(log Ats

n − log Kts
n )ζ1(u)| = 0 ∀u (13)

implies that:
lim
ts→0

∣∣∣L̃(ts)
i1 − ci

∣∣∣ = 0 .

Thus it remains to show that (13) holds. Since limts→0 ‖Ats
n − I‖ = 0, it is easy to check that:

lim
ts→0

1
ts

∥∥log Ats
n − (Ats

n − I)
∥∥ = 0 (14)

[note that limt→0(log f (t)− ( f (t)− 1))/t = 0 for all f ∈ C1 such that limt→0 f (t) = 1] and
it follows similarly that:

lim
ts→0

1
ts

∥∥log Kts
n − (Kts

n − I)
∥∥ = 0 . (15)

Since the mapping t 7→ (At
n − Kt

n)ζ(u) is differentiable, the mean value theorem im-
plies that:

1
ts

∣∣(Ats
n − Kts

n )ζ(u)
∣∣ = ∣∣∣∣ d

dt
(

At
nKts−tζ(u)

)
|t=τ

∣∣∣∣
for all ζ ∈ En and u ∈ U , and for some τ ∈ [0, ts]. Then we can write:

1
ts

∣∣(Ats
n − Kts

n )ζ(u)
∣∣ = ∣∣Aτ

n(PnLPn − PnL)Kts−τζ(u)
∣∣

≤ |Aτ
nPnLPn(Kts−τζ(u)− ζ(u))|+ |Aτ

nPnL(Pnζ(u)− ζ(u))|
+ |Aτ

nPnL(ζ(u)− Kts−τζ(u))|
≤ |Aτ

nPnLPn(ζ(ϕts−τ(u))− ζ(u))|+ |Aτ
nPnL(ζ(u)− ζ(ϕts−τ(u)))|
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where we used the fact that Pnζ = ζ and that Kt and L commute. Since the functionals
Aτ

nPnLPnζ and Aτ
nPnLζ are continuous and the flow ϕt is continuous in t, we have:

lim
ts→0
|Aτ

nPnLPn(ζ(ϕts−τ(u))− ζ(u))| = 0

lim
ts→0
|Aτ

nPnL(ζ(u)− ζ(ϕts−τ(u)))| = 0

so that:
lim
ts→0

1
ts

∣∣(Ats
n − Kts

n )ζ(u)
∣∣ = 0 . (16)

Finally (14)–(16) yield:

lim
ts→0

1
ts
|(log Ats

n − log Kts
n )ζ(u)|

≤ lim
ts→0

1
ts

(
|(log Ats

n − (Ats
n − I))ζ(u)| +|(log Kts

n − (Kts
n − I))ζ(u)|+ |(Ats

n − Kts
n )ζ(u)|

)
= 0 .

This concludes the proof.

Although the result requires that the sampling time ts tend to zero, accurate results can
be obtained even if ts is not so small (see Section 4.4). However, large sampling times might
affect the method performance. In particular, if the sampling time is too large, the principal
branch of the matrix logarithm 1/ts log Ats

n = 1/ts log etsPn LPn is not equal to PnLPn. This is
related to the so-called system aliasing issue [25] (see also [10] for more details).

When an arbitrary basis of functionals is chosen so that 〈W(·), w〉 /∈ span{ζ1, . . . , ζn},
we have the following corollary.

Corollary 1. Under the assumptions of Proposition 1, but with ζi(·) = 〈Vi(·), w〉, Vi : D(Vi)→
U (and V1 = I), the estimated nonlinear operator Ŵ(ts) = ∑n

i=1 L̃(ts)
i1 Vi satisfies:

lim
ts→0

Ŵ(ts) = argmin
W̃∈span(V1,...,Vn)

m

∑
k=1

∣∣〈W̃(uk)−W(uk), w
〉∣∣2 .

Proof. It follows from (11)–(13) that:

lim
ts→0

n

∑
i=1

L̃(ts)
i1 ζi(·) = Pn〈W(·), w〉 ,

which implies that:
lim
ts→0

〈
Ŵ(ts)(·), w

〉
= Pn〈W(·), w〉 .

The result follows from the definition of the discrete orthogonal projection (6).

Remark 5. The proof of Proposition 1 is adapted from a proof in [10], but does not rely on the
semigroup theory. In particular, only weak (i.e., pointwise) convergence properties are used in
the proof of Proposition 1, while strong convergence is considered in the proof in [10]. For this
reason, strong convergence results can be obtained in [10] in the case of arbitrary bases, but a weaker
result is obtained here (see Corollary 1). In this context, considering a space of bounded continuous
functionals equipped with a mixed topology would allow the exploit of the strong continuity property
of the semigroup, as shown in [6], and possibly recover stronger convergence results.

4.3. Case of Linearly Dependent Basis Functionals

The basis functionals (9) might not be linearly independent, even if the operators Wi
are linearly independent (see Section 4.4.2). In this case, the result of Proposition 1 does not
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hold and in particular the estimated coefficients ĉi , L̃(ts)
i1 do not approximate the exact

coefficients ci. However, it follows from (12) and (13) that these coefficients satisfy the
equality:

N

∑
i=1

(ĉi − ci)ζi(u) = 0

as ts goes to zero. Considering several weighting functions w(j), with j = 1, . . . , J, we can
use the proposed identification method with J different sets of basis functionals ζ

(j)
i =

〈Wi(·), w(j)〉, yielding several sets of values ĉ(j)
i that satisfy the equations:

N

∑
i=1

(ĉ(j)
i − ci) ζ

(j)
i (u) = 0 j = 1, . . . , J.

Considering the above set of equations at u = uk, for k = 1, . . . , m, we obtain the matrix
equality:

Θ f ull

 c1
...

cN

 = b (17)

with:

Θ f ull =


Θ

(1)
1
...

Θ
(J)
1

, b =



Θ
(1)
1


ĉ(1)1

...
ĉ(1)N


...

Θ
(J)
1


ĉ(J)

1
...

ĉ(J)
N




,

and where Θ
(j)
1 is the data matrix (4) obtained with basis functionals ζ

(j)
i . Provided that J

is large enough and the choice of weighting functions w(j) is appropriate, the matrix Θ f ull

can be full rank so that (17) admits a unique solution Θ†
f ullb. In this case, the coefficients ci

are recovered despite the fact that every set of basis functionals is linearly dependent.

Remark 6. Several weighting functions can also be used when the basis functionals are linearly
independent (provided that the observations are available in practice). Then, the sets of estimated
coefficients ĉ(j)

i can be averaged to improve the accuracy of the results. Inconsistent results can also
be discarded by comparing the different sets of coefficients.

4.4. Numerical Examples

We can now use the lifting identification method with two illustrating examples: a
nonlinear partial differential equation and a nonlinear diffusive dynamics on a graphon.

4.4.1. Nonlinear Partial Differential Equation

We aim at identifying the coefficients of the dynamics:

u̇ = −2u− 0.5(1 + u)
∂u
∂x

+ (1− 0.2u)
∂2u
∂x2 + 0.1

∂3u
∂x3 , (18)

u ∈ L2[0, 5], with homogeneous Dirichlet boundary conditions u(0) = u(5) = 0. The PDE
is used to generate m = 50 data pairs, taken from 25 trajectories (with random, arbitrarily
chosen initial conditions of the form x(x− 5) cos(aπx/5 + bπ), a, b ∈ [0, 1], which satisfy
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the boundary conditions). The sampling time is ts = 0.3. The lifting identification method
is used with n = 12 basis functionals (9), with the nonlinear operators:

Wi(u) ∈
{

uj ∂ku
∂xk , j ∈ {0, 1, 2}, k ∈ {0, 1, 2, 3}

}

and the weighting function w(x) = exp(−1/(1 − (x/L)2)). Figure 2 shows that the
coefficients ci estimates had low error.

1 2 3 4 5 6 7 8 9 10 11 12
i

2

1

0

1

c i

exact
estimated

Figure 2. The lifting identification method is used to recover the PDE (18). The coefficients ci (blue
circles) were estimated with low error (red crosses). Nonzero coefficients correspond to W1(u) = u,
W4(u) = ∂u/∂x, W5(u) = u ∂u/∂x, W7(u) = ∂2u/∂x2, W8(u) = u ∂2u/∂x2, and W10(u) = ∂3u/∂x3.

4.4.2. Nonlinear Diffusive Dynamics on a Graphon

The graphon G : [0, 1]2 → [0, 1] is used to describe the limit of a sequence of dense
graphs, and can be interpreted as the infinite-dimensional version of an adjacency matrix.
Here, we consider a nonlinear diffusive dynamics on the graphon G(x, y) = 1− 0.4x−
0.1y− 0.2xy− 0.3y2, which is described by the integro-differential equation:

u̇(t, x) = −0.5u(t, x) + 1.5u(t, x)2 − u(t, x)3 +
∫ 1

0
G(x, y) (u(t, y)− u(t, x)) dy. (19)

We generate m = 60 data pairs, taken from 30 trajectories (with random initial conditions
of the form 0.1a cos(bπx + bπ), a, b ∈ [0, 1]). The sampling time is ts = 0.5. The lifting
identification method is used with n = 10 basis functionals (9), with the operators:

W1(u) = 1, W2(u) = u, W3(u) = u2, W4(u) = u3,

W5(u)(x) =
∫ 1

0
u(y)− u(x) dy, W6(u)(x) =

∫ 1

0
x (u(y)− u(x)) dy,

W7(u)(x) =
∫ 1

0
y (u(y)− u(x)) dy, W8(u)(x) =

∫ 1

0
xy (u(y)− u(x)) dy,

W9(u)(x) =
∫ 1

0
x2 (u(y)− u(x)) dy, W10(u)(x) =

∫ 1

0
y2 (u(y)− u(x)) dy.

In particular, we can compute the basis functionals ζi(·) = 〈Wi(·), w〉, with i = 5, . . . , 8 and
we obtain:

ζ5(u) =
∫ 1

0

∫ 1

0
w(x)(u(y)− u(x)) dxdy = C1 〈1, u(x)〉+ C2 〈w(x), u(x)〉

ζ6(u) =
∫ 1

0

∫ 1

0
w(x) x (u(y)− u(x)) dxdy = C3 〈1, u(x)〉+ C2 〈x w(x), u(x)〉

ζ7(u) =
∫ 1

0

∫ 1

0
w(x) y (u(y)− u(x)) dxdy = C1 〈x, u(x)〉+ C4 〈w(x), u(x)〉

ζ8(u) =
∫ 1

0

∫ 1

0
w(x) xy (u(y)− u(x)) dxdy = C3 〈x, u(x)〉+ C4 〈x w(x), u(x)〉
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with C1 =
∫ 1

0 w(x)dx, C2 = −1, C3 =
∫ 1

0 x w(x)dx, and C4 = −1/2. Then it is easy to see
that the functionals ζi, with i = 5, . . . , 8, are linearly dependent for any weight function w.
We therefore follow the procedure described in Section 4.3, using the weighting functions
w(j)(x) = xj, with j = 1, . . . , 4. As shown in Figure 3, the coefficients are correctly estimated
and, in particular, the graphon is identified.

1 2 3 4 5 6 7 8 9 10
i

1.0
0.5
0.0
0.5
1.0

1.5
c i

exact
estimated

Figure 3. The lifting identification method is used to recover the dynamics (19) on a graphon. The
coefficients ci (blue circles) are correctly estimated (red crosses).

4.4.3. Numerical Performance

In this section, we compare the lifting identification method with a simple direct
identification method. For this latter method, the time derivative u̇k at uk is estimated
through (forward) finite differences:

u̇k =
ϕts(uk)− uk

ts

or equivalently:

〈u̇k, w〉 = 〈ϕ
ts(uk), w〉 − 〈uk, w〉

ts
=

ζ1(ϕts(uk))− ζ1(uk)

ts
.

The estimated coefficients ĉi are obtained through least squares regression of 〈u̇, w〉 over
basis functionals of the form (9), i.e.,ĉ1

...
ĉn

 = Θ†
1

 〈u̇1, w〉
...

〈u̇m, w〉


where Θ1 is the data matrix (4).

We apply the two methods on data generated by the PDE (18), with the same setting
and set of parameters as in Section 4.4.1. However, several values of the sampling time
ts are considered, and two weighting functions w(1)(x) = exp(−1/(1 − (x/L)2)) and
w(2)(x) = exp(−0.5/(1− (x/L)2)) are also used (see Remark 6). For each method, we
compute two sets of coefficients ĉ(1)i and ĉ(2)i with the two weighting functions and take

the mean ĉi = (ĉ(1)i + ĉ(2)i )/2. We finally compute the root mean square error (RMSE):

RMSE =

√
∑n

i=1(ci − ĉi)2

√
n

,

which is shown in Figure 4 for both methods as a function of the sampling time. We can see
that the lifting method outperforms the direct method and, in particular, is characterized
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by a small RMSE even for large sampling times. However, it is characterized by a higher
variability.

0.2 0.4 0.6 0.8 1.0 1.2
ts

0.1

0.2

0.3

0.4

0.5

RM
SE

lifting method
direct method

Figure 4. The lifting method is characterized by a smaller RMSE than a direct method based on
least-squares regression of time derivatives. In particular, the error remains smaller for large sampling
times. The dataset is generated with the dynamics in (18). Crosses and error bars show the mean
and standard deviation, respectively, of the RMSE (over 50 experiments). Note that the experiments

characterized by |ĉ(1)i − ĉ(2)i | > 1 for some i are discarded.

We have also considered the effect of measurement noise. To do so, we have considered
the same setting as above (with ts = 0.5) and added Gaussian noise to the data with mean
at zero and standard deviation σ · std(data), where std(data) stands for the standard
deviation of the data. As shown in Figure 5, the lifting method still outperforms the
direct method for low noise levels (i.e., 0.001% and 0.01%) but is not robust to larger noise
levels, in which case the direct method yields better results. The variability of the results is
also higher with the lifting method. This can be explained by the fact that our proposed
parameter estimation method is biased and not consistent, due to the lifting of (noisy) data.
In future work, the noise robustness of the method should be improved. For instance, the
weak formulation of the method could be further exploited to enhance noise robustness
(see, e.g., [14]).

10 5 10 4 10 3 10 2

0.2

0.4

0.6

0.8

RM
SE

lifting method
direct method

Figure 5. The lifting method is characterized by a smaller RMSE for low noise levels. However, the
direct method is more robust to noise and outperforms the lifting method for larger noise levels. The
dataset is generated with the dynamics (18). Crosses and error bars show the mean and standard
deviation, respectively, of the RMSE (over 20 experiments). Note that experiments characterized by

|ĉ(1)i − ĉ(2)i | > 1 for some i are discarded.

5. Conclusions

In this paper, the Koopman operator framework has been leveraged in the case of
infinite-dimensional nonlinear systems. Building on previous theoretical works, we have
considered a semigroup of composition operators and the associated Lie generator on a
space of continuous functionals. A finite-dimensional representation of these operators
has been proposed and used in the context of spectral analyses. This approach yields a
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generalization of the data-driven EDMD method for infinite-dimensional systems. We
have also developed a novel identification method, which allows to identify nonlinear
PDEs although it relies solely on linear techniques. This method has been complemented
with convergence results.

The Koopman operator framework for infinite-dimensional systems is still in its
infancy. Convergence properties of the finite-dimensional approximation of the Koopman
operator should be thoroughly studied, in particular in light of the recent results by [6]
in semigroup theory. This could provide some insight into the results obtained with the
generalized EDMD method. The possibility to consider several weight functions should be
further investigated and exploited. In particular, some guidelines to carefully select the
weight functions could be provided. Finally, robustness to noise should be improved.
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