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Abstract: We discuss a generalization of Berrut’s first and second rational interpolants to the case of
equally spaced points on a triangle in R2.
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1. Introduction

Berrut [1–3] introduced two versions of a univariate rational interpolation procedure
that has proven to be efficient and effective, even for equally spaced points in an interval.
Of note is that the complexity of these procedures is linear in the number of points. The
derivation of these procedures is based on the classical Whittaker–Shannon sampling
theorem [4–6]).

Theorem 1. Suppose that f ∈ C(R) ∩ L1(R) and that f̂ (ω) = 0 for |ω| ≥ h/2. Then

f (x) =
∞

∑
k=−∞

f (kh)sinc
(

1
h
(x− kh)

)
. (1)

where, as usual,

sinc(x) :=
sin(πx)

πx
,

is the sinc function.

In the case of f with domain restricted to some compact subinterval of R, say to [0, 1],
considering equally spaced points with h = 1/n, we may consider the partial sum

f (x) ≈ Fn(x) :=
n

∑
k=0

f (k/n)sinc(n(x− k/n))

=
n

∑
k=0

f (xk)sinc(n(x− xk)) (2)

where we have set xk := k/n, 0 ≤ k ≤ n.
Figure 1 shows a plot of the approximant F11 and F41 of the function f (x) = x2 where

it is evident that when increasing n the quality of the approximation improves.
While (2) no longer reproduces f for all x ∈ [0, 1], it is an interpolant in that

Fn(xj) = f (xj), 0 ≤ j ≤ n, (3)
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as easily follows from the cardinality property of the translated sinc functions, i.e.,

sinc(n(xj − xk)) =


1 if j = k

0 if j 6= k
.
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Figure 1. Fn(x) for f (x) = x2 and n = 11 and n = 41.

This interpolant Fn was already studied by de la Vallée Poussin (1908) who showed
that under some weak regularity conditions on f (x),

lim
n→∞

Fn(x) = f (x), x ∈ [0, 1],

with error essentially of O(1/n). The reader interested in further details may find them in
the excellent survey by Butzer and Stens [7].

In order to alleviate the poor approximation quality of Fn, Berrut in [2] suggested normal-
izing the Formula (2) for Fn to obtain what we refer to as the first Berrut rational interpolant:

B(1)
n (x) :=

n

∑
k=0

f (xk)sinc(n(x− xk))

n

∑
k=0

sinc(n(x− xk))

. (4)

B(1)
n remains an interpolant of f at the nodes xk, k = 0, · · · , n but has the advantage of

reproducing constants, that is if f (x) = 1 then B(1)
n (x) = 1.

The Formula (4) may be simplified. Notice that

sinc(n(x− xk)) = (−1)k sin(nπx)
nπ(x− xk)

.
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hence,

B(1)
n (x) =

∑n
k=0 f (xk)sinc(n(x− xk))

∑n
k=0 sinc(n(x− xk))

=
sin(nπx)∑n

k=0(−1)k f (xk)
x−xk

sin(nπx)∑n
k=0(−1)k 1

x−xk

=
∑n

k=0(−1)k f (xk)/(x− xk)

∑n
k=0(−1)k/(x− xk)

. (5)

An example of this first interpolant is shown in Figure 2 again for f = x2 and
n = 11, 41.
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Figure 2. Berrut B(1)
n for f (x) = x2 and n = 11 and n = 41.

Remark 1. Besides being an improved approximant, B(1)
n is also numerically stable as its associated

Lebesgue constant has O(log(n)) growth, as was shown in [8].

Berrut also proposed a second improvement by making a simple boundary adjustment
in the definition of B(1)

n to obtain an interpolant that also reproduced polynomials of degree
one. Specifically, let

B(2)
n (x) :=

n

∑
k=0

(−1)kβk f (xk)/(x− xk)

n

∑
k=0

(−1)kβk/(x− xk)

(6)

where

βk =

{
1 1 ≤ k ≤ (n− 1),
1/2 k = 0, n

.

Remark 2. Floater and Hormann ([9]) subsequently introduced the more general formula

FHn(x) :=

n

∑
k=0

(−1)kβ
(d)
k f (xk)/(x− xk)

n

∑
k=0

(−1)kβ
(d)
k /(x− xk)

. (7)

where the weights β
(d)
k are chosen so that FHn reproduces polynomials of degree at most d
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In the specific case of equally spaced nodes their formula for the β
(d)
k reduces to

β
(d)
k :=


∑k

j=0 (
d
k) 0 ≤ k ≤ d

2d d ≤ k ≤ n− d

βn−k n− d ≤ k ≤ n

(8)

where n ≥ 2d, by assumption.
The cases of d = 0, 1 correspond to Berrut’s first and second interpolants, respectively.
In this work we will consider bivariate extensions of Berrut’s first and second interpolants.

The more general Floater-Hormann case will be the topic of a subsequent paper.

In Figure 3 we show a comparison between the Berrut interpolants for f (x) = x4 and
n = 12.
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Figure 3. B(1)
n and B(2)

n for f (x) = x4 and n = 12.

2. The Extension of Berrut’s First Interpolant to Equally Spaced Points on a Triangle

The bivariate Whittaker–Shannon sampling operator is defined as follows. Set xi :=
i/n and yj := j/n then

f (x, y) =
∞

∑
i=−∞

∞

∑
j=−∞

f (xi, yj)sinc(n(x− xi))sinc(n(y− yj)) (9)

We can now truncate triangularly (this is equivalent to consider equally spaced points on
the triangle, as illustrated in Figure 4). Let

T := {(x, y) ∈ R2 : 0 ≤ x, y, x + y ≤ 1}

be the standard triangle in R2 and set

Fn(x, y) := ∑
(i,j)/n∈T

f (xi, yj) sinc(n(x− xi)) sinc(n(y− yj))

= ∑
0≤i+j≤n

f (xi, yj) sinc(n(x− xi)) sinc(n(y− yj)).
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Figure 4. Equally Spaced Points in a Triangle.

Furthermore, by normalizing as in the one-dimensional Berrut case, we get

B(1)
n (x, y) :=

∑
0≤i+j≤n

f (xi, yj) sinc(n(x− xi)) sinc(n(y− yj))

∑
0≤i+j≤n

sinc(n(x− xi)) sinc(n(y− yj))
(10)

Finally we simplify, just as in the univariate case, to get

B(1)
n (x, y) :=

∑
0≤i+j≤n

(−1)i+j f (xi, yj)

(x− xi)(y− yj)

∑
0≤i+j≤n

(−1)i+j 1
(x− xi)(y− yj)

, (11)

Remark 3. Of course the summation can be truncated to regions P other than just the triangle to
obtain multivariate versions of the Berrut rational interpolation at integer lattice points contained
in P. However, we consider in this first work only the case of P = T a triangle.

Proposition 1. We have that B(1)
n (x, y) is an interpolant, i.e.,

B(1)
n (xα, yβ) = f (xα, yβ), 0 ≤ α + β ≤ n,

and that B(1)
n reproduces constants. Moreover, restricted to the vertical grid lines x = xs and

horizontal grid lines y = yt, B(1)
n agrees with the univariate Berrut interpolant for the interpolation

points along those lines

Proof. It is easy to verify these properties. Interpolation is guaranteed by the singularities
at the interpolation points while the reproduction of constants is self evident.

To see the grid line first rationalize by multiplying the numerator and denominator by
ωn(x)ωn(y) where

ωn(z) :=
n

∏
i=0

(z− xi)
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to obtain

B(1)
n (x, y) =

∑
0≤i+j≤n

(−1)i+j f (xi, yj)
n

∏
k=0, k 6=i

(x− xk)
n

∏
k=0, k 6=j

(y− yj)

∑
0≤i+j≤n

(−1)i+j
n

∏
k=0, k 6=i

(x− xk)
n

∏
k=0, k 6=j

(y− yj)

.

Restricting, for example to the vertical grid line x = xs we obtain

B(1)
n (xs, y) =

∑
0≤i+j≤n

(−1)i+j f (xi, yj)
n

∏
k=0, k 6=i

(xs − xk)
n

∏
k=0, k 6=j

(y− yj)

∑
0≤i+j≤n

(−1)i+j
n

∏
k=0, k 6=i

(xs − xk)
n

∏
k=0, k 6=j

(y− yj)

.

However the product
∏

k=0, k 6=i
(xs − xk) = 0

unless i = s. Hence

B(1)
n (xs, y) =

n−s

∑
j=0

(−1)s+j f (xs, yj)
n

∏
k=0, k 6=s

(xs − xk)
n

∏
k=0, k 6=j

(y− yj)

n−s

∑
j=0

(−1)s+j
n

∏
k=0, k 6=s

(xs − xk)
n

∏
k=0, k 6=j

(y− yj)

=

n−s

∑
j=0

(−1)s+j f (xs, yj)
n

∏
k=0, k 6=j

(y− yj)

n−s

∑
j=0

(−1)j
n

∏
k=0, k 6=j

(y− yj)

which is exactly the univariate Berrut interpolant for the function f (xs, y) along that the
line x = xs.

Remark 4. The restriction of B(1)
n (x, y) to the upper edge x + y = 1 is not a univariate Berrut

interpolant, as is easy to confirm. It follows that B(1)
n is not symmetric with respect to the barycentric

coordinates of the triangle.

As we have seen, the formula (11) can be rationalized by multiplying the numerator
and denominator by ωn(x)ωn(y), where

ωn(z) :=
n

∏
i=0

(z− xi).

Indeed, writing B(1)
n (x, y) = Nn(x, y)/Dn(x, y), let

dn(x, y) : = ωn(x)ωn(y)Dn(x, y)

= ωn(x)ωn(y)
n

∑
i=0

n−i

∑
j=0

(−1)i+j

(x− xi)(y− yj)

be the resulting polynomial for the denominator in (11). The zeros of dn(x, y) correspond
to poles in the expression for B(1)

n and are obviously problematic. We conjecture however
that there are no poles inside the triangle, but have been able to prove this only for n ≤ 20,
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to date. We remark that although the univariate arguments used by Berrut (and more
generally by Floater and Hormann) do extend easily to the tensor product case, they do not,
to the best of our knowledge, extend easily to the triangular case which we are considering.

Our method to do this is elementary, but computationally expensive. Consider first
the n = 1 case. Then

d1(x, y) = ω1(x)ω1(y)
1

∑
i=0

1−i

∑
j=0

(−1)i+j

(x− i/1)(y− j/1)

= x(x− 1)y(y− 1)
{

1
xy
− 1

(x− 1)y
− 1

x(y− 1)

}
= (x− 1)(y− 1)− x(y− 1)− (x− 1)y

= 1− xy.

Clearly d1(x, y) > 0 for (x, y) ∈ T, but this can also be confirmed by the use of barycentric
coordinates. Indeed, let z := (1− x− y) so that x + y + z = 1. In particular, the triangle T
is given by

T = {(x, y) ∈ R2 : 0 ≤ x, y, z}.

Then, homogenizing and simplifying we have

d1(x, y) = (x + y + z)2 − xy

= x2 + y2 + z2 + xy + 2xz + 2yz.

As all the coefficients of d1 are non-negative, it follows that d1 > 0 on the interior of the
triangle T. By, the previous proposition, we know that there are also no boundary poles on
the edges x = 0 and y = 0. The upper edge (z = 0) needs to be checked separately, which
is easily done.

For higher degrees n it is convenient to change variables letting x′ := nx, y′ := ny,
z′ = n− x′ − y′ so that

dn(x, y) = n−2nω′n(x′)ω′n(y
′)

n

∑
i=0

n−i

∑
j=0

(−1)i+j

(x′ − i)(y′ − j)

where

ω′n(t) =
n

∏
i=0

(t− i).

Then, ignoring the n−2n factor and, by an abuse of notation, suppressing the primes,

d2(x, y) = ω2(x)ω2(y)
2

∑
i=0

2−i

∑
j=0

(−1)i+j

(x− i)(y− j)

= x(x− 1)(x− 2)y(y− 1)(y− 2)×{
1

xy
− 1

(x− 1)y
− 1

x(y− 1)
+

1
x(y− 2)

+
1

(x− 1)(y− 1)
+

1
x(y− 2)

}
= 2x2y2 − 4x2y + 2x2 − 4xy2 + 7xy− 4x + 2y2 − 4y + 4,

a polynomial of degree 4. It can be homogenized to

2x2y2 − 4x2yt + 2x2t2 − 4xy2t + 7xyt2 − 4xt3 + 2y2t2 − 4yt3 + 4t4
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which becomes, upon setting t = (x + y + z)/2 (= 1 in barycentric coordinates),

4d2(x, y) = x4 − x3y + 2x3z + 4x2y2 + 4x2yz + 2x2z2 − xy3

+ 4xy2z + 7xyz2 + 2xz3 + y4 + 2y3z + 2y2z2 + 2yz3 + z4.

Not all the coefficients are non-negative and hence we cannot immediately conclude that
d2 > 0 on T. However, we may degree elevate this expression, i.e., multiply by a factor
(x + y + z)r (cf. e.g., [10]). If it is the case that all the coefficients of the product

(x + y + z)rd2(x, y)

are non-negative, it follows that d2 > 0 on T. (The lowest power r with this property is
related to the so-called Bernstein degree of d2(x, y).) In this case, consider what occurs if
r = 1. Then

4(x + y + z)1d2(x, y) = x5 + 3x4z + 3x3y2 + 5x3yz + 4x3z2 + 3x2y3

+ 12x2y2z + 13x2yz2 + 4x2z3 + 5xy3z + 13xy2z2

+ 11xyz3 + 3xz4 + y5 + 3y4z + 4y3z2 + 4y2z3 + 3yz4 + z5.

The minimum non-zero coefficient, 1 in this case, provides a certificate of positivity for
d2(x, y) on the interior of T (where x, y, z > 0). Separate certificates for the boundary can
be obtained by setting x = 0, y = 0 and z = 0, respectively. However, as already noted,
the restrictions of the bivariate interpolant to the edges x = x0 = 0 and y = y0 = 0 are the
univariate Berrut interpolants and hence have no poles there. The upper edge z = 0 needs
to be done separately.

By these means we may, with the assistance of a computer algebra system, prove the
following positivity result.

Proposition 2. For at least n = 1, 2, · · · , 20,

dn(x, y) > 0, (x, y) ∈ T.

Proof. We produced a positivity certificate for the stated values of n using the Matlab
Symbolic Toolbox and the following code.

The minimal values of degree elevation are shown in Table 1.

Table 1. Degree Elevation r for Degree n.

n r || n r

1 0 || 11 89
2 1 || 12 103
3 5 || 13 123
4 8 || 14 143
5 14 || 15 169
6 22 || 16 188
7 33 || 17 215
8 44 || 18 238
9 56 || 19 271
10 70 || 20 296

Notice that the minimal elevation degree r grows quite quickly with n. In principle
one can continue with this procedure proving positivity for one degree n at a time. A
general proof evades us for the time being.

In the univariate case it is known that in fact there are no real poles whatsoever. In
contrast, in the bivariate case there are real poles, however, due to Proposition 2 they are
necessarily outside the triangle.
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Proposition 3. For any set of weights wij, the denominator

dn(x, y) := ωn(x)ωn(y) ∑
0≤i+j≤n

wij
1

(x− i/n)(y− j/n)

has real zeros at
(

α
n , β

n

)
for 0 ≤ α, β ≤ n and α + β > n.

Proof. Notice that

dn(x, y) = ∑
0≤i+j≤n

wij

(
n

∏
k=0,k 6=i

(x− k/n)

)(
n

∏
m=0,m 6=j

(y−m/n)

)
.

However, for α + β > n we must have (α, β) 6= (i, j), for all (i, j) with i + j ≤ n, i.e., either
α 6= i or β 6= j (or both). Hence at least one of the products

n

∏
k=0,k 6=i

(α/n− k/n),
n

∏
m=0,m 6=j

(β/n−m/n)

must be zero, and thus dn(α/n, β/n) = 0.

Remark 5. While there are no real poles in the univariate case, there are complex poles. Figure 5
shows these poles for degree n = 40. In fact it is possible to analyze the asymptotics of these poles.
Indeed, it was shown in [4] that

Dn(x) :=
n

∑
j=0

(−1)j

x− j/n
=

n
2
{

2π csc(nπx) + G(nx + 1) + (−1)n+1G(n(1− x) + 1)
}

where G(x) is the so-called Bateman G-function

G(x) = 2
∫ ∞

0

e−xt

1 + e−t dt, <(x) > 0.

Letting z := nx, we obtain

Dn(z/n) =
n
2
{

2π csc(πz) + G(z + 1) + (−1)n+1G(n + 1− z)
}

.

However, notice, from the defining formula, that

lim
n→∞

G(n + 1− z) = 0

so that the zeros of Dn(x) are aysmptotically the zeros of 2π csc(πz) + G(z + 1), divided by n. In
particular, one may find numerically that

z0 :≈ 1.346516491475860 + 1.055160064278170i

is a zero of 2π csc(πz)+G(z+ 1) and hence z0/n is approximately a zero of Dn(x). Consequently,
in the univariate case, there are complex poles of distance order 1/n to the interval [0, 1], whereas in
the bivariate case there are real poles of this same order of distance to the triangle T.
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Figure 5. Univariate Poles for Degree n = 40.

Finally, we show some examples of this bivariate interpolant. Figure 6 shows the
bivariate extension of Berrut’s first interpolant for the function f (x, y) = x2 + y2 and
n = 13, 27.

Figure 6. Bivariate Berrut One for f (x, y) = x2 + y2, n = 13, 27.

Figure 7 shows the interpolant of f (x, y) = sin(2π((x− 1/3)2 + (y− 1/3)2)) for the
same degrees.

One may notice that the interpolant is reasonable for higher values of n but leaves
room for improvement.
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Figure 7. Bivariate Berrut One for f (x, y) = sin(2π((x− 1/3)2 + (y− 1/3)2)), n = 13, 27.

A Hybrid Interpolant

For any linear interpolant it is possible, by means of a so-called Boolean sum, to create
a hybrid version that reproduces any specifed finite dimensional subspace of functions, the
most common example of such being the space of polynomials of degree one. Indeed, for
example, if L( f ) denotes the linear interpolant of f at the three vertices of T, i.e.,

L f (x, y) = f (0, 0)(1− x− y) + f (1, 0)x + f (0, 1)y

then for f̂ (x, y) := f (x, y)− L f ((x, y), we may defined

Bh(1)n (x, y) := B(1)
n (x, y) + L f (x, y)

where B(1)
n is the interpolant of f̂ .

Figure 8 give a comparison between the original B(1)
n and its hybrid version, for

f (x, y) = 1 + 2x + 3y and n = 7.

Figure 8. Berrut One and its Hybrid for n = 7 and f (x, y) = 1 + 2x + 3y.
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3. The Extension of Berrut’s Second Interpolant to Equally Spaced Points on a Triangle

Berrut’s second interpolant (for when the boundary points are included) involves the
introduction of weights, adjusted at the boundary, to ensure the reproduction of linears. In
general, for weights βij, 0 ≤ i + j ≤ n, we define

B(2)
n (x, y) =

∑i+j≤n βij f (i/n, j/n) (−1)i+j

(x−i/n)(y−j/n)

∑i+j≤n βij
(−1)i+j

(x−i/n)(y−j/n)

. (12)

In the bivariate case the reproduction of linears splits into n odd and n even cases. We
consider first the n odd case for which we define the weights

βij :=


0 (i, j) = (0, 0), (n, 0), (0, n)

1/2 1 ≤ i ≤ n− 1, j = 0
1/2 1 ≤ j ≤ n− 1, i = 0
1/2 1 ≤ i ≤ n− 1, j = i

1 otherwise

(13)

(i.e., 0 at the three vertices, 1/2 at the interior edge points and 1 at the triangle interior
points). The n = 5 case is shown in Figure 9.

Figure 9. Weights on the triangle.

Proposition 4. For n > 1 odd and weights given by (13), B(2)
n (x, y) reproduces polynomials of

degree one.

Proof. We remark that the n = 1 case has all weights zero, and hence is not relevant.

We will make use of univariate reproduction formulas for Berrut’s second interpolant.

Lemma 1. For any points x0 < x1 < · · · < xm and weights wi ∈ R,

m

∑
i=0

wi
(−1)i

x− xi
xi = x

{
m

∑
i=0

wi
(−1)i

x− xi

}

if and only if
m

∑
i=0

wi(−1)i+1 = 0.
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Proof. We calculate

m

∑
i=0

wi
(−1)i

x− xi
xi =

m

∑
i=0

wi
(−1)i

x− xi
((xi − x) + x)

=
m

∑
i=0

wi(−1)i+1 + x

{
m

∑
i=0

wi
(−1)i

x− xi

}

= x

{
m

∑
i=0

wi
(−1)i

x− xi

}

⇐⇒
m

∑
i=0

wi(−1)i+1 = 0.

Lemma 2. Consider the weights

wi :=
{

a i = 0, m
1 1 ≤ i ≤ m− 1

with a ∈ R a parameter. Then for a = 1/2 and any m ≥ 1, or a = 0 and m odd

m

∑
i=0

wi
(−1)i

x− xi
xi = x

{
m

∑
i=0

wi
(−1)i

x− xi

}
.

Proof. By Lemma 1 we need only show that ∑m
i=0 wi(−1)i+1 = 0.

The a = 1/2 case is the result first proved by Berrut and hence we leave out the details.
In case a = 0 and m is odd then we calculate

m

∑
i=0

wi(−1)i+1 =
m−1

∑
i=1

(−1)i+1 = 0

as this is an alternating sum of ±1 with an even (m− 1) number of terms.

Now to prove Proposition 4. We wish to show that

∑
i+j≤n

βij f (i/n, j/n)
(−1)i+j

(x− i/n)(y− j/n)
= f (x, y) ∑

i+j≤n
βij

(−1)i+j

(x− i/n)(y− j/n)

for any f (x, y) = ax + by + c. Clearly it suffices to show this for f (x, y) = x, which we now
proceed to do. First note that, by scaling by a factor of n this is equivalnet to showing that

∑
i+j≤n

βiji
(−1)i+j

(x− i)(y− j)
= x ∑

i+j≤n
βij

(−1)i+j

(x− i)(y− j)
.

Now write the summation by rows as

n

∑
j=0

(−1)j

{
n−j

∑
i=0

βiji
(−1)i

(x− i)(y− j)

}
.

For the first row, j = 0, the weights correspond to the lower edge and are

0, 1, 1, · · · , 1, 0
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and we apply the univariate Lemma with a = 0 and m = n to obtain

n−0

∑
i=0

βi0i
(−1)i+j

(x− i)(y− j)
= x

n−0

∑
i=0

βi0
(−1)i+j

(x− i)(y− j)
.

For the other rows, j = 1, · · · , (n− 1) the weights are

1
2

, 1, · · · , 1,
1
2

and we may apply the univariate Lemma with a = 1/2 and m = n− j to obtain

n−j

∑
i=0

βiji
(−1)i+j

(x− i)(y− j)
= x

n−j

∑
i=0

βij
(−1)i+j

(x− i)(y− j)
.

For the top row (actually a singleton), β0,n = 0 and so there is nothing to do. �

Remark 6. The zero weights at the vertices means that B(2)
n (x, y) will not interpolate at those

points. It will however provide an order 1/n approximation to the corresponding value of f , provided
it is minimally smooth. The approximation properties of these interpolants will be discussed in a
forthcoming work.

Just as in the first interpolant case, by Lemma 3, there are poles at (α, β), 0 ≤ α, β ≤ n,
α + β > n. However, just as in the first case, there are no poles in the triangle T.

Proposition 5. For at least n = 1, 3, · · · , 21,

dn(x, y) > 0, (x, y) ∈ T.

Proof. We do this in exactly the same manner as in the first case, by using degree elevation
to produce a positivity certificate, one degree at a time. The minimal values of degree
elevation are displayed in Table 2.

Table 2. Degree Elevation r for Degree n.

n r || n r

3 0 || 13 75
5 7 || 15 101
7 17 || 17 131
9 33 || 19 165
11 51 || 21 203

The n even case splits into two subcases.

n, A Multiple of Four

In case n is a multiple of four we introduce the weights of 1 at interior points and
along each edge

0,
1
2

, · · · ,
1
2

,
1
4

,
1
2

,
1
4

,
1
2

. · · · ,
1
2

, 0 (14)

where the 1/2 bracketed by 1/4 to the left and right is the middle entry, i = n/2 (Figure 10).
We first remark that in the univariate case the rational interpolant with these weights,

for n a multiple of four, reproduces linears.
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Figure 10. Above: Berrut’s one. Below: Berrut’s two.

Lemma 3. For n a multiple of four and the weights given by (14),

n

∑
i=0

wi
(−1)i

x− xi
xi = x

{
n

∑
i=0

wi
(−1)i

x− xi

}
.

Proof. Applying Lemma 1 we calculate

n

∑
i=0

wi(−1)i+1 =
n−1

∑
i=1

wi(−1)i+1 (as w0 = wn = 0)

=
1
2

n−1

∑
i=1

(−1)i+1 − 1
4

{
(−1)(n/2−1)+1 + (−1)(n/2+1)+1

}
=

1
2

n−1

∑
i=1

(−1)i+1 − 1
4
{(+1) + (+1)} (as n/2 is even)

=
1
2
(+1)− 1

2
= 0
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and the result follows.

Proposition 6. For the weights qij given by (14) and n a multiple of four, the Berrut two extension
reproduces linears.

Proof. We will show that

∑
i+j≤n

βij f (xi, yj)
(−1)i+j

(x− xi)(y− yj)
= ∑

i+j≤n
βij

(−1)i+j

(x− xi)(y− yj)

for any f (x, y) = ax + by + c. Again, it suffices to show this for f (x, y) = x, i.e., that

∑
i+j≤n

βijxi
(−1)i+j

(x− xi)(y− yj)
= x

{
∑

i+j≤n
βij

(−1)i+j

(x− xi)(y− yj)

}
.

We again proceed row by row. The bottom row j = 0 is the case discussed in Lemma 3.
The other rows, other than for j = n/2± 1, follow from the a = 1/2 case of Lemma 2. For
j = n/2− 1 we have

n−j

∑
i=0

qij
(−1)i+j

(x− xi)(y− yj)
xi =

(−1)j

y− yj

n−(n/2−1)

∑
i=0

qij
(−1)i

x− xi
xi

=
(−1)j

y− yj

n/2+1

∑
i=0

qij
(−1)i

x− xi
((xi − x) + x)

=
(−1)j

y− yj

{
n/2+1

∑
i=0

qij(−1)i+1 + x

[
n/2+1)

∑
i=0

qij
(−1)i

x− xi

]}
.

Now we claim that
n/2+1

∑
i=0

qij(−1)i+1 = 0

from which the result for the j = (n/2− 1)th row follows. To see this just note that for row
j = n/2− 1,

n/2+1

∑
i=0

qij(−1)i+1 =
n/2

∑
i=1

(−1)i+1 +
1
4

{
(−1)0+1 + (−1)(n/2+1)+1

}
= 0 +

1
4
{(−1) + (+1)} (as n/2 even)

= 0.

The row j = n/2 + 1 is completely analogous.

Just as in the previous cases, by Lemma 3, there are poles at (α, β), 0 ≤ α, β ≤ n,
α + β > n. However, we conjeture that there are no poles in the triangle T.

Proposition 7. For at least n = 4, 8, · · · , 20,

dn(x, y) > 0, (x, y) ∈ T.

Proof. We do this in exactly the same manner as before, by using degree elevation to
produce a positivity certificate, one degree at a time. The minimal values of degree
elevation are displayed in Table 3.
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Table 3. Degree Elevation r for Degree n.

n r

4 0
8 59

12 175
16 341
20 550

This concludes the proof.

Figure 11 shows the result of interpolating f (x, y) = x2 + y2 for n = 8 and n = 12.

Figure 11. Berrut Two for n a multiple of four.

4. n Even, But n/2 Odd

In case n is even but not a multiple of four, i.e., n/2 is odd, we introduce the weights of
1 at interior points and along each edge

0,
1
2

, · · · ,
1
2

, 0,
1
2

,
1
2

. · · · ,
1
2

, 0 (15)

where the 0 in the middle is the entry, i = n/2.
We first remark that in the univariate case the rational interpolant with these weights,

for n even but n/2 odd, reproduces linears.

Lemma 4. For n even but n/2 odd, and the weights given by (15),

n

∑
i=0

wi
(−1)i

x− xi
xi = x

{
n

∑
i=0

wi
(−1)i

x− xi

}
.

Proof. By Lemma 1, we need only show that

n

∑
i=0

wi(−1)i+1 = 0.

However, in this case

n

∑
i=0

wi(−1)i+1 =
1
2

{
n/2−1

∑
i=1

(−1)i+1 +
n−1

∑
i=n/2−1

(−1)i+1

}
=

1
2
{0 + 0}
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as both are alternating sums of ±1 with an even number of terms, n/2− 1 for the first sum
and (n− 1)− (n/2 + 1) + 1 = n/2− 1 for the second.

Proposition 8. For n even but n/2 odd and the edge weights given by (15), the generalized Berrut
interpolant reproduces linears.

Proof. We again go row by row. The bottom row is the case of Lemma 4. The rows with
1/2 at the beginning and end are the classical Berrut case, whereas the middle row j = n/2
with weights

0, 1, 1, · · · , 1, 1, 0

is handled by Lemma 2 as, by assumption, n/2 is odd (Figure 12).

Figure 12. Berrut Two for n even but n/2 odd and f (x, y) = x2 + y2.

Remark 7. There are, as always, poles oustide of the triangle T and we conjecture that there are
again no poles inside T.
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