
mathematics

Article

On the First-Passage Time Problem for a Feller-Type
Diffusion Process

Virginia Giorno *,† and Amelia G. Nobile †

����������
�������

Citation: Giorno, V.; Nobile, A.G. On

the First-Passage Time Problem for a

Feller-Type Diffusion Process.

Mathematics 2021, 9, 2470. https://

doi.org/10.3390/math9192470

Academic Editor: Palle E. T.

Jorgensen

Received: 2 September 2021

Accepted: 26 September 2021

Published: 3 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Dipartimento di Informatica, Università degli Studi di Salerno, Via Giovanni Paolo II n. 132,
84084 Fisciano, Salerno, Italy; nobile@unisa.it
* Correspondence: giorno@unisa.it
† These authors contributed equally to this work.

Abstract: We consider the first-passage time problem for the Feller-type diffusion process, having
infinitesimal drift B1(x, t) = α(t) x + β(t) and infinitesimal variance B2(x, t) = 2 r(t)x, defined in
the space state [0,+∞), with α(t) ∈ R, β(t) > 0, r(t) > 0 continuous functions. For the time-
homogeneous case, some relations between the first-passage time densities of the Feller process and
of the Wiener and the Ornstein–Uhlenbeck processes are discussed. The asymptotic behavior of the
first-passage time density through a time-dependent boundary is analyzed for an asymptotically
constant boundary and for an asymptotically periodic boundary. Furthermore, when β(t) = ξ r(t),
with ξ > 0, we discuss the asymptotic behavior of the first-passage density and we obtain some
closed-form results for special time-varying boundaries.

Keywords: first-passage time densities; Laplace transforms; Wiener process; Ornstein-Uhlenbeck
process; first-passage time moments; asymptotic behaviors

MSC: 60J60; 60J70; 44A10

1. Introduction

Diffusion processes are often used to describe the development of dynamic systems in
a broad variety of scientific disciplines, including physics, biology, population dynamics,
neurology, finance, and queueing. There is much interest in analyzing the “first-passage
time” (FPT) issue in various situations. This entails determining the probability distribution
of a random variable that describes the moment at which a process, beginning from a fixed
initial state, reaches a defined boundary or threshold for the first time, which may also be
time-varying. Unfortunately, closed-form solutions for the FPT densities are only accessible
in a limited number of instances, leaving the more difficult job of determining the FPT
densities through time-dependent boundaries.

Some general methods to solve FPT problems are based on:

1. Analytical methods to determine the Laplace transform of FPT probability density
function (pdf) and its moments for time-homogeneous diffusion process and con-
stant boundaries (cf., for instance, Darling and Siegert [1], Blake and Lindsey [2],
Giorno et al. [3]);

2. Symmetry properties of transition density to obtain closed-form results on the FPT
densities through time-dependent boundaries and other related functions (cf., for
instance, Di Crescenzo et al. [4]);

3. Construction of FPT pdf by making use of certain transformations among diffusion
processes (cf., for instance, Gutiérrez et al. [5], Di Crescenzo et al. [6], Giorno and
Nobile [7]);

4. Formulation of integral equations for the FPT density (cf., for instance,
Buonocore et al. [8], Gutiérrez et al. [9], Di Nardo et al [10]);
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5. Analysis of the asymptotic behavior of FPT pdf for large boundary or large times (cf.,
for instance, Nobile et al. [11,12])

6. Efficient numerical algorithms and simulation procedures to estimate FPT pdf’s
(cf., for instance, Herrmann and Zucca [13], Giraudo et al. [14], Taillefumier and
Magnasco [15], Giorno and Nobile [16], Naouara and Trabelsi [17]).

In the present paper, we focus on the FPT problem for the Feller-type diffusion process.
Let {X(t), t ≥ t0}, t0 ≥ 0, be a time-inhomogeneous Feller-type diffusion process,

defined in the state space [0,+∞), which satisfies the following stochastic differential
equation:

dX(t) = [α(t) X(t) + β(t)] dt +
√

2r(t) X(t) dW(t), X(t0) = x0,

where W(t) is a standard Wiener process. Hence, the infinitesimal drift and infinitesimal
variance of X(t) are

B1(x, t) = α(t) x + β(t), B2(x, t) = 2 r(t) x (1)

and we assume that α(t) ∈ R, β(t) > 0, r(t) > 0 are continuous functions for all t ≥ t0.
The Feller diffusion process plays a relevant role in different fields: in mathematical

biology to model the growth of a population (cf. Feller [18], Lavigne and Roques [19],
Masoliver [20], Pugliese and Milner [21]), in queueing systems to describe the number
of customers in a queue (cf. Di Crescenzo and Nobile [22]), in neurobiology to ana-
lyze the input–output behavior of single neurons (see, for instance, Giorno et al. [23],
Buonocore et al. [24], Ditlevsen and Lánský [25], Lánský et al. [26], Nobile and Pirozzi [27],
D’Onofrio et al. [28]), in mathematical finance to model interest rates and stochastic volatil-
ity (see Cox et al. [29], Tian and Zhang [30], Maghsoodi [31], Peng and Schellhorn [32]).
In population dynamics, the Feller-type diffusion process arises as a continuous approx-
imation of a linear birth–death process with immigration (cf., for instance, Giorno and
Nobile [33]). The Feller process has the advantage of having a state space bounded from
below, a property that in the neuronal models allows the inclusion of the effect of reversal
hyperpolarization potential. In this context, the statistical estimation of parameters of the
Feller process starting from observations of its first-passage times plays a relevant role (cf.,
for instance, Ditlevsen and Lánský [25], Ditlevsen and Ditlevsen [34]). The study of the
Feller process is also interesting in chemical reaction dynamics (cf., for instance, [35]).

For the Feller-type diffusion process X(t), we assume that the total probability mass
is conserved in (0,+∞) and we denote by f (x, t|x0, t0) = ∂P{X(t) ≤ x|X(t0) = x0}/∂x
the transition pdf of X(t) in the presence of a zero-flux condition in the zero state (cf., for
instance, Giorno and Nobile [33]). Moreover, for the process X(t), we consider the random
variable

T (x0, t0) =


inft≥t0{t : X(t) ≥ S(t)}, X(t0) = x0 < S(t0),

inft≥t0{t : X(t) ≤ S(t)}, X(t0) = x0 > S(t0),
(2)

which denotes the FPT of X(t) from X(t0) = x0 to the continuous boundary S(t). The FPT
pdf g[S(t), t|x0, t0] = ∂P(T (x0, t0) ≤ t)/∂t satisfies the first-kind Volterra integral equation
(cf., for instance, Fortet [36]):

f (x, t|x0, t0) =
∫ t

t0

g[S(u), u|x0, t0] f [x, t|S(u), u] du

[x0 < S(t0), x ≥ S(t)] or [x0 > S(t0), x ≤ S(t)]. (3)

The renewal Equation (3) expresses that any sample path that reaches x ≥ S(t)
[x ≤ S(t)], after starting from x0 < S(t0) [x0 > S(t0)] at time t0, must necessarily cross
S(u) for the first time at some intermediate instant u ∈ (t0, t). Research on the FPT problem
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for the Feller diffusion process has been carried out by Giorno et al. [37], Linetsky [38],
Masoliver and Perelló [39], Masoliver [40], Chou and Lin [41], Di Nardo and D’Onofrio [42],
Giorno and Nobile [43]).

The paper is structured as follows. In Section 2, we consider the time-homogeneous
Feller process with a zero-flux condition in the zero state. For this process, we analyze the
FPT problem through a constant boundary S starting from the initial state x0 by determining
the Laplace transform of the FPT density and the ultimate FPT probability in the following
cases: (a) x0 > S ≥ 0 and (b) 0 ≤ x0 < S. In particular, a closed-form expression for the FPT
pdf through the zero state is given. Moreover, some connections between the FPT densities
of the Feller process and the Wiener and Ornstein–Uhlenbeck processes are investigated.
In Section 3, making use of the iterative Siegert formula, the first three FPT moments are
obtained and analyzed. In Section 4, we study the asymptotic behavior of the FPT density
when the time-varying boundary S(t) moves away from the starting point x0 for large time
by distinguishing two cases: S(t) is an asymptotically constant boundary and S(t) is an
asymptotically periodic boundary.

Section 5 is dedicated to the time-inhomogeneous Feller process in the proportional
case. Specifically, we assume that α(t) is a real function, r(t) > 0 and β(t) = ξ r(t), with
ξ > 0. For this case, we determine the closed-form expression of the FPT density through
the zero state. Furthermore, for ξ = 1/2 and ξ = 3/2, we obtain the FPT density through
a specific time-varying boundary and the related ultimate FPT probability. Finally, in
Section 6, an asymptotic exponential approximation is derived for asymptotically constant
boundaries.

Various numerical computations are performed both for the time-homogeneous Feller
process and for the time-inhomogeneous Feller-type process to analyze the role of the
parameters.

2. FPT Problem for a Time-Homogeneous Feller Process

We consider the time-homogeneous Feller process X(t) with drift B1(x) = αx + β
and infinitesimal variance B2(x) = 2 r x, defined in the state space [0,+∞). As proved by
Feller [44], the state x = 0 is an exit boundary for β ≤ 0, a regular boundary for 0 < β < r
and an entrance boundary for β ≥ r. The scale function and the speed density of X(t) are
(cf. Karlin and Taylor [45]):

h(x) = exp
{
−2

∫ x B1(z)
B2(z)

dz
}
= x−β/r exp

{
−αx

r

}
,

s(x) =
2

B2(x)h(x)
=

xβ/r−1

r
exp

{αx
r

}
,

(4)

respectively. In this section, we assume that β > 0 and suppose that a zero-flux condition
is placed in the zero state.

2.1. Transition Density

When α ∈ R, β > 0 and r > 0, imposing a zero-flux condition in the zero state,
the transition pdf of X(t) can be explicitly obtained (cf., for instance, Giorno et al. [37],
Sacerdote [46]). Indeed, when α = 0, β > 0 and r > 0, the transition pdf is:

f (x, t|x0, t0) =



1
x Γ(β/r)

[
x

r(t−t0)

]β/r
exp

{
− x

r(t−t0)

}
, x0 = 0,

1
r(t−t0)

(
x
x0

)(β−r)/(2r)
exp

{
− x0+x

r(t−t0)

}
× Iβ/r−1

[
2
√

x x0
r(t−t0)

]
, x0 > 0,

(5)
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whereas if α 6= 0, β > 0 and r > 0, one obtains:

f (x, t|x0, t0) =



1
x Γ(β/r)

[
α x

r(eα(t−t0)−1)

]β/r
exp

{
− α x

r(eα(t−t0)−1)

}
, x0 = 0,

α

r(eα(t−t0)−1)

[
x e−α(t−t0)

x0

](β−r)/(2r)
exp

{
− α [x+x0 eα(t−t0) ]

r(eα(t−t0)−1)

}
× Iβ/r−1

[
2α
√

x x0 eα(t−t0)

r(eα(t−t0)−1)

]
, x0 > 0,

(6)

where

Iν(z) =
+∞

∑
k=0

1
k! Γ(ν + k + 1)

( z
2

)2k+ν
, ν ∈ R (7)

denotes the modified Bessel function of the first kind and Γ(ξ) is Eulero’s gamma function.
Here and elsewhere, whenever the multiple-valued functions such as

( z
2
)2k+ν appear,

they are assumed to be taken as their principal branches. We note that the transition pdf
f (x, t|x0, t0) in (5) and (6) satisfies the following relation:

f (x, t|x0, t0) =
( x

x0

)β/r−1
exp

{α(x− x0)

r

}
f (x0, t|x, t0), x0 > 0, x > 0. (8)

Moreover, when α < 0, β > 0 and r > 0, the time-homogeneous Feller process allows
a steady-state density:

W(x) = lim
t→+∞

f (x, t|x0, t0) =
1

x Γ(β/r)

( |α| x
r

)β/r
exp

{
−|α| x

r

}
, x > 0, (9)

which is a gamma density of parameters β/r and r/|α|. In the sequel, we denote by

qλ(x|x0) =
∫ +∞

0
e−λ t q(x, t|x0) dt, λ > 0

the Laplace transform (LT) of the function q(x, t|x0) ≡ q(x, t|x0, 0).

2.2. Laplace Transform of the Transition Density

By performing the LT to (5) and (6), for 0 ≤ x0 < x one has (cf. Giorno et al. [37], Chou
and Lin [41]):

fλ(x|x0) =



e−|α|x/r xβ/r−1

|α| Γ
(

β/r
) (

|α|
r

)β/r
Γ
(

λ
|α|

)
Ψ
(

λ
|α| ,

β
r ; |α| xr

)
Φ
(

λ
|α| ,

β
r ; |α| x0

r

)
, α < 0,

2
r

(
x
x0

)β/(2r)−1/2
Kβ/r−1

(
2
√

λx
r

)
Iβ/r−1

(
2
√

λx0
r

)
, α = 0,

e−α x0/r xβ/r−1

α Γ
(

β/r
) (

α
r

)β/r
Γ
(

λ
α + β

r

)
Ψ
(

λ
α + β

r , β
r ; α x

r

)
Φ
(

λ
α + β

r , β
r ; α x0

r

)
, α > 0,

(10)

where

Kν(x) =
π

2
I−ν(x)− Iν(x)

sin(νπ)
, (11)
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denotes the modified Bessel function of the second kind (cf. Gradshteyn and Ryzhik [47],
p. 928, no. 8.485) and

Φ(a, c; x) = 1 +
+∞

∑
n=1

(a)n

(c)n

xn

n!
,

Ψ(a, c; x) =
Γ(1− c)

Γ(a− c + 1)
Φ(a, c; x) +

Γ(c− 1)
Γ(a)

x1−c Φ(a− c + 1, 2− c; x),

(12)

are the Kummer’s functions of the first and second kinds, respectively (cf. Gradshteyn
and Ryzhik [47], p. 1023, no. 9.210.1 and no. 9.210.2). Kummer’s functions satisfy the
following relations (cf. Tricomi [48]):

Φ(a, c; x) = ex Φ(c− a, c;−x), Φ(a, a; x) = ex (13)

and

Ψ(a, c; x) = x1−c Ψ(a− c + 1, 2− c; x), Ψ(0, c; x) = 1, Ψ(c, c; x) = ex Γ(1− c, x), (14)

where

Γ(a, x) =
∫ +∞

x
e−tta−1 dt (15)

denotes the incomplete gamma function. By performing the Laplace transform to both
sides of (8), the following result is obtained:

fλ(x|x0) =
( x

x0

)β/r−1
exp

{α(x− x0)

r

}
fλ(x0|x), x0 > 0, x > 0. (16)

2.3. Laplace Transform of the FPT Density

An analytic approach to analyze the FPT problem through a non-negative constant
boundary S(t) = S is based on the Laplace transform. Indeed, from (3), one has:

gλ(x|x0) =
fλ(x|x0)

fλ(x|S) , [x0 < S ≤ x] or [x ≤ S < x0], (17)

so that the LT of the FPT pdf g(S, t|x0) can be evaluated by knowing the LT of the transition
pdf f (S, t|x0).

To determine gλ(S|x0) via (17), we consider the following cases: (a) x0 > S ≥ 0 and
(b) 0 ≤ x0 < S.

(a) FPT downwards for the time-homogeneous Feller process

For x0 > S > 0, by virtue of (16) and (17), one has:

gλ(S|x0) =
fλ(S|x0)

fλ(S|S)
=
( S

x0

)β/r−1
exp

{α(S− x0)

r

} fλ(x0|S)
fλ(S|S)

· (18)

Then, making use of (10) in (18), for x0 > S > 0, one obtains:

gλ(S|x0) =



Ψ
(

λ
|α| ,

β
r ; |α| x0

r

)
Ψ
(

λ
|α| ,

β
r ; |α| Sr

) , α < 0,

(
S
x0

)β/(2r)−1/2 Kβ/r−1

(
2
√

λx0
r

)
Kβ/r−1

(
2
√

λS
r

) , α = 0,

exp
{

α(S−x0)
r

} Ψ
(

λ
α +

β
r , β

r ; α x0
r

)
Ψ
(

λ
α +

β
r , β

r ; α S
r

) , α > 0.

(19)
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From (19), one derives the ultimate FPT probability through S starting from x0, with
x0 > S > 0:

P(S|x0) =
∫ +∞

0
g(S, t|x0) dt =


1, [α < 0, β > 0] or [α = 0, 0 < β ≤ r],(

S
x0

)β/r−1
, α = 0, β > r,

Γ
(

1− β
r , α x0

r

)
Γ
(

1− β
r , α S

r

) , α > 0, β > 0,

(20)

with the use of (11) and (14). Furthermore, if x0 > 0, taking the limit as S ↓ 0 in (19), for
0 < β < r, one has:

gλ(0|x0) =



Γ
(

1− β
r +

λ
|α|

)
Γ
(

1− β
r

) Ψ
(

λ
|α| ,

β
r ; |α| x0

r

)
, α < 0,

2
Γ
(

1− β
r

)( λ x0
r

)1/2−β/(2r)
Kβ/r−1

(
2
√

λx0
r

)
, α = 0,

exp
{
− α x0

r

} Γ
(

1+ λ
α

)
Γ
(

1− β
r

) Ψ
(

λ
α + β

r , β
r ; α x0

r

)
, α > 0,

(21)

where the relation

Ψ(a, c; 0) =
Γ(1− c)

Γ(a− c + 1)
, 0 < Re c < 1,

has been used for α 6= 0, whereas the identity

Γ(a) Γ(1− a) =
π

sin(a π)
0 < a < 1.

has been applied for α = 0. From (21), one obtains the ultimate FPT probability through
zero state starting from x0, with x0 > 0:

P(0|x0) =
∫ +∞

0
g(0, t|x0) dt =


1, α ≤ 0, 0 < β < r,

1− γ
(

1− β
r , α x0

r

)
Γ
(

1− β
r

) , α > 0, 0 < β < r,
(22)

where
γ(a, x) =

∫ x

0
ta−1 e−t dt = Γ(a)− Γ(a, x), Re a > 0,

denotes the incomplete gamma function.
For x0 > 0 and 0 < β < r, the inverse LT of gλ(0|x0), given in (21), can be explicitly

evaluated:

g(0, t|x0, t0) =


1

(t−t0)Γ
(

1− β
r

)( x0
r(t−t0)

)1−β/r
exp

{
− x0

r (t−t0)

}
, α = 0,

1
Γ
(

1− β
r

) α

eα(t−t0)−1

[
α x0 eα(t−t0)

r(eα(t−t0)−1)

]1−β/r
exp

{
− α x0 eα(t−t0)

r (eα(t−t0)−1)

}
, α 6= 0.

(23)

Indeed, since (cf. Erdelyi et al. [49], p. 283, no. 35)

λ−ν/2 Kν(2
√

a λ) =
a−ν/2

2

∫ +∞

0
e−λ t tν−1 e−a/t dt, a > 0,

the start of (23) follows from (21) for α = 0. Moreover, for α 6= 0 making use of the
first of (14) in (21) and recalling that (cf. Tricomi [48], p. 90)

Ψ(s, c; z) =
1

Γ(s)

∫ +∞

0
e−s τ exp

{
− z

eτ − 1

}
(1− e−τ)−c dτ, Re z > 0, Re s > 0,
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the second part of (23) is obtained.
In Figure 1, the FPT pdf g(0, t|x0, t0), given in (23), is plotted as function of t for some

choices of α and r, with β = r/2.
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�=���� β=���
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����

����
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�=���� β=����
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����

�(���|��)

(b)

Figure 1. The FPT pdf (23) is plotted as function of t for t0 = 0, x0 = 5. (a) FPT pdf for α = 0. (b) FPT
pdf for α = −0.5.

(b) FPT upwards for the time-homogeneous Feller process

By virtue of (10), from (17), for 0 < x0 < S, one has

gλ(S|x0) =
fλ(S|x0)

fλ(S|S)
=



Φ
(

λ
|α| ,

β
r ; |α| x0

r

)
Φ
(

λ
|α| ,

β
r ; |α| Sr

) , α < 0,

(
S
x0

)β/(2r)−1/2 Iβ/r−1

(
2
√

λ x0
r

)
Iβ/r−1

(
2
√

λ S
r

) , α = 0,

exp
{

α(S−x0)
r

} Φ
(

λ
α +

β
r , β

r ; α x0
r

)
Φ
(

λ
α +

β
r , β

r ; α S
r

) , α > 0,

(24)

whereas for x0 = 0 and S > 0, it results that:

gλ(S|0) =
fλ(S|0)
fλ(S|S)

=



1

Φ
(

λ
|α| ,

β
r ; |α| Sr

) , α < 0,

1
Γ
(

β
r

) ( λ S
r

)β/(2r)−1/2
1

Iβ/r−1

(
2
√

λ S
r

) , α = 0,

exp
{

α S
r

}
1

Φ
(

λ
α +

β
r , β

r ; α S
r

) , α > 0.

(25)

From (24) and (25), one derives that the first passage through S starting from x0 is a
sure event, i.e.,

P(S|x0) =
∫ +∞

0
g(S, t|x0) dt = 1, 0 ≤ x0 < S. (26)

2.4. Relations between the FPT Densities for the Feller and the Wiener Processes

The FPT pdf g(S, t|x0, t0) for the time-homogeneous Feller process can be explicitly
obtained for α = 0 and β = r/2 or for α = 0 and β = 3r/2, as proved in Proposition 1 and
in Proposition 2, respectively. Moreover, in these cases, there is a relationship between the
FPT pdf of Feller process and the FPT pdf of the standard Wiener process.

Proposition 1. Let X(t) be a time-homogeneous Feller diffusion process, having B1(x) = r/2
and B2(x) = 2 r x, with a zero-flux condition in the zero state.
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• If x0 > S ≥ 0, one has:

g(S, t|x0, t0) =

√
x0 −

√
S√

π r(t− t0)3
exp

{
−
(
√

x0 −
√

S)2

r(t− t0)

}
(27)

and P(S|x0) = 1.
• If 0 ≤ x0 < S, one obtains:

g(S, t|x0, t0) =

√
S−√x0√

π r(t− t0)3
exp

{
−
(
√

S−√x0)
2

r(t− t0)

}
×
{

1 + 2
+∞

∑
j=1

(−1)j exp
{
− 4j2S

r(t− t0)

} [
cosh

(4 j
√

S (
√

S−√x0)

r(t− t0)

)
− 2 j

√
S√

S−√x0
sinh

(4 j
√

S (
√

S−√x0)

r(t− t0)

)]}
, (28)

or alternatively

g(S, t|x0, t0) =
π r
4 S

+∞

∑
n=1

(−1)n−1(2n− 1) exp
{
− (2n− 1)2π2 r (t− t0)

16 S

}
× cos

[
(2n− 1)π

2

√
x0

S

]
, (29)

and P(S|x0) = 1.

Proof. We assume that α = 0 and β = r/2. In this case, the zero state is a regular reflecting
boundary. Making use of the relations (cf. Abramowitz and Stegun [50], p. 443, no. 10.2.14
and p. 444, no. 10.2.17)

I−1/2(x) =

√
2
π

cosh(x)√
x

, K−1/2(x) =
√

π

2 x
e−x,

from (19), (21), (24) and (25) with α = 0 and β = r/2, it follows that:

gλ(S|x0) =


exp

{
−
√

2λ
(√

2x0
r −

√
2S
r

)}
, x0 > S ≥ 0,

cosh
(

2
√

λ x0
r

)
cosh
(

2
√

λ S
r

) , 0 ≤ x0 < S.
(30)

When x0 > S ≥ 0, the right-hand side of (30) identifies with the LT g(W)
λ (
√

2S/r|
√

2x0/r)
of the FPT pdf gW through

√
2S/r for a standard Wiener process originated in

√
2x0/r.

Hence, for α = 0 and β = r/2, one has

g(S, t|x0, t0) = gW

(√2S
r

, t
∣∣∣√2x0

r
, t0

)
, x0 > S ≥ 0,

from which (27) follows. Instead, for 0 ≤ x0 < S, the right-hand side of (30) is the LT
γ
(W)
λ (
√

2S/r|
√

2x0/r) of the FPT pdf γW through
√

2S/r for a standard Wiener process,
starting from

√
2x0/r, restricted to [0,+∞) with 0 reflecting boundary (cf., for instance,

Giorno and Nobile [3]). Then, for α = 0 and β = r/2, one obtains:

g(S, t|x0, t0) = γW

(√2S
r

, t
∣∣∣√2x0

r
, t0

)
, 0 ≤ x0 < S,
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from which (28) follows. The alternative expression (29) is derived by performing the
inverse LT to the second expression in (30) and by using formula 33.149, p. 190 in
Spiegel et al.’s work [51].

We note that by setting S = 0 in (27) we obtain (23) with α = 0 and β = r/2.
In Figure 2, the FPT pdf (28) is plotted as function of t for t0 = 0, x0 = 5 and various

choices of parameters r and S.
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Figure 2. The FPT pdf (28) is plotted as function of t for t0 = 0 and x0 = 5. (a) FPT pdf for S = 10.
(b) FPT pdf for r = 2.

Proposition 2. Let X(t) be a time-homogeneous Feller diffusion process, having B1(x) = 3r/2
and B2(x) = 2 r x, with a zero-flux condition in the zero state.

• If x0 > S > 0, one has:

g(S, t|x0, t0) =

√
S
x0

√
x0 −

√
S√

π r(t− t0)3
exp

{
−
(
√

x0 −
√

S)2

r(t− t0)

}
(31)

and P(S|x0) =
√

S/x0.
• If 0 < x0 < S, one obtains:

g(S, t|x0, t0) =

√
S
x0

√
S−√x0√

π r(t− t0)3
exp

{
−
(
√

S−√x0)
2

r(t− t0)

}
×
{

1 + 2
+∞

∑
j=1

exp
{
− 4j2S

r(t− t0)

}[
cosh

(4 j
√

S (
√

S−√x0)

r(t− t0)

)
− 2 j

√
S√

S−√x0
sinh

(4 j
√

S (
√

S−√x0)

r(t− t0)

)]}
, (32)

or alternatively

g(S, t|x0, t0) =
π r

2
√

x0 S

+∞

∑
n=1

(−1)n+1 n exp
{
−n2π2 r (t− t0)

4 S

}
sin
(

nπ

√
x0

S

)
, (33)

and P(S|x0) = 1.
• If x0 = 0 and S > 0, one has:

g(S, t|0, t0) =
4
√

S√
π r(t− t0)3

exp
{
− S

r(t− t0)

} +∞

∑
j=1

j exp
{
− 4j2S

r(t− t0)

}
×
[

4j S
r(t− t0)

cosh
( 4j S

r(t− t0)

)
−
(

1 +
2S

r(t− t0)

)
sinh

( 4j S
r(t− t0)

)]
, (34)
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or alternatively

g(S, t|0, t0) =
π2 r
2 S

+∞

∑
n=1

(−1)n+1n2 exp
{
−n2π2 r (t− t0)

4 S

}
, (35)

and P(S|x0) = 1.

Proof. We assume that α = 0 and β = 3r/2. In this case, the zero state is an entrance
boundary. Making use of the relations (cf. Abramowitz and Stegun [50], p. 443, no. 10.2.13
and p. 444, no. 10.2.17)

I1/2(x) =

√
2
π

sinh(x)√
x

, K1/2(x) =
√

π

2 x
e−x,

from (19), (24) and (25) with α = 0 and β = 3r/2, it follows that:

gλ(S|x0) =



√
S
x0

exp
{
−
√

2λ
(√

2x0
r −

√
2S
r

)}
, x0 > S > 0,√

S
x0

sinh
(

2
√

λ x0
r

)
sinh
(

2
√

λ S
r

) , 0 < x0 < S,

2
√

λS
r

1

sinh
(

2
√

λ S
r

) , x0 = 0, S > 0.

(36)

We note that when x0 > S > 0, the right-hand side of (36) identifies with the LT
√

S/x0 g(W)
λ (
√

2S/r|
√

2x0/r) of the function
√

S/x0 gW , where gW is the FPT pdf through√
2S/r of a standard Wiener process originated in

√
2x0/r. Hence, for α = 0 and β = 3r/2,

one has

g(S, t|x0, t0) =

√
S
x0

gW

(√2S
r

, t
∣∣∣√2x0

r
, t0

)
, x0 > S > 0,

that leads to (32). Instead, for 0 < x0 < S the right-hand side of (36) is the LT
√

S/x0 h(W)
λ (
√

2S/r |
√

2x0/r) of the function
√

S/x0 hW , where hW is the first-exit time pdf
through

√
2S/r for a standard Wiener process, starting from

√
2x0/r, defined in (0,+∞)

with 0 absorbing boundary (cf., for instance, Giorno and Nobile [3]). Then, for α = 0 and
β = 3r/2, one has

g(S, t|x0, t0) =

√
S
x0

hW

(√2S
r

, t
∣∣∣√2x0

r
, t0

)
, 0 < x0 < S,

from which (32) follows. The alternative expression (33) can be obtained by performing
the inverse LT to the second expression in (36) and by using formula 33.148, p. 190 in
Spiegel et al. [51] (by changing the sign). Finally, (34) and (35) follow by taking the limit as
x0 ↓ 0 in (32) and (33), respectively.

In Figure 3, the FPT pdf (32) is plotted as function of t for t0 = 0, x0 = 5 and various
choices of parameters r and S. We note that, due to the different nature of the zero state, the
peaks of FPT densities of Figure 3 are more pronounced with respect to those of Figure 2.
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Figure 3. The FPT pdf (32) is plotted as function of t for t0 = 0, x0 = 5. (a) FPT pdf for S = 10.
(b) FPT pdf for r = 2.

2.5. Relations between the FPT Densities for the Feller and the Ornstein–Uhlenbeck Processes

For α 6= 0 and β = r/2 or α 6= 0 and β = 3r/2, the FPT pdf g(S, t|x0, t0) of the Feller
process can be related to the FPT pdf of the Ornstein–Uhlenbeck process.

Proposition 3. Let X(t) be a time-homogeneous Feller diffusion process, having
B1(x) = αx + r/2 and B2(x) = 2 r x (α 6= 0), with a zero-flux condition in the zero state.

• If x0 > S ≥ 0, one has:

gλ(S|x0) =


exp

{
|α|(x0−S)

2r

} D−2λ/|α|
(√ 2|α|x0

r

)
D−2λ/|α|

(√
2|α|S

r

) , α < 0,

exp
{
− α(x0−S)

2r

} D−1−2λ/α

(√ 2α x0
r

)
D−1−2λ/α

(√
2α S

r

) , α > 0,
(37)

where Dν(x) denotes the parabolic cylinder function, and

P(S|x0) =


1, α < 0,

1−Erf
(√

α x0
r

)
1−Erf

(√
α S
r

) , α > 0,
(38)

where Erf(x) = (2/
√

π)
∫ +∞

0 e−z2
dz denotes the error function.

• If 0 ≤ x0 < S, one obtains:

gλ(S|x0) =



Φ
(

λ
|α| ,

1
2 ; |α| x0

r

)
Φ
(

λ
|α| ,

1
2 ; |α| Sr

) , α < 0,

exp
{

α(S−x0)
r

} Φ
(

λ
α +

1
2 , 1

2 ; α x0
r

)
Φ
(

λ
α +

1
2 , 1

2 ; α S
r

) , α > 0

(39)

and P(S|x0) = 1.

Proof. Let α 6= 0 and β = r/2. We assume that the state x = 0 is a regular reflecting
boundary. Recalling that (cf. Tricomi [48], p. 219, no. (1)):

Dν(x) = 2ν/2e−x2/4 Ψ
(
−ν

2
,

1
2

;
x2

2

)
, Re x > 0, (40)
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for x0 > S > 0 from (19) one obtains (37). Furthermore, for x0 > 0 and S = 0, from (21)
with α 6= 0 and β = r/2, making use of (40), we have

gλ(0|x0) =


2λ/|α|
√

π
Γ
(

1
2 + λ

|α|

)
exp

{
|α| x0

2r

}
D−2λ/|α|

(√ 2|α|x0
r
)
, α < 0,

2λ/α+1/2
√

π
Γ
(

1 + λ
α

)
exp

{
− α x0

2r

}
D−1−2λ/α

(√ 2α x0
r
)
, α > 0.

(41)

Equation (41) identifies with (37) for S = 0, being (cf. Tricomi [48], p. 221, no. (9)):

Dν(0) =
√

π 2ν/2

Γ
( 1−ν

2
) · (42)

Since (cf. Tricomi [48], p. 234, no. 15 and p. 235, no. 18):

D0(x) = exp
{
− x2

4

}
, D−1(x) =

√
π

2
exp

{ x2

4

} [
1− Erf

( x√
2

)]
, (43)

by setting λ = 0 in (37), one obtains (38).
Instead, for 0 ≤ x0 < S, from (24) and (25), with α 6= 0 and β = r/2, one immediately

obtains (39). Consequently, by setting λ = 0 and making use of the second expression
in (13), it follows that P(S|x0) = 1.

We note that, for x0 > S ≥ 0, the right-hand side of (37) identifies with the LT
g(OU)

λ (
√

2S/r|
√

2x0/r) of the FPT pdf gOU from
√

2x0/r through
√

2S/r for the Ornstein–
Uhlenbeck process with infinitesimal drift C1(x) = α x/2 and infinitesimal variance C2 = 1.
Hence, for α 6= 0 and β = r/2 from (37) one has:

g(S, t|x0, t0) = gOU

(√2S
r

, t
∣∣∣√2x0

r
, t0

)
, x0 > S ≥ 0. (44)

Furthermore, for 0 ≤ x0 < S the right-hand side of (39) is the LT γ
(OU)
λ (

√
2S/r|

√
2x0/r)

of the FPT pdf γOU from
√

2x0/r to
√

2S/r for the Ornstein–Uhlenbeck process with in-
finitesimal drift C1(x) = α x/2 and infinitesimal variance C2 = 1, defined in [0,+∞), with
0 reflecting boundary. Therefore, for α 6= 0 and β = r/2 from (39), one obtains:

g(S, t|x0, t0) = γOU

(√2S
r

, t
∣∣∣√2x0

r
, t0

)
, 0 ≤ x0 < S. (45)

For α 6= 0 and β = r/2, relations (44) and (45) show that the FPT density of the Feller
process can be also interpreted as the the FPT density of an Ornstein–Uhlenbeck process,
that is known only when S = 0. Therefore, from (44), one has:

g(0, t|x0, t0) = gOU

(
0, t
∣∣∣√2x0

r
, t0

)
=

√
x0 eα(t−t0)

r π

[ α

eα(t−t0) − 1

]3/2
exp

{
− α x0 eα(t−t0)

r (eα(t−t0) − 1)

}
, x0 > 0,

which identifies with (23) for α 6= 0 and β = r/2.

Proposition 4. Let X(t) be a time-homogeneous Feller diffusion process, having
B1(x) = αx + 3r/2 and B2(x) = 2 r x (α 6= 0), with a zero-flux condition in the zero state.



Mathematics 2021, 9, 2470 13 of 27

• If x0 > S > 0, one has:

gλ(S|x0) =


√

S
x0

exp
{
|α|(x0−S)

2r

} D1−2λ/|α|
(√ 2|α|x0

r

)
D1−2λ/|α|

(√
2|α|S

r

) , α < 0,√
S
x0

exp
{
− α(x0−S)

2r

} D−2−2λ/α

(√ 2α x0
r

)
D−2−2λ/α

(√
2α S

r

) , α > 0
(46)

and

P(S|x0) =


1, α < 0,√

S
x0

1−
√

α x0 π
r exp

{
α x0

r

}[
1−Erf

(√
α x0

r

)]
1−
√

α S π
r exp

{
α S
r

}[
1−Erf

(√
α S
r

)] , α > 0.
(47)

• If 0 ≤ x0 < S, one obtains:

gλ(S|x0) =



Φ
(

λ
|α| ,

3
2 ; |α| x0

r

)
Φ
(

λ
|α| ,

3
2 ; |α| Sr

) , α < 0,

exp
{

α(S−x0)
r

} Φ
(

λ
α +

3
2 , 3

2 ; α x0
r

)
Φ
(

λ
α +

3
2 , 3

2 ; α S
r

) , α > 0

(48)

and P(S|x0) = 1.

Proof. Let α 6= 0 and β = 3r/2, so that the state x = 0 is an entrance boundary. For
x0 > S > 0, recalling that (cf. Tricomi [48], p. 219, no. (2))

Dν(x) = 2(ν−1)/2e−x2/4 x Ψ
(1− ν

2
,

3
2

;
x2

2

)
, Re x > 0, (49)

from (19), with α 6= 0 and β = 3r/2, one obtains (46). Moreover, making use of relation
Dν+1(x) = x Dν(x)− ν Dν−1(x) and of (43), one has

D1(x) = x exp
{
− x2

4

}
, D−2(x) = exp

{
− x2

4

}
−
√

π

2
x exp

{ x2

4

} [
1−Erf

( x√
2

)]
, (50)

so that, by setting λ = 0 in (46), one obtains (47).
Instead, for 0 ≤ x0 < S from (24) and (25), with α 6= 0 and β = 3r/2, Equation (48)

immediately follows. Finally, by setting λ = 0 in (48) and making use of the second
expression in (13), one has P(S|x0) = 1.

For x0 > S > 0, we note that the right-hand side of (46) identifies with the LT
√

S/x0 g(OU)
λ+α/2(

√
2S/r|

√
2x0/r) of

√
S/x0 e−α t/2gOU, where gOU is the FPT pdf from

√
2x0/r

through
√

2S/r for the Ornstein–Uhlenbeck process with infinitesimal drift C1(x) = α x/2
and infinitesimal variance C2 = 1. Hence, for α 6= 0 and β = 3r/2 one has:

g(S, t|x0, t0) =

√
S
x0

exp
{
− α (t− t0)

2

}
gOU

(√2S
r

, t
∣∣∣√2x0

r
, t0

)
, x0 > S > 0. (51)

For α 6= 0 and β = 3r/2, Equation (51) shows that a functional relationship between
the FPT densities of the Feller and Ornstein–Uhlenbeck processes exists.
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3. FPT Moments for the Time-Homogeneous Feller Process

When P(S|x0) = 1, the FPT moments of the time-homogeneous Feller process X(t)
with a zero-flux condition in the zero state

tn(S|x0) =
∫ +∞

0
tng(S, t|x0) dt, n = 1, 2, . . .

can be evaluated via gλ(S|x0) as:

tn(S|x0) = (−1)n dngλ(S|x0)

dλn

∣∣∣
λ=0

, n = 1, 2, . . .

We note that the computation of higher order derivatives becomes more and more
laborious, making this procedure impractical for the Feller process. An alternative method
is based on Siegert’s iterative formulas (cf. Siegert [52]) that hold for time-homogeneous
diffusion processes. In particular, when P(S|x0) ≡ t0(S|x0) = 1, Siegert’s iterative formulas
for the Feller process are the following:

• If S < x0, then

tn(S|x0) = n
∫ x0

S
dz h(z)

∫ +∞

z
s(u) tn−1(S|u) du, n = 1, 2, . . . . (52)

• If S > x0, then

tn(S|x0) = n
∫ S

x0

dz h(z)
∫ z

0
s(u) tn−1(S|u) du, n = 1, 2, . . . (53)

with h(x) and s(x) defined in (4).

3.1. Mean of FPT Downwards

We distinguish the cases x0 > S > 0 and x0 > 0, S = 0.
If x0 > S > 0 and [α < 0, β > 0] or [α = 0, 0 < β ≤ r], we have proved in (20) that

P(S|x0) = 1, so that from (52) for α = 0 and 0 < β ≤ r one has that t1(S|x0) diverges,
whereas if α < 0 and β > 0 one obtains:

t1(S|x0) =
1
|α| Γ

( β

r

) ∫ |α|x0/r

|α|S/r
z−β/r ez dz− 1

β

+∞

∑
n=0

1
(1 + β/r)n

( |α|
r

)n xn+1
0 − Sn+1

n + 1
,

x0 > S > 0. (54)

Moreover, for x0 > 0 and S = 0, due to (22), P(0|x0) = 1 if and only if α ≤ 0 and
0 < β < r. Making use of (22), for α = 0 and 0 < β < r, one has that t1(0|x0) diverges,
whereas for α < 0 and 0 < β < r the FPT mean is

t1(0|x0) =
1
|α| Γ

( β

r

) +∞

∑
n=0

1
n!

1
n + 1− β/r

( |α|x0

r

)n+1−β/r

− 1
β

+∞

∑
n=0

1
(1 + β/r)n

( |α|
r

)n xn+1
0

n + 1
, x0 > 0. (55)

In Figure 4, the FPT mean (54) is plotted for x0 = 5, S = 3 and α = −0.5 for different
choices of β and r. We note that t1(S|x0) decreases as r increases, whereas it increases
with β.
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Figure 4. The FPT mean (54) is plotted for x0 = 5, S = 3 and α = −0.5. (a) FPT mean as function of r.
(b) FPT mean as function of β.

3.2. Moments of FPT Upwards

If 0 ≤ x0 < S, we have proved in (26) that P(S|x0) = 1, so that from (53) one has:

t1(S|x0) =
1
β

+∞

∑
n=0

1
(1 + β/r)n

(
−α

r

)n Sn+1 − xn+1
0

n + 1
,

t2(S|x0) =
2
β

t1(S|x0)
+∞

∑
n=0

1
(1 + β/r)n

(
−α

r

)n Sn+1

n + 1

− 2 r
β

+∞

∑
n=1

1
(1 + β/r)n

(
−α

r

)n+1 Sn+1 − xn+1
0

n + 1

n

∑
i=1

1
i

,

t3(S|x0) =
3
β

t2(S|x0)
+∞

∑
n=0

1
(1 + β/r)n

(
−α

r

)n Sn+1

n + 1

− 6 r
β

t1(S|x0)
+∞

∑
n=1

1
(1 + β/r)n

(
−α

r

)n+1 Sn+1

n + 1

n

∑
i=1

1
i

− 6 r
β

+∞

∑
n=2

1
(1 + β/r)n+2

(
−α

r

)n+1 Sn+1 − xn+1
0

n + 1

n

∑
i=2

1
i

i

∑
j=2

1
j− 1

.

(56)

In particular, when α < 0, from (56) it follows that:

• t1(S|x0) decreases as r increases and limr→+∞ t1(S|x0) = (S− x0)/β;
• t1(S|x0) decreases as β increases and limβ→+∞ t1(S|x0) = 0.

In Figure 5, the FPT mean (54) is plotted for x0 = 5, S = 10 and α = −0.5 for several
choices of β and r.
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(b)

Figure 5. The FPT mean (54) is plotted for x0 = 5, S = 10 and α = −0.5. (a) FPT mean as function of
r, the dashed lines indicate the asymptotic limit (S− x0)/β. (b) FPT mean as function of β.

The expressions (56) of the FPT moments are very complicated and do not allow
us to highlight the quantitative behavior of the moments as a function of the involved
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parameters. Nevertheless, some unexpected features can be discovered as a result of
systematic computations in which the mean t1(S|x0), the variance Var(S|x0) = t2(S|x0)−
t2
1(S|x0), the coefficient of variation Cv(S|x0) =

√
Var(S|x0)/t1(S|x0) and the skewness

Σ(S|x0) =
t3(S|x0)− 3 t1(S|x0) t2(S|x0) + 2 t3

1(S|x0)

[Var(S|x0)]3/2

of the FPT are evaluated. In Table 1, t1(S|x0) Var(S|x0), Cv(S|x0) and Σ(S|x0) are listed
for various boundaries and initial states, with α = −0.5, β = 0.2 and r = 1. As shown in
Table 1, for large boundaries the coefficient of variation of FPT approaches the value 1 and
the skewness of the FPT approaches the value 2. Hence, when α < 0, it is argued that the
FPT pdf of the Feller process is susceptible to an exponential approximation for a wide
range of constant boundaries S and of initial states x0, with S > x0. This property does not
occur when α ≥ 0. Table 1 also shows that the values of t1(S|x0) and Var(S|x0) become
insensitive to the starting point x0 of the process as the boundary S increases.

Table 1. For the Feller process, with B1(x) = −0.5 x + 0.2 and B2(x) = 2x, the mean, the variance, the coefficient of
variation and the skewness of FPT are listed for x0 = 0, 5, 10 and for increasing values of the boundary S > x0.

S t1(S|x0) Var(S|x0) Cv(S|x0) Σ(S|x0)

x0 = 0 5 9.111607× 101 7.918037× 103 0.976593 1.999485
10 1.030455× 103 1.054126× 106 0996362 1.999973
20 1.305581× 105 1.704399× 1010 0.999958 1.998950
30 1.771815× 107 3.139316× 1014 0.999998 1.999116
40 2.472975× 109 6.115604× 1018 1.000000 1.998936
50 3.502187× 1011 1.226522× 1023 0.999996 2.037217
60 5.004295× 1013 2.504289× 1027 0.999998 2.002647
70 7.194172× 1015 5.175608× 1031 1.000000 1.999006

x0 = 5 10 9.393392× 102 1.046208× 106 1.088896 2.021401
20 1.304670× 105 1.704398× 1010 1.000656 1.999551
30 1.771805× 107 3.139325× 1014 1.000005 1.998926
40 2.472975× 109 6.115603× 1018 1.000000 1.997063
50 3.502187× 1011 1.226531× 1023 1.000000 2.036733
60 5.004295× 1013 2.504283× 1027 0.999997 2.002072
70 7.194173× 1015 5.175608× 1031 1.000000 2.000006

x0 = 10 15 1.041999× 104 1.299491× 108 1.094005 2.022940
20 1.295276× 105 1.704293× 1010 1.007882 1.999778
30 1.771711× 107 3.139304× 1014 1.000055 1.998418
40 2.472974× 109 6.115604× 1018 1.000000 1.999088
50 3.502187× 1011 1.226532× 1023 1.000000 1.981817
60 5.004295× 1013 2.504274× 1027 0.999995 2.002118
70 7.194173× 1015 5.175605× 1031 0.999999 2.000089

4. Asymptotic Behavior of the FPT Density for the Time-Homogeneous Feller Process

In Sections 2 and 3, we analyzed the FPT problem for a time-homogeneous Feller
process and we assumed that the boundary S is constant. Nevertheless, the inclusion of a
time-varying boundary S(t) is often useful to model various aspects of the time varying
behavior of dynamic systems.

Let S(t) ∈ C1[t0,+∞), with S(t) > 0, where C1[t0,+∞) denotes the set of contin-
uously differentiable functions on [t0,+∞). For a time-homogeneous diffusion process,
having drift B1(x) and infinitesimal variance B2(x), the FPT pdf g[S(t), t|x0, t0] is the
solution of the second-kind non-singular Volterra integral equation (cf. Buonocore [8]):

g[S(t), t|x0, t0] = $

{
−2 Ω[S(t), t|x0, t0] + 2

∫ t

t0

g[S(u), u|x0, t0]Ω[S(t), t|S(u), u] du
}

, (57)
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with $ = 1 if x0 < S(t0) and $ = −1 if x0 > S(t0), and where

Ω
[
S(t), t|z, ϑ

]
=

1
2

{
S′(t)− B1[S(t)] +

3
4

B′2[S(t)]
}

f [S(t), t|z, ϑ]

+
1
2

B2[S(t)]
∂

∂x
f (x, t|z, ϑ)

∣∣∣
x=S(t)

. (58)

The knowledge of the transition pdf f (x, t|x0, t0) of the considered diffusion process
allows the formulation of effective numerical procedures to obtain g[S(t), t|x0, t0] via (57)
(cf., for instance, Buonocore et al. [8], Di Nardo et al. [10]).

For the Feller process, having B1(x) = αx + β and B2(x) = 2 r x, with a zero-flux
condition in the zero state, recalling (5) and (6), for S(t) > 0 from (58), one obtains:

Ω[S(t), t|z, ϑ] =
1

r(t− ϑ)

[S(t)
z

](β−r)/(2r)
exp

{
−S(t) + z

r(t− ϑ)

}{1
2

[
S′(t)− 2 S(t)

t− ϑ
+ β− r

2

]
× Iβ/r−1

[2
√

z S(t)
r(t− ϑ)

]
+

√
z S(t)

t− ϑ
Iβ/r

[2
√

z S(t)
r(t− ϑ)

]}
, α = 0, (59)

Ω[S(t), t|z, ϑ] =
α

r(eα(t−ϑ) − 1)

[S(t) e−α(t−ϑ)

z

](β−r)/(2r)
exp

{
−α [S(t) + z eα(t−ϑ)]

r(eα(t−ϑ) − 1)

}

×
{1

2

[
S′(t)− αS(t)− 2αS(t)

eα(t−ϑ) − 1
+ β− r

2

]
Iβ/r−1

[2α
√

S(t) z eα(t−ϑ)

r(eα(t−ϑ) − 1)

]

+
α
√

S(t) z eα(t−ϑ)

eα(t−ϑ) − 1
Iβ/r

[2α
√

S(t) z eα(t−ϑ)

r(eα(t−ϑ) − 1)

]}
, α 6= 0, (60)

where the relation (cf. Gradshteyn and Ryzhik [47], p. 928 no. 8.486.4)

x
d

dx
Iν(x) = ν Iν(x) + x Iν+1(x)

has been used.
Let 0 ≤ x0 < S(t0). We focus our analysis on the asymptotic behavior of the FPT pdf

for the Feller diffusion process, with α < 0, β > 0 and r > 0, by considering separately two
cases: S(t) is an asymptotically constant boundary and S(t) is an asymptotically periodic
boundary.

4.1. Asymptotically Constant Boundary

We consider the FPT problem for the Feller process through the asymptotically con-
stant boundary

S(t) = S + η(t), (61)

with S(t) > 0, where η(t) ∈ C1[t0,+∞) is a bounded function that does not depend on S,
such that

lim
t→+∞

η(t) = 0, lim
t→+∞

dη(t)
dt

= 0. (62)

Since α < 0, the function Ω[S(t), t|x0, t0] approaches a constant value as t → +∞.
Making use of (60), for α < 0, one has:

ζ(S) = −2 lim
t→+∞

Ω[S(t), t|x0, t0] = −
[

B1(S)−
B′2(S)

2

]
W(S)

=
|α| S− β + r/2

S Γ(β/r)

( |α| S
r

)β/r
exp

{
−|α| S

r

}
, (63)



Mathematics 2021, 9, 2470 18 of 27

where (9) has been used. From (57), for S→ +∞ and for large times the FPT density exhibits
an exponential behavior (cf. Nobile et al. [12]). Specifically, for α < 0 and S(t0) > x0, one
has:

g[S(t), t|x0, t0] ' ζ(S) e−ζ(S)(t−t0), S >
β− r/2
|α| . (64)

The goodness of the exponential approximation increases as the boundary progres-
sively moves away from the starting point.

We now assume that the boundary S(t) is constant, i.e., S(t) = S > x0. By virtue
of (53) for n = 1, with h(x) and s(x) defined in (4), and recalling (63), for α < 0 and S > x0
one has

lim
S→+∞

[
t1(S|x0)ζ(S)

]
= 1,

implying that for α < 0 the FPT mean can be approximated by 1/ζ(S) for large values of S.
Furthermore, by virtue of (64), for α < 0 and S > x0, one obtains:

tn(S|x0) ' mn(S) =
n!

[ζ(S)]n
, S→ +∞, n = 1, 2, . . . . (65)

In Table 2, the FPT moments ti(S|x0) and their exponential approximations mi(S),
with i = 1, 2, 3, are listed for increasing values of the boundary S > x0 = 5, showing
a good degree of precision in the approximations. We emphasize that the exponential
approximation of the FPT density (64) provides the growth trend of the FPT moments (65)
for large constant boundaries S. Moreover, the goodness of the approximation depends on
the parameters of the process that determine the exact shape of the FPT pdf.

Table 2. For the time-homogeneous Feller process, with B1(x) = −0.5x + 0.2 and B2(x) = 2x, the FPT moments ti(S|x0)

and their exponential approximations mi(S), with i = 1, 2, 3, are listed for increasing values of the boundary S > x0 = 5.

S t1(S|x0) m1(S) t2(S|x0) m2(S) t3(S|r) m3(S)

10 9.393392× 102 9.317407× 102 1.9285660× 106 1.736281× 106 5.940178× 109 4.853292× 109

15 1.135933× 104 1.066806× 104 2.6002970× 108 2.276151× 108 8.928760× 1012 7.284636× 1012

20 1.304670× 105 1.238882× 105 3.406561× 1010 3.069659× 1010 1.334106× 1016 1.140884× 1016

25 1.513230× 106 1.451849× 106 4.579980× 1012 4.215733× 1012 2.079027× 1019 1.836183× 1019

30 1.771805× 107 1.712069× 107 6.278619× 1014 5.862362× 1014 3.336766× 1022 3.011031× 1022

35 2.088298× 108 2.028086× 108 8.721976× 1016 8.226266× 1016 5.461092× 1025 5.005072× 1025

40 2.472975× 109 2.410683× 109 1.223121× 1019 1.162278× 1019 9.069796× 1028 8.405655× 1028

45 2.938886× 1010 2.873158× 1010 1.727408× 1021 1.651007× 1021 1.522551× 1032 1.423082× 1032

50 3.502187× 1011 3.431753× 1011 2.453063× 1023 2.355386× 1023 2.593104× 1035 2.424931× 1035

55 4.182641× 1012 4.106219× 1012 3.498881× 1025 3.372207× 1025 4.395433× 1038 4.154106× 1038

60 5.004295× 1013 4.920524× 1013 5.008580× 1027 4.842311× 1027 7.521900× 1041 7.148012× 1041

65 5.996341× 1014 5.903724× 1014 7.191219× 1029 6.970790× 1029 1.293204× 1045 1.234609× 1045

70 7.194173× 1015 7.091026× 1015 1.035122× 1032 1.005653× 1032 2.234055× 1048 2.139334× 1048

75 8.640679× 1016 8.525086× 1016 1.493226× 1034 1.453542× 1034 3.867332× 1051 3.717471× 1051

80 1.038782× 1018 1.025758× 1018 2.158137× 1036 2.104357× 1036 6.724827× 1054 6.475681× 1054

85 1.249855× 1019 1.235109× 1019 3.124278× 1038 3.050990× 1038 1.171392× 1058 1.130492× 1058

90 1.504914× 1020 1.488148× 1020 4.529530× 1040 4.429166× 1040 2.044966× 1061 1.977376× 1061

95 1.813196× 1021 1.794062× 1021 6.575356× 1042 6.437315× 1042 3.576723× 1064 3.464682× 1064

100 2.185898× 1022 2.163987× 1022 9.556292× 1044 9.365678× 1044 6.267299× 1067 6.080161× 1067
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4.2. Asymptotically Periodic Boundary

We consider the FPT problem for the Feller process through an asymptotically periodic
boundary S(t) = S + η(t), with S(t) > 0, where η(t) ∈ C1[t0,+∞) is a bounded function,
that does not depend on S, such that

lim
k→+∞

η(t + k Q) = V(t), lim
k→+∞

dη(t + k Q)

dt
=

dV(t)
dt

, (66)

with V(t) being a periodic function of period Q > 0 satisfying the condition:∫ Q

0
V(u) du = 0.

Since α < 0, the function Ω[S(t + k Q), t + k Q|x0, t0] approaches a periodic function
as k→ +∞. Indeed, making use of (60) and recalling (9), for α < 0, one obtains:

ζ(S, t) = −2 lim
k→+∞

Ω[S(t + k Q), t + k Q|x0, t0]

= −
{

V′(t) + B1[S + V(t)]− B′2[S + V(t)]
4

}
W[S + V(t)]

=
|α| [S + V(t)]−V′(t)− β + r/2

[S + V(t)] Γ(β/r)

( |α| [S + V(t)]
r

)β/r
exp

{
−|α| [S + V(t)]

r

}
. (67)

By virtue of (57), for S → +∞ and for large times, the FPT density shows a non-
homogeneous exponential behavior. Specifically, for α < 0 and S(t0) > x0, one has:

g[S(t), t|x0, t0] ' ζ(S, t) exp
{
−
∫ t

t0

ζ(S, ϑ) dϑ
}

, S >
V′(t) + β− r/2

|α| −V(t). (68)

Hence, for α < 0, the FPT pdf of the Feller process through an asymptotically periodic
boundary exhibits damped oscillations taking the form of a sequence of periodically spaced
peaks whose amplitudes exponentially decrease.

5. First-Passage Time for a Time-Inhomogeneous Feller-Type Process

We consider the time-inhomogeneous Feller-type diffusion process X(t) with infinites-
imal drift and infinitesimal variance

B1(x, t) = α(t) x + ξ r(t), B2(x, t) = 2 r(t) x, (69)

defined in the state space [0,+∞), with α(t) ∈ R, r(t) > 0 and ξ > 0, with a zero-flux
condition in the zero state. In the sequel, we denote by

A(t|t0) =
∫ t

t0

α(z) dz, R(t|t0) =
∫ t

t0

r(τ) e−A(τ|t0) dτ. (70)

5.1. Transition Density

The transition pdf f (x, t|x0, t0) of X(t) is solution of the Fokker–Planck equation

∂ f (x, t|x0, t0)

∂t
= − ∂

∂x

{
[α(t)x + ξ r(t)] f (x, t|x0, t0)

}
+ r(t)

∂2

∂x2

[
x f (x, t|x0, t0)

]
, (71)

to solve imposing the initial delta condition

lim
t↓t0

f (x, t|x0, t0) = δ(x− x0) (72)
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and the zero-flux condition in the zero state:

lim
x↓0

{
[α(t)x + ξ r(t)] f (x, t|x0, t0)− r(t)

∂

∂x

[
x f (x, t|x0, t0)

]}
= 0. (73)

By virtue of the transformations (cf. Capocelli and Ricciardi [53])

x̂ = x e−A(t|0), x̂0 = x0 e−A(t0|0),

t̂ = R(t|0) = h(t), t̂0 = R(t0|0) = h(t0),

f (x, t|x0, t0) = e−A(t|0) f̂ (x̂, t̂|x̂0, t̂0),

(74)

the Fokker–Plank equation (71) and the conditions (72) and (73) lead to the Fokker–Planck
equation of a time-homogeneous Feller process {Y(t), t ≥ 0} with infinitesimal drift
C1 = ξ and infinitesimal variance C2(x̂) = 2 x̂, with a delta initial condition and a zero-flux
condition in the zero state:

∂ f̂ (x̂, t̂|x̂0, t̂0)

∂t̂
= −ξ

∂ f̂ (x̂, t̂|x̂0, t̂0)

∂x̂
+

∂2

∂x̂2

[
x̂ f̂ (x̂, t̂|x̂0, t̂0)

]
,

lim
t̂↓t̂0

f̂ (x̂, t̂|x̂0, t̂0) = δ(x̂− x̂0),

lim
x̂↓0

{
ξ f̂ (x̂, t̂|x̂0, t̂0)−

∂

∂x̂

[
x̂ f̂ (x̂, t̂|x̂0, t̂0)

]}
= 0.

Note that if 0 < ξ < 1 the zero state for Y(t) is a regular reflecting boundary, whereas
for ξ ≥ 1 the state zero is an entrance boundary. Recalling (5) with β = ξ and r = 1,
from (74) we obtain the transition pdf of the Feller-type diffusion process (69) with a
zero-flux condition in the zero state:

f (x, t|x0, t0) =



1
x Γ(ξ)

[
x e−A(t|t0)

R(t|t0)

]ξ
exp

{
− x e−A(t|t0)

R(t|t0)

}
, x0 = 0,

e−A(t|t0)

R(t|t0)

[
x e−A(t|t0)

x0

](ξ−1)/2
exp

{
− x0+x e−A(t|t0)

R(t|t0)

}
× Iξ−1

[
2
√

x x0 e−A(t|t0)

R(t|t0)

]
, x0 > 0,

(75)

where we have used the relation:

h(t)− h(t0) = e−A(t0|0) R(t|t0). (76)

When

lim
t→+∞

A(t|t0) = −∞, lim
t→+∞

R(t|t0) = +∞, lim
t→+∞

α(t)
r(t)

= −γ, γ > 0, (77)

the Feller-type diffusion process (69), with a zero-flux condition in the zero state, allows a
steady-state density:

W(x) = lim
t→+∞

f (x, t|x0, t0) =
(γ x)ξ

x Γ(ξ)
e−γ x, x > 0, (78)

which is a gamma density of parameters ξ and 1/γ. The steady-state density W(x) is a
decreasing function of x when ξ ≤ 1, whereas W(x) has a single maximum in x = (ξ− 1)/γ
for ξ > 1.

The asymptotic behavior of the transition pdf of X(t) when α(t) or r(t) or both are
periodic functions is discussed in Giorno and Nobile [33].
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5.2. FPT Densities

The FPT pdf g[S(t), t|x0, t0] of X(t), defined in (69), can be written in terms of the FPT
pdf ĝ[Ŝ(t̂), t̂|x̂0, t̂0] of the process Y(t), having infinitesimal drift C1 = ξ and infinitesimal
variance C2(x̂) = 2 x̂, with a zero-flux condition in the zero state. Indeed, recalling (74),
one has

g[S(t), t|x0, t0] =
dh(t)

dt
ĝ
{

Ŝ[h(t)], h(t)|x̂0, h(t0)
}

, (79)

where Ŝ[h(t)] = S(t) e−A(t|0).

Proposition 5. For the diffusion process (69), with 0 < ξ < 1, one has:

g(0, t|x0, t0) =
1

Γ(1− ξ)

r(t) e−A(t|t0)

R(t|t0)

[ x0

R(t|t0)

]1−ξ
exp

{
− x0

R(t|t0)

}
, x0 > 0, (80)

with R(t|t0) given in (70). Furthermore, the ultimate FPT probability is:

∫ +∞

0
g(0, t|x0, t0) dt =


1, lim

t→+∞
R(t|t0) = +∞,

1− γ(1− ξ, x0/c)
Γ(1− ξ)

, lim
t→+∞

R(t|t0) = c < +∞,
(81)

with γ(a, x) denoting the incomplete gamma function.

Proof. Relation (80) follows from (23) with α = 0, β = ξ and r = 1, making use of (74)
and (79) with S(t) = 0. Furthermore, (81) can be obtained by integrating (80) with t in
(t0,+∞).

Note that a general expression of the FPT density for the time-inhomogeneous Feller-
type process (1) through the zero state is given by Giorno and Nobile [43].

In the following two propositions, we show that if ξ = 1/2 or ξ = 3/2, it is possible
to obtain closed-form expressions for the FPT densities through the time-varying barrier
S(t) = S eA(t|0), with S > 0.

Proposition 6. Let X(t) be a time-inhomogeneous Feller-type diffusion process, having
B1(x, t) = α(t) x + r(t)/2 and B2(x, t) = 2r(t)x, with α(t) ∈ R, r(t) > 0 and a zero-flux
condition in the zero state. We assume that S(t) = S eA(t|0), with S ≥ 0.

• If x0 > S(t0) ≥ 0, one has:

g[S(t), t|x0, t0] =
r(t) e−A(t|t0)√

π [R(t|t0)]3

[√
x0 −

√
S(t0)

]
exp

{
−
[√

x0 −
√

S(t0)
]2

R(t|t0)

}
(82)

and the ultimate FPT probability P{T (x0, t0) < +∞} = 1 when limt→+∞ R(t|t0) = +∞.
• If 0 ≤ x0 < S(t0), one obtains:

g[S(t), t|x0, t0] =
r(t) e−A(t|t0)√

π [R(t|t0)]3

[√
S(t0)−

√
x0

]
exp

{
−
[√

S(t0)−
√

x0
]2

R(t|t0)

}
×
{

1 + 2
+∞

∑
j=1

(−1)j exp
{
−4 j2S(t0)

R(t|t0)

} [
cosh

(4 j
√

S(t0)
(√

S(t0)−
√

x0
)

R(t|t0)

)
− 2 j

√
S(t0)√

S(t0)−
√

x0
sinh

(4 j
√

S(t0)
(√

S(t0)−
√

x0
)

R(t|t0)

)]}
(83)

and the ultimate FPT probability P{T (x0, t0) < +∞} = 1 when limt→+∞ R(t|t0) = +∞.
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Proof. Relation (82) follows from (27) making use of (74) and (79). Indeed, for
0 ≤ S(t0) < x0, one has:

g[S eA(t|0), t|x0, t0] =
r(t)e−A(t|0) (√x̂0 −

√
S
)√

π[ h(t)− h(t0)]3
exp

{
− (
√

x̂0 −
√

S)2

h(t)− h(t0)

}
, (84)

from which, due to (76), (82) follows. Similarly, Equation (83) follows from (28), making
use of (74), (76) and (79).

We note that, by setting S(t) = 0 in (82), we obtain (80) for ξ = 1/2.

Example 1. We consider the Feller-type process having B1(x, t) = α x + r(t)/2 and
B2(x, t) = 2 r(t) x, with

r(t) = ν
[
1 + c sin

(2πt
Q

)]
, t ≥ 0, (85)

where ν > 0 is the average of the periodic function r(t) of period Q and c is the amplitude of the
oscillations, with 0 ≤ c < 1. From (70), for t ≥ t0, one has A(t|t0) = α (t− t0) and

R(t|t0)=



ν(t− t0) +
c ν Q1

2π

[
cos
(

2πt0
Q

)
− cos

(
2πt
Q

)]
, α = 0,

ν
α

(
1− e−α(t−t0)

)
+ c ν Q

4π2+Q2 α2

{
2π cos

(
2πt0
Q1

)
+α Q sin

(
2πt0
Q1

)
− e−α(t−t0)

[
2π cos

(
2πt
Q

)
+ α Q1 sin

(
2πt
Q

)]}
, α 6= 0.

(86)

For α = −0.05, c = 0.4 and Q = 2, in Figure 6, the FPT pdf (83) from x0 = 5 through
S(t) = S eα t is plotted as function of t for different choices of S and ν.
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Figure 6. For the Feller-type process having B1(x, t) = −0.05 x + r(t)/2 and B2(x, t) = 2 r(t) x,
with r(t) = ν

[
1 + 0.4 sin(π t)

]
, the FPT pdf (83) from x0 = 5 through S(t) = S eα t is plotted as a

function of t. (a) FPT pdf for S = 10. (b) FPT pdf for ν = 2.

Proposition 7. Let X(t) be a time-inhomogeneous Feller-type diffusion process, having
B1(x, t) = α(t) x + 3 r(t)/2 and B2(x, t) = 2r(t)x, with α(t) ∈ R, r(t) > 0 and a zero-flux
condition in the zero state. We assume that S(t) = S eA(t|0), with S > 0.

• If x0 > S(t0) > 0, one has:

g[S(t), t|x0, t0] =
r(t) e−A(t|t0)√

π [R(t|t0)]3

√
S(t0)

x0

[√
x0 −

√
S(t0)

]
exp

{
−
[√

x0 −
√

S(t0)
]2

R(t|t0)

}
(87)

and P{T (x0, t0) < +∞} =
√

S(t0)/x0 when limt→+∞ R(t|t0) = +∞.
• If 0 < x0 < S(t0), one obtains:
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g[S(t), t|x0, t0] =
r(t) e−A(t|t0)√

π [R(t|t0)]3

√
S(t0)

x0

[√
S(t0)−

√
x0

]
exp

{
−
[√

S(t0)−
√

x0
]2

R(t|t0)

}
×
{

1 + 2
+∞

∑
j=1

exp
{
−4 j2S(t0)

R(t|t0)

} [
cosh

(4 j
√

S(t0)
(√

S(t0)−
√

x0
)

R(t|t0)

)
− 2 j

√
S(t0)√

S(t0)−
√

x0
sinh

(4 j
√

S(t0)
(√

S(t0)−
√

x0
)

R(t|t0)

)]}
(88)

and P{T (x0, t0) < +∞} = 1 when limt→+∞ R(t|t0) = +∞.
• If x0 = 0 and S(t0) > 0, one has:

g[S(t), t|0, t0] =
4 r(t) e−A(t|t0)

√
S(t0)√

π [R(t|t0)]3
exp

{
− S(t0)

R(t|t0)

} +∞

∑
j=1

j exp
{
−4 j2S(t0)

R(t|t0)

}
×
[4 j S(t0)

R(t|t0)
cosh

(4 jS(t0)

R(t|t0)

)
−
(

1 +
2S(t0)

R(t|t0)

)
sinh

(4 jS(t0)

R(t|t0)

)]
(89)

and P{T (x0, t0) < +∞} = 1 when limt→+∞ R(t|t0) = +∞.

Proof. Relations (87)–(89) follow from Proposition 2, making use of (74),
(76) and (79).

Example 2. We consider the Feller-type process, having B1(x, t) = α x + 3 r(t)/2 and
B2(x, t) = 2 r(t) x, with r(t) given in (85). From (70), for t ≥ t0 one has A(t|t0) = α (t− t0)
and R(t|t0) is given in (86). For α = −0.05, c = 0.4 and Q = 2, in Figure 7, the FPT pdf (88)
from x0 = 5 through S(t) = S eα t is plotted as function of t for some choices of S and ν.
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Figure 7. For the Feller-type process, having B1(x, t) = −0.05 x + 3 r(t)/2 and B2(x, t) = 2 r(t) x,
with r(t) = ν

[
1 + 0.4 sin(π t)

]
, the FPT pdf (88) from x0 = 5 through S(t) = S eα t is plotted as

function of t. (a) FPT pdf for S = 10. (b) FPT pdf for ν = 2.

6. Asymptotic Behavior of the FPT Density for a Time-Inhomogeneous
Feller-Type Process

In the following proposition, we prove that the FPT density g[S(t), t|x0, t0] of the
process (69), with a zero-flux condition in the zero state, is a solution of a second-kind
non-singular Volterra integral equation.
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Proposition 8. Let S(t) ∈ C1[t0,+∞), with S(t) > 0. For the time-inhomogeneous Feller-type
diffusion process (69), with α(t) ∈ R, r(t) > 0 and ξ > 0, the FPT pdf g[S(t), t|x0, t0] is a
solution of the integral Equation (57) with $ = 1 if x0 < S(t0) and $ = −1 if x0 > S(t0), where

Ω[S(t), t|y, τ] =
r(t)e−A(t|τ)

R(t|τ) exp
{
−S(t) e−A(t|τ) + y

R(t|τ)

} [S(t) e−A(t|τ)

y

](ξ−1)/2

×
{

1
2

[
−α(t) S(t)

r(t)
+

S′(t)
r(t)

− 2 S(t) e−A(t|τ)

R(t|τ) + ξ − 1
2

]
Iξ−1

[2
√

y S(t)e−A(t|τ)

R(t|τ)

]

+

√
y S(t)e−A(t|τ)

R(t|τ) Iξ

[2
√

y S(t)e−A(t|τ)

R(t|τ)

]}
. (90)

Proof. The FPT pdf ĝ[Ŝ(t̂), t̂|x̂0, t̂0] of the process Y(t), with infinitesimal drift C1 = ξ and
infinitesimal variance C2(x̂) = 2 x̂, with a zero-flux condition in the zero state, is a solution
of the following integral equation

ĝ
{

Ŝ[h(t)], h(t)|x̂0, h(t0)
}
= ρ

{
−2 Ω̂

{
Ŝ[h(t)], h(t)|x̂0, h(t0)

}
+2

∫ h(t)

h(t0)
ĝ
{

Ŝ(ϑ), ϑ|x̂0, h(t0)
}

Ω̂
{

Ŝ[h(t)], h(t)|Ŝ(ϑ), ϑ
}

dϑ

}
, x̂0 6= Ŝ[h(t0)], (91)

where, due to (59) with β = ξ and r = 1, one has:

Ω̂
[
Ŝ(v), v|z, ϑ

]
=

1
v− ϑ

exp
{
− Ŝ(v) + z

v− ϑ

} [ Ŝ(v)
z

](ξ−1)/2

×
{

1
2

[
Ŝ′(v)− 2 Ŝ(v)

v− ϑ
+ ξ − 1

2

]
Iξ−1

[2
√

z Ŝ(v)

v− ϑ

]
+

√
z Ŝ(v)

v− ϑ
Iξ

[2
√

z Ŝ(v)

v− ϑ

]}
. (92)

Multiplying both-sides of Equation (91) by dh(t)/dt, performing the transformation
ϑ = h(u) in the integral and recalling (79), we obtain the integral Equation (57) with

Ω[S(t), t|x0, t0] =
dh(t)

dt
Ω̂
{

Ŝ[h(t)], h(t)|x̂0, h(t0)
}

,

Ω[S(t), t|S(u), u] =
dh(t)

dt
Ω̂
{

Ŝ[h(t)], h(t)|Ŝ[h(u)], h(u)
}

, t0 < u < t.
(93)

Then, (90) follows from (93), making use of (74) and (92).

Let 0 ≤ x0 < S(t0). We focus on the asymptotic behavior of the FPT pdf of the
Feller-type diffusion process (69), with a zero-flux condition in the zero state, through
the asymptotically constant boundary (61), with S(t) > 0, where η(t) ∈ C1[t0,+∞) is a
bounded function, that does not depend on S, such that (62) holds. We assume that

lim
t→+∞

α(t) = α < 0, lim
t→+∞

r(t) = r > 0, (94)

so that the process allows a steady-state density. Under such assumptions, from (90),
one has:

ζ(S) = −2 lim
t→+∞

Ω[S(t), t|x0, t0] =
|α| S− (ξ − 1/2)r

S Γ(ξ)

( |α| S
r

)ξ
exp

{
−|α| S

r

}
. (95)
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Finally, by virtue of (57), for S→ +∞ and for long periods, the FPT density through
the asymptotically constant boundary (61) of the time-inhomogeneous Feller-type process
(69) exhibits the following exponential behavior:

g[S(t), t|x0, t0] ' ζ(S) e−ζ(S)(t−t0), S >
(ξ − 1/2) r
|α| ·

7. Conclusions

In this paper, we have considered the first-passage time problem for a Feller-type
diffusion process, having infinitesimal drift B1(x, t) = α(t) x + β(t) and infinitesimal
variance B2(x, t) = 2 r(t)x, defined in [0,+∞), with α(t) ∈ R, β(t) > 0, r(t) > 0 continuous
functions. In Section 2, for the time-homogeneous process, we have determined the
Laplace transform of the downwards and upwards FPT densities. In Propositions 1 and 2,
some connections between the FPT densities for the Feller and the Wiener processes
(α = 0) have been discussed, whereas in Propositions 3 and 4 we have analyzed some
relations between the FPT densities for Feller and Ornstein–Uhlenbeck processes (α 6= 0).
Furthermore, in Section 3, the FPT moments have been investigated by using the Siegert
formula. In Section 4, for α < 0, the asymptotic behavior of the FPT density through a
time-dependent boundary has been discussed for an asymptotically constant boundary
and for an asymptotically periodic boundary. Furthermore, the first three moments of
FPT density through a constant boundary have been compared with the corresponding
asymptotic approximations. Section 5 is dedicated to a time inhomogeneous Feller-type
diffusion process with β(t) = ξ r(t), for ξ > 0. In Propositions 6 and 7, the FPT density
has been obtained for an exponential time-varying boundary. The FPT densities have been
plotted for periodic noise, showing the presence of damped oscillations having the same
periodicity as the noise intensity. In Section 6, a second-kind Volterra integral equation
was derived for the FPT density of a time-inhomogeneous Feller-type process through a
general time-dependent boundary. Finally, such an equation has been used to derive the
asymptotic exponential trend of the FPT pdf through an asymptotically constant boundary.

Analytical, asymptotic and computational methods for the evaluation of FPT densities
through time-varying boundaries for more general time-inhomogeneous diffusion pro-
cesses will be the object of future research focused also on contexts of statistical inference.
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