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Abstract: Variogram models are a valuable tool used to analyze the variability of a time series; such
variability usually entails a spherical or exponential behavior, and so, models based on such functions
are commonly used to fit and explain a time series. Variograms have a quasi-periodic structure
for rainfall cases, and some extra steps are required to analyze their entire behavior. In this work,
we detailed a procedure for a complete analysis of rainfall time series, from the construction of
the experimental variogram to curve fitting with well-known spherical and exponential models,
and finally proposed a novel model: quadratic–exponential. Our model was developed based on
the analysis of 6 out of 30 rainfall stations from our case study: the Río Bravo–San Juan basin,
and was constructed from the exponential model while introducing a quadratic behavior near to
the origin and taking into account the fact that the maximal variability of the process is known.
Considering a sample with diverse Hurst exponents, the stations were selected. The results obtained
show robustness in our proposed model, reaching a good fit with and without the nugget effect
for different Hurst exponents. This contrasts to previous models, which show good outcomes only
without the nugget effect.

Keywords: variogram; rainfall data; exponential model; maximal variability; nugget effect; Hurst
exponent; curve fitting; Río Bravo–San Juan basin; Monterrey metropolitan area (MMA)

1. Introduction

As a traditional geostatistical tool, variograms have been well-utilized for rainfall
purposes, showing attributes that quantify and model the correlation and the variability of
spacial or time structures represented by the rainfall dataset [1–4]. From a mathematical
point of view, a variogram is an estimator that models how the values of a time series are
correlated at different time scales, indicating the variability of the series [5,6], so that the
lower the correlation, the higher the variability.

There are a lot of advantages of using variograms to analyze rainfall or geostatistical
time series, such as a correctly determined variogram that supports a reliable statistical
estimation. It helps design and modify the sampling network; the entire study includes an
essential amount of samples for the variogram to be feasible [7,8]. In addition, due to its
methodology, the variogram is adaptable to determine the variability of time series with
any shape and not only periodical or quasi-periodical series, in which other methodologies
can be used [9,10]; moreover, variograms can be used not only for rainfall studies but

Mathematics 2021, 9, 2466. https://doi.org/10.3390/math9192466 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4596-831X
https://orcid.org/0000-0002-3172-8673
https://orcid.org/0000-0001-5616-2947
https://orcid.org/0000-0002-5191-3462
https://orcid.org/0000-0001-7238-809X
https://doi.org/10.3390/math9192466
https://doi.org/10.3390/math9192466
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9192466
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9192466?type=check_update&version=1


Mathematics 2021, 9, 2466 2 of 20

also for any geostatistical variables, such in air pollution [11], mining [12], and other
research areas involving geostatistics [13,14]. In general, variograms are very useful in
measuring variability. On the other hand, variograms have some limitations to their use,
such as in the direct estimation of rainfall, which is why they are only a complementary
tool for the geostatistical analysis of data; in turn, experimental variograms are calculated
from recorded data, which commonly consist of small samples or big samples that lack
information, which means extrapolations and/or interpolations are needed.

Variogram estimation is usually split into the stages of experimental variogram esti-
mation, valid model selection and model fitting; each of them can be solved by different
approaches [15,16]. In a general overview, the variogram estimation requires parametric or
non-parametric approaches; the most appropriated selection of them is in the function of
the nature of the dataset to be analyzed, specifically depending of the type of distribution,
type of variable, sample quantity, etc.

Delving into the subject of valid models and the role they play for variogram estima-
tion, it is imperative to use the best model to fit each particular case, and although in the
specialized literature there are different types of them, variogram models that are more
commonly utilized include: spherical, exponential, logarithmic, power, Gaussian, rational
quadratic, and penta-spherical; they have been used to fit daily-sampled variograms, and
also to avoid negative interpolated rainfall [3,17]. Some authors believe that this set of
alternatives can vary. However, spherical and exponential models are very frequently
found in several studies [15,18,19]. Of course, each has its own construction. The following
is a summary of them:

Spherical model
The spherical model is usually a comparison reference to assess optimal spatial distri-

bution and rainfall characterization [19,20]. Taking reference from several works [7,13,21,22],
the model is defined in Equations (1) and (2). Each one presents a different perspective; the
first is:

γ(h) =

{
c
(

3|h|
2r −

1
2 (
|h|
r )3

)
if 0 ≤ |h| < r

c if |h| ≥ r
. (1)

This equation expresses the variogram γ(h) in function of the lag distance h, consider-
ing the existence of c as the sill of the curve or the variance of the correlated component,
and r as the maximal variability or the range of spatial correlation (dependence). Spherical
models are distinguished from linear behavior when near to the origin, but become parallel
to x-axis in the time taken to reach the maximum value in the y-axis.

Oppositely, Equation (2) is defined as follows:

γ(h) =

{
c0 + c

(
3|h|
2r −

1
2 (
|h|
r )3

)
if 0 ≤ |h| < r

c0 + c if |h| ≥ r
. (2)

This perspective includes c0, that is, the nugget variance, also known as the nugget
effect, which is a phenomenon present in many regionalized variables and represents
short-scale randomness or noise in the variable [23]. Then, the addition c0 + c reaches the
sill, which creates the difference between both equations.

Exponential model
Exponential model is another popular type of model frequently utilized in geostatistics.
The exponential model is similar to the spherical model, in that it starts from the origin
with a linear behavior near it. The difference between them is that the variogram of this
model never reaches a sill (reaching it at infinity) [7,24]. Additionally, considering the same
works analyzed before [7,13,21,22], it is possible to define the exponential model using two
perspectives. Equation (3) presents a version with the consideration of just the c, i.e., with
the absence of c0, the nugget effect:

γ(h) = c
(

1− e
−|h|

a

)
, (3)
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where all components mentioned in this last equation are also included in the spherical
model. The exception is that a is exclusive for the exponential model, representing a
distance parameter that modifies the maximum variability of the function.

On the other hand, the version of the exponential model with the nugget effect is
written as follows:

γ(h) = c0 + c
(

1− e
−|h|

a

)
. (4)

This version of the exponential equation includes the same elements as Equation (3),
but differs in the inclusion of c0. The analysis of both models, exponential and spherical,
was widely useful during the development of this work.

This work aims to present a variogram model as a new alternative for variogram
estimation when the maximal variability is known a priori. Our model was created from
the well-known exponential model by modifying the exponential term and rewriting the
model as a piecewise function, in which a quadratic expression is added. This model,
which we called the “quadratic–exponential model”, was applied to the rainfall data of
selected stations of the RH-24 Mexico region in our study area, which was particularly
focused on the rainfall stations corresponding to the Río Bravo–San Juan basin.

As a general and brief description of our study area, it can be said that the Monterrey
metropolitan area, located in the state of Nuevo León, is inside the Río Bravo–San Juan
basin, as shown in Figure 1. The east side of the basin is one of the main citrus-growing
areas of the country. In contrast, the west side contains flanks of mountains, which are
commonly used to construct residential areas due to an accelerated expansion of the city
in recent decades. Construction in this area has increased the risk of sediment-related
disasters, as clearly shown by simple relations between such disasters and heavy rainfall
days [25–27], and identifying 429 such events in the last 30 years [28]. In turn, Villareal-
Macés and Díaz Viera (2018) [29] constructed models of weather maps by means of kriging
and a spherical model for the entire state of Nuevo León. In this sense, our research will
help in a second instance to characterize rainfall’s variability in the region of study, which
has not been reported before the present work, to the author’s knowledge.

Figure 1. Location of the RH-24 México region.

In order to present a general view of this research, this paragraph describes the
structure of the rest of the document: the method we followed including the proposed
model is shown in Section 2; in Section 3, the results obtained after the application of
models are presented; Section 4 discusses the results, where the different implications
associated with our findings are explained. In order to define potential new directions
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related to the topic addressed in this work, several essential aspects will need to be studied
in the future (which are suggested in Section 4.1). A numerical analysis is also performed
in order to show the robustness of our model (Section 4.2). Finally, Section 5 presents the
conclusions; this section includes a summary of the entire work and compares the obtained
results with the aim initially established.

2. Methodology

The methodology consists of two main points: the procedure we followed to imple-
ment the curve fitting, and the construction of the model. Sections 2.1–2.3 deal with the
first point, whereas Section 2.4 deals with the latter.

2.1. Data Acquisition

Our model was performed using actual data taken from Benavides-Bravo et al. (2015),
a case study where clustering of rainfall stations in RH-24 Mexico Region was analyzed by
utilizing data from the National Water Commission of Mexico (CONAGUA by its initials in
Spanish), the institution responsible for water management in the country. That study was
constructed using homogeneous sampling followed by a rigorous reliability process. There
are several works where homogeneity is considered for rainfalls [30–33].

Based on the data obtained, assumed that from each rainfall cluster selected, the
station corresponding to the median value of the Hurst exponent of such cluster was
selected. The higher the station’s exponent, the greater the time series’ variability in long-
term dependence (or persistence). Therefore, the selected stations represent the complete
dataset from a mathematical point of view, which is the persistence of their corresponding
time series. Moreover, the selected stations represent various elevations, since stations
El Cerrito, El Pajonal and Casillas are located in the flanks of the Sierra Madre Oriental
mountain chain. In contrast, San Juan, Rancho de Gomas and El Hojase are located in
the valley of the basin. The selected stations are highlighted in Figure 2, indicating their
corresponding Hurst exponent.

12

3

4

5 6

No. Station Hurst exponent

1 El Cerrito 0.71

2 El Pajonal 0.80

3 Casillas 0.84

4 San Juan 0.88

5 Rancho de Gomas 0.93

6 El Hojase 1.00

Figure 2. Selected stations and their Hurst exponents.

The time series used have different lengths depending on the records of their corre-
sponding stations, so that the initial data were collected around the 1940–1960s, while all
the series end in 2018. In turn, the data were recorded daily and averaged monthly. In this
way, we considered an extensive and sufficient amount of data for each station (more than
720 data corresponding to 60 years) to characterize the variability of the mean rainfall.
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2.2. Experimental Variograms

Let a rainfall time series {Xt, t ≥ 0} (in mm); we define the variogram γ(h) as
in [21,34] (they defined the variogram without the square root):

γ(h) =

√
1
2

Var[X(t + h)− X(t)] =

√
1
2

E
[
{X(t + h)− X(t)}2

]
, (5)

where the square root is added with the aim of measuring our results in mm, which means
half the variance of the difference between data is separated by an interval of time distance
h ∈ N (expressed in months), which corresponds to half the expected square difference
between those data. A table of symbols and units (Table A1) is included in Appendix A.

The scale is then defined by h; from the minimal distance value, increasing h allows
the quantitative representation of long-term variations in the hydrological series. A critical
remark is that Equation (5) works on the average of the differences (X(t + h)− X(t)), so that
it only depends on the interval h. Consequently , for a given times series located at a fixed
point in the space, the trend or the persistence of such series is only characterized by h.

Now, the discrete version of Equation (5) can be written as [34]:

γ(h) =

√√√√ 1
2n(h)

n(h)

∑
t=1

(X(t + h)− X(t))2, (6)

where n(h) has dimensionless units and denotes the number of differences with a lag of
value h. We applied Equation (6) to the selected rainfall stations mentioned in Section 2.1,
using h = 1, 2, . . . , H, where H months depends on the total length of the series. The
generated variograms are shown in Figure 3; for a better illustration, variability is only
shown up to the first 120 neighbors, i.e., regarding ten years of difference.
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Figure 3. Experimental variograms for each rainfall station until ten years of difference, h = 120.
Red dashed lines tag variability at 0, 12, 24, . . . , 120 months, while blue dotted lines tag variability at
6, 18, 30, . . . , 114 months.

2.3. Curve Fitting

Due to the cyclical nature of the studied rainfall variograms, some extra steps must be
completed to analyze the maximal variability:
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(1) Division of the variogram. An inspection of the experimental variograms indicates
that a similar pattern is repeated every 12 neighbors or units of distance, as shown in
Figure 3, so that the event seems to have an annual periodicity, which, in turn, agrees
with natural or empirical knowledge. In this way, the variogram for the complete
series is calculated by Equation (6) and then divided into several variograms with a
length of 12 months.

(2) Average of the resulting variograms. The set of variograms obtained from Step (1)
have a similar structure. On average, the curve increases until it reaches a maximal
value at the sixth neighbor (h = 6 months) and then decreases in a quasi-symmetrical
way, as shown in Figure 3. Since the analysis of the maximum variability is the usual
objective when studying variograms, and that the curve obtained might be considered
as symmetric, we only focus on the first half of the variograms, i.e., from h = 1 to
h = 6 months, where such values correspond to the position of the initial data (r0)
and the maximal variability (r), respectively, where months are the units for both
cases. Then, the variograms of a station are averaged point by point to obtain a single
curve that represents or characterizes such a station.

(3) Fitting a model. A more detailed inspection of each averaged variogram suggests a
curve that is concave downward in its entirety until it reaches a final sill, as shown
in Figure 3. As mentioned in Section 1, this shape has the characteristics of the
spherical and exponential models. We implemented such models and one more
that we constructed to fit the variograms. The proposed model is described in the
following subsection. This was the only step carried out by using the R statistics
program [35]. All the previous steps (the processing of the data) were executed by
using Microsoft Excel.

2.4. A Quadratic–Exponential Model

The model we propose originated from the formula of the exponential model (3) with-
out the nugget effect. The main modification consists of guaranteeing that the variogram

range has a value of r by modifying the argument of the exponential term, from
(

e−
|h|
a

)
to
(

e−
|h|

r−|h|

)
. This change produces a continuous and differentiable model only up to the

value of |h| < r. Therefore, the model must be defined as a piecewise function, with a
constant value (the sill of the curve) of γ(h) = c, for |h| ≥ r.

Then, the quadratic–exponential model is a three-piecewise function in which the near-
est part to the origin consists of a quadratic expression, the middle part of an exponential
expression, during the farthest part of a constant, so that:

γ(h) =


b1|h|2 + b2|h| if 0 ≤ |h| ≤ r0

c
(

1− ke−
|h|

r−|h|

)
if r0 ≤ |h| < r.

c if |h| ≥ r

(7)

In addition to the explanation provided for the second and third parts of Equation (7),
k ∈ R : k ∈ [0, 1] is introduced as a factor modifying the peak amplitude of the exponential

term, such that
(

γ(h) = c
[

1− ke−
|h|

r−|h|

])
. This means one more degree of freedom to mod-

ify the effect of the exponential term and, consequently, the slope of the curve. Moreover, it
produces an automatic nugget effect in the variogram, since k < 1. The second part starts
at r0, which we define as the initial time distance at which we gain our first datum, and it
must satisfy r0 > 0.

It is important to mention that the quadratic–exponential model is conditionally
positive for all the |h|-values similar to the exponential model. In fact, this is the only
necessary condition for Equation (7) to be considered as a variogram [21]. Additionally,
the model is continuous and differentiable at |h| = r.
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On the other hand, the first part of Equation (7) occurs from the distance h = 0 to
the initial data at |h| = r0 and is defined by a quadratic expression. This part is added to
eliminate the nugget effect from the model by a smoothing curve near to the origin. The
coefficients b1 and b2 are obtained by satisfying the conditions of continuity, γ1(h) = γ2(h)
and differentiability, γ′1(h) = γ′2(h) of the model at |h| = r0.

Let γ1(h) = b1|h|2 + b2|h| and γ2(h) = c
[

1− ke−
|h|

r−|h|

]
.

Then, at |h| = r0, produces:

b1 =
c

r02

[
ke−

r0
r−r0

(
1 +

r0r
(r− r0)2

)
− 1
]

and

b2 =
c
r0

[
2− ke−

r0
r−r0

(
r0r

(r− r0)2 + 2
)]

Consequently, Model (7) is continuous for h ∈ R and differentiable for h ∈ R,
h /∈ {0, r}. In turn, whether the parameters r0 and r are established by previous knowledge
of the data or be easily extracted from the variogram, the model would only require the
adjustment of c and k to be completed.

Therefore, we can comment on two main physical advantages of the use of the
quadratic–exponential model:

(1) Its quadratic behavior is close to the origin, which allows a smooth increase different
to the exponential behavior, leading to a shorter and a larger range. This behavior
is characteristic of nested structures, which are sometimes seen in experimental
variograms [22,36,37].

(2) It is guaranteed to reach the sill at the maximal variability r, which contrasts with the
exponential model, where the sill must be approximated or calculated from c, a and
the curve fitting [36,38].

The nugget effect
The nugget effect is introduced in this model by removing the nearest part of the

function and extending the domain of the middle part so that:

γ(h) =

c
(

1− ke−
|h|

r−|h|

)
if 0 ≤ |h| < r

c if |h| ≥ r.
(8)

In this manner, the value of γ(h) at the origin is directly calculated from Equation (7),
so that c0 = γ(0) = c(1− k). So, despite the fact that the quadratic expression is elimi-
nated from the model, this way of adding the nugget effect allows one to highlight two
main characteristics:

(1) The number of parameters to fit (c and k) does not increase. This contrasts with the
common models, in which an extra-parameter must be fitted (c0).

(2) The number of parameters to know a priori is reduced since r0 is not required. This
also allows one to reduce the complexity of the model and the execution of the fitting.

3. Results

In order to prove our model for our case of study, we performed curve fitting for the
variogram of each rainfall station. The spherical, exponential and quadratic–exponential
models were implemented with ((1),(3),(7)) and without ((2),(4),(8)) the nugget effect. These
results are shown in Sections 3.1 and 3.2.

A total of 1000 adjustments were carried out to obtain curve fitting for a model applied
to a specific rainfall station. Herein, each set of adjustments is called a “simulation”. For
each simulation, the adjustment with the best fitting, in terms of the residual sum of squares,
was chosen.
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All the adjustments of each simulation were performed by the least-squares method
(LSM) using the optim function of the R statistics program with the method L-BFGS-B,
which consists of a limited-memory modification of the method BFGS quasi-Newton, also
known as the Variable Metric Algorithm. The modification allows box constraints; each
variable can be given a lower and/or upper bound. The optim function is inside the package
Stats, which is installed by default in the R software [35].

All the adjustments were initialized with random initial values inside the lower and
upper bounds allowed during the fitting, which were fixed according to Table 1. The only
exception was parameter c, whose lower bound changed to zero when the nugget effect
was considered in the spherical (2) and exponential (4) models. This because the sill of the
curve is (c0 + c) with the nugget effect. The maximal variability r = 6 (in months) and the
position of our first data r0 = 1 (in months) was introduced as a known parameter.

Table 1. Values of the lower and upper bounds for each parameter. The variable y refers to the
recorded data of γ(h). The lower bound of parameter c changes to zero when using Equations (2)
and (4).

Parameter Lower Bound Upper Bound

c 0.5 max y 2 max y
c0 0 min y
a 0.01 r
k 0.01 1

3.1. Fitting without the Nugget Effect

Figure 4 shows the best fitting obtained after a simulation with the spherical (1),
exponential (3) and quadratic–exponential (7) models for each rainfall station. Despite our
y−data decreasing after the maximal variability r = 6 months, we plotted our models up
the value of h = 7 months to visualize those models’ behavior after r.

Table 2 summarizes the results plotted in Figure 4. It shows the values obtained for
the parameters of each model, namely a for the exponential model, k for the quadratic–
exponential model, and c for all the models. In addition, the coefficient of determination
R2 ∈ (−∞, 1] (dimensionless) [39,40], and the root-mean-square error RMSE (mm) are
reported for each simulation. Each measurement is shown with a different number of
decimal digits, so that they all have (or produce) the same precision in terms of the amount
of rain (in mm); namely, we selected a precision of 10−2 mm, which is 10 times more
than the precision of the CONAGUA’s records [41]. The results for the stations are listed
according to their Hurst exponent in ascending order.

Table 2. Models’ parameters, coefficient of determination R2 (dimensionless) and root-mean-square
error (RMSE) (in mm) obtained by fitting each model to each station’s variogram.

Weather Station
Coefficient of

Parameters Determination Error
Models c a k R2 RMSE

El Cerrito

Spherical 142.97 - - −5.678 29.13
Exponential 118.16 0.75 - 0.798 5.07
Quadratic–exponential 122.82 - 0.295 0.976 1.73
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Table 2. Cont.

Weather Station
Coefficient of

Parameters Determination Error
Models c a k R2 RMSE

El Pajonal

Spherical 76.67 - - −11.103 16.87
Exponential 62.72 0.63 - 0.752 2.42
Quadratic–exponential 65.09 - 0.240 0.982 0.65

Casillas

Spherical 84.87 - - −22.650 20.07
Exponential 68.85 0.51 - 0.636 2.49
Quadratic–exponential 71.20 - 0.185 0.958 0.84

San Juan

Spherical 93.63 - - −44.648 23.33
Exponential 75.97 0.46 - 0.801 1.54
Quadratic–exponential 77.77 - 0.138 0.917 1.00

Rancho de Gomas

Spherical 60.05 - - −44.246 14.90
Exponential 48.64 0.45 - 0.698 1.22
Quadratic–exponential 49.94 - 0.143 0.988 0.24

El Hojase

Spherical 90.77 - - −64.823 16.88
Exponential 73.26 0.39 - 0.477 2.42
Quadratic–exponential 75.16 - 0.122 0.973 0.65
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Figure 4. Curve fitting for each station’s variogram with the spherical (1), exponential (3) and
quadratic–exponential (7) models. The initial time distance r0 = 1 month and the maximal variability
r = 6 months are tagged with dotted lines.

3.2. Fitting with the Nugget Effect

Similarly to Figure 4, Figure 5 shows the best fitting obtained after a simulation for
each rainfall station while considering the nugget effect. So, the curve fittings shown
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are those achieved when implementing Equations (2)—spherical, (4)—exponential and
(8)—quadratic–exponential.

Table 3 summarizes the results plotted in Figure 5. It shows the values obtained for
the parameters of each model, namely, c for all the models, a for the exponential model,
k for the quadratic–exponential model, and c0 for both of them. R2 and RMSE are also
reported for each simulation. The results for the stations are listed according to their Hurst
exponent in ascending order.
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Figure 5. Curve fitting for each station’s variogram with the spherical (2), exponential (4) and
quadratic–exponential (8) models. The fitting is carried out considering the corresponding models
with the nugget effect. The initial time distance r0 = 1 month and the maximal variability r = 6
months are tagged with dotted lines.

Table 3. Models’ parameters, coefficient of determination R2 and root-mean-square error (RMSE),
obtained by fitting each model to each station’s variogram, considering the nugget effect. Parameter
a reached the maximal value allowed (a = 6) in the exponential fitting for the station Casillas, as
shown in Table 1.

Weather Station
Coefficient of

Parameters Determination Error
Models c c0 a k R2 RMSE

El Cerrito

Spherical 41.76 81.70 - - 0.992 1.03
Exponential 57.33 77.43 3.49 - 0.997 0.63
Quadratic–exponential 122.82 - - 0.295 0.976 1.73

El Pajonal

Spherical 18.00 47.35 - - 0.995 0.35
Exponential 24.66 45.50 3.47 - 0.998 0.22
Quadratic–exponential 65.09 - - 0.240 0.982 0.65
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Table 3. Cont.

Weather Station
Coefficient of

Parameters Determination Error
Models c c0 a k R2 RMSE

Casillas

Spherical 15.12 56.31 - - 0.969 0.73
Exponential 25.06 56.47 6.00 - 0.988 0.45
Quadratic–exponential 71.20 - - 0.185 0.958 0.85

San Juan

Spherical 12.55 65.46 - - 0.954 0.75
Exponential 17.44 61.50 2.16 - 0.981 0.48
Quadratic–exponential 77.77 - - 0.138 0.917 1.00

Rancho de Gomas

Spherical 8.24 41.83 - - 0.998 0.10
Exponential 11.05 40.49 2.90 - 0.997 0.12
Quadratic–exponential 49.94 - - 0.143 0.988 0.24

El Hojase

Spherical 10.39 64.89 - - 0.960 0.57
Exponential 15.46 64.72 4.83 - 0.949 0.64
Quadratic–exponential 75.16 - - 0.122 0.973 0.47

4. Discussion
4.1. Case Study

In a general way, results vary according to the type of fitting. Firstly, for all the
simulations (for each station) without the nugget effect, the quadratic–exponential model
has the best adjustment, which can be seen by the values of R2 and RMSE in Table 2 and
even by a broad visualization of Figure 4. In detail, R2 > 0.95 for all the rainfall stations
(excepting for San Juan, R2 = 0.917) when the quadratic–exponential model was applied
(7), which corresponds to RMSE values of less than 2 mm. In turn, these values indicate
good precision for amount of rainfall per month; in addition, there is no dependence
between the fit of the model and the Hurst exponent, so the model is robust in this sense.
This contrasts with the spherical model (1), whose bad fitting is reflected in the negative
values of R2 and high values of RMSE for all the stations; the larger the Hurst exponent,
the worse the fitting. Exponential model (3) fits better for some stations than others, but
there is no clear dependence on the Hurst number; its R2-values are between 0.477 and
0.801, while RMSE are between 1.22 and 5.07 mm, which is also acceptable. There is no
clear relation between R2 and RMSE for all the models.

On the other hand, the spherical (2) and exponential models (4) greatly improved
their fitting when considering the nugget effect. Namely, R2 > 0.95 and RMSE < 1 mm
for practically all the stations when such models were applied, and there was not a clear
dependence on the Hurst number. As the reader can see from Tables 2 and 3, the results of
the quadratic–exponential models are the same with (7) and without (8) the nugget effect,
and this is because the fitting is the same. The only two parameters to fit in both versions
are c and k, as mentioned in Section 2.4. Then, the same results are obtained because of the
selection of the best fitting after the 1000 adjustments for both versions and the convergence
of the optimizer used. The results for all the models are then excellent and similar for all
the stations.

In this way, the quadratic–exponential model is the most robust of all the three, in the
sense of maintaining a good fitting with different scenarios, such as analyzing time series
with diverse Hurst numbers and/or requiring a fitting with or without the nugget effect.
For example, we look for nugget effect behavior because the natural phenomenon we are
considering is the average behavior of rainfall over the years, and there is variability in
rain year by year (with 12th neighbors), as illustrated in Figure 3. Outside of the subject
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of rainfall, other examples of natural and artificial causes of a nugget effect can be found
in [42].

We carried out simulations without considering the nugget effect to express that there
could be some phenomena in which our initial data are not at h = 0 but at h = r0, and
we do not know the physical behavior of the phenomenon close to the origin. In those
situations, the quadratic–exponential model becomes a powerful tool. Furthermore, the
quadratic behavior close to the origin gives our model the advantage of a smooth increase
until it reaches the apparent nugget c0 about the distance r0, which is characteristic of
phenomena with nested structures [22,36].

Now, the best results are also reflected in some parameters fitted. For the approx-
imations without the nugget effect, c is larger but closer to the sill with the quadratic–
exponential model than with the exponential model; in turn, c is much larger than the
apparent sill of the curve when applying the spherical model. For the nugget effect, this
is not clear, since the nugget c0 takes an important role. From Figure 5, the quadratic–
exponential model brings the most significant nugget than the spherical model, and finally
the exponential model for almost all the stations, which is inversely related with R2’s
values and does not have relation with RMSE’s values; in fact, the exponential model gave
the lowest values of RMSE for four stations.

The sill (the sill is c + c0 for the spherical and exponential models, and c for the
quadratic–exponential model, as shown in Table 3) does not have a direct relation with
the quality of the fitting. The only point to mention regarding it is that it is guaranteed
to be reached at h = 6 months in the spherical and quadratic–exponential models, while
it is fitted in the exponential models by means of a. This causes contrast between the
cases with and without the nugget effect when applying the last model because the sill is
apparently reached for the first case before r (values of a between 0.39 and 0.75 months),
while the curve continuously increases after r for the second case (values of a about 2.15
and 6.00 months). This also contrasts with quadratic–exponential behavior, where the
value of k remains constant for both cases.

The parameter k decreases when the Hurst number increases, as seen in Tables 2 and 3
throughout the stations. This behavior is also seen in a without considering the nugget
effect, but it is not shown when the nugget is considered. This is because of the importance
of c0. This observation is highlighted in this paper, but its importance and possible reasons
for its occurrence are left as a direction for future research. In addition, the difference
between minimal and maximal variability for each station diminishes from ≈35 mm to
≈5 mm when the Hurst exponent increases. This is a critical point regarding the RH-24
region that could be connected with the parameter k in a future research.

Finally, all these results and observations highlight the advantages of performing curve
fittings with the quadratic–exponential model when the maximal variability is known,
which is possible because of the construction of the model. On the other hand, our study
presented some limitations, namely: although our model was sufficiently validated, its
row dataset presents a limited quantity of data for its analysis, which includes the han-
dling of monthly time series instead of daily; therefore, the minimal variance comparison
is of h = 1 month. Consequently, we identified the following trends for future research:
expanding our model to the spatial dimension for kriging applications; proving the ap-
plicability of the model in other topics such as those ones mentioned in Section 1; and
extending the study area to cover the entire RH-24 region, which could be of great benefit
in characterizing climate studies, as well as for agriculture and landslide risk purposes in
the region.

4.2. Numerical Analysis

With the aim of validating the results of the models in different scenarios, we carried
out a numerical analysis that consisted of varying the values of the initial time distance
r0 and the maximal variability r. In detail, for the r0’s analysis, we varied r0 ∈ [0, 2) and
γ(r0) ∈ (0, γ(r1)], where γ(r1) is our second datum of the experimental variogram. In turn,
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for the r’s analysis, we varied r ∈ (r4, 2r− r4) and γ(r) ∈ (γ(r4), γ(2r− r4)), as shown in
Figures 6–9, and in Figures A1–A4 of Appendix B, respectively.

For simulations without considering the nugget effect, Figure 6 shows how R2 changes
in a different way when using a different model. Namely, the spherical model improves
its solution when R0 ≡ (r0, γ(r0)), close to the origin (left-down corner) in an apparent
rotated elliptic behavior, for all the stations. In turn, the exponential model brings better
solutions when R0 moves through a curve going from the left-down to the right-up corner.
These values are much better in the quadratic–exponential model, which provides its
best solutions when R0 is in the up-side, i.e., for high values of γ(r0). If the point R0 is
moved from its real position (the intersection of black lines in pictures), the exponential and
quadratic–exponential models continue to provide the best solutions, but the exponential is
better when both r0 and γ(r0) have intermediate values, while the quadratic–exponential
model is better when γ(r0) is higher, independently of r0; however, it brings acceptable
solutions for lower values of both r0 and γ(r0). The fact that worse solutions are found at
higher values of r0 and lower values of γ(r0) for the latter models is easy to see, due to
the behavior of the exponential and quadratic functions near to the origin, as defined in
Equations (3) and (7), respectively.

In addition, R2’s behavior changes when considering a nugget effect for the spherical
and exponential models, as shown in Figure 7. Namely, for the exponential model, the
left-up corner (low values of r0 and high values of γ(r0)) provides results similar to the
best mentioned without the nugget effect. This is a direct consequence of the nugget effect.
In turn, the spherical model provides very similar results to the quadratic–exponential
model. All of this reflects the robustness of both models, exponential and ours, when data
are noised or when they must fit to a specific behavior (considering or not considering
the nugget effect). Specifically, the exponential model is better for values of γ(r0) directly
proportional to r0, whereas our model is better for high values of γ(r0), i.e., values near to
γ(r1), where r1 is the time distance of the next data. Thus, this suggests that our model
is useful for such cases with high values of γ(r0), in which the spherical and exponential
model do not fit well.

Now, RMSE’s results are very similar to R2’s results, in qualitative terms, for the
exponential and quadratic–exponential models. In Figure 8, the same patterns of R2 are
obtained for both models with a little variation throughout the stations, obtaining values of
RMSE lower than 5–7 mm for the up-side of our model and also for the left-down corner
of the exponential model. The values of the exponential model improve when adding the
nugget effect, as shown in Figure 9. Only some points (h, γ(h)) of the right-bottom corner
in pictures of both models are higher than an RMSE of 25 mm.

On the other hand, the spherical model changes its elliptic behavior when R2 does
not have the nugget effect for a linear behavior, with its best RMSE’s values on the
corresponding straight line and the worst solutions in the left-up and right-down corners.
Then, similarly to R2, it greatly improves its results when adding the nugget effect, namely,
its results are similar to those ones of our model.

Finally, we found only small differences between results when varying the maximal
variability r for R2 and RMSE. The most significant of them is a low positive gradient
of RMSE’s results when h is increased; for the spherical model without considering the
nugget effect, see Figure A3. We did not perform a discussion about it due to the the low
significance of the results. They are shown in Figures A1–A4 of Appendix B.
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Figure 6. Obtained values of R2 (color bar) for different pair of data R0 = (r0, γ(r0)) when fitting a curve for the variogram
of each station with the three models and without considering the nugget effect. The intersection of the black solid lines
tags the real R0 in our experimental variogram. The white areas (in the results of the spherical model) correspond to lower
values than those shown on the color scale, i.e., lower than zero.
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Figure 8. Obtained values of RMSE (color bar) for different pair of data (r0, γ(r0)) when fitting a curve for the variogram
of each station with the three models and without considering the nugget effect. The intersection of the black solid lines
tags the real R0. The white areas correspond to higher values than those shown on the color scale.
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Figure 9. Obtained values of RMSE (color bar) for different pair of data (r0, γ(r0)) when fitting a curve for the variogram
of each station with the three models and considering the nugget effect. The intersection of the black solid lines tags the real
R0. The white areas (in the right-down corner) correspond to higher values than those shown on the color scale.

5. Conclusions

• Modeling spatial or temporal variation of data by an appropriate variogram is crucial
for kriging interpretation, especially for small samples such as in our case study.

• We constructed a piecewise model of variogram, which is helpful in analyzing time
series with few data, the monthly-accumulated value of a significant rainfall dataset.
The model consists of a variation of the exponential model but introduces the maximal
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variability directly in the formula and adds a quadratic behavior near to the origin to
obtain a continuous model from the origin.

• Compared with the spherical and exponential models, the “quadratic–exponential
model” is the most robust, in the sense of fitting better without the nugget effect and
providing good results without a significant difference between the other models
when considering such an effect. In addition, it provided good results for time series
with different Hurst numbers for our case study: rainfall in the RH-24 Mexico Region.

• Moreover, parameters to be fitted with that model are the sill c and the amplitude of
the exponential term k, despite the nugget, regardless of whether or not the nugget is
considered. So, the number of parameters does not increase with the nugget effect.

• In this way, our model results suggest that it could be a powerful tool when analyzing
rainfall or other time/spatial series. Furthermore, the procedure we introduced in our
methodology completes the steps for analyzing rainfall time series, from constructing
the experimental variogram to fit a suitable model for the data.

• Additionally, a numerical analysis was performed to prove the robustness of the
quadratic–exponential model. After a comparison against our control models, we
can conclude that, for purposes with similar factors considered in this study, the
quadratic–exponential model is sufficiently robust for any application where control
models are utilized, and provides better results than those models for specific cases
with high values of γ(r0).
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Appendix A

Table A1. Table of symbols and units.

Symbol Name Units

h Lag distance Months
γ(h) Variogram mm
c Sill mm
r Maximal variability Months
c0 nugget variance, nugget effect mm2
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Table A1. Cont.

Symbol Name Units

a distance parameter Months
{Xt, t ≥ 0} time series mm
Var(·) Variance mm2

E(·) Expected value mm
n(h) number of differences with a lag of value h Dimensionless
H Maximum of n(h) Dimensionless
b1 Quadratic–exponential model coefficient mm/month
b2 Quadratic–exponential model coefficient mm/month2

k Quadratic–exponential model coefficient Dimensionless
r0 The initial time distance Months
R2 Coefficient of determination Dimensionless
RMSE root mean square error mm

Appendix B

0

0

S
ph

er
ic

al

0

0

E
xp

on
en

tia
l

0

Q
ua

dr
at

ic
−E

xp
on

en
tia

l

5.5 6.0 6.5

12
2

12
3

12
4

12
5

12
6

γ(
h)

h

El Cerrito

5.5 6.0 6.5

12
2

12
3

12
4

12
5

12
6

γ(
h)

h

5.5 6.0 6.5

12
2

12
3

12
4

12
5

12
6

γ(
h)

h

5.5 6.0 6.5

65
.0

65
.5

66
.0

66
.5

γ(
h)

h

El Pajonal

5.5 6.0 6.5

65
.0

65
.5

66
.0

66
.5

γ(
h)

h

5.5 6.0 6.5

65
.0

65
.5

66
.0

66
.5

γ(
h)

h

5.5 6.0 6.5

71
.5

72
.0

72
.5

73
.0

γ(
h)

h

Casillas

5.5 6.0 6.5

71
.5

72
.0

72
.5

73
.0

γ(
h)

h

5.5 6.0 6.5

71
.5

72
.0

72
.5

73
.0

γ(
h)

h

5.5 6.0 6.5

77
.5

78
.5

79
.5

γ(
h)

h

San Juan

5.5 6.0 6.5

77
.5

78
.5

79
.5

γ(
h)

h

5.5 6.0 6.5

77
.5

78
.5

79
.5

γ(
h)

h

5.5 6.0 6.5

49
.8

5
49

.9
5

50
.0

5
50

.1
5

γ(
h)

h

Rancho de Gomas

5.5 6.0 6.5

49
.8

5
49

.9
5

50
.0

5
50

.1
5

γ(
h)

h

5.5 6.0 6.5

49
.8

5
49

.9
5

50
.0

5
50

.1
5

γ(
h)

h

5.5 6.0 6.5

75
.0

75
.2

75
.4

75
.6

γ(
h)

h

El Hojase

5.5 6.0 6.5

75
.0

75
.2

75
.4

75
.6

γ(
h)

h

5.5 6.0 6.5

75
.0

75
.2

75
.4

75
.6

γ(
h)

h

0.0

0.2

0.4

0.6

0.8

1.0R2

Figure A1. Obtained values of R2 (color bar) for different pair of data (r, γ(r)) when fitting a curve for the variogram of
each station with the three models and without considering the nugget effect. The intersection of the black solid lines tags
the real position (r, γ(r)) in our experimental variogram. The white areas correspond to lower values than those shown on
the color scale, i.e., lower than zero.
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Figure A2. Obtained values of R2 (color bar) for different pair of data (r, γ(r)) when fitting a curve for the variogram of
each station with the three models and considering the nugget effect. The intersection of the black solid lines tags the real
position (r, γ(r)).
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Figure A3. Obtained values of RMSE (color bar) for different pair of data (r, γ(r)) when fitting a curve for the variogram of
each station with the three models and without considering the nugget effect. The intersection of the black solid lines tags
the real position (r, γ(r)). The white areas correspond to higher values than those shown on the color scale.



Mathematics 2021, 9, 2466 19 of 20

0

0

S
ph

er
ic

al

0

0

E
xp

on
en

tia
l

0

Q
ua

dr
at

ic
−E

xp
on

en
tia

l

5.5 6.0 6.5

12
2

12
3

12
4

12
5

12
6

γ(
h)

h

El Cerrito

5.5 6.0 6.5

12
2

12
3

12
4

12
5

12
6

γ(
h)

h

5.5 6.0 6.5

12
2

12
3

12
4

12
5

12
6

γ(
h)

h

5.5 6.0 6.5
65

.0
65

.5
66

.0
66

.5
γ(

h)

h

El Pajonal

5.5 6.0 6.5

65
.0

65
.5

66
.0

66
.5

γ(
h)

h

5.5 6.0 6.5

65
.0

65
.5

66
.0

66
.5

γ(
h)

h

5.5 6.0 6.5

71
.5

72
.0

72
.5

73
.0

γ(
h)

h

Casillas

5.5 6.0 6.5

71
.5

72
.0

72
.5

73
.0

γ(
h)

h

5.5 6.0 6.5

71
.5

72
.0

72
.5

73
.0

γ(
h)

h

5.5 6.0 6.5

77
.5

78
.5

79
.5

γ(
h)

h

San Juan

5.5 6.0 6.5

77
.5

78
.5

79
.5

γ(
h)

h

5.5 6.0 6.5

77
.5

78
.5

79
.5

γ(
h)

h

5.5 6.0 6.5

49
.8

5
49

.9
5

50
.0

5
50

.1
5

γ(
h)

h

Rancho de Gomas

5.5 6.0 6.5

49
.8

5
49

.9
5

50
.0

5
50

.1
5

γ(
h)

h

5.5 6.0 6.5

49
.8

5
49

.9
5

50
.0

5
50

.1
5

γ(
h)

h

5.5 6.0 6.5

75
.0

75
.2

75
.4

75
.6

γ(
h)

h

El Hojase

5.5 6.0 6.5

75
.0

75
.2

75
.4

75
.6

γ(
h)

h

5.5 6.0 6.5

75
.0

75
.2

75
.4

75
.6

γ(
h)

h

0

5

10

15

20

25

30
RMSE

Figure A4. Obtained values of RMSE (color bar) for different pair of data (r, γ(r)) when fitting a curve for the variogram of
each station with the three models and considering the nugget effect. The intersection of the black solid lines tags the real
position (r, γ(r)).
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