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Abstract: This paper deals with polynomial Hermite splines. In the first part, we provide a simple
and fast procedure to compute the refinement mask of the Hermite B-splines of any order and in the
case of a general scaling factor. Our procedure is solely derived from the polynomial reproduction
properties satisfied by Hermite splines and it does not require the explicit construction or evaluation
of the basis functions. The second part of the paper discusses the factorization properties of the
Hermite B-spline masks in terms of the augmented Taylor operator, which is shown to be the minimal
annihilator for the space of discrete monomial Hermite sequences of a fixed degree. All our results
can be of use, in particular, in the context of Hermite subdivision schemes and multi-wavelets.

Keywords: Hermite splines; polynomial reproduction; subdivision schemes; spectral condition

1. Introduction

Cardinal Hermite interpolation is a classical problem introduced in the seminal pa-
pers [1,2]. The idea is to reconstruct a function from samples of it and of its derivatives
up to a certain order. It turns out that this kind of interpolation offers more control on
the reconstructed data (e.g., tangent and curvature control), making it appealing in many
contexts of data processing applications.

Specifically, an interpolatory Hermite spline of order r is a piecewise polynomial of
degree 2r− 1 which interpolates Hermite data, that is function values and derivatives up to
the order r− 1.

The basis functions for the space of Hermite splines of order r, with integer knots, cor-
respond to the integer translates of r polynomial functions φr;0, φr;1, . . . , φr;r−1, sometimes
named Hermite B-splines, supported on [−1, 1], and satisfying the cardinality conditions:

φ
(i)
r;j (0) = δij (1)

where δ is the Kronecker delta.
It is well-known [1,2] that such conditions uniquely determine the basis functions and

imply that the Hermite interpolant constructed at integer knots can be written as

f = ∑
k∈Z

r−1

∑
j=0

f (j)(k)φr;j(−k),

for a function f ∈ Cr−1(R).
Hermite B-splines are refinable in the sense that there exist r× r matrices Ar(k), k ∈

{−1, 0, 1}, such that the following vector refinement equation is satisfied:

φT
r =

1

∑
k=−1

φr(2 · −k)T Ar(k) (2)
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where we have denoted with φr the function vector (φr;0, φr;1, . . . , φr;r−1)
T .

The refinement property (2) makes Hermite B-splines particularly interesting in the
context of vector multi-resolution analysis, multi-wavelets, and Hermite subdivision
schemes [3–12].

In this paper, we illustrate the more general refinability property of the Hermite B-
spline basis, with respect to any integer scaling (dilation) factor n ≥ 2. The first goal is to
propose a fast procedure for the computation of the mask coefficients associated to their
n-refinement equation. Some schemes for the computation of the mask in the binary case
have already been proposed in literature. The construction proposed in [13], for example,
relies on a recursive procedure for evaluating the explicit expression of the Hermite B-
spline vectors of any order. The case of a general dilation factor has been recently studied
in [14] and it exploits the refinability properties of the scalar cardinal B-splines with simple
knots. Our computation strategy represents a simpler alternative to [13,14]. It is a direct
consequence of the polynomial reproduction properties of the Hermite B-splines, which, in
turn, are linked to the spectral condition or sum rule property of the associated Hermite
subdivision scheme [15–17].

We further discuss the factorization of the matrix mask symbol in terms of proper
“annihilators” (compare for example [18]). We give a general result proving that the aug-
mented Taylor operators recently introduced in [19] correspond to the minimal convolution
operators annihilating Hermite polynomial sequences up to a fixed degree. They conse-
quently allow for a factorization of the Hermite B-spline mask symbol which highlights the
similarity between Hermite B-spline and standard B-splines in the respective contexts of
use (multiwavelets and Hermite subdivision on the one side, scalar wavelets and scalar
subdivision on the other side).

2. n-Refinability of Hermite B-Splines and Subdivision Schemes

Hermite B-splines are n-refinable, with respect to a general dilation factor n ≥ 2. This
follows from the observation that the space of Hermite splines with knots in Z/nZ is a
subspace of the space with integer knots. Thus there exist finite matrix sequences (An;r(k):
k = 1− n, . . . , n− 1), such that the following n-refinement equation is satisfied:

φT
r =

n−1

∑
k=−n+1

φr(n · −k)T An;r(k). (3)

From the cardinal interpolation properties of φT
r , it easily follows that:

1. The central coefficient is given by:

An;r(0) = D =


1

1
n

. . .
1

nr−1

;

2. The matrices An;r(k), for k = 1− n, . . . , n− 1, can be explicitly computed by evaluating
the elements of the vector φr and their derivatives up to the order r− 1 at k/n, i.e.,

An;r
i,j (k) = φ

(i)
r;j

(
k
n

)
;

3. The mask coefficients An;r(k) satisfy the symmetry and antisymmetry property:
An;r(k) = SAn;r(−k)S, with S = diag

(
1,−1, 1, . . . , (−1)r−1), for k = −n + 1, . . . ,−1.
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Example 1. In the case r = 2 and general n ≥ 2, we have

An;2(0) =
(

1 0
0 1/n

)
.

Furthermore, from the explicit expression of the functions φ2;0, φ2;1, which can be derived from
the cardinality conditions (1), we obtain

An;2(±k) =
k− n

n3

(
(2k + n)(k− n) ±k(k− n)

±6k 3k− n

)
, k = 1, . . . , n− 1.

In Theorem 1 below we show a strategy to compute the mask An;r, which is based on
the polynomial reproduction property of Hermite splines and is simpler than evaluating
the functions φr;0, . . . , φr;r−1 or the strategy presented in [14].

The possibility of expressing Hermite B-splines as n-refinable function vectors allows
the construction of corresponding n-ary Hermite subdivision schemes. Hermite subdivision
schemes [17,20–26] are iterative procedures which, starting from an initial Hermite-type
vector sequence p0 = (p0(k): k ∈ Z), generate vector-valued sequences by

Dj+1 pj+1 = SAn;r Dj pj, j ∈ N,

where SAn;r is the n-ary subdivision operator defined by

(SAn;r p)(i) = ∑
k∈Z

An;r(i− nk)p(k), i ∈ Z

The advantage of using n-ary in place of binary Hermite B-spline schemes essentially
lies in the velocity of the process. Roughly speaking, an n-ary scheme, with n > 2, reaches
a certain accuracy faster (i.e., in fewer steps) than a binary scheme. Although n-ary scalar
subdivision schemes have been the subject of several studies, see for example [27–29] and
citations therein, there are still very few results on their Hermite counterparts. The recent
paper [30] investigates the ternary Hermite case.

A fast computation strategy for the mask of the Hermite B-splines in the general
dilation case as presented in Theorem 1 thus helps the implementation of such schemes, as
it allows for an effective iterative interpolation of Hermite data by avoiding the explicit
construction of the basis functions and their evaluation at the integers.

3. Spectral Condition and Computation of the Mask

By definition, Hermite B-splines of order r reproduce polynomials up to the degree
2r− 1 and their derivatives. This means that there exists vector sequences cj = (cj(k): k ∈ Z),
such that

xj = ∑
k

cj(k)T φr(x− k), j = 0, . . . , 2r− 1. (4)

From the refinement equation it is easily proved that the polynomial reproduction
condition implies that the infinite block matrix L = (An;r(i− nk) : i, k ∈ Z) has eigenvalues
1, 1

n , 1
n2 , . . . , 1

n2r−1 with corresponding eigenvectors cj, j = 0, . . . , 2r− 1.
In fact, (3) and (4) can be written as

Φ(x) = L Φ(nx) and xj = cj Φ(x),

where Φ = (φ(· − k) : k ∈ Z), j = 0, . . . , 2r− 1.
Since xj = n−j(nx)j = n−jcj Φ(nx), we, furthermore, have

cjL = n−jcj, j = 0, . . . , 2r− 1. (5)
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To make notation easier, we denote by v f the following vector sequence associated to
any function f ∈ Cr−1(R):

v f (k) =


f (k)
f ′(k)

...
f (r−1)(k)

, k ∈ Z.

Then, from the cardinality properties of φ, the coefficient sequences cj
k are found to be:

cj(k) = vj(k)

where vj, j = 0, . . . , 2r− 1, are the discrete monomial Hermite sequences:

vj(k) := vpj(k), pj(x) = xj, k ∈ Z. (6)

The discrete polynomial reproduction condition (5) can also be written in terms of the
spectral condition:

∑
k

An;r(i− nk) vj(k) =
1
nj vj(i), i ∈ Z, j = 0, . . . , 2r− 1. (7)

This can also be formulated with the help of the subdivision operator SAn;r :

SAn;r vj =
1
nj vj, j = 0, . . . , 2r− 1.

An easy computation strategy for the refinement matrix mask of the Hermite B-splines
can be obtained by using (7) and support arguments, as shown in the following theorem.

Theorem 1. For a fixed dilation factor n ≥ 2 and a given order r ≥ 2, the mask coefficients
An;r(k), k = 1− n, . . . , n− 1, associated to the n-refinement equation of the Hermite B-spline, are
given by

An;r(0) = D = diag
(

1,
1
n

, . . . ,
1

nr−1

)
and

An;r(±k) = U(±(k− n))V U(∓1)−1, k = 1, . . . , n− 1,

where

V =


1
nr

1
nr+1

. . .
1

n2r−1

 =
1
nr D

and
U(k) =

(
vr(k), vr+1(k), . . . , v2r−1(k)

)
∈ Rr×r

with the vectors vj(k), j = r, . . . , 2r− 1 defined as in (6).

Proof. From (5), it follows that the eigenvalues 1, 1/n, . . . , 1/nr−1 are associated to the
matrix An;r(0), while the remaining ones 1/nr, 1/nr+2, . . . , 1/n2r−1 are related to the other
mask coefficients. In fact one has in particular, for j = 0, . . . , 2r− 1:

An;r(0) vj(0) =
1
nj vj(0),
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An;r(i) vj(0) + An;r(i− n) vj(1) =
1
nj vj(i), i = 1, . . . , n− 1.

We notice that vj(0) = 0, for j ≥ r, while vj(0) = ej for j = 0, . . . , r− 1 so that:

• The first equalities give the expected diagonal matrix expression for An;r(0);
• The remaining equalities just correspond to

An;r(i− n) vj(1) =
1
nj vj(i), i = 1, . . . , n− 1, j = r, . . . , 2r− 1.

The last formula can be written as:

An;r(i− n)U(1) = V U(i), i = 1, . . . , n− 1

from which the result follows for the coefficients with negative indices. The formula for the
positive indices coefficients follows from the symmetry and antisymmetry property.

Example 2. We apply Theorem 1 for r = 3. We have:

U(k) =

 k3 k4 k5

3k2 4k3 5k4

6k 12k2 20k3

, V =

 1
27

1
81

1
243

,

so, in the case of arity n = 2, 3, the positive indexed coefficients are given by:

A2;3(1) = U(−1)V U(−1)−1 =


1
2

5
32

1
64

− 15
16 − 7

32 − 1
64

0 − 3
8 − 1

16

,

A3;3(1) = U(−2)V U(−1)−1 =


64
81

16
81

4
243

− 40
81 0 2

243

− 40
81 − 32

81 − 10
243

,

A3;3(2) = U(−1)V U(−1)−1 =


17
81

2
27

2
243

− 40
81 − 13

81 − 4
243

40
81

8
81

1
243

.

Note that these are the same masks as obtained in [14] [Example 4.2, 4.3], but the computational
effort for our construction is less.

In order to better highlight the implementation simplicity of the procedure, we con-
clude this section by describing it through the following pseudocode (Algorithm 1), where
we have used the explicit expression for the m-th derivative of a monomial of degree j, and
the usual convention j!

(j−m)! = 0 for m ≥ j.
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Algorithm 1 Mask computation for Hermite B-splines
Require: n, r

1: D ← diag
(

1, 1
n , . . . , 1

nr−1

)
2: V ← 1/nrD
3: S← diag

(
1,−1, . . . , (−1)r−1)D

4: for j = 0 to 2r− 1 do

5: compute the column vector v̂j =
[
(−1)j−m j!
(j−m)! : m = 0, . . . , r− 1

]T

6: end for
7: construct the matrix Û =

[
v̂r, v̂r+1, . . . , v̂2r−1]

8: Û ← Û−1

9: for k = 1 to n− 1 do
10: for j = 0 to 2r− 1 do

11: compute the column vector vj =
[

j!
(j−m)! (k− n)j−m : m = 0, . . . , r− 1

]T

12: end for
13: construct the matrix U =

[
vr, vr+1, . . . , v2r−1]

14: compute A(k) = U VÛ
15: compute A(−k) = S A(k)S
16: end for
17: return A(−n + 1), . . . , A(−1), A(0), A(1), . . . , A(n− 1)

4. Factorization of the Mask Symbol

Polynomial reproduction properties (or spectral conditions) are strongly connected to
the factorizability of the mask symbol, given by

An;r(z) =
n−1

∑
k=1−n

An;r(k) zk, z ∈ C \ {0},

in terms of proper annihilators [16,18]. Such factorizations, in turn, are a major tool for
proving convergence and smoothness of Hermite subdivision schemes [16].

For Hermite schemes, operators for factorization purposes have been originally intro-
duced in [15,16], where they are called Taylor operators. Indeed, by adapting the results
of [16] from n = 2 to general arity n ≥ 2, there exists a finitely supported mask Bn;r such
that the Hermite B-spline symbol Ar;n satisfies

Tr(z)An;r(z) = n−r+1Bn;r(z)Tr(zn), (8)

where Tr is the complete Taylor operator of size (r× r), see [16]. The contractivity of the
subdivision operator SBn;r then implies Cr−1-convergence of the scheme SAn;r [16].

The factorization with respect to Tr holds true whenever the degree of polynomial
reproduction of the basis involved is at least r− 1. However, since Hermite B-splines of
order r have polynomial reproduction degree 2r− 1, the standard Taylor factorization (8),
while still valid, can be “improved”.

The fact that the reproduction order is greater than the spline order is termed “polyno-
mial over-reproduction” in [19], and through this over-reproduction, it follows immediately
from [19], that An;r factorizes in the sense of (8) with respect to the augmented Taylor oper-
ators Tr;p, p = r− 1, . . . , 2r− 1:
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Tr;p =



∆ −1 − 1
2 . . . − 1

(r−2)! −
p−r+1

∑
k=0

Gr−1
k ∆k

. . . . . .
...

...
. . . . . .

...
...

∆ −1 −
p−r+1

∑
k=0

G2
k ∆k

∆ −
p−r+1

∑
k=0

G1
k ∆k

∆p+2−r



(9)

where ∆ is the forward difference operator, ∆c(i) = c(i + 1) − c(i), i ∈ Z, and Gj
k,

k ≥ 0, j ≥ 1 are the coefficients for repeated integration with forward differences [31]. In general,
polynomial over-reproduction allows for factorizations that may lead to high smoothness
of the scheme, see [25,32–34].

Similar to (8), through the factorization results of [19,35] we obtain a mask Bn;r

such that
Tr;2r−1(z)An;r(z) = n−2r+1Bn;r(z)Tr;2r−1(zn). (10)

The augmented Taylor operators Tr;p generalize the complete Taylor operator Tr.
Indeed, we have Tr;r−1 = Tr.

The existence of a factorization as in (8) via certain degree of polynomial reproduction
can also be phrased in terms of minimal annihilators for the polynomial space, see [18].
Indeed, the complete Taylor operator Tr is unique in the sense that it is a minimal annihilator
for the space {1, x, . . . , xr−1}.

Following [18], we define a (r, p)-annihilator operator as a convolution operator
Hr;p satisfying (

Hr;pvj
)
(k) = ∑

i∈Z
Hr;p(k− i)vj(i) = 0, k ∈ Z, j = 0, . . . p, (11)

with vj as in (6). Here, r denotes the size of the operator and p denotes the maximal degree
of polynomials being annihilated. It is shown in [16] that the complete Taylor operator Tr

is an (r, r− 1)-annihilator.
An annihilator Hr;p is called minimal (with respect to subdivision) if for every subdivi-

sion operator SC satisfying SCvj = 0, j = 0, . . . , p, there exists a subdivision operator SB,
such that SC = SB Hr;p. It is shown in [18] that the complete Taylor operator Tr is indeed a
minimal (r, r− 1)-annihilator.

In the following, we put into evidence that the augmented Taylor operator Tr;p,
in analogy to the complete Taylor operator, is a minimal (r, p)-annihilator. This fact is
mentioned in [19], and we provide a formal proof here.

Lemma 1. The augmented Taylor operator Tr;p is a (r, p)-annihilator.

Proof. We prove this by induction on p. For p = r− 1, we know from [18] that the complete
Taylor operator Tr;r−1 is an (r, r− 1)-annihilator. For the induction step, we assume that
Tr;p−1 is a (r, p− 1)-annihilator and prove the result for p.

From [19] [Lemma 10] we know Tr;p = ∆r
(

Ir − yp−r+1eT
r
)
Tr;p−1, where

∆r =

(
Ir−1 0

0 ∆

)
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and yj =
(

Gr−1
j , . . . , G1

j , 0
)T
∈ Rr. Since Tr;p−1 annihilates vj, j = 0, . . . , p− 1, we imme-

diately get that Tr;p annihilates vj, j = 0, . . . , p− 1. Therefore, we only need to prove that
Tr,pvp = 0.

Ref. [19] [Corollary 16] implies Tr;p−1vp = wp−r+1, where wj = yj + er =(
Gr−1

j , . . . , G1
j , 1
)T

. Therefore,

Tr;pvp = ∆r

(
Ir − yp−r+1eT

r

)
wp−r+1 = ∆r

(
wp−r+1 − yp−r+1

)
= ∆rer = 0.

This concludes the induction step.

Lemma 2. The augmented Taylor operator Tr;p is a minimal (r, p)-annihilator.

Proof. We prove this result by induction on p. For p = r − 1, the augmented Taylor
operator Tr;r−1 is just the regular complete Taylor operator of [16] and the minimality result
follows from [16,18].

For the induction step, the proof is very similar to the proof of [16] [Proposition 1].
Indeed, suppose that SCvj = 0 for j = 0, . . . , p. In particular, SC annihilates vj, j =
0, . . . , p− 1. Therefore, the induction hypothesis implies the existence of a mask Bp−1, such
that SC = SBp−1Tr;p−1. Since SC annihilates vp as well, we have

0 = SCvp = SBp−1Tr;p−1vp.

From [19] [Corollary 16] we know that Tr;p−1vp = wp−r+1 with wi =
(

Gr−1
i , . . . , G1

i , 1
)T

.
This implies

0 = SBp−1wp−r+1. (12)

Denote by Bp−1 = [b0, . . . , br−1] the columns of the mask Bp−1. Then, (12) implies

0 = ∑
k∈Z

b0(i− nk)Gr−1
p−r+1 + . . . + br−2(i− nk)G1

p−r+1 + br−1(i− nk),

for all i ∈ Z. In terms of symbols this means that there exists a vector sequence d, such that

d(z)(z−n − 1) =
r−2

∑
`=0

b`(z)Gr−1−`
p−r+1 + br−1(z),

or equivalently,

br−1(z) =
[
b0(z), . . . , br−2(z), d(z)

]

−Gr−1

p−r+1
...

−G1
p−r+1

z−n − 1

.

Define Bp(z) :=
[
b0(z), . . . , br−2(z), d(z)

]
. With this notation, we have

Bp−1(z) = Bp(z)

(
Ir−1 −G(r−1):1

p−r+1
0 z−n − 1

)
,
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with G(r−1):1
j =

(
Gr−1

j , . . . , G1
j

)T
∈ Rr−1. This, together with SC = SBp−1Tr;p−1,

further implies

C(z) = Bp−1(z)

Tr−1(zn) −
p−r

∑
k=0

G(r−1):1
k (z−n − 1)k

0 (z−n − 1)p−r+1


= Bp(z)

(
Ir−1 −G(r−1):1

p−r+1
0 z−n − 1

)Tr−1(zn) −
p−r

∑
k=0

G(r−1):1
k (z−n − 1)k

0 (z−n − 1)p−r+1


= Bp(z)

Tr−1(zn) −
p−r+1

∑
k=0

G(r−1):1
k (z−n − 1)k

0 (z−n − 1)p−r+2

 = Bp(z)Tr;p(zn).

This implies SC = SBp Tr;p.

Example 3. We now use the augmented Taylor operators to factorize the symbols of the Hermite
B-spline masks. Recall that, if the spline order is r, then the polynomial reproduction order is 2r− 1.

The symbols of the augmented Taylor operators in the case r = 2, r = 3 are, respectively,
given by:

T2,3 =

− z−1
z − 5 z2+8 z−1

12z2

0 − (z−1)3

z3

, T3,5 =


− z−1

z −1 − 97 z3+114 z2−39 z+8
360 z3

0 − z−1
z − 9 z3+19 z2−5 z+1

24z3

0 0 (z−1)4

z4 .


From direct computations, it follows that for Hermite B-splines of order r = 2, the factors

Bn;r(z) in case of arity n = 2 and n = 3 are, respectively, given by:

B2;2(z) =

 3 z2+1
2z − z

24

− 6(z−1)3

z2
3
2 z− 1

2

, B3;2(z) =

 2 z3+1
z − 1

12 z2

− 12(z2−1)(z−1)2

z2 (2 z− 1)z

,

while for Hermite B-splines of order r = 3, and arities n = 2 and n = 3 we have:

B2;3(z) =


−14 z + 16 263 z3−264 z2+39 z−8

30z2
13 z
240 −

1
90

30− 30 z 37 z3−33 z2+5 z−1
2z2

5 z
48 −

1
48

0 12(−1+z)4

z3
5 z2−4 z+1

2z

,

B3;3(z) =


− 110 z4−80 z3−47 z+8

3z2
332 z4−224 z3−71 z+8

15z2
(163 z−40)z

1080

− 5(15 z4−10 z3−6 z+1)
z2

45 z4−28 z3−9 z+1
z2

(21 z−5)z
72

− 120(z2−2 z+1)(−1+z)3

z3
24(4 z3−9 z2+6 z−1)(−1+z)2

z3
14
3 z2 − 16

3 z + 5
3

.

It is worth noticing that, up to a constant factor, the determinant of the generic matrix factor
Bn;r(z) is the monomial zr(n−1). In other words, the polynomial matrix 1

zn−1 Bn;r(z) is unimodular,
so that, from (10),

det (An;r(z)) = n1−2rdet (Bn;r(z)) det(Tr,2r−1(z)−1) det(Tr,2r−1(zn)) = K zr(n−1)
(

zn − 1
z− 1

)2r
.



Mathematics 2021, 9, 2458 10 of 11

This observation reveals some similarity between the determinant of the symbol of Hermite
B-splines and the symbol of the scalar canonical B-splines of degree m, which, in the case of general

arity n, possesses
(

zn−1
z−1

)m+1
as its only polynomial factor [27].

5. Conclusions

We illustrated a simple and fast procedure for the computation of the mask coefficients
of Hermite B-spline vectors of any order and for any dilation factor using the polynomial
reproduction property satisfied by these splines. Such construction can, in particular, be of
use in the context of Hermite subdivision and multi-wavelets. We further showed that the
minimal annihilators for the space of monomials up to a degree (possibly larger than the
mask’s size) are exactly the augmented Taylor operators of [19]. For some examples, the
consequent factorization of the Hermite B-spline mask in terms of such annihilators shows
a similarity with scalar cardinal B-splines masks in terms of the determinant of the symbol.
It is the goal of future research to study this aspect in more detail and to extend the results
presented in this paper to the case of Hermite exponential splines, as in [18,36].
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