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����������
�������

Citation: Vinogradova-Zinkevič, I.
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Abstract: Much applied research uses expert judgment as a primary or additional data source, thus
the problem solved in this publication is relevant. Despite the expert’s experience and competence,
the evaluation is subjective and has uncertainty in it. There are various reasons for this uncertainty,
including the expert’s incomplete competence, the expert’s character and personal qualities, the
expert’s attachment to the opinion of other experts, and the field of the task to be solved. This paper
presents a new way to use the Bayesian method to reduce the uncertainty of an expert judgment by
correcting the expert’s evaluation by the a posteriori mean function. The Bayesian method corrects
the expert’s evaluation, taking into account the expert’s competence and accumulated long-term
experience. Since the paper uses a continuous case of the Bayesian formula, perceived as a continuous
approximation of experts’ evaluations, this is not only the novelty of this work, but also a new result
in the theory of the Bayesian method and its application. The paper investigates various combinations
of the probability density functions of a priori information and expert error. The results are illustrated
by the example of the evaluation of distance learning courses.

Keywords: decision making; Bayesian approach; uncertainty; expert judgments; subjectivity; proba-
bility density functions; posteriori mean function

1. Introduction

In any field of activity, a person faces choices. Different decisions are made in different
ways; sometimes people think them over too long, structuring the rationalization process,
or, vice versa, they reach conclusions quickly and intuitively, without a clear logic or
justification and without wondering about the consequences [1]. According to Hartley
and French, a judgment should be a well thought-out opinion that considers the degree of
scientific or other knowledge about previous experiences [2]. In decision-making, particular
attention is given to the uncertainty of the initial data. The uncertainty of the data can be
estimated in different ways, depending on its source [3]. Methods have been developed for
this purpose on the basis of specific mathematical theories such as fuzzy set theory and
mathematical statistics [4].

In solving decision-making tasks, we meet with problems of incomplete informa-
tion [5]. In situations in which the object under study cannot be measured with a device
and the empirical data are unavailable, incomplete, uninformative, or contradictory [6],
the data can be supplemented with an evaluation by a qualified specialist, an expert in the
relevant field who has knowledge and skills. An expert evaluation is a moment indicator
that can change over time and under the influence of acquired knowledge. Experts are
selected based on their professional competence, taking into account characteristics such as
work experience, academic degree, experience in the research activity, and ability to solve
specific tasks in the relevant field.

Unfortunately, the selection of a competent expert does not solve the problem of
uncertain data because of human factors and incomplete knowledge of the true meaning
of the object being evaluated. The existence of human errors does not imply or assume
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that people are incompetent in terms of perception or cognition [7]. An expert’s experience
in one particular field does not necessarily mean that the expert is also good at assessing
uncertainty in another or a related field [2]. Similarly, attachment to the opinion of other
experts, a wish to influence the final result, excessive self-confidence or an unwillingness to
agree with the opinion of others, the framing effect, disregard for the a priori probability [8],
a lack of concentration, and a lack of interest can lead to an inaccurate evaluation. The
data obtained based on expert judgments therefore have a stochastic nature. Changing the
composition of the experts, reducing or increasing the number of experts, and repeating
the evaluations will lead to ambivalent results [9]. If it is to be studied quantitatively,
uncertainty must be represented by a mathematical concept such as probability [10].

The main difference between expert judgment and empirical data is that expert opinion
is personal and has a so-called ‘subjective probability’ [2]. There is one opinion that it is
impossible to get accurate results on the basis of subjective probability. Brownstein and
others refute this view by arguing that science itself has a subjective component, aspects of
which can be reported probabilistically and must be interpreted according to the theory of
subjective probability [11,12]. Although judgments are subjective, expert evaluation results
from a synthesis of relevant prior knowledge and experience based on observable evidence
and careful reasoning [11]. In the Bayesian theory, subjective probabilities are based on a
well-known accurate and comprehensible system of axioms, and in this way, there is no
doubt from a mathematical point of view [13]. Cooke and Goossens believe that, within the
subjective interpretation of probability, uncertainty is the degree of a person’s conviction,
and can be measured by observing the person’s behaviour during the choice [10].

When considering expert opinions, special attention is paid to the psychology of
experts, taking into account their competence to the same extent as the quantitative infor-
mation, or the evaluation, that they provide [8]. One view is that if observers are allowed
to influence each other, the sample size will decrease, and, because of this, the accuracy of
the group evaluation will decrease. If useful information is to be obtained from multiple
sources, then one should ensure that those sources are independent of each other [14].
However, if we combine all the individual judgments, the result will be unexpectedly
good [8].

Experts express their judgments in different ways. In particular, the information
owned by the expert is extracted, and a probabilistic representation of this knowledge is
constructed [15], using pairwise comparisons, linguistic variables, and fuzzy and natural
numbers [3,9].

The trial roulette method is used to elicit the distribution [16], or experts are asked
questions about probabilities or quantiles that the analyst converts into parameters of
probability distributions [17]. According to Hartley and French, it can be difficult in
practice for experts to think in terms of distributions. Therefore, it is often wise to simplify
the problem without directly identifying the distribution of the associated parameters [2].
In this paper, experts evaluate quality on the usual 10-point scale. The next section presents
a review of the scientific literature on the Bayesian approach and expert judgment in the
Web of Science database was performed since this study is carried out within the Bayesian
method in decision-making.

2. Literature Review

The Bayesian approach is widely used in the theory and practice of various fields
of science. According to Arimone et al., almost all probabilistic approaches are derived
from Bayes’ theorem [18]. In Bayesian statistics, the preliminary distribution containing the
probable values for each model parameter is updated with data, resulting in an a posteriori
distribution. Bayesian methods based on models of the objective statistical function are
optimal from the point of view of the average. Regardless of the stochasticity of the data,
the average value remains constant [13,19]. The updated result can increase trust in the
initial opinions of the experts or adapt these views. As a rule, reliable information is given
in a narrow distribution received from an expert [2].
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Podofillini et al. employed a Bayesian model to aggregate expert judgments to identify
human failures in the field of radiation therapy. A qualitative scale was used for the
expert judgments; the judgments were then interpreted as information about the order
of magnitude of the error probability, and were aggregated according to the Bayesian
scheme [20]. Bigün presented a study on the analysis of the risks of major aviation accidents
in Europe using expert evaluation and a Bayesian approach. Models combining expert
judgments to predict future risks were investigated [21]. In the work of Leden et al.,
expert judgments were taken into account using the Bayesian error model in a study of
the evaluation of the effect on safety of a new bicycle crossing design [22]. Zavadskas et al.
applied a Bayesian approach to modelling the uncertainty associated with the probability
of failure, showing that the uncertainty can be reduced when new data are obtained. The
method of technological risk management proposed by these authors applies to many
industrial and non-industrial facilities that are subject to accidents [23].

A future direction in psychological research is the inclusion of the preliminary knowl-
edge of experts in the statistical analysis [15]. Ramli and colleagues developed a new
fuzzy Bayesian Network framework for modelling the psychological reaction and human
behaviour in a fire. Experts used fuzzy linguistic terms to determine a priori and conditional
probabilities in the Bayesian Network [24]. Zhou et al. offered a method using the Bayesian
Network auxiliary model to study the parameters of this network. Together with the data
set, expert judgments are used, and result in a more accurate machine learning result
with a more minor data set [25]. Sigurdsson et al. presented an overview of Bayesian
belief nets for managing expert judgments, and described their use in modelling system
reliability [26]. Varis et al. presented a probabilistic Bayesian matrix approach for obtaining
expert judgments using belief networks from artificial intelligence. The authors studied
the impact of surface water on climate change [27]. Rosqvist also followed the Bayesian
approach for the aggregation of expert evaluations and the use of expert judgment for new
or regularly modified systems [28].

Wisse et al. used moment methods to combine expert judgments, showing how ex-
pert evaluations of moments can be combined in a non-Bayesian way to build an a priori
estimate [29]. Smets compared the transferable belief model and the Bayesian approach
in her study of expert judgment and the reliability problem. The author claimed that it is
impossible to prove which solution is correct since each approach matches different regula-
tory requirements [30]. Hartley proposed the Bayesian Framework for Structural Expert
Judgment (SEJ) alternative to traditional non-Bayesian methods. Posterior distributions are
created using the clustering, calibration, and aggregation stages [2].

Mockus argued that, when comparing heuristic algorithms that reflect real-life condi-
tions, the Bayesian approach improves efficiency. Researchers often work hard to determine
the best parameters for a proposed heuristic. In Mockus’s work, the Bayesian approach is
used to adjust heuristic parameters automatically to find optimal combinations of heuris-
tics [31]. Capa Santos et al. used a Bayesian approach to model operational risk, including
macroeconomic effects and expert evaluations [32]. Mazzuchi and van Dorp provided a
Bayesian model of expert evaluation to determine lifetime distributions for optimizing
maintenance [33]. Jiang et al. proposed a method based on Bayesian theory to iden-
tify the relationship between product reliability indicators and quality characteristics in
production [34].

Koh et al. applied the Bayesian framework to research into the intensity of exposure
to lead in the air in industry. The lead measurement data were logarithmically converted to
log-transformed geometric means (LGM) and log-transformed geometric standard devia-
tions (LGSD) values. The experts’ prior distributions were updated with the corresponding
LGMS and LGSD values using the Bayesian approach [35]. Åström et al. used the Bayesian
approach to include expert judgments in regional evaluations of the sensitivity and speci-
ficity of the analysis of the source of drinking water [36] and Parent and Bernier used for
studying the risks of extreme hydrological events [37]. Washington and Oh applied Bayes’
theory in a study of the safety of railway crossings in Korea [38], and Ramachandran et al.
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did the same in the field of occupational health [39]. These authors claimed that expert
judgment improved their knowledge about dangers in the workplace, and suggested
combining expert assessments with sparse data [39]. Ramachandran et al. also noticed
a very high degree of agreement among the experts, although the experts represented
different areas of interest. They concluded that there is presumably a vast amount of
specialized knowledge that experts use to make similar judgments [39]. Vinogradova et al.,
to clarify the values of the weights of multi-criteria methods, used the idea of a revaluation
of the Bayes hypotheses, combining various evaluations of the weights obtained by various
methods into an aggregate, integral judgment [9].

One of the critical points in the decision-making process is the identification of uncer-
tainties, such as the consistency between parameters and the combination of judgments.
Werner et al. paid great attention to the dependence between variables [40]. Wilson investi-
gated the dependence of several expert evaluations, both within and between experts [17].
Werner et al. and French et al. discussed mathematical methods for the aggregation of
evaluations, such as the pool of opinions, Cooke’s Classical Model, and Bayesian aggrega-
tion [6,40].

Considerable attention has been paid to verifying the stability of the methods them-
selves. Vinogradova has also researched the stability of decision-making methods, in-
cluding Analytic Hierarchy Process (AHP), Fuzzy Analytic Hierarchy Process (FAHP) [3],
Simple Additive Weighting (SAW), Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS), Multi-objective Optimization (MOORA), and Preference ranking
organization method for enrichment evaluation (PROMETHEE) [41,42], and the influ-
ence of data uncertainty on the final results. Ziemba uses stochastic analysis to study
the uncertainty of the parameters of alternatives in the PROSA-C (PROMETHEE for Sus-
tainability Assessment—Criteria) method [43]. Lam et al. proposed an entropy–fuzzy
VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje) model in which objective
weights are used, avoiding subjectivity in determining the weights of criteria [44].

A new concept is used to model uncertainty in decision-making problems—linear
Diophantine fuzzy information. Diophantine equations have, as a rule, many solutions,
therefore, are called indefinite. The problems of linear Diophantine fuzzy information were
dealt with by Riaz et al., proposing new aggregation operators for modeling uncertainty
that remove the strict restrictions of existing operators [45]. Particular attention should
be paid to the works of Narayanamoorthy et al. [46–50] on decision making, using the
methodology of MCDM in hesitant fuzzy. Narayanamoorthy uses Normal Wiggly Hesitant
Pythagorean Fuzzy Set with DEMATEL (Decision Making Trial and Evaluation Laboratory
Model) and COPRAS methods [46], the scenarios of hesitant fuzzy number with MOORA,
TOPSIS, VIKOR [47], and SWARA (Step-wise Weight Assessment Ratio Analysis) [48]
methods, proposed normal wiggly hesitant fuzzy set (NWHFS), as an extension of hesitant
fuzzy set [49], also the new methodology HF-CRITIC (Hesitant Fuzzy Criteria Importance
Through Inter-criteria Correlation) and HF-MAUT (Hesitant Fuzzy Multi Attribute Utility
Theory) to get hesitant fuzzy information in order to select the best alternative [50]. Zavad-
skas et al. presented a new multi-criteria decision-making approach that reduces errors
and instabilities caused by novice evaluators using the heuristic evaluation methodology
HEBIN (Heuristic Evaluation Based on Interval Numbers) under MULTIMOORA-IVNS
(Multi-Objective Optimization by Ratio Analysis under Interval-Valued Neutrosophic
Sets [51]. When optimizing under uncertainty, two different approaches are widely used:
Min-Max and Bayesian [31].

Literary analysis confirms the relevance of the task solved in this publication. Scientists
have proposed many methods, methodologies, and theories working with data, trying to
reduce their uncertainties, depending on the different source of their occurrence. There is
no single correct solution or best method, which explains the emergence of new solution
alternatives. This research proposes a new view of data uncertainty, using the accumulated
experience of expert evaluations and the expert’s competence, based on the optimality
of the Bayesian method in terms of the mean. The a posteriori mean function corrects
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the expert’s estimate. A continuous set of possible values of some finite interval of the
evaluation scale is used, describing the accumulated experience and competence of the
expert by some distributions—such a Bayesian approach has not been proposed in the
literature, which gives grounds for conducting this research. This research is possible using
mathematical packages that approximate each value of the estimation interval on a straight
line. The optimality of the proposed approach is interpreted as the averaged value of the a
posteriori function, depending on the a priori information and the expert’s competence.

The publication consists of seven sections. Section 1 is an introduction to the issues of
the paper and Section 2 is a literary analysis. Section 3 describes the proposed theory of
applying the Bayesian method in expert judgment, while Section 4 is devoted to the study
and testing of the proposed theory. In Section 5, cases of using different density functions
to describe the accumulated experience of expert estimates and expert error are considered.
The cases are tested by changing the parameters used. In Section 5, the problem of the
evaluation of the quality of distance courses is solved, in which the proposed theory is
applied. In Section 6, the results are discussed, while Section 7 presents the conclusions.

3. Application of the Bayesian Approach

In this paper, the Bayesian method is used to adjust the expert’s evaluation using the
value of the a posteriori probability mean function fm(X), which depends on the experience
of the a priori estimation that has been collected and the qualification of the expert making
the decision. The expert evaluates the grade of the quality as X. The a posteriori probability
mean function (from now on, the mean function) adjusts the expert’s evaluation:

fm(X) =
∫ b

a
θ· f (θ ∨ X)dθ, (1)

where [a, b] is the interval of expert evaluations. In this research, a = 1, b = 10.
In this case, the function fm(X) is the adjusted evaluation of the expert, and repre-

sents the best approximation to the expert’s judgment when X is the expert’s grade. The
adjustment (correction) of the expert’s evaluation is the difference between the adjusted
value and the grade X.

The Bayesian method uses all the accumulated experience (i.e., all the past information
about the evaluation and qualifications of a particular expert) to determine the a posteriori
probability density function. This publication uses the continuous case of the Bayesian
formula, which can be written in the following way [5]:

f (θ ∨ X) =
f (X ∨ θ)· f (θ)

f (X)
, (2)

where the density function f (θ ∨ X) is the a posteriori probability distribution of the param-
eter θ using empirical information about the random variable X. The parameter θ is the
true quality, otherwise known as the state of nature.

The conditional density function f (X ∨ θ) in the Bayesian formula is the conditional
probability distribution of the new evaluation X when the true state of nature is θ. This
function defines the error that is made by the expert when accepting the grade X instead of
the true quality θ. The conditional density function of the expert error f (X ∨ θ) depends
on the qualification of the expert.

The a posteriori probability density function f (θ ∨ X) updates the a priori information
about θ according to the sample data X. The a priori information accesses the a posteriori
probability density function f (θ ∨ X) through the a priori probability density function f (θ),
with all the sample information entered via the function f (X ∨ θ).

The a priori probability density function f (θ) is the accumulated evaluation experience,
where θ is the true quality. The primary quality information is based on a subjective expert
judgment or derived from previous observations and evaluations. The accumulation of
expert judgment provides valuable knowledge for decision-makers [52]. Washington and
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Oh thought that, in most cases, the inclusion of a priori information in the evaluation
process increases the reliability of the result [38].

The a priori probability distribution is adjusted according to the empirical information;
it is not necessary to specify f (θ), and sometimes, it is enough to identify the a priori distri-
bution type, which includes f (θ). More broadly, a priori information can be information
based either on science or on accumulated objective data or self-assessment, research, or
another type of subjective information. The use of a priori information depends on the
purpose of the analysis. A comparison of a priori and a posteriori information identifies how
the sample information changed the initial assumptions.

The function f (X) is a density function of the judgments X for all possible values of
the parameter θ, estimating their subjective probabilities [5]:

f (X) =
∫ ∞

−∞
f (X ∨ θ)· f (θ)dθ. (3)

For a better understanding, the proposed Bayesian approach is illustrated in Figure 1.
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The following section details the prior f (θ) and expert error f (X ∨ θ) density func-
tions used in the further research. The research analyses the possibility of using various
combinations of probability density functions to evaluate the quality of distance learning
courses.

3.1. A Priori Probability Density Functions

In this research, the a priori information is given by a uniform, triangular or Gaussian
probability density function. If experience has not been accumulated or is unknown, then
a uniform distribution is used as the a priori probability function. In other cases in this
paper, when experience has been collected, the a priori information is set by the triangle or
Gaussian distributions that are most suitable for describing expert judgments.

The a priori triangular distribution is used so that, in further research, the results
obtained can be approximated and compared with other works in the field of expert judg-
ments that use fuzzy numbers. Triangular fuzzy numbers specify the range of possible
judgments, indicating the minimum and maximum values and the most likely evaluation
that belongs to the specified interval. One of the most commonly used Gaussian distribu-
tions is characterized by random variables that sum up a set of independent factors. The
Gaussian distribution is limiting for many other distributions.

3.1.1. The Uniform Distribution for Defining the a Priori Information

When the density of all random variables in the range is constant, it is given by a
continuous uniform distribution. The uniform distribution probability density function
is used when there is no collected experience. Alternatively, it may be supposed that the
scores of the quality of the evaluated objects are uniformly distributed over the whole range;
this means that it is assumed that θ is equally distributed over the possible evaluation
scale. The probability density function of a uniform distribution f (θ) is determined by the
following formula:

f (θ) =
{ 1

b−a , when x ε[a, b]
0, when x /∈ [a, b]

(4)

The quality is evaluated on a ten-point scale, i.e., a = 1, b = 10.

3.1.2. The Triangular Distribution for Defining the a Priori Information

A triangular distribution is used when the most probable mean value in a given range
is known. The probability density function f (θ) plot consists of two segments, one of
which increases when θ changes from the minimum to the mean, and the other of which
decreases from the mean to the maximum value θ.

When the collected information is known in the case of expert evaluations, it is not
difficult to write down three values: the minimum, the maximum, and the most likely
(µ) values. In this paper, we calculated the value of the mean of all the accumulated
evaluations, but one can also use the mode.

Since a priori experience may not be enough, the usual interval from the evaluation
scale [a, b] is used to determine the minimum and maximum values of the triangle:

f (θ) =


2(θ−a)

(µ−a)(b−a) , when a ≤ θ ≤ µ
2(b−θ)

(b−µ)(b−a) , when µ ≤ θ ≤ b
0, when θ /∈ [a, b]

. (5)

3.1.3. The Gaussian Distribution for Defining the a Priori Information

The probability density function of the normal or the Gaussian distribution is sym-
metric relative to the mean value, and gives a good characterization of many measurement
results; it is therefore one of the most frequently used continuous distributions. The pa-
rameters when the a priori probability density function has a Gaussian distribution, i.e., an
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average value µ and standard deviation σ, are set based on the information collected by
the institution for the previous years:

f (θ) =
1

σ
√

2π
e−

(θ−µ)2

2σ2 . (6)

The standard deviation describes the change in a set of values about the mean and is
calculated using the formula:

σ =

√
1

n− 1

n

∑
i=1

(pi − p)2 (7)

where pi is the sample element, p the sample mean, and n the sample size.

3.2. The Conditional Density Function

The conditional density function describing the expert’s error depends on the expert’s
competence, and shows how much the expert’s evaluation deviates from the true score.

The function f (X ∨ θ) is defined by the parameters X and θ, where X is the expert’s
evaluation when the true quality is θ. The expert’s error k, given by the distribution
f (X ∨ θ), depends on the expert’s competence and is the deviation of the expert’s score of
X from the true quality θ. The error k of an experienced expert is set at no more than 1, and
k = 1 is used in this paper. The more competent the expert, the smaller the error will be;
the error of the most experienced expert is k = 0.8. Correspondingly, the error of the least
experienced expert is k = 1.2.

3.2.1. The Triangular Distribution for Defining the Expert’s Error

The density function of the expert error f (X ∨ θ) is given by a triangular distribution,
which is symmetric relative to the state of nature θ. The error k = |X− θ| is determined as
the deviation of the evaluation from the true goodness θ.

The conditional probability density function given by the triangular distribution
describing the expert’s error is written as follows:

f (X ∨ θ) =


X−θ+k

k2 , when θ − k ≤ X ≤ θ
−X+θ+k

k2 , when θ ≤ X ≤ θ + k
0, when X /∈ [θ − k, θ + k]

. (8)

3.2.2. Gaussian Distribution Used for Defining the Expert’s Error

The conditional probability density function given by the Gaussian distribution for
the expert’s error is defined as:

f (X ∨ θ) =
1

k
√

2π
e−

(X−θ)2

2k2 . (9)

The function is symmetric relative to the state of nature θ.
The probability density functions described above are used in the following sections to

analyse the possibility of combining them in the expert judgment. The influence of changes
in the parameters of the functions describing the a priori information and the expert error
on the clarification of the evaluation X, depending on the expert’s competence, is analysed.

The complexity of the problem solved in this article is that θ and X are considered to
be continuous random variables, while experts usually use integers X in the range from 1
to 10 in their evaluations. For a continuous approximation to be acceptable, it is necessary
to make a correct selection of the ranges of changes in the θ and X values.
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4. Case Study Using the Bayesian Approach for Expert Judgment

When the Bayesian approach is used in expert judgment, the expert evaluates the
quality of the object in the usual way on a 10-point scale, giving a score of X. The conditional
density function of the expert error, f (X ∨ θ), depends on the competence of the evaluating
expert. The complete evaluation of the estimated object is generalized by the a posteriori
mean function, which is calculated using Formula (1).

This paper discusses the use of five different cases of combinations of the a priori and
conditional density functions described in Section 2. During the analysis, the parameters
describing the a priori information function and the expert error function change, and
this tends to change the values of the mean functions. In the first and second cases,
combinations of the a priori probability uniform distribution with the conditional triangular
and Gaussian distributions are studied. In the third case, a triangular distribution is used
for the a priori information and the expert error functions. An a priori probability Gaussian
distribution is considered in the fourth and fifth options, with triangular and Gaussian
distributions.

4.1. Case 1: Uniform Distribution with a Triangular Distribution

Since the true quality θ is unknown, θ may lie at any point in the range [a, b], thus
the expert’s error triangle slides across the range of the a priori distribution. One of the
separate cases is shown in Figure 2 when θ is found at Point 7.
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Figure 2. The probability density functions of uniform (a priori information) and triangle (expert
error) distributions.

Since f (X) is an integral of the product of two functions, the density of the function
f (X ∨ θ) = 0 when X /∈ [X− k, X + k], and Formula (3) is rewritten as follows:

f (X) =
∫ X

X−k
f (X ∨ θ)· f (θ)dθ +

∫ X+k

X
f (X ∨ θ)· f (θ)dθ. (10)

The function of the estimates X for all possible values of θ for the a priori uniform and
conditional triangle distributions is as follows:

f (X) =
∫ X

X−k

−X + θ + k
k2 · 1

(b− a)
dθ +

∫ X+k

X

X− θ + k
k2 · 1

(b− a)
dθ. (11)
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The a posteriori probability function equals:

f (θ ∨ X) =



(−X+θ+k)
k2 · 1

(b − a)∫ X
X − k

−X+θ+k
k2 · 1

(b − a) dθ+
∫ X+k

X
X − θ+k

k2 · 1
(b − a) dθ

, when X − k ≤ θ ≤ X

(X − θ+k)
k2 · 1

(b − a)∫ X
X − k

−X+θ+k
k2 · 1

(b − a) dθ+
∫ X+k

X
X − θ+k

k2 · 1
(b − a) dθ

, when X ≤ θ ≤ X + k

0, when θ /∈ [X − k, X + k]

=



(−X+θ+k)
k2 · 1

(b − a)
1

(b − a)

((
− θ·(2·X − θ − 2·k)

2·k2

)
|XX − k+

(
θ·(2·X − θ − 2·k)

2·k2

)
|X+k
X

) , when X − k ≤ θ ≤ X

(X − θ+k)
k2 · 1

(b − a)
1

(b − a)

((
− θ·(2·X − θ − 2·k)

2·k2

)
|XX − k+

(
θ·(2·X − θ − 2·k)

2·k2

)
|X+k
X

) , when X ≤ θ ≤ X + k

0, when θ /∈ [X − k, X + k]

=


(−X+θ+k)

k2 , when X − k ≤ θ ≤ X
(X − θ+k)

k2 , when X ≤ θ ≤ X + k
0, when θ /∈ [X − k, X + k]

.

(12)

The mean function of (12) is calculated according to Formula (1):

fm(X) =
∫ X

X−k

(
θ· (−X+θ+k)

k2

)
dθ +

∫ X+k
X

(
θ· (X−θ+k)

k2

)
dθ

=
(
−3Xθ2+2θ3+3kθ2

6·k2

)
|XX−k +

(
3Xθ2−2θ3+3kθ2

6·k2

)
|X+k
X

= 3X−k
6 + 3X+k

6 = X

(13)

When the a priori probability density function is described by a uniform distribution
and f (X ∨ θ) by a triangular distribution, the mean function fm(X) equals X, regardless
of the expert’s error k. In this case, the correction of the expert’s evaluation is equal to 0.
Therefore, it is convenient to compare the evaluation results based on the accumulated a
priori information with a linear function, which implies the absence of initial information.

4.2. Case 2: Uniform Distribution with a Gaussian Distribution

The conditional density function f (X ∨ θ) of the Gaussian distribution shifts over the
entire a priori uniform distribution interval. The function of the estimate X for all possible
values of the parameter θ is as follows:

f (X) =
∫ X+k

X−k

1
k
√

2π
e−

(X−θ)2

2k2 · 1
(b− a)

dθ. (14)

In this case, the a posteriori function is:

f (θ ∨ X) =


1

k
√

2π
e
− (X−θ)2

2k2 · 1
(b−a)∫ X+k

X−k
1

k
√

2π
e
− (X−θ)2

2k2 · 1
(b−a) dθ

, when θ ε[a, b]

0, when θ /∈ [a, b]

=


e
− (X−θ)2

2k2∫ X+k
X−k e

− (X−θ)2

2k2 dθ

, when θ ε[a, b]

0, when θ /∈ [a, b]

.

(15)
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According to Formula (1), the mean function of the a posteriori function (15) is calcu-
lated as follows:

fm(X) =
∫ X+k

X−k θ· f (θ ∨ X)dθ =
∫ X+k

X−k θ· e
− (X−θ)2

2k2∫ X+k
X−k e

− (X−θ)2

2k2 dθ

dθ

= 1∫ X+k
X−k e

− (X−θ)2

2k2 dθ

·
∫ X+k

X−k θ·e−
(X−θ)2

2k2 dθ

= 1∫ X+k
X−k e

− (X−θ)2

2k2 dθ

·
∫ X+k

X−k (−X + θ + X)·e−
(X−θ)2

2k2 dθ

=
−
∫ X+k

X−k (X−θ)·e
− (X−θ)2

2k2 dθ∫ X+k
X−k e

− (X−θ)2

2k2 dθ

+
X·
∫ X+k

X−k ·e
− (X−θ)2

2k2 dθ∫ X+k
X−k e

− (X−θ)2

2k2 dθ

=
k2 ∫ X+k

X−k e
− (X−θ)2

2k2 d(e
− (X−θ)2

2k2 )∫ X+k
X−k e

− (X−θ)2

2k2 dθ

+ X =

k2 e
− (X−θ)2

2k2

∣∣∣∣∣∣
X+k

X−k∫ X+k
X−k e

− (X−θ)2

2k2 dθ

+ X = X.

(16)

Combining a uniform and a Gaussian distribution gives an analogous result fm(X) = X.
It is convenient to compare the corrected values of the expert’s evaluation with the graphic
fm(X) = X showing the zero correction of the expert’s evaluation.

Thus, for a priori probability having a uniform distribution with conditional density
functions of the triangular or Gaussian distributions, the mean functions are fm(X) = X,
regardless of the parameter k of the conditional density function. In the absence of accu-
mulated experience in the evaluation, the expert scores X are not adjusted and remain the
same.

4.3. Case 3: Triangle Distribution That Determines a Priori Information and Expert’s Error

The a priori information is described by the triangle distribution given in Formula (5).
The expert’s error is described by the conditional density function of the triangle
(Formula (8)) with the mean at the point θ. The triangle is moving within the a priori
function.

Formula (10) calculates the function of the evaluations X for all possible values of the
parameter θ :

f (X) =
∫ X

X−k
(−X+θ+k)

k2 · 2(θ−a)
(µ−a)(b−a)dθ +

∫ X+k
X

(X−θ+k)
k2 · 2(b−θ)

(b−µ)(b−a)dθ. (17)

Using the Bayesian Formula (2), the a posteriori function is calculated as follows:

f (θ ∨ X) =



(−X+θ+k)
k2 · 2(θ−a)

(µ−a)(b−a)∫ X
X−k

(−X+θ+k)
k2 · 2(θ−a)

(µ−a)(b−a) dθ+
∫ X+k

X
(X−θ+k)

k2 · 2(b−θ)
(b−µ)(b−a) dθ

, when X− k ≤ θ ≤ X

(X−θ+k)
k2 · 2(b−θ)

(b−c)(b−a)∫ X
X−k

(−X+θ+k)
k2 · 2(θ−a)

(µ−a)(b−a) dθ+
∫ X+k

X
(X−θ+k)

k2 · 2(b−θ)
(b−µ)(b−a) dθ

, when X ≤ θ ≤ X + k

0, when θ /∈ [X− k, X + k]

(18)

Tables 1 and 2 provide the corrected expert evaluations fm(X) for different scores of
X by changing the parameter of the mean µ of the a priori probability triangle function
(Table 1) and the expert error variable k (Table 2). When studying the influence of µ on the
function fm(X), the expert error parameter k remains unchanged and is equal to k = 1.
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Table 1. Dependence of the function fm(X) value on the parameter µ and the grade X in case 3.

fm(X) µ = 5 µ = 6.5 µ = 7 µ = 8.5 µ = 9 µ = 9.5

X = 1 1.3687 1.3477 1.3431 1.3333 1.3309 1.3288
X = 2 2.2696 2.2959 2.3021 2.3162 2.3199 2.3232
X = 3 3.1762 3.2392 3.2556 3.2952 3.3061 3.3159
X = 4 4.0880 4.1770 4.2024 4.2688 4.2882 4.3064
X = 5 5.0045 5.1082 5.1410 5.2346 5.2642 5.2932
X = 6 5.9254 6.0320 6.0694 6.1884 6.2304 6.2736
X = 7 6.8504 6.9469 6.9848 7.1228 7.1790 7.2418
X = 8 7.7792 7.8513 7.8833 8.0222 8.0917 8.1810
X = 9 8.7114 8.7432 8.7593 8.8485 8.9103 9.0175
X = 10 9.6468 9.6199 9.6042 9.4762 9.3056 8.1111

Table 2. Dependence of the value of the function fm(X) on the expert error k and the grade X in case
3, when µ = 7.

k X = 1 X = 2 X = 3 X = 4 X = 5 X = 6 X = 7 X = 8 X = 9 X = 10

0.8 1.2729 2.2403 3.2035 4.1615 5.1131 6.0568 6.9905 7.9111 8.8145 9.6943
1 1.3431 2.3021 3.2556 4.2024 5.1410 6.0694 6.9848 7.8833 8.7593 9.6042

1.2 1.4143 2.3646 3.3081 4.2435 5.1688 6.0814 6.9777 7.8531 8.7 9.5077

Analysing the results of Table 1, we notice a trend in the way in which the mean value
µ of the a priori probability density function affects the refinement of the evaluation of X by
the function fm(X). When X < µ, the value of the evaluation of X is adjusted upwards,
and, accordingly, when X > µ, the evaluation of X decreases. In the case of X = µ, the
change in the value of X is the most insignificant.

The closer the value of X is to the value of µ, the smaller the correction, and vice versa.
Note that for X = 1 and X = 10, the results of refining the evaluations are inaccurate
and illogical. Figure 3 shows the graphic fm(X) for µ = 9.5, k = 1 on the segment X ε
[0;10]. At the end of the interval, the graphic is bent, which can be explained by the use of
a triangular distribution for the a priori density function; since f (θ) = 0, when θ /∈ [a, b],
when integrating, the conditional triangular distribution goes beyond the interval by a
distance k.
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Figure 3. Function fm(X) for case 3, when µ = 9.5, k = 1.

This is especially evident when the value of µ is high. Therefore, for a high value of
the mean µ of the function f (θ), this option is not recommended because of inaccuracies at
the ends of the function fm(X).
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When studying the dependence of the parameter k on the function fm(X), at µ = 7,
this pattern is observed (Table 2). The smaller the value of k, the more minor the correction
of the evaluation of X. If the expert making the decision is of high competence, then
his judgment is more trustworthy, and the a priori evaluation has less influence on the
correction of his score.

Despite the size of the change in the evaluation depending on the value of k, the
tendency to correct the score remains the same. The evaluation decreases if the mean value
of the function f (θ) is less than the evaluation X and increases in the opposite case.

4.4. Case 4: Gaussian Distribution with a Triangle Distribution

The a priori information is defined by a Gaussian distribution, and the expert error by
a conditional triangle distribution. For this case, the function f (X) is as follows:

f (X) =
∫ X

X−k

(−X + θ + k)
k2 · 1

σ
√

2π
e−

(θ−µ)2

2σ2 dθ +
∫ X+k

X

(X− θ + k)
k2 · 1

σ
√

2π
e−

(θ−µ)2

2σ2 dθ. (19)

Accordingly, the a posteriori function is:

f (θ ∨ X) =



(−X+θ+k)
k2 · 1

σ
√

2π
e
− (θ−µ)2

2σ2

∫ X
X−k

(−X+θ+k)
k2 · 1

σ
√

2π
e
− (θ−µ)2

2σ2 dθ+
∫ X+k

X
(X−θ+k)

k2 · 1
σ
√

2π
e
− (θ−µ)2

2σ2 dθ

, when X− k ≤ θ ≤ X

(X−θ+k)
k2 · 1

σ
√

2π
e
− (θ−µ)2

2σ2

∫ X
X−k

(−X+θ+k)
k2 · 1

σ
√

2π
e
− (θ−µ)2

2σ2 dθ+
∫ X+k

X
(X−θ+k)

k2 · 1
σ
√

2π
e
− (θ−µ)2

2σ2 dθ

, when X ≤ θ ≤ X + k

0, when θ /∈ [X− k, X + k]

(20)

We will examine the dependence of the mean function fm(X) on the parameters of
the mean µ, the standard deviation σ, and the expert error k of the Gaussian distribution
function f (θ).

Let us study the case for different µ when σ = 1 and k = 1 (Table 3). Analysing the
results of Table 3, we can notice the same trend as we saw in case 3. When X < µ, the value
of the evaluation of X is adjusted up, and, in the same way, when X > µ, the evaluation of
X decreases. Unlike the previous case, if X = µ, then the values of X remain unchanged
and are not adjusted.

Table 3. Dependence of the function fm(X) value on the mean of f (θ) and the grade X in case 4.

fm(X) µ = 5 µ = 6.5 µ = 7 µ = 8.5 µ = 9 µ = 9.5

X = 1 1.5024 1.6184 1.6447 1.7132 - -
X = 2 2.4033 2.5394 2.5854 2.6695 2.7105 2.7105
X = 3 3.2837 3.4868 3.5024 3.6146 3.6711 3.3705
X = 4 4.1469 4.3552 4.4033 4.5519 4.5568 4.6184
X = 5 5 5.2171 5.2837 5.4554 5.5024 5.5443
X = 6 5.8531 6.0741 6.1469 6.3459 6.4033 6.4554
X = 7 6.7163 6.9259 7 7.2171 7.2837 7.3459
X = 8 7.5967 7.7829 7.8531 8.0741 8.1469 8.2171
X = 9 8.4976 8.6541 8.7163 8.9259 9 9.0741
X = 10 9.4145 9.5446 9.5967 9.7829 9.8531 9.9259

The problem of correcting the evaluation appears at X = 1 when the mean value of
the f (θ) function is high (µ > 9). A single case of the graph of fm(X), when µ = 9 and the
parameters are σ = 1, k = 1, is shown in Figure 4.
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The explanation for this is the thin Gaussian tail of the a priori distribution and the
conditional triangular distribution that goes beyond the interval by a distance k. Despite
this problem, this option can be used, since the evaluation of X = 1 is unlikely when
evaluating quality, and it is possible to narrow the evaluation scale to [2; 10].

When µ = 7, this problem does not arise, with the same parameter of the a priori
function f (θ) of σ = 1 (Table 4). Changing the parameter k, which reflects the expert’s
competence, the correction of the evaluation increases with the value of k. In the case of
µ = X, the evaluation correction is zero for any value of k.

Table 4. Dependence of the value of the function fm(X) on the expert error k and the grade X in case
4, when σ = 1, µ = 7.

k X = 1 X = 2 X = 3 X = 4 X = 5 X = 6 X = 7 X = 8 X = 9 X = 10

0.8 1.4632 2.2412 3.3498 4.2761 5.1916 6.6098 7 7.9018 8.8084 9.7239
1 1.6447 2.5854 3.5024 4.4033 5.2837 6.1469 7 7.8531 8.7163 9.5967

1.2 1.8281 2.7573 3.6633 4.5401 5.1842 6.2001 7 7.7992 8.6153 9.4599

To study the influence of the σ parameter on the function fm(X), the remaining
parameters µ = 5 and k = 1 are left unchanged (Table 5). For a higher value of σ, the a priori
function f (θ) has a flatter form, and the correction of the evaluation of X is insignificant.
When the parameter σ decreases, the correction of the function fm(X) increases. In the case
of µ = X, the evaluation correction is zero for any value of the parameter σ.

Table 5. Dependence of the value of the function fm(X) on σ, the f (θ) standard deviation parameter,
and the grade X in case 4, when µ = 5, k = 1.

σ X = 1 X = 2 X = 3 X = 4 X = 5 X = 6 X = 7 X = 8 X = 9 X = 10

0.5 1.8451 2.7838 3.6618 4.4050 5 5.5949 6.3382 7.2162 8.1549 9.1197
1 1.5024 2.4033 3.2837 4.1469 5 5.8531 6.7163 7.5967 8.4976 9.4145

1.5 1.2693 2.2058 3.1391 4.0702 5 5.9298 6.8609 7.7942 8.7307 9.6711

In all the cases of changes to the parameters studied here, the tendency to correct the
evaluation remains the same. The evaluation of X is corrected according to the regression
principle: it decreases if µ < X and increases if µ > X. When µ = X, the evaluation of X
does not change.
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4.5. Case 5: Gaussian Distribution That Determines a Priori Information and Expert’s Error

The a priori information is distributed according to a Gaussian distribution (Formula (6)).
The conditional density function of the Gaussian distribution is given in Formula (9). The
probability function of the observations X for all possible values of the parameter θ is as
follows:

f (X) =
∫ X

X−k
1

k
√

2π
e−

(X−θ)2

2k2 · 1
σ
√

2π
e−

(θ−µ)2

2σ2 dθ +
∫ X+k

X
1

k
√

2π
e−

(X−θ)2

2k2 · 1
σ
√

2π
e−

(θ−µ)2

2σ2 dθ (21)

Accordingly, the a posteriori function is:

f (θ ∨ X) =



1
k
√

2π
e
− (X−θ)2

2k2 · 1
σ
√

2π
e
− (θ−µ)2

2σ2

∫ X
X−k

1
k
√

2π
e
− (X−θ)2

2k2 · 1
σ
√

2π
e
− (θ−µ)2

2σ2 dθ+
∫ X+k

X
1

k
√

2π
e
− (X−θ)2

2k2 · 1
σ
√

2π
e
− (θ−µ)2

2σ2 dθ

, when X− k ≤ θ ≤ X

1
k
√

2π
e
− (X−θ)2

2k2 · 1
σ
√

2π
e
− (θ−µ)2

2σ2

∫ X
X−k

1
k
√

2π
e
− (X−θ)2

2k2 · 1
σ
√

2π
e
− (θ−µ)2

2σ2 dθ+
∫ X+k

X
1

k
√

2π
e
− (X−θ)2

2k2 · 1
σ
√

2π
e
− (θ−µ)2

2σ2 dθ

, when X ≤ θ ≤ X + k.

0, when θ /∈ [a, b]

(22)

For the case when the probability density functions f (θ) and f (X ∨ θ) are Gaussian
distributions, we analyse the effect of the parameter µ of the a priori function f (θ) on the
function fm(X) for different values of X (Table 6). The parameter σ of the function f (θ)
is set to 1 and the expert error k = 1. The values of the function fm(X) increase as the
parameter µ increases. The function fm(X) has no breaks at the beginning or the end,
unlike the previous cases 3 and 4.

Table 6. Dependence of the function fm(X) value on the mean of f (θ) and the grade X in case 5.

fm(X) µ = 5 µ = 6.5 µ = 7 µ = 8.5 µ = 9 µ = 9.5

X = 1 1.6808 1.770 1.7909 1.8367 1.8481 1.8581
X = 2 2.5851 2.7162 2.7456 2.8085 2.8237 2.8367
X = 3 3.4435 3.6377 3.6808 3.7702 3.7909 3.8085
X = 4 4.2444 4.5211 4.5851 4.7162 4.7456 4.7702
X = 5 5 5.3513 5.4435 5.6377 5.6808 5.7162
X = 6 5.7555 6.1256 6.2444 6.5211 6.5851 6.6377
X = 7 6.5565 6.8744 7 7.3513 7.4435 7.5211
X = 8 7.4149 7.6487 7.7555 8.1256 8.2444 8.3513
X = 9 8.3192 8.4789 8.5565 8.8744 9 9.1256
X = 10 9.2544 9.3623 9.4149 9.6487 9.7555 9.8744

If the value of the expert’s evaluation is X < µ, then the value of X is corrected
upwards; if X = µ, then the value of fm(X) = X; if X > µ, then the value of fm(X) is less
than the value of X due to the low mean evaluation of the accumulated experience given
by the a priori probability distribution.

A study of the influence of the expert error on the function fm(X) (µ = 8.5, σ = 1)
shows that with a smaller value of k, the value of fm(X) is smaller, and increasing the value
of k means that the value of fm(X) increases (Table 7).

Table 7. Dependence of the function fm(X) value on the expert error k and the grade X in case 5,
when µ = 8.5, σ = 1.

k X = 1 X = 2 X = 3 X = 4 X = 5 X = 6 X = 7 X = 8 X = 9 X = 10

0.8 1.6395 2.6129 3.5777 4.5293 5.4619 6.3680 7.2414 8.0847 8.9153 9.7586
1 1.8367 2.8085 3.7702 4.7162 5.6377 6.5211 7.3513 8.1256 8.8744 9.6487

1.2 2.0336 3.0038 3.9628 4.9038 5.8154 6.6785 7.4672 8.1699 8.8301 9.5328
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By changing the parameter σ for the a priori function f (θ), for µ = 8.5, k = 1 (Table 8)
and µ = 5, k = 1 (Table 9), the results are comparable to the fourth case, which also uses the
a priori Gaussian function (Table 5). For a smaller value of σ, the correction of the evaluation
of X is more significant; correspondingly, for a larger value of σ, the values of fm(X) are
lower.

Table 8. Dependence of the value of the function fm(X) on the standard deviation parameter σ of the
function f (θ) and the grade X in case 5, when µ = 8.5 , k = 1 .

σ X = 1 X = 2 X = 3 X = 4 X = 5 X = 6 X = 7 X = 8 X = 9 X = 10

0.5 1.9606 2.9534 3.9431 4.9271 5.8996 6.8444 7.7069 8.3217 8.6783 9.2931
1 1.8367 2.8085 3.7702 4.7162 5.6377 6.5211 7.3513 8.1256 8.8744 9.6487

1.5 1.6449 2.5971 3.5391 4.6912 5.3857 6.2886 7.1790 8.0607 8.9393 9.8209

Table 9. Dependence of the value of the function fm(X) on the standard deviation parameter σ of the
function f (θ) and the grade X in case 5, when µ = 5, k = 1.

σ X = 1 X = 2 X = 3 X = 4 X = 5 X = 6 X = 7 X = 8 X = 9 X = 10

0.5 1.9154 2.8774 3.7927 4.56 5 5.4399 6.2073 7.1226 8.0846 9.0639
1 1.6808 2.5851 3.4435 4.2444 5 5.7555 6.5565 7.4149 8.3192 9.2544

1.5 1.4292 2.3388 3.2352 4.1206 5 5.8794 6.6748 7.6612 8.5708 9.4943

The parameters µ = 8.5, σ =0.5 of the a priori function f (θ) show that the scores were
high for a long period of the evaluation and differed little from the mean value (Table 8).
With a small spread of a priori scores, µ has a more significant impact on the correction of
the X evaluations. If the mean value of the a priori function f (θ) is high, then at σ = 0.5 the
correction of the evaluation of X is more significant than at σ =1.5.

Comparing the results of Tables 8 and 9, the values of the function fm(X) are higher
with a larger value of µ.

When the spread of the accumulated estimates is higher, the influence on the result of
the mean value of the function f (θ) is less. Regardless of the size of the parameter σ, for
µ = X, the function fm(X) = X. In this case, when µ = 5, fm(X) = 5 (Table 9). It can be
seen from Figure 5 that the trend of the correction of the score X for different values of σ is
the same.
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Comparing the different combinations of a priori and conditional functions, case 5
appears to be the best for use in a quality evaluation. In cases 3 and 4, there are inaccuracies
at the ends of the function fm(X).
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5. Experimental Application of the Bayesian Approach for Evaluation of Distance
Learning Courses

In this section, the above theory is applied to the evaluation of the quality of distance
learning courses in one of the higher educational institutions of Lithuania. Distance
learning courses are evaluated at least every semester, i.e., twice a year. For several years,
the experience was collected. The courses are evaluated by a group of experts, with each
expert making a decision independently, and only then the average mark for each course is
calculated.

In this example, a group of six experts with different experiences and skills in distance
learning education participate in evaluating the quality of the distance learning courses.
The first two experts have been working in distance learning for over 12 years; therefore,
for these more experienced specialists, the expert error is k = 0.8. The next three specialists
have sufficient experience in teaching or writing curriculums, but they are not specialized
in distance learning education, thus the error of these experts is k = 1. Moreover, a beginner
specialist, specializing in the video recording of lectures and other videos and the animation
design of the course, participates in evaluating the distance learning courses, with k = 1.2.

After determining the competence and the value of the expert error k for each com-
mission member, the parameters of the a priori function f (θ) are calculated. In practice, a
specific statistical distribution is selected after confirming the statistical hypothesis about
the type of distribution over a significantly large number of measurements. In this analyti-
cal work, the variants mentioned above of the combinations of distributions are used. For
the a priori probability triangular function, the mean value of the evaluations µ is calculated.
For the a priori Gaussian function, two parameters are calculated: the mean value µ and the
standard deviation σ of the evaluations.

For an example of the application of the theory, three courses of different quality were
selected. The first course, from the field of computer science and applied mathematics was
‘Machine learning and neural networks’, while the others, from the field of construction,
were ‘Structural engineering’ and ‘Building management’.

To determine the parameters for the f (θ) functions, we use the experience of the
previous two years. In the subject area of mathematics and computer science, 39 courses
were evaluated in these two years, with a mean value µ of 8.638 and a standard deviation σ

of 1.463. In the construction field, 36 courses were evaluated, with a mean value µ of 8.864,
and a standard deviation σ of 0.995.

Table 10 presents the experts’ evaluations X and their corrected values fm(X) accord-
ing to their competence.

Table 10. Machine learning and neural networks’ course evaluations; µ = 8.638 , σ = 1.463.

Expert Error Course Evaluation X Updated Evaluation fm(X)

Case 3 Case 4 Case 5

k = 0.8 9 8.9047 8.9826 8.9698

k = 0.8 8 8.0385 8.0307 8.0532

k = 1 9 8.8628 8.9733 8.9539

k = 1 7 7.1377 7.1198 7.2036

k = 1 8 8.0398 8.047 8.0811

k = 1.2 10 9.2597 9.8598 9.7626

Mean: 8.5 8.3739 8.5022 8.5040

The previously described combinations of distributions show how they can be used
in expert evaluation. The corrections in cases 4 and 5 are similar to each other, and both
options use the a priori Gaussian function. When using the triangular function f (θ), the
corrected evaluations are lower than in the other two cases, with a high average value of
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µ = 8.638. In case 3, the value σ is not taken into account. The value σ = 1.463 indicates a
large spread of a priori estimates relative to the mean value.

For subsequent courses, the parameters of the f (θ) functions are the same, since both
courses are from the field of construction (Tables 11 and 12). The mean value of the function
f (θ) is high (µ = 8.864), and the variation of the evaluations relative to the mean value is
not large. Therefore, the influence of accumulated experience on the evaluations of the
experts is more significant.

Table 11. ‘Structural engineering’ course evaluations; µ = 8.864 , σ = 0.995.

Expert Error Course Evaluation X Updated Evaluation fm(X)

Case 3 Case 4 Case 5

k = 0.8 5 5.2063 5.3429 5.4916

k = 0.8 4 4.2273 4.4068 4.5509

k = 1 6 6.2189 6.3911 6.5719

k = 1 5 5.2562 5.4933 5.6727

k = 1 9 8.8903 8.9796 8.9652

k = 1.2 9 8.8424 8.9721 8.9529

Mean: 6.3333 6.4402 6.5976 6.7009

Table 12. True and upgraded ‘Building management’ course grades; µ = 8.864 , σ = 0.995.

Expert Error Course Evaluation X Updated Evaluation fm(X)

Case 3 Case 4 Case 5

k = 0.8 10 9.5598 9.8877 9.8111

k = 0.8 9 8.9283 8.9864 8.9766

k = 1 9 8.8903 8.9796 8.9652

k = 1 10 9.3730 9.8323 9.7230

k = 1 8 8.0711 8.1284 8.2149

k = 1.2 10 9.1388 9.7710 9.6292

Mean: 9.3333 8.9936 9.2642 9.22

The ‘Structural engineering’ course was evaluated ambiguously by the experts. The
most highly qualified specialists gave a low rating to the course (scores of 4 and 5). Since
µ < X, these evaluations are adjusted upwards. Since the expert error is not large, k = 0.8,
the evaluation corrections are less significant than for the other expert groups. The least
experienced expert, working in the multimedia field, rated the course X = 9. Despite this
expert’s error being k = 1.2, his evaluation is corrected only slightly because of the high
mean value of the function f (θ). In cases 4 and 5, the mean of the corrected evaluations is
rounded up to a score of 7, but the mean of the X evaluations is rounded up to a score of 6.

By contrast, the ‘Building management’ course was judged highly. Most of the X
scores exceeded the mean value µ, thus the evaluations were adjusted downwards. In case
5, the same value of X = 10 was corrected for k = 1.2 to 9.6292, for k = 1 to 9.7230, and for
k = 0.8 to 9.8111. Since the mean value of the function f (θ) is high, it did not significantly
affect the overall result. The mean value of the evaluations X and the corrected values for
all the options considered is equal to the score of 9 (Table 12).

The graphs of all the functions fm(X) described in this paper, clarifying the evaluations
of the courses from the construction field for k = 1, are shown in Figure 6.
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It is convenient to start considering the graphs from the bottom, from the line num-
bered 4 (black). These are cases 1 and 2, where the function f (θ) is given by a uniform
distribution, which means the absence of accumulated, a priori, information. This function
is fm(X) = X; i.e., the estimate is not adjusted. It is convenient to compare the other cases
with the line numbered 4 by fixing the influence of a priori information on changes in the
function fm(X). Deviations from this line illustrate the influence of the a priori information
on decision-making.

The next line of the function, number 3 (red), is for case 3, when the a priori information
is described by a triangular function, and a triangle also gives the conditional function.
This function fm(X) corrects the evaluation of X least of all for µ > X and most of all for
µ < X. Since µ is big enough, the line for the function bends; this is the weak point of this
combination.

The following lines, numbers 2 and 1, differ little from each other. Both cases use the a
priori Gaussian function f (θ). The line for function number 2 uses a triangular conditional
function (case 4), and that numbered 1 uses a Gaussian function (case 5). Nonetheless, the
most significant correction of the evaluated X for µ > X is in case 5 (line number 1).

6. Discussion

The Bayesian approach proposed in the paper has shown its capabilities for evaluating
data uncertainty, particularly for distance learning courses. In this paper, the analytical
part is also applicable to similar problems of quality evaluation, such as a re-evaluation of
an exam score taking into account the student’s work during the entire semester.

This research demonstrates the possibility of using different combinations of distribu-
tions (their density functions) in the most suitable way for describing a priori information
and expert error. In practice, the a priori probability distribution can be selected after con-
firming the statistical hypothesis about the type of distribution, according to a significant
number of accumulated evaluations. The research presented in this paper is analytical,
thus more general variants of distributions, such as Gauss and triangle distributions, are
chosen.

It is proved that, using a uniform distribution ( f (θ) density function) with conditional
triangle and Gaussian distributions, the mean function fm(X) = X. This result is inter-
preted as a lack of accumulated a priori experience, thus the evaluation of X is not corrected.
The function fm(X) = X is convenient to use for comparison with other options, to give a
better determination of the influence of a priori experience on the final result of correcting
the experts’ evaluation.

The research results for case 3 (a priori triangle with a conditional triangle distribution),
case 4 (a priori Gaussian with a conditional triangle distribution), and case 5 (a priori
Gaussian with a conditional Gaussian distribution) are similar, and show that the function
of the averages fm(X) logically changes depending on the accumulated a priori experience.
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When µ > X, the values of the function fm(X) increase, and, correspondingly, when µ < X,
they decrease.

The opinion of a highly qualified expert (expert error k = 0.5) corresponds to greater
trust, thus the correction of the evaluation is minor. With an increase in the error k (expert
error k = 1, k = 1.5), the size of the correction of the evaluation X also increases.

When the a priori information is given by a Gaussian function, the result is also
affected by the spread of the evaluations. A small spread of a priori evaluations has a more
significant impact on the corrections of the X scores. Thus, if the mean value µ of the
function f (θ) is high, then at σ =0.5 the correction of the evaluation X is greater than it
is at σ = 1.5. If σ is large, then the result of the correction does not differ much from the
expert evaluation X itself.

After studying the third case of the combination of the triangular function f (θ) with
a triangular conditional distribution, it becomes clear that with a high mean value of the
function f (θ) and the expert error k = 1, the values of fm(X) function are not logical at the
end of the interval. Inaccuracies at the end of the function appear because the function of
the expert error at the ends of the range goes beyond the a priori distribution of the triangle.
Therefore, when the mean value µ of the function f (θ) is high or low (close to the ends of
the interval), this option is not recommended because of inaccuracies at the ends of the
fm(X) function. The correction of the X scores, in this case, is the most minor, compared to
the other combinations.

Combining the Gaussian function f (θ) with a triangular conditional distribution
(case 4) in the case of a high a priori mean value µ is not suitable for correcting low evalu-
ations, since the graph of the function fm(X) is not homogeneous at the very beginning
of the interval. When the mean value of the a priori Gaussian function is very large (or
very small), and the expert error is given by a narrow triangle (k = 1), illogical results
arise at the beginning (respectively, at the end) of the function related to the continuous
approximation of random integers.

The fifth case, when both functions are Gaussian functions, appears to be the most
stable. Even if the a priori function f (θ) mean value µ is very high (or very low), the
function fm(X) results are logical in the entire interval. This combination shows the most
relevant result of all the studied cases and it is recommended that this is applied in practice.

There is a plan for future work to compare the results of this paper with the appli-
cation of the theory of fuzzy sets. This is possible and it will be interesting to use other
combinations of probability distributions.

Even though the adjustment of the values of the expert evaluations is minor and varies
within the range of ±1 point, this score can have a significant impact on decisions. In
the work of Washington and Oh, applying a Bayesian approach to improving the safety
of railway crossings, the authors concluded that the use of a priori information slightly
changed the result, and argued that it is good when the expert’s evaluation and the a priori
information do not contrast strongly with each other [38]. In this example of evaluating
the quality of distance learning courses, a score of 9–10 increases the teacher’s salary at the
above-mentioned higher education institution. Another example, the re-evaluation of an
exam score based on a priori experience, can be decisive in obtaining a positive exam mark.

7. Conclusions

To reduce the uncertainty of an expert evaluation, the refinement of the experts’ scores
is proposed through the use of an a posteriori mean function, taking into account all the
collected a priori information and the experts’ competence. This paper illustrates a new
way of using the well-known Bayes formula. The continuous case of the Bayesian formula
is perceived as a continuous approximation of expert evaluations. The complexity of the
task lies in the fact that the parameters of the a priori and conditional density functions
for θ (state of nature, true goodness) and X (expert score) are considered as continuous
random variables, but experts use integers X in making a decision. In this paper, a 10-point
evaluation system is used for expert judgments. The difficulty in obtaining the results of
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this research lies in the correct choice of the intervals of change for the parameters θ and X
for continuous approximation.

It is shown that, when using an a priori probability density function of a continuous
uniform distribution, which means the absence of accumulated information, and condi-
tional density functions of triangular and Gaussian distributions, the experts’ evaluation
is not corrected. It can be seen that an a priori probability density function of a triangular
distribution with a conditional density function also given by a triangle does not give
entirely accurate or logical results for the function at the ends of the argument interval.
When using a combination of the a priori density function of a Gaussian distribution with a
narrow conditional density function of a triangular distribution, illogical results for the
function values arise at the ends of the evaluation interval X when the mean value of
the Gaussian distribution is very large or very small. When both functions are set by a
Gaussian distribution, the result is the most stable and suitable for use in expert judgments.

The results of the research for different combinations are similar and show the follow-
ing trend. The a posteriori mean function corrects the expert’s evaluation depending on the
mean value of the a priori distribution, reducing the evaluation if the mean value is less
than the expert’s evaluation, and otherwise increasing it. With a small spread of a priori
evaluations, the mean value of the a priori density function has a weightier impact on the
correction of the expert’s scores. Trust in the opinion of a highly qualified expert is signifi-
cant and, accordingly, the correction of such an expert’s evaluation is small. By increasing
the expert’s error parameter k, which means the expert is not sufficiently competent, the
correction of the expert’s evaluation also increases.

The proposed method of correcting expert evaluations was used to assess the quality
of distance learning courses. Even though the correction of the expert assessments appeared
to be minor, this adjustment can have an impact on the final result in making a decision.

The goal of this study is to illustrate the approach of Bayesian approach in experts’
judgments for reducing uncertainty in data. This is the first part of a general study devoted
to comparing probability and degrees of truth. There is a plan for future work to compare
the results of this paper with the application of the theory of fuzzy sets. Therefore, the paper
considers in detail different combinations of distributions and the influence of changes in
their parameters on the result.
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