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Abstract: The literature in mathematics education identifies a traditional formal mechanistic-type
paradigm in Integral Calculus teaching which is focused on the content to be taught but not on how
to teach it. Resorting to the history of the genesis of knowledge makes it possible to identify variables
in the mathematical content of the curriculum that have a positive influence on the appropriation of
the notions and procedures of calculus, enabling a particularised way of teaching. Objective: The
objective of this research was to characterise the anthology of the integral seen from the epistemic
complexity that composes it based on historiography. Design: The modelling of epistemic complexity
for the definite integral was considered, based on the theoretical construct “epistemic configuration”.
Analysis and results: Formalising this complexity revealed logical keys and epistemological elements
in the process of the theoretical constitution that reflected epistemological ruptures which, in the
organisation of the information, gave rise to three periods for the integral. The characterisation of
this complexity and the connection of its components were used to design a process of teaching
the integral that was applied to three groups of university students. The implementation showed
that a paradigm shift in the teaching process is possible, allowing students to develop mathematical
competencies.

Keywords: complexity; articulation; epistemic configuration; integral calculus

1. Introduction

Integral Calculus teaching should be developed as a solid mathematical culture in
which university students can qualitatively and quantitatively analyse different phenom-
ena of the everyday environment to increase their abstraction and reasoning capacities.
However, the literature on mathematics education shows that Integral Calculus teaching
focuses on a formal mechanistic approach, which emphasises the content to be taught rather
than how to teach it. It has identified students’ difficulties in establishing connections for
the integral that would enable them to be competent in its use and handling. For example,
to resolve a precise problem situation, the integral may be used as an area, although in
another context, it may be an antiderivative or a measure. These aspects make the integral
a mathematically complex object. They favour presenting it from the articulation of the
complexity which constitutes it, understood as a plurality of valuable meanings for the
design and implementation of instructional processes, so as to improve them permanently.

The authors of [1,2] focused on the integral as a mathematical object of teaching,
exposing the need for studies of the ontology of mathematical objects that allow us to
characterise their complexity, given that they offer elements for the design and execution
of instructional processes which are different from the traditional ones. Hence, this study
maintains interest in this line of research by proposing two objectives: (1) to characterise the
anthology of the integral analysed from the epistemic complexity that composes it, based on
a historical–epistemological–hermeneutical study; and (2) to consider this complexity when
guiding the instructional process with university students and determining whether the
articulation of this complexity in some way allows us to overcome the learning problems
identified and to achieve some change in the current teaching paradigm.
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The onto-semiotic approach to mathematical cognition and instruction (hereafter,
OSA [3]) was used as a theoretical support because it offers tools that enable the identifica-
tion of the complexity of mathematical entities and the connection of the units in which
this complexity erupts, following the model outlined in [4,5], through multiple meanings
(partial meanings) described in terms of practices and epistemic configurations of the
primary objects activated in these practices [6].

This manuscript is focused on responding to the first objective, related to formalising
the complexity of the integral, sharing the position put forward in [4,7] and considering
that, in studies on the ontology of a mathematical object, logical keys and epistemological
elements are evident in the process of theoretical constitution, which not only allow us to
better understand the concept, but also reveal characteristic aspects of the mathematical
construction activity that must be taken into account for its comprehension. This component
enabled the identification of epistemological breaks in the evolution of the integral which,
in the organisation of the information, gave rise to three periods, each of which generated
a global epistemic configuration, described in detail in the Results section.

The development of the second objective aimed to demonstrate whether the com-
plexity identified for the integral is the origin of the various difficulties manifested in
the teaching and learning processes of Integral Calculus referenced in the mathematics
education literature, and whether knowing it allows for some kind of change in the current
teaching paradigm. The Methodology section of this work describes how the proposal was
developed, the results of which, due to their length and detail, can be consulted in [8,9].

2. Theoretical Background

The research interest is focused on the complexity of the integral. We cite some
works, among them: for the definite integral [10,11]; for the integral in general [1,2,12–16].
Elements that allowed to identify a first classification for the epistemic complexity of the
definite integral, ref. [10] describes four particular epistemic configurations of reference:

1. The geometric is used to determine the area under a curve and the abscissa axis
and to calculate lengths, areas, and volumes in a static geometric context. Leibniz is
considered as its main driver;

2. The result of the process of change frames all those cases in which the integral is
necessary to solve situations in other sciences associated with non-static processes.
Newton is presented as the promoter of this meaning;

3. The inverse of the derivate is from the original relationship between the derivate and
integral. It is associated with the works of Newton in 1711 and Leibniz in 1710;

4. The approach to the limit is related to the formalisation initiated by Cauchy in 1825,
which gave rise to a new definition of definite integral.

The author of [7] complemented the above four configurations by adding another two.

1. The algebraic is generated from the formalisation of the concepts taught by teachers,
considering that they spend a large part of their time practicing the integration rules;

2. The generalized is framed by the need to expand the set of integrable functions after
the foundation built by Cauchy in 1831.

It should be noted that the historical changes found are characterized by the solutions
that is presented for the existing problem in a certain epistemic configuration at a certain
moment in history. These changes may imply both the rupture of the epistemic configura-
tion and its evolution to an inclusive or complementary one. From these parameters, [12]
raises eight partial meaning, also shown as epistemic reference configurations, which
complement or modify those exposed by the authors mentioned above:

1. Intuitive, related to the work of the Greeks in geometry;
2. Primitive, related to Newton and Leibniz’s works to find the primitive of a func-

tion. Establishes the inverse relationship between derivatives and integrals from the
Fundamental Theorem of Calculus;

3. Geometric, related to the resolution of clearly geometric problems in the Middle Ages;
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4. Summation, related to the problem of the foundation of the calculus which began at
the end of the 19th century;

5. Approximate, related to the intra- and extra-mathematical application of the definite
integral;

6. Extra mathematics, related to the breadth of application possibilities for the integral
to problem situation in different areas of knowledge;

7. Accumulated, related to the intuitive processes of “integration” produced in the
medieval period form Newton’s work linked to dynamics on 1687, (change and
movement);

8. Technological, related to the use of mathematical software to perform calculations on
computers and the ability to use the appropriate software tools.

These eight configurations demonstrate the extension of the study, not only to the
definite integral, but also tangentially involves the indefinite integral, without clarifying
its origin, unchecking it, and defining it as an entity independent of the definite integral.
Hence, the existence of certain limitations in each partial meaning is shown, which later
became motivating situation for other more consistent “meanings”, here called “secondary”.
For example, improper integrals are extension of the defined integrals, which were not
contemplated in any of the previous configurations.

3. Theoretical Framework

In this research, we use the OSA as theoretical support because it offers theoretical
tools that can help us reflect on the complexity of mathematical objects and the possibility
of articulating them in the search for an explanation of how they arise [3]. In the OSA, the
analysis of mathematical activity involves determining the types of entities involved in this
activity. It distinguishes six main types: situations/problems, actions, language, concepts,
properties, and arguments [6]. These objects relate to each other forming “configurations”
that can be epistemic or cognitive, if seen from the perspective of the mathematical insti-
tution, or personal, if seen from the perspective of the subject who performs them [3]. A
configuration is defined as networks of intervening and emergent objects of the systems
of practices activated to solve problems. Systems of experiences and configurations are
proposed as theoretical instruments to represent mathematical activity, which allows math-
ematical knowledge to be inferred [5]. The conception of epistemic configuration is one
useful instrument for the analysis of mathematical writings and historical-epistemological
studies of mathematical objects [3].

The notion of language use plays a significant protagonist in OSA, alongside the
concept of institution; is considered the contextual mechanism that relativizes the ways
of being, of existing of mathematical entities [3]. According to their use of language, the
mathematical objects that interact in mathematical experiences and those that appear from
them can be considered as from the perspective of being/existing, grouped into facets or
dual dimensions (see [5]). For this work, we will use one of those dual dimensions: the
unitary-systemic. According to this duality, mathematical objects can participate as unitary
objects or as a system. When a mathematical entity is considered an object, a unitary
perspective on it is being adopted. However, there are times when it is possible to adopt
a systemic perspective on such an object, for example, when considering its component
parts.

The Emergence of Mathematical Objects in OSA

Ref. [5] showed that the route by which mathematical entities emerge from expe-
riences is complex, and differentiates at least two levels of occurrence. In the primary,
representations, descriptions, propositions, procedures, problems and opinions (first ob-
jects) appear, established in “epistemic configurations”. Mathematical practice can be
thought of metaphorically as “climbing a ladder”. The phase on which the practice is based
forms a configuration of primary entities previously known. Whereas, the higher phase
arrived at as a consequence of experience generates a new configuration of primary entities
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in which one (or some) of those entities were not known previously; thus, new primary
entities emerge as a consequence of mathematical practice [4]. On a second level, there is
the emergence of a mathematical object (the integral, in our case) that can be characterised
by different representations: antiderivatives, areas under curves, accumulation functions,
among others, and which can have equivalent definitions, properties, theorems, etc. This
second emergence is a consequence of the interactions of different aspects that implicitly or
explicitly generate in the classroom a descriptive-realistic vision of mathematics that con-
siders: (1) mathematical propositions and enunciations refer to properties of mathematical
objects; (2) these objects attain a certain autonomous kind of existence of the subjects that
they know them and the language they use to know them.

From this point of view, the integral object is located on the second level. It is the
emergence of a universal reference related with diverse configurations of primary objects a
certain let the mathematical conventions to be carried out in different contexts in which
the integral has been interpreted as: an approximation of the limit of a Riemann sum,
the inverse of the derivative, the result of a process of change, a summation, the result
of a process of accumulation, as an driver that discoveries from a given function-other
function (its primitive)-, that allows us to understand that the integral can be demarcated
and embodied in various ways. According to OSA [4,5], the result is that it is considered
an object, named an integral, which rescues the global reference title of all primary object
configurations. Now, this global reference in the mathematical activity takes the form of a
specific configuration of primary objects. Therefore, what can be done with this second-
level object is determined by this configuration. Ref. [4] mentioned that in OSA, the entity
that rescues the role of global reference can be seen as single to simplify the reasons and,
equally, as multiple, simultaneously, as it metaphorically breaks down into a combination
of first objects grouped in various configurations.

OSA’s idea of the complexity of mathematical objects makes it possible to identify a
diverse system of problem-solving practices in which the (secondary) mathematical object
does not appear directly. What does appear are representations of the object (secondary),
diverse meanings, propositions, properties, actions, procedures, and opinions that are
applied to that mathematical object (epistemic configurations of primary objects). In other
words, throughout history, different epistemic configurations of primary objects have been
generated for the study of the (secondary) mathematical object, some of which have served
to generalise the pre-existing ones.

4. Methodology

To determine the complexity of the integral, we carried out a study based on the
interpretative-hermeneutic paradigm, setting off from recognising the difference between
social and natural phenomena, seeking the greater complexity and the unfinished character
of the former, which are always conditioned by the participation of the human being.
Under this premise, we pursued finding, interpreting, and clarifying the development of
the different notions for the integral.

4.1. Sample

Epistemic configurations proposed by two authors, here called tertiaries [11,12], who
perform the first classification for the definite integral using theoretical tools provided by
OSA.

4.2. Instruments

A template to build an epistemic configuration; primary, secondary, and tertiary
bibliographic sources. Specialised software to systematise the information collected and
matrices for data triangulation.
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4.3. Procedure and Data Analysis

The modelling of the complexity of the definite integral proposed in [11,12] was
considered as a starting point. In the epistemic configurations proposed by those authors,
improper integrals were not shown as an extension of definite integrals, were not they
clearly determined. Since the origin of these integrals is not considered in any configuration,
it motivated us to delve into secondary sources on the history of mathematics: [17–30], to
identify, characterise, and categorise their evolution, to determine in which configuration
they fit or fail to complete or modify them. In this phase, the analysis instrument used was
the format for the construction of an epistemic configuration; each of the six elements that
comprise it was broken down, analysed and modified as the selected and systematised
data were collected and analysed.

The classification of the systematised information showed the need to go deeper into
the study, based on a historiography for the integral, where it was necessary to resort to
secondary bibliographic sources, i.e., texts about the history of mathematics related in the
theoretical background of this work. The triangulation of this information made it possible
for us to understand different notions of the mathematical object integral, considering the
context in which each one arose. Interpreted in a modern context, they allow to distinguish
between definite, indefinite, and improper integrals, elements that lead to conclude that
the tertiary sources, by focusing the research on the definite integral, did not consider
historiographical aspects of the evolution of the concepts of the integral from its origins.
between the components that modify the epistemic configurations proposed by [11,12], are,
for example: Archimedes’ theorem for the quadrature of the spiral or Fermat’s two squares
theorem, which influenced the works of Newton and Leibniz in the Middle Ages in the
constitution of the concept of the integral, theoretical aspects needed to consult primary
sources, also related in the theoretical background of this work.

Once those limitations were detected, the next step was to check, both in the secondary
and primary sources, whether the type of problem addressed in each historical period
involved the use of a clearly indefinite integral, or whether the result found was the one we
know today as a consequence of the calculation of a definite integral, or an improper one,
considering that, for each period, these differences were not yet known. The idea was to
complete the modelling of the complexity of the integral already identified in the elements
that make up the epistemic configurations created from the primary and secondary sources,
rethinking what those mathematicians did, but this time from a modern perspective, which
would allow us to identify the type of integral that was used, and whether it corresponded
to finding a solution to the problematic situation identified for each period. In this phase
of the research, due to the amount of information collected and aiming to purify it, it was
necessary to follow the same method used in [31] for optimisation; [6] for the derivative,
given that they studied the epistemic complexity of these mathematical objects also using
the tools provided by OSA. The deductions obtained were subjected to a triangulation
process, preserving the structure of the epistemic configuration tool, model abbreviated in
Table 1, which allowed characterising the complexity of the integral by identifying three
global periods, each of which generated a global epistemic configuration, described in
detail in Section 5 of this paper.
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Table 1. Global complexity for the integral.

Global Epistemic Configurations Primary Configurations

[7] [8]

GEC1
(Origins of the Integral) Geometric

Primitive

Intuitive

GEC2
(Integration as a support for recent

Integral Calculus)

Result of a change process
Geometric

Inverse of the derivative

GEC3
(Formalisation of Integral Calculus)

Approach to the limit Summation

Generalised Extra math

Algebraic

Approximate

Cumulative

Technological

4.4. Validation of the Proposed Characterisation

Once this epistemic complexity was identified, we proposed to determine how it
contributes to the instructional processes from the current programmes offered in three
colleges of a university in the city of Bogotá: Finance, Cadastral Engineering, and Adminis-
tration. To this end, we analysed the syllabus of these programmes, focusing on the subject
Calculus 2, where integral calculus is taught. The purpose was to determine what part of
this complexity was present and, if any, how it is articulated for the teaching of integral
calculus and its applications. After analysing the three Calculus 2 programmes in detail,
a restructuring of the part corresponding to the teaching of the integral was proposed,
articulating the three global epistemic configurations proposed, redesigning activities that
would allow the integral to be shown from different concepts, allowing reflection on its
logical structure of production, construction and application. A representative sample
of partial meanings was formulated, connected to each other, taking as a reference the
complexity elaborated and proposed in this work. A sequence of tasks was designed and
implemented with three groups of students from these colleges, with follow-up during
three academic semesters, with the aim of observing some evidence in the students of the
connection between partial meanings and their use when solving problems in different
contexts, thus analysing their performance. In other words, to evidence the development
of mathematical competencies in students when using integrals. To verify the benefits
of this restructuring, the work we carried out with these groups was compared with the
results obtained with a fourth group that continued to be taught the integral in traditional
classes. Due to their length and details, the results found can be consulted in [8] and were
expanded in [9].

5. Results and Implications

It presents the results of this work in two senses: (1) The complexity of the integral, the
object of this paper, and (2) we mention some details related to the characterisation of the
complexity of the integral and its articulation when planning and implementing a sequence
of tasks with university students, since the details and results of this characterisation can
be found in [8].

5.1. Results in Relation to the Complexity of the Integral

This study allowed to identify the existence of certain limitations in each of the partial
meanings put forward by the tertiary authors, given that they only focused their interest
on the definite integral, leaving aside elements that became motivating situations for
other more consistent “meanings” involving indefinite and improper integrals, here called
secondary, and which are detailed in the three global epistemic configurations that we
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propose. Table 1 shows the synthesis of this globality, articulating the primary epistemic
configurations within the global ones, allowing us to visualise the complexity of the
integral.

From this classification, we modelled the complexity of the integral in three global
epistemic configurations: (1) origins of the integral (GEC1); (2) the operation of integration
to support the nascent Integral Calculus (GEC2); (3) formalization of the Integral Calculus
(GEC3). It should be clarified that, within these global configurations, we distinguish in
detail the appearance of definite, indefinite and improper integrals that allowed to locate
the configurations proposed by the tertiary sources within one of the three global epistemic
configurations established here.

In the validation of the pilot group, we identified in the students that this notorious
complexity allows them to focus their attention not only on algorithms and techniques, but
on the very complexity of the integral, allowing them to identify the different meanings
and access the understanding of fundamental concepts of the Integral Calculus, such as:
calculation of area between curves (with definite integrals), application of the convergence
criteria for improper integrals; calculation of the centre of gravity of a body and the force of
attraction of gravity; calculation of the area of a flat enclosure, calculation of the length of a
curve, calculation of the volume and area of a solid of revolution, among others, enabling
them to establish different relationships between these concepts, apply and extrapolate
them to other situations that require the solution of new problems.

5.1.1. Origins of the Integral

Around 340-194 B.C the Athenian school tackled three problems related to measure-
ment: doubling cube, trisecting an angle, and squaring the circle, all of them in a clearly
intra-mathematical context. For reasons of space, we present the position of three math-
ematicians representing this school who worked to find a solution to those problems:
Eudoxo around 340-330 B.C. created the exhaustion method, inscribing a succession of
polygons in the non-rectilinear figure to be squared, choosing the sequence in such a way
that the differences between the measure of the figure to be squared and the measure of
each polygon form a sequence that satisfies the hypothesis of the previous proposition.

Euclid aboaut 300 B.C., using the method proposed by Eudoxo, carried out measure-
ments in which he compared known and unknown magnitudes, respecting the principle of
homogeneity (one-dimensional, compares one segment with another taken as a reference
unit. Two-dimensional, finds a square equivalent to any plane figure. Three-dimensional,
finds a cube equivalent to any solid). In the first two propositions of Book XII, Euclid
exposes the idea of decomposing-recomposing rectilinear plane figures to obtain their
squareness. Archimedes considered Democritus as the first, who, following Euclidean
approaches, established the formula for the volume of a cone or a pyramid correctly, “con-
sidering these solids as if they were formed by innumerable parallel layers” [32] (p. 23).

At the end of the third century B.C., Archimedes, retaining this form of reasoning,
used strict proofs to find areas, volumes, centres of gravity of curves, surfaces, circles,
spheres, conics, and spirals; he perfecting the exhaustive method. He combined the
geometric with the laws of mechanics and the exhaustive method, a process that gave rise
to the indivisible and infinitesimal, respectively. He positioned the method of exhaustion
as an approximation between inscribed and circumscribed geometric figures of a given
measurement that delimit the figure sought, so that the difference between them is so small
that they are considered equivalent.

We found in this type of work, that the ancient Greeks, from purely geometric pro-
cesses, implicitly used the integral as an operation, whose result was impossible to de-
termine due to the theoretical limitations of this time [33]. That is, if we look at it in
current terms, it would reflect the implicit use of the “indefinite integral”, but the results
found showed a measure, a number; which, seen in current terms, is the equivalent of
the application of a “definite integral”, and sometimes that of an “improper” one. For
example, in the case of the quadrature of the Archimedes’ spiral—A curve that describes
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a material point that moves with uniform speed along a ray that rotates with uniform
angular speed around its end—We start from a succession of infinite layers that cover
this area and, although the result is a number (which was considered a measure), such
succession of layers, with the current look, can be understood as a succession of functions
that converge to another function. Now, we find that the application of this implicit notion
of integral is known today as indefinite integral, but the ancient Greeks used it to obtain a
measurement (today we know that a measurement is obtained as a result of calculating a
definite integral). Procedure that, translated to current notations, is practically the same
as the Riemann integral, whose polar equation has the form ρ = aυ, where a > 0 y is a
constant. We illustrate as an example the way Archimedes used the following theorem: The
area of the first cycle of a spiral is equal to one third of the area of the circumscribed circle (Figure 1).

Figure 1. Quadrature of a spiral.

Demonstration 1. Let us consider a spiral with polar equation ρ = aυ. Let us calculate the area
when the polar angle varies from 0 to 2π, i.e., from the first turn of the spiral. The radius of the
circumscribed circle is 2πa. To do this, we divide this circle into sectors of amplitude υ = 2π

n , from
υ = 2πk

n to υ = 2π(k+1)
n for k = 0, 1, · · · , n− 1. In each sector, we examine the spiral arc that

remains within it and delimit the area corresponding to said spiral arc between the areas of two
circular sectors. The largest circular sector area inscribed in each spiral arc is 2

(
a2πk

n

)
·2
( 2π

n
)
, and

the smallest circular sector area circumscribed in each spiral arc is 2 (a2π (k + 1) /n)·(2π/n). [30]
(p. 140).

In modern notation, the area, S, of the spiral verifies that: ∑n−1
k=0

1
2

(
a2πk

n

)2 2π
n =

4π3a2

n3

n−1
∑

k=0
k2 < S <

n
∑

k=1

1
2

(
a2πk

n

)2 2π
n = 4π3a2

n3

n
∑

k=1
k2. Archimedes knew that

n
∑

k=1
k2 =

1
6 n(n + 1)(2n + 1). Using this result, he wrote the above inequality in the form 4π3a2 1

6

(
1− 1

n

)
(

2− 1
n

)
< S < 4π3a2 1

6

(
1 + 1

n

)(
2 + 1

n

)
. He took k = 1

3 π(2πa)2, a third of the area of the
circumscribed circle, subtracted k, the previous inequality, and carried out simple opera-
tions, obtaining: K

(
− 3

2n + 1
2n2

)
< S− K < K

(
3

2n + 1
2n2

)
; because 1

n2 ≤ 1
n , this becomes

− 2k
n < S − K < 2K

n . Using the Archimedean axiom, the conclusion is that S = K. We
observe that the proposition starts from an implicit, “indefinite” assumption, whose result
is a number (implicitly, it is the result which, in current terms, corresponds to calculating a
definite integral). The global epistemic configuration 1 (GEC1) associated with this period
is summarised in Table 2.
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Table 2. GEC1. Origins of the integral.

Components Description

Problem situations

Relative measurement problem, in an intra-mathematical context, from three situations: (a) doubling
the cube; (b) trisecting an angle; and (c) squaring the circle.
Problem of measuring long distances (for example, the distance from the Moon to the Earth).
Problems in which areas, volumes, centres of gravity of curves, surfaces, circles, spheres, conics, and
spirals must be found.

Languages Geometry.

Definitions
Commensurable and incommensurable magnitudes.
Different types of curves.
Elements of the curves.

Procedures

Basic processes for measuring: direct measurement; decompose, recompose and superimpose,
respecting the principle of homogeneity.
Method of exhaustion (the method of exhaustion inscribes a succession of polygons in the
non-rectilinear figure to be squared, from an approximation between inscribed and circumscribed
geometric figures of a known measure, which delimit the figure to be determined; this value is
assumed as the “limit”).
Method of reduction to absurdity.

Propositions

Principle of homogeneity: only magnitudes of the same dimension can be compared.
Results obtained for specific cases of surface measurement and volumetric measurement (for
example: the area of the first cycle of a spiral is equal to one-third of the area of the circumscribed
circle).

Arguments The argument consists of the correct application of the method of exhaustion to solve the problem,
using integration as the fundamental operation.

Source: own creation.

The ancient Greeks conceived tangency as static and geometric, suitable for calculating
the circumference but not a spiral. Hence, Archimedes established two ways of operating
with infinity: the mechanical method, incorporating the indivisibles; and the method of
exhaustion, infinitely small due to the presumption of the existence of a “limit”. In this
configuration, one of the basic principles is that of homogeneity. However, it is a principle
that presents problems because it is not always possible to fit a figure within another a
fixed number of times.

5.1.2. Integration as a Support for Nascent Integral Calculus

Regarding the GEC1 configuration, we highlight the overcoming of the homogeneity
principle. Here we quote a primary source, whose contributions generate a breakdown of
the integration operation, which influenced other mathematicians of the time, establishing
the concept of integral in a more general and abstract way, that is, as a new discipline.
The example is in [34], located within the geometric algebra of the Greeks (explains how
arithmetic operations can be done using ruler and compass), who broke with tradition by
considering that any algebraic expression, for example, a2 and b3 represent segments, (for
the ancient Greeks, a2 and b3 were area and volume, respectively).

On the use of letters in geometry

. . . Frequently, it is not essential to draw lines on the paper, designating each of them by
a letter was enough. Therefore, to add line BD and GH, I name one a and the other b and
write a + b. Therefore, I will write a-b to indicate the subtraction of b from a. Additionally,
I will inscribe ab to indicate the multiplication of one by the other; a

b to divide a by b; aa
or a2 to multiply a by itself; and a3 to multiply this result one more time by a, and so on
to infinity; in addition,

√
a2 + b2 is used to obtain the square root of a2 + b2 ; finally,√

ca3 − b3 + abb obtains the cube root of ca3 − b3 + abb , and similarly for others. It
should be noted that with a2 and b3, and comparable terminologies, I do not generally
conceive but simple lines, although I name them squares or cubes, expressions used in



Mathematics 2021, 9, 2453 10 of 25

algebra. Likewise, we must consider that all the parts of each line are articulated by an
equal number of dimensions when the unit has not been determined in the statement
of the problem. Thus, a3 contains the same dimensions as abb or b3, these being the
components of the line that I have named

√
ca3 − b3 + abb . The same does not happen,

however, when the unit is determined, because it can always be assumed whatever the
dimensions, etc. [34] (p. 66).

Thanks to Descartes’ analytic geometry, there is a bridge between geometry and
analysis, expanding the domain of the geometric curves, developing new methods to
calculate tangents and areas. From these extensions, Kepler modified the method of
exhaustion indicating: “any figure or body is represented in the form of a figure by a set
of infinitely small parts” [24] (p. 170), and introduced concepts such as indivisible and
infinitesimal, that allow us to develop techniques to calculate tangents or make quadratures
in a heuristic way; contrary to Cavalieri, who kept integration as an operation reasoning in
the Greek style, considering a plane figure made up of a set of lines, and a solid made up
of an indefinite number of parallel plane fragments.

During the 16th century, the use of infinitesimal quantities was imposed in the solution
of problems of calculation of tangents, areas and volumes. We highlight Fermat, Wallis,
Pascal and Barrow as representatives of the era, because they present a conceptual and
methodological disruption with the strictly geometric approach of Cavalieri, originating
a progressive arithmetization that led to the implicit use of the limit. As an example, we
show how Fermat calculated the quadrature of the hyperbola y = x−2 for x ≥ a since they
are essential elements of the current definite integral. To facilitate understanding, we will
use modern terminology and notation (Figure 2).

Figure 2. Quadrature of Fermat’s hyperbola.

Let us choose a number r > 1 and consider the abscissa points a, ar, ar2,... The area
of the inscribed rectangles (Figure 2) is (ar− a) 1

(ar)2 +
(
ar2 − ar

) 1
(ar2)

2 +
(
ar3 − ar2) 1

(ar3)
2 +

· · · = r−1
ar2

∞
∑

k=0

1
rk = 1

ar . The area of the circumscribed rectangles is given by:

(ar− a)
1

(a)2 +
(

ar2 − ar
) 1

(ar)2 +
(

ar3 − ar2
) 1

(ar2)
2 + · · · = r− 1

a

∞

∑
k=0

1
rk =

r
a

Let us choose a number r > 1 and consider the abscissa points a, ar, ar2,... The area
of the inscribed rectangles (Figure 2) is (ar− a) 1

(ar)2 +
(
ar2 − ar

) 1
(ar2)

2 +
(
ar3 − ar2) 1

(ar3)
2 +

· · · = r−1
ar2

∞
∑

k=0

1
rk = 1

ar . The area of the circumscribed rectangles is given by:

(ar− a)
1

(a)2 +
(

ar2 − ar
) 1

(ar)2 +
(

ar3 − ar2
) 1

(ar2)
2 + · · · = r− 1

a

∞

∑
k=0

1
rk =

r
a

Therefore, calling S the area under the curve, we have that 1
ar < S < r

a . Since this
inequality is valid for every r > 1, we conclude that S = 1

a . We note that this value is
precisely the area of the rectangle OABa. In these quadrature’s of Fermat, there are, from a
current perspective, three essential aspects of the defined integral: (a) the division of the
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area under the curve into infinitely small area elements, (b) approximation of the sum of
those area elements by infinitesimal rectangles of height given by the analytical equation
of the curve and (c) an attempt to express something similar to a limit of said sum when
the number of elements increases indefinitely as they become infinitely small. This is in

current notation: F(x) =
a∫

0
xn dx = an+1

n+1 , for all n in rationals, whit n 6= −1.

In the same direction, we find Wallis arithmetizing Cavalieri’s indivisibles, transform-
ing the calculation of quadratures into the problematic of finding the area below the curve
by a Cartesian equation. Let us see the way in which the area below the curve y = xk with
k = 1, 2, · · · on the section [0, a] was calculated (Figure 3), since this process influenced
the works of Newton between 1666–1676 and Leibniz between 1675–1695 that later would
formalize the nascent infinitesimal calculation.

Figure 3. Comparing indivisibles.

Wallis considered the PQR region made up of infinitely many parallel vertical lines of
length as equal to xk. He divided the segment PQ = AB = a into n parts h = a

n long, where
n tends infinity. The sum of these infinite lines is prototypical 0k + hk + (2h)k + · · ·+ (nh)k.
Equally, the area of the rectangle ABCD is ak + ak + ak + · · · + ak = (nh)k + (nh)k +

· · · + (nh)k, and the correspondence between the PQR and ABCD areas is areaPQR
areaABCD =

0k+1k+2k+···+nk

nk+nk+nk+···+nk . In current terms, it can be summarised as: lim
n→∞

f (0)+ f (1)+···+ f (n)
f (n)+ f (n)+···+ f (n) =

1
σ( f )+1 ,

assuming that said limit exists. This process is known as the Wallis interpolation method.
This technique shows that the sums necessary to calculate quadratures can be performed
arithmetically better than in terms of geometric ratios. This evidences the definitive
disruption with the rigor of Greek geometry and with the Aristotelian tradition of avoiding
infinity.

Using his incomplete induction method, Wallis generalised the results for finite sums
and infinite series (today known as the intuitive use of passing to the limit). Wallis identified
that what is considered static can become dynamic, thus defining four important elements
in the conceptualisation of the definite integral: (a) the determination of the area of the
rectangle as the product of the base by height; (b) the division of the area under the curve
into infinitely small area elements (infinitesimal rectangles of height determined by the
equation of the curve); (c) approximation to the numerical determination of the sum of
those elements; and (d) an attempt to express the equivalent of what will be the limit of this
sum when the number of elements increases indefinitely as they become infinitely small.

In 1647, Saint-Vincent, considering these four elements, derived an extension for the
definite integral. He studied a generalisation of the notion of integral, as contemplated
until then. Analysing the area under the hyperbola y = 1

x , he showed that, if the relation of
the successive lengths is constant (Figure 4), i.e., A1

A2
= A2

A3
, then the areas I, II, and III are

equal.
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Figure 4. Relationship between successive lengths.

He demonstrated that if points are arranged according to a geometric progression
on one of the asymptotes of a hyperbola, the areas cut under the curve because they are
parallel to the other asymptote are equal, since the areas of the curvilinear trapeziums
A1 A2B1B2; A2 A3B3B2 , K are equal when the lengths AA1, AA2, AA3, AA4, K are in geo-
metric progression. Therefore, [35] studied in terms of areas the values of what, in current
terms, is F(x) =

∫ x
a f (t)dt, which represents an improper integral; he identified that the

function F has restrictions, it must be defined and bounded in a finite interval [a, b].
Subsequently, Barrow, following the direction outlined by Wallis, called “fundamental

theorem” the inverse relationship between problems of tangents and squares, based on
geometric methods. Ref. [36] mentions that Barrow inferred the use of elements that were
later key to the precision of the fundamental theorem of the calculus, breaking with the
integration operation, turning it into a new field of work, with definitions, properties and
theorems that need to be considered. Barrow did this by representing two curves: y = f (x)
e y = g(x), in Figure 5, the segment AD represents the abscissa axis where it takes values x.
The quantity g(x) represents the value of the area under the graph of f between point A y
x. Given an abscissa point D, he tried to demonstrate that the slant of the tangent y = g(x)
at point F(D, g(D)) is equal to f (D) = DE.

Figure 5. Fundamental theorem.

Demonstration 2. We draw a straight line FT through F that intersects at T line AD and such
that, we want to prove that FT it is tangent to y = g(x) at point F. The horizontal distance KL,
from any point L on line EF to line FT is less than the distance IL from said point L to the curve
y = g(x). This proves that line FT is always below y = g(x). We have that: FL

KL = DF
TD = DE. On

the other hand: area ADEZ = FD; area APGZ = PI = LD; area PDEG = FD− LD = FL,
since area PDEG < rectangle PD·DE. It follows that < PD·DE, then DE > FL

PD , and, therefore,
FL
KL > FL

PD → KL < PD = IL. . We deduce that point K is below curve y = g(x); thus, line FT
is on one side of the curve. To complete the demonstration, it is necessary to repeat the reasoning,
taking points on the right of EF. This proves that TF is tangential to y = g(x) at D and its slope
is DE = f (D). In current terms, what Barrow proved is that: d

dx

∫ x
a f (t)dt = f (x).

Following these reasoning’s Newton (developing absolute theses) and Leibniz (de-
veloping relative theses) positioned the integration operation as a generalization of the
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calculation of quadrature in the field of dynamic physics, establishing the inverse rela-
tionship between problems of tangents and quadrature’s. Both adhered to the physical-
mathematical model for the intellection of the natural world; they synthesized and es-
tablished a systematic algorithmic instrument known as the Infinitesimal Calculus, the
Newtonian equivalent of Leibnizian differential and integral calculus. The three main
characteristics of this new calculation are: (1) They unified in two general concepts, the
integral and the derived, the great variety of techniques and problems that were addressed
with particular methods. (2) They developed symbolism and formal calculation rules that
could be applied to algebraic and transcendent functions, independent of any geometric
meaning that made the use of these general concepts almost automatic. (3) They recognized
the fundamental inverse relationship between referral and integration.

Both Newton and Leibniz understood this new calculation differently; Newton used a
mathematical calculation while Leibniz developed a logical calculation. On the one hand,
Newton elaborated a “purely mathematical reduction” of the quantifiable relationships
entity to entity; and, on the other, Leibniz articulated a “strictly logical construction” from
minimal (primitive) concepts of expression. Leibnizian doctrine has a more coherent cut
than Newtonian philosophy since it provides universal logical tools, which are independent
of the object of analysis and thus achieve “absolutely necessary” legitimacy.

The dynamic physics of these two thinkers makes it possible to scrutinize the roots
of a conceptual opposition that ended up becoming the confrontation of two divergent
and representative worldviews. We believe there were two archetypal ways of conceiving
“reality”. For Leibniz, logical calculation is the possible construction of complex concepts
from the primitive ones by virtue of reason. Leibniz never neglected consistency in the
rational construction of his system, which always respects the demands of his own logical
principles. His doctrine is crossed by a total commitment to the principle of sufficient
reason. Leibniz elaborated a dynamic that facilitates communication between metaphysical
and physical considerations, while Newton’s new analysis is founded on the fairly use
of infinitesimal magnitudes (“moments”; “indefinite” and “infinitely” small magnitudes
created from a steady flow in a given time with Cartesian curve graphs (incorporated since
equalities).

The history of mathematics evidences Newton’s imprint on calculus and mathematical
physics in the eighteenth century, generally judged as negative in comparison with Leibniz’s
achievement. The paradox according to which Leibnizian calculus made progress in the
mathematization of the scheme of gravitation is frequently declared as a clear symbol of
crisis in the Newtonian field. Ref. [37] (p. 292) states: “The Principia were to remain a
fossilized classic, on the wrong side of the border between past and future in the application
of mathematics to physics”, since, when Newton used algorithms, he was accused of having
developed gross notation, a preference for less general geometric proofs compared to the
Leibnizian calculus. Ref. [37] (p. 285) mentions: “The Newtonian version of calculus, the
fluxions and series method, was crude in notation and inelegant in methodology”.

However, we find Newton who suddenly disapproved Descartes’s canon of problem
examination and construction by synthesizing (More information on: Galuzzi, M. “I
marginalia di Newton alla seconda edizione latina della Geometria di Descartes ei problemi
ad essi collegati”, in: Belgioioso, G., Climino, G., Costabel, P. and Papuli, G. (eds.) Descartes:
il Metodo e i Saggi. Istituto dell’ Encyclopedia Italiana, Rome 1990, 387–417) it in the inverse
method of fluxions. Through this method he was able to tackle the problem of “squaring
curves”. When considering a superficial t as generated by the flux of the ordinate and
sliding at right angles to the abscissa z, he unstated that the percentage of flux superficial

of the area is equal to the ordinate (he declared
.
t.
z
= y

1 ). In this way, Newton devised
integration as anti-differentiation. His approach was to apply the technique to “equations
that will define the ratio of

.
t to

.
z”. Consequently, an equation is obtained for

.
t y

.
z, where

“there will be two equations, the last, that will define the curve, and the first, that will
define the area” [38] (p. 197). In Leibnizian terms, he constructed the first integral tables in
the history of mathematics, giving importance to the inverse method.
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Newton established methods corresponding to integration by parts and substitution.
He called “method of series and fluxions” the techniques of expansion of series, deter-
mination of tangents and quadrature of curves. This method was a “new analysis” that
extended to the themes that Descartes had abolished since his “common analysis”—For
example mechanical curves- from the use of infinite series. Newton’s “new analysis” is a
definitive disruption of the integration operation, making it a new branch of mathematics.
Newton, by knowing this, according to the Pappusian canon, knew that this “new analysis”
was secondary to the creation, and that it should be carried out in terms independent of
algebraic criteria. Hence, Newton’s legacy to his followers was complex. Newton devoted
his efforts to developing an elaborate algorithm collected in mutual ex-amination between
Arithmetic universalis and the new analysis. He carried out to his followers the idea
that the Greek classics were greater to modern mathematicians, and that the ancients had
out of view heuristic geometric tools that could, be recovered by patiently examining the
remaining texts.

From the early to the middle eighteenth century, Newtonian mathematics grew with
thinkers for example Taylor, Stirling, Cotes, De Moivre, and Maclaurin who were dedicated
to Newton’s mathematics. Taylor supplemented Newtonian mathematics because he
thought that the new method of fluxions was only a specific situation of a bigger theory-
the method of increments, that we now call finite difference calculus, as Newton had
envisioned in Methodus differentialis (1711) (A critical edition can be found in Newton, I.
The Mathematical Papers. Op. cit., 8, 244–255).

Taylor wrought characteristically with finite variances and found results in the new
analysis using limit arguments, leaving finite additions tending to zero. The consequence
with these methods was the expansion in Taylor series. In studying infinite series, it
was hoped to address quadrature, which, in Leibniz’s words, was related to integration.
Newton, working on De quadratura, set up a structure of research related to the finite
integral which was completed by Roger Cotes in 1714, recorded in his works “Logometria” y
“Harmonia mensurarum, sive analysis & synthesis per rationum & angulorum mensuras pro-motæ”
on 1722. Following the Newtonian legacy, Maclaurin clearly mentions the synthetic method
of fluxions, as the “precise and elegant” Newtonian method. His goal was to present this
method as a relation to Archimedes’ method of exhalation. He defined fluxion as “the
speed with which a quantity flows, at any time limit while it is supposed to be generated
(Ibid., [38], (p. 57)).” Maclaurin, agrees with Berkeley in identifying in Newton’s synthetic
method of fluxions an ontological basis absent in Leibniz’s differential calculus, since
infinitesimals do not have “a real existence”.

It was even mentioned that Newton’s “new analysis” was only a generality of the
“Archimedean method”. Maclaurin, in his “Treatise”, ruled out doctrines entrenched in the
Newtonians; he satisfied the need he felt to provide a firmly anchored target for estimates
in the method of fluxions; he argued that the theorems of the calculus were not at all
about “fictions” or “phantoms of defunct quantities” as Berkeley held, but were considered
kinetic in the sense that Newton held when operating with fluxions and fluxions existing
in nature” (Op. cit., [38] (pp. 122–123)).

Eighteenth-century European mathematics evolved with the approaches of Newton
and generalised by Maclaurin, evidenced in a change of language, new lines of research and
new values underlying mathematical practice. This period constituted a significant change
for the nascent infinitesimal calculus. Newton had to face a German competitor (Leibniz),
who arrived at results similar to his own, promoting a different view of mathematics (The
situations involved in the polemic between Newton and Leibniz are pointed out by [26,30].
In general: Newton developed the system of series and fluxions between 1665 and 1669.
Leibniz developed his differential and integral calculus around 1675, published articles
from 1684.). Leibniz left to his disciples the choice to hold different approaches about
the ontological question of the existence of the infinitesimals; he wanted to defend its
usefulness as symbols in mathematical calculations. The global epistemic configuration 2
(GEC2) associated with this period is presented in Table 3.
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Table 3. GEC2. The integration operation as a support for the nascent Integral Calculus.

Components Description

Problem situations

- Heuristic procedures based on the Euclidean demonstration;
- Develop techniques to calculate tangents or make quadratures;
- Lack of a satisfactory arithmetic theory for immeasurable quantities;
- Need to demonstrate;
- Use of algebraic symbolism.

Languages Geometric, arithmetic, analytical, algebraic.

Rules (definitions, propositions,
procedures)

- Invention and the use of analytic geometry to solve quadrature, tangent, maximum
and minimum problems;

- Use of infinity;
- Use of geometric algebra;
- Derivatives, antiderivatives, integrals;
- Introduction of the symbol ∞ to represent infinity;
- Considering the infinitely small;
- Creation of the infinitesimal calculus;
- Generalisation of the calculus of quadrature by Newton and Leibniz, who handled

the integration operation as an inverse relationship between problems of tangents
and quadratures.

Arguments

Cavalieri maintained integration as an operation, reasoning that, in the Greek style:

- It substitutes the evaluation of an infinite sum of infinitely small elements;
- It generalises the calculation of quadratures, abandons the method of exhaustion;
- It does not give an explicit definition of indivisible.

Criticisms of Cavalieri’s work involve aspects related to the continuum, infinity and its
rhetorical exposition, extensive and intricate geometric reasoning, which make it difficult
to read and understand.
Conceptual and methodological disruption of Cavalieri’s geometric approach give an
arithmetization that lead to the implicit use of the limit.
Analytics has become the appropriate method to replace geometric intuition in counting
and measuring processes.
Wallis:

- Totally disrupted the rigor of Greek geometry and the Aristotelian tradition of
avoiding infinity;

- Transformed the quadrature calculation problem into the problem of finding the
area under the curve;

- Identified four elements that were important in the conceptualisation of the defined
integral.

Newton:

- Positioned the integration operation as a generalisation of the calculation of
quadratures in the field of dynamic physics;

- Adhered to physical–mathematical models for the intellection of the natural world;
- Elaborated procedures corresponding to integration-by-parts and substitution;
- Provided the first known integral tables in the history of mathematics.

Leibniz.

- Postulated logical calculation as the possible construction of complex concepts from
primitives by virtue of reason;

- Developed logical calculations;
- For the new calculation, he provided universal logical tools that are independent of

the object of analysis, thus achieving “absolutely necessary” legitimacy.

Newton and Leibniz synthesised and established a systematic algorithmic instrument
known as infinitesimal calculus (Newtonian differential calculus and Leibnitzian integral).
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Table 3. Cont.

Components Description

Relations

- Lack of rigor for techniques used in a heuristic way;
- Implementation of general algorithms, in algebraic and non-geometric terms, giving

rise to new infinitesimal calculations;
- Dominant, implicit idea of the “indefinite integral” as an operator whose

development focused on problems that gave rise to “definite integrals.” These two
initiated others, discovered but not formalised in that period: “improper integrals”,
which would later be formalised as “improper integrals of the first and second species”,
arose by extending the notion of integral to unbounded intervals, and to unbounded
functions on a bounded interval;

- Newton (developing absolute theses) and Leibniz (developing relative theses)
positioned the integration operation as a generalisation of the calculus of
quadratures in the field of dynamic physics, establishing inverse relationships
between problems of tangents and quadratures;

- Newton and Leibniz adhered to the physical–mathematical model for the
intellection of the natural world, synthesising and establishing a systematic
algorithmic instrument known as Infinitesimal Calculus with the following
characteristics:

- The unification of two general concepts, integral and derived, and the great variety of
techniques and problems that were approached with specific methods;

- The development of symbolism and formal rules of calculus that could be applied to
algebraic and transcendent functions, regardless of any geometric meaning;

- Recognition of the fundamental inverse relationship between derivation and
integration.

Source: own creation.

5.1.3. Integral Calculus Foundation

Ref. [39] mentions that Jacques Bernoulli suggested the name “integral” to Leibniz.
This is an epistemologically significant fact, because “with the incorporation of a name to
designate a specific operation, a notion that merits special treatment is being identified”
(p. 38). The integral was no longer just a tool to solve the general problem of calculus of
quadratures until it became a new concept with its own problems and methods.

Revolutionary changes generated by the “new analysis” proposed by Newton and
Leibniz in the eighteenth-century mathematics have been presented in three periods [39]: a
geometrical period, where geometrical situations and thoughts predominate; analytical or
“algebraic”, started by Euler in 1740 and reaching the end of the century with Lagrange;
and a third period starting in the nineteenth century with Cauchy’s writings.

By this time, only a few mathematicians noticed the change from the geometrical to
the algebraic period. Ref. [39] mentions that since 1740, Euler was probably the first to think
of calculus not as an algorithm for the study of curves or other geometrical objects (as in
the works of Leibniz and Newton), but as the study of functions understood as “reasoned
expressions composed of variables and constants” (p. 340).

These changes [40] he called the “degeometrization” of 18th century analysis, whose
mathematical entities are now functions that can also be multivariate, of the form f (x, y, z, · · · ,),
caused by the study of orthogonal ([40]) trajectories and continuum mechanics ([41]).
Approaches to analytical dynamics from the minimum action or from virtual velocities
led Euler to deploy the calculation of variations ([40,42]). Given Euler’s importance in
this process of de-geometrization of Leibnizian calculus, we share [43] position of giving
this new representative theory the name of “Eulerian calculus” to differentiate it from
Leibnizian calculus.

A characteristic of this stage was the lack of formalization of his theory due to rigor
problems and consequent theoretical foundation, aspects that marked a new stage in the
history of the integral, transforming it into the emerging Integral Calculus, developing and
formalizing the concepts of integral defined and its extensions (improper integrals). Euler,
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in a letter to Goldbach (1744), explains that before writing the manual on Infinitesimal
Calculus, he considered that he had to develop a series of previous topics, related to the
infinities necessary for the understanding of calculus. He developed progressive tract on
differential and integral calculus in the guidelines of his Introductio in analysin infinitorum
(1748), in Institutiones calculi differentialis (1755) and in Institutiones calculi integralis (1768-
70). Experienced classes of functions, simple and multivariate, as symbolic expressions,
the purpose of which was to establish their derivatives and integrals ([43,44]). These
treatises have a double nature: a taxonomic nature, where he proposes a classification of
functions, and another of an instrumental nature, where he presents the decomposition of
polynomials as a product of simple factors (those corresponding to real roots) or double
factors (corresponding to imaginary roots). [45] mentions that Euler devised methods of
elimination and decomposition in simple fractions, proposing to eliminate any reference
made to geometry in the study of variable quantities, through the concept of abstract or
universal quantity.

D’Alembert, Lagrange and Laplace following the guidelines proposed by Euler
worked on: classes of functions, instead of curves, surfaces, partial differential equations,
calculus of variations, analytic mechanics and the algebraic representation of differential
and integral calculus. They reached procedures and requirements to operate with symbols
and not with geometrical properties, safeguarding the need to move calculus away from
geometry (Op. cit., [34] (p. 319)). After Newton and Leibniz, mathematics advanced
parallel to the analytical procedure applied in trigonometry, to the discovery of “partial
differences” or “partial fluxions”, of the “calculus variationum”. Ref. [46] cites [47] with
the advent of the principle of virtual velocities and its use in Lagrange’s Méchanique
analytique in 1788. He shows how Lagrange uses these tools in astronomy.

On the other hand, mathematicians European continent acknowledged and approved
Leibniz’s ideals, where mathematics could be understood as reasoning from symbol manip-
ulation, regardless of metaphysical concerns and specific interpretations. Leibniz allowed
his followers to retain different approaches, for example, ontological questions related to
the presence of infinitesimals or the roots of negative numbers. He wanted to preserve the
use of symbols when performing mathematical calculations. Leibniz urged his followers to
ignore interpretative metaphysical questions when working mathematically. Guidelines
applied by Euler, Lagrange and Laplace. Ref. [47] (p. 250) mentions that “a feature of the
French academy’s growing commitment to analytical methods in physics in the course of
the eighteenth century was to override the teleological metaphysics of rational mechanics”
(p. 250).

Thus, the concept of function took center stage, the problem of series representation is
related to the integration problem, facts that radically transformed infinitesimal calculus.
We perceive this change thanks to [43] on the transformation of heat’s works; he extended
the domain of functions beyond the continuous ones, and established the conditions that
a function must fulfil to be represented in trigonometric series. One of those conditions
was the integrability of the function over a given interval, which made it necessary to
reconsider the concept of integral. For those times, the integral was considered a necessary
solution tool, but it was not the main concept of study. Fourier provided the notation
of the extremes of integration which, in modern notation, f (x) = d

dx
(∫ x

a f (t)dt
)

means
that the main problem consisted in the asymptotic development of the function

∫ x
a f (t)dt,

(that is,
∫ x

a f (t)dt = xn + k), considered a variant of improper integration. The above
refers to the good definition of the function, relating more to the improper integrals
of the second kind. Ref. [48] states that with Fourier the integral is seen as the area
under the curve, asking the question “how discontinuous can a function be to make it
integrable?” (p. 66); however, we found that the formalization of the improper integral
was discussed by DeMorgan, in 1830, with convergent series representing the integral∫ +∞

u x∝e−xdx for u > 0 arbitrary. Poisson approached the resolution of an improper
integral by extending the complex plane, considering: dx = −i(cos z + isenz)dz, deducing
that

∫ dx
x = [log(−(cos z + isenz))](2n+1)π

0 [48] (pp. 70–71).
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Cauchy adopted rigorous methods followed today, such as Cauchy’s integral theo-
rem, Cauchy-Riemann’s conditions, or Cauchy’s sequences. Through the concepts of
limit, function, and convergence, he managed to position an analytical definition of
an integral defined for continuous functions, proposed the current notation for this

type of integrals, replacing the cumbersome Fourier notation
∫

f (x) dx
[

x = b
x = a

]
by∫ b

a f (x) dx; formalizing properties of the integral, expressed with the new notation as:
(1)
∫ x0

x f (x) dx = −
∫ x

x0
f (x) dx; (2)

∫ x0
x ( f + ig)(x) dx =

∫ x
x0

f (x) dx + i
∫ x

x0
g(x) dx; and

(3)
∫ b

a f (x) dx =
∫ c

a f (x)dx +
∫ b

c f (x) dx. With these contributions, Cauchy definitively
separated the integral from the differential calculus, demonstrating the inverse relation
of the derivative and the integral through the fundamental theorem of calculus in its first
historical version, and defined it as a limit of sums.

Dirichlet is credited with the modern “formal” definition of a function. With the
characteristic function of rational, he reflected on the relationship with the requirement
that infinite points of discontinuity must meet in order for a function to be integrable;
he established the false condition that for the function to be integrable, it is sufficient
that the discontinuity points form a scattered set. However, Riemann, based on the
Cauchy and Dirichlet conceptions, incorporated a definition of integral that welcomed
highly discontinuous arbitrary functions. He defined an integral that generalized Cauchy’s
(Cauchy’s Integral Theorem, also known as the Cauchy-Goursat theorem in complex
analysis, is a statement concerning line integrals for holomorphic functions on the complex
plane), gave a precise definition of the integral of a function defined in an interval that must
be bounded and closed. This new integral allowed Volterra to demonstrate the presence
of a bounded derivative that was not Riemann-integrable, imposing, in this way, a severe
limitation to the Fundamental Theorem of Calculus for the Riemann integral, fact that
originated a profound revision of the notion of integral. Hankel tried to generalize the
integrability condition of the Riemann function in terms of the jump concept of a function,
classifying the functions into integrable and non-integrable. [39] (p. 12) indicates that
“Hankel’s work initiates the conjunctivist approach to the integration theory that allows us
to found modern integration theory” We cannot neglect, in reviewing this evolution of the
integral, the analytical mechanics of the 18th century, how remote from the applications
pure mathematics of that type were.

Ref. [49] mentions that Borel exhibited the results of his book “Leçon sur la théorie des
fonction” between 1896–1897 at the Ecole Normale Supérier in Paris, where [50] was his
student, adding to the definition of measure the notion of “numerably additive”, extending
the ordinary length of an interval to open sets, based on the property: every open set is the
countable and disjoint union of open intervals, which he called measurable sets; but he did
not study its properties. Lebesgue rigorously analysed those properties, obtaining a special
collection of “measurable sets”, which he called a σ-algebra. The new notion introduced by
Borel is the ideal framework in which Lebesgue developed its integral. Lebesgue delved
into the Riemann integral, finding its limitations. In response, the integral of Lebesgue in
1901 emerged, broader than Riemann’s, whose development is sustained on the notion
of “measure”, as in the ancient Greeks. In 1904, Lebesgue defined measurable functions
as those that allow the development of a much broader and more satisfactory theory of
integration than that of Riemann. The path that Riemann, Darboux, and Lebesgue led in
the construction of a deeper and more rigorous calculus established the necessary and
sufficient conditions for integrability, not only in the Riemann sense, for bounded functions,
but also for a significant generalization of the Riemann integral.

The sequential overcoming of these difficulties with the Cauchy and Riemann integrals
encouraged the search for a more powerful concept of integral, which Jordan, Borel, and
Baire began, and culminated in Lebesgue’s definition establishing a solid, strong and
structured theory of integration, the latter, based on the idea of changing the partitions of
the domain of a function by partitions in the range. Denjoy in 1912, and Perron in 1914
built integrals that managed to integrate any derived function, however, these integrals
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turned out to be similar. Today, it is named Denjoy-Perron integral. In 1957, Kurzweil, and
two years later, Henstock, each defined integral that solve the derivative inversion problem;
years later, they resulted equivalent, and it is currently known as the Henstock-Kurzweil
integral. Table 4 shows the structure of the GEC3.

Table 4. GEC3 Integral Calculus Foundation.

Components Description

Problem situations

- Lack of the formalization of “new calculus” due to problems of rigor and theoretical
foundation;

- Reconsider the integrability conditions of the function over a given interval;
- Problems representing series related to integration.

Existence of a bounded derivative which is not Riemann-integrable (limitations to the
Riemann integral).

- Need to establish necessary and sufficient conditions for the integrability of any
function;

- Notation of the integral and the extremes of integration;
- Need for a good definition of function, giving rise to improper integrals of the second

kind;
- Difficulties with Cauchy and Riemann integrals;
- Formalisation of infinitesimal calculus (differential and integral).

Languages Analytical, algebraic, geometric.

Rules (definitions, propositions,
procedures)

- Degeometrization of 18th century analysis.

Expansion of the calculus of variations centred on analytical dynamics in terms of extreme
principles (minimum operation or virtual rapidity).

- Formalisation of the concept of function by Dirichlet;
- Incorporation in the notation of the extremes of integration;
- Rigorous definition of the integral by Cauchy and properties;
- Precise meaning of the integral of a function defined in an interval that must be

bounded and closed;
- In-depth review of Riemann’s notion of the integral;
- Development and formalisation of the concepts of indefinite and defined integrals and

the extensions (improper integrals);
- Formalisation of improper integrals of the first and second kinds;
- Definition of measurable functions;
- The teleological metaphysics of rational mechanics is annulled with the works of

Euler, Lagrange, and Laplace.

Arguments

Conception of calculus not as a system for studying curves and geometric objects, but as a
tool for analysing functions composed of variables and constants.
Work with multivariate functions by analysing their orthogonal trajectories and the
continuum mechanics concept of integrals based on rigor and precision, reaching
generalisation.
Necessary and sufficient conditions are established for integrability, not only for limited
functions.
Definitive separation of calculus of geometry.
Definitive separation of the integral from differential calculus; Cauchy demonstrated the
inverse relationship of the derivative and the integral, through the fundamental theorem of
calculus in its first historical version.
The integral ceases to be a tool to become a new concept with its specific problems and
methods.
Rescue of the Leibnitzian legacy: mathematics can be understood as reasoning from the
manipulation of symbols, regardless of metaphysical concerns.
The usefulness of symbols for mathematical calculations is defended.
The concept of “measurable sets” that names a σ-algebra is introduced, and the Lebesgue
integral emerged.
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Table 4. Cont.

Components Description

Relations

Foundation of Integral Calculus in three periods:

- Geometric, when problems and conceptions of geometry predominated, and led to the
“degeometrization” of eighteenth-century analysis;

- Analytical or “algebraic”, which began in 1740 with Euler and was developed at the
end of the century with Lagrange;

- Classic analysis, which began at the beginning of the 19th century with Cauchy’s
writings;

- “Eulerian calculation”, which was detached from the “Leibnitzian calculation”;
- Development and formalisation of the concept of indefinite and defined integrals and

their extensions (improper integrals);
- Formalisation of the improper integral by DeMorgan with convergent series;
- Study of simple and multivariate functions, instead of curves and surfaces;
- Positioning of an analytical definition of definite integrals for continuous functions, by

means of concepts of limit, function, and convergence;
- Definition of measurable functions;
- Required and appropriate conditions are established for the integrability of any

function.

Formalisation of:

- Partial differential equations;
- The calculus of variations;
- Analytical mechanics;
- The algebraic character of differential and integral calculus;
- Riemann, Darboux and Lebesgue built a deeper and more rigorous calculus,

established the necessary and sufficient conditions for integrability;
- New integrals: Denjoy–Perron and Henstock–Kurzweil

Source: own creation.

In OSA the appearance of the secondary object is treated as a global mention of one
or several configurations of primary objects, which is describe by the shared effect and
produced by the processes associated with five different dualities [5]. The unitary-systemic
duality allows considering a unitary configuration, for example, GEC1-3, Tables 2–4; or the
set formed by the three configurations, as a systemic entity, Figure 6, given that, when a new
topic is studied, what is done is a systemic presentation of the topic, the socio-epistemic
configurations are studied and the practices that these configurations allow. However,
when a new theme is initiated, the previously studied configuration and the practices that
it enables are considered as a whole, as something known and, consequently, formed by
unitary (elementary) entities. These same objects have to be considered systemically in
order to be learned [5].

Figure 6. The integral object as a global reference.
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Hence, Figure 6 facilitates managing the complexity of the integral by identifying three
large (unitary) meanings, which allow the teacher to use them to present partial meanings
for the integral, e.g., Barrow’s rule for calculating definite integrals, calculating the area
under a curve, properties of the integral, methods of integration, among others, which only
from a well-structured articulation will it be possible to understand the global context in
which integral calculus is applied in extra-mathematical situations. This allows to duplicate
the considered object, to identify its illustration and the represented object as different
entities; allows the teacher to show that the different configurations (GEC1-3) are partial
displays and explanations of the emergent object, emerging from mathematical practices
useful to present and formalize specific situations such as: types of integral, extensions to
the concept of integral, applications of improper integrals in complex analysis, to name a
few. The ostensive-non-ostensive duality approves to reflect that the symbolised object is an
ideal object dissimilar from its material representations, while the extensional-intentional
duality leads to think, in general, that object as a general “something”, the integral calculus,
which achieves objectivity by considering the personal-institutional duality. The grouping
of these dichotomies produces the appearance of a global reference not only for the integral
but also for integral calculus, on which it is possible to carry out certain actions in order
to improve the pedagogical practices implemented. In this process, the interaction and
intersubjectivity of the subjects who construct and reconstruct their representations are
fundamental to enable quality teaching and learning, which is fundamental in higher
education.

5.2. Results Related to Experimentation with University Students

After analysing the curriculum of the subject and the textbooks proposed in the
bibliography, the Calculus 2 syllabus was analysed, seeking to identify partial meanings
for the integral. This classification was compared with the meanings identified in the
three global epistemic configurations proposed in this study. It was found that the integral
appeared through representations, different definitions, propositions, procedures, and
arguments in the following order: first, indefinite integrals are presented; then, definite
integrals, integration methods, calculations of areas between curves, and improper integrals.
In each of these situations there are some applications which end up being more exercises
than problems that allow modelling. In the syllabuses analysed, students are expected to
master integration techniques and understand the integral basically as an operator, but
they should not seek to develop mathematical competences to apply the integral to solve
problems in different contexts.

Based on this situation, the programmes were adjusted by designing and implement-
ing a sequence of activities aimed at presenting a representative sample of partial meanings
for the integral connected to each other, which would allow mathematical competences to
be developed in different contexts. In particular, a balance was sought between the concep-
tual development of the basic ideas of integral calculus with the appropriate handling of
its algorithms, thus offering a global meaning for the integral, where it is identified as a sys-
temic entity, allowing students to develop specific skills such as abstracting, representing,
conceptualising, generalising and synthesising; in other words, developing competences in
the use of the integral when solving a variety of problems proposed in different contexts.
For reasons of space, it is omitted here, as it is explained in detail in [8]. The implemen-
tation provided evidence that students connected the interpretation of the integral as an
operator with the generalisation of the sum of infinitely small sums (as a continuous sum)
and with the notion of function. They also made additional mathematical connections,
applying the integral to other contexts: continuity equations present in physics problems,
calculation of the quantity of motion, energy, total rate of change of a moving mobile. They
recognised the integral as a useful tool for modelling problems in other sciences involving
continuously varying quantities, as it facilitates the interpretation of different phenomena
observed when performing experimental operations. They calculated continuously vary-
ing areas, volumes, velocities, resistances. They accurately applied the integral operator
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iteratively when working with functions of two and three variables, which allowed them to
understand phenomena that require numerical determination, whether to calculate areas of
flat surfaces with a double integral, volumes of bodies with a double or triple integral, area
of surfaces with a surface integral, centres of gravity and moments of inertia, among others.
From their productions, there was evidence that the students in these groups managed to
use a representative sample of the global meaning of the integral that allowed them to solve
a variety of problems in different contexts. I was also found that, during the following year,
the students in the focus groups and now taking Vector Calculus proved for themselves
that when applying line integrals in a vector field, this coincides with the line integral of a
scalar field. Achievements that the teachers in charge highlighted in these students, aspects
referenced in [8] and other extensions in [9].

6. Final Considerations
6.1. In Relation to the Complexity of the Integral

In this work we have exposed that emerges a secondary object, called an integral, that
plays the global reference role of all the primary object configurations that have allowed
us to model the complexity of the integral. This global reference in the mathematical
activity takes the form of a specific configuration of primary objects. Therefore, what
can be done with this second-level object is determined by this configuration of primary
(first level) objects. In OSA, the entity that assumes the role of global reference is seen as
simultaneously single and multiple, since metaphorically, it is interpreted as a multiplicity
of options opening up from associated primary objects in different configurations.

Table 1 shows the characterisation of the complexity of the integral, considering the
three established periods. We consider them useful in solving problems in intra and
extra mathematical contexts that involve application of the different meanings for the
integral. For this reason, we consider it pertinent to know that, although a single meaning
is intended for this object, there is an epistemic complexity that requires an articulation
of partial (primary) meanings, and that only from a well-structured articulation will be
possible to understand the global context in which the integral calculus is applied. Hence,
we share [51] position when he indicates that this rethinking leads us to assume that
mathematical knowledge is not an objective replica of a single reality external to the
subject, but rather a personal and social construction of meanings, the result of a historical
evolution, a cultural process in permanent development, located in a specific context. We
consider that, in this process, the interaction and intersubjectivity of the subjects who
build and reconstruct their representations are essential to enable quality teaching and
learning, fundamental in higher education. Hence, one of the contributions of this work is
the characterisation of the complexity of the integral object through partial meanings.

This scope leads us to study the complexity of the concept, since the current trend is to
consider that mathematics should be applied to extra mathematical contexts (which entails
reflection on the complexity of the mathematical objects taught). By sharing this articulation
of meanings for the integral with the students group, we demonstrated development
of advanced mathematical thinking skills such as: abstract, visualize, estimate, justify,
reason under hypothesis, categorize, conjecturing, generalize, synthesize, define, significant
advances in demonstrate and formalize, which enables them to know how, that is, for
an illustrated doing that implies: enlightened action and performance, transversal use of
knowledge, design of appropriate ways to formulate and solve problems, not only in intra
and extra-school contexts of their mathematical knowledge, but also expanding their areas
of proximal development, by assuming cognitive and volitional challenges and “risks” in
their subsequent professional work.

Some Suggestions for Teaching the Integral

The complex look applied to the mathematical object allows to deepen into the con-
nection process between its partial meanings. The complexity, structured in terms of a set
of epistemic configurations, specifies which components are to be connected. We agree
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with [52] on the concept of integrality, considered from the different stages of its historical,
development opens a vast range of possibilities to apply it to problem situations in different
areas of knowledge; that ratifies the importance of our classification (GEC1, GEC2, GEC3).
Such range leads us to study the complexity of the concept, given that the tendency is
to consider that mathematics should be applied to extra-mathematical contexts, without
realizing that the process involves reflection on the complexity of the mathematical objects.

It is about going from a naive and optimistic point of view, which presupposes that
the student will easily carry out the transfer of the mathematical knowledge generated in a
single context to other new and different contexts. Another more prudent point of view is
that, although it is considered that the possibility of creative transfer can occur, we assume
that without a work on a representative sample of the complexity of the mathematical
object that is to be taught, involving the articulation and connection of the components of
this complexity, the students will hardly be able apply the mathematical object to different
contexts.

The above thoughts allow us to share the proposal in [7] that a strategy to ensure
students’ competence in the use of integral for problem-solving consists of designing
sequences of tasks aimed at presenting different partial meanings of the integral connected
to each other. We implemented this strategy with three groups of students, where we
evidenced development of advanced mathematical thinking skills, mentioned in [8]. There-
fore, this work’s second contribution was to bring forward briefly a teaching and learning
experience of the integral oriented to present a representative sample of partial meanings
of the well-connected integral, which allowed us to find evidence of the development of
students’ competence in use of the integral to solve problems in different contexts.

6.2. Limitations of the Study

There were some limitations in the development of the research, among the most
important of which are the following:

• It was quite difficult to access primary bibliographic sources; therefore, resorting to
them was onerous;

• Proposing a paradigm shift in the curricular structure that the faculties had in place
was not easy. Persuading them to allow the project to be developed by making
adjustments to the established curriculum structure, applying it, and looking at its
benefits, advantages and difficulties, was hard work;

• Systematising the information collected, which covered more than 20 centuries, was
a time-consuming task, requiring almost exclusive work and dedication of time for
more than three years, in order to be able to organise and present the work exposed
here.

6.3. The Prospective of the Research

Studies such as the present one, which historiographically traces the evolution of a
mathematical concept that, for those who study it, is considered difficult to learn, allows
the teacher to: reflect on the complexity of the object to be taught; reorient the instructional
process with a view to achieving changes in teaching paradigms traditionally centred on a
formal mechanistic approach, which does little to enable students to develop mathematical
skills; and recognise that the difficulties linked to the epistemic complexity of mathematical
objects are often the origin of multiple errors, difficulties and obstacles that students face
when they fail to find connections and articulations of the concepts studied with the every-
day problem situations they face, preventing them from being mathematically competent.
It can also be interpreted as a model for other researchers interested in improving their
pedagogical practices by studying the intrinsic complexity of other mathematical objects
that, due to their epistemological nature, are difficult for students to learn.

How to use the results of this study: This work has identified the epistemic complexity
of the integral mathematical object, and its evolution and articulation until it became
Integral Calculus. Metaphorically, it presents a thorough and detailed examination of the
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way in which this branch of mathematics was constituted which, step by step, progressed,
giving answers to different everyday situations in each historical period in which it was
developed, considering its state and the factors that intervened for its progress. In spite
of responding to some problematic situations, other unsolved situations remained open,
which led to the emergence of other more elaborated concepts that made it possible to
respond satisfactorily to different situations and at the same time to receive an adequate
foundation that consolidated Integral Calculus as another branch of mathematics. Aware-
ness of this complexity allows teachers to identify different meanings for the integral which,
when articulated and well connected when planning their classes, allows them to select
specific problem situations that enable students to understand different meanings for the
integral, to give them meaning, and to know how and when they can use them to find
solutions to everyday situations specific to their professional work; in other words, to
develop mathematical competences. Following the model proposed here for the integral
can be a guide for developing other similar studies for different mathematical objectives.
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