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Abstract: In this paper, the normal form and central manifold theories are used to discuss the influ-
ence of two-degree-of-freedom coupled van der Pol oscillators with time delay feedback. Compared
with the single-degree-of-freedom time delay van der Pol oscillator, the system studied in this paper
has richer dynamical behavior. The results obtained include: the change of time delay causing the
stability switching of the system, and the greater the time delay, the more complicated the stability
switching. Near the double Hopf bifurcation point, the system is simplified by using the normal
form and central manifold theories. The system is divided into six regions with different dynamical
properties. With the above results, for practical engineering problems, we can perform time delay
feedback adjustment to make the system show amplitude death, limit loop, and so on. It is worth
noting that because of the existence of unstable limit cycles in the system, the limit cycle cannot be
obtained by numerical solution. Therefore, we derive the approximate analytical solution of the
system and simulate the time history of the interaction between two frequencies in Region IV.

Keywords: the van der Pol system; double hopf bifurcation; center manifold; normal form

1. Introduction

The van der Pol oscillator is a limit cycle oscillation of vacuum tube amplifiers dis-
covered by Dutch scientists. The limit cycle oscillation can be expressed by the following
nonlinear differential equations:

ẍ + x− ε(1− x2)ẋ = 0. (1)

The van der Pol oscillator exists in many aspects, such as image encryption [1] and
signal detection [2]. It is worth noting that we can only solve the system by approximating
analytical and numerical methods, including multiple time scales [3] and average meth-
ods [4]. Of course, in addition to the development of research methods, many scholars
have studied the dynamic behavior of van der Pol oscillators under the influence of time
delay [5,6] and non-smooth oscillators [7].

The coupling of oscillators usually generates many new phenomena, such as synchro-
nization, phase locking, and amplitude death. Stankevich et al. [8] studied quasi-periodic
bifurcations of five coupled van der Pol oscillators. Bukh and Anishchenko [9] studied the
spiral wave, target wave, and chimeric wave in coupled van der Pol oscillators. Singh and
Yadava [10] found transient chaos and stable chaotic dynamics in coupled autonomous
van der Pol oscillations, but this is a rare case. Then they revealed that the nonlinear
restoring forces in a pair of van der Pol oscillators can induce a transient chaotic route
by a small disturbance to the amplitude of an oscillator. Algaba et al. [11] investigated
canard explosion in van der Pol electronic oscillators. They developed a new effective
program which can calculate the approximate value of critical parameters of any desired
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order. Qian and Fu [12] studied the primary resonance of van der Pol systems under para-
metric excitation by using the multi-scale method (MSM) and homotopy analysis method
(HAM). It was found that the margin of error is too small, while Kumar and Varshney [13]
proposed an effective perturbation algorithm for solving the van der Pol oscillator equation
by combining the multi-scale method with the modified Lindstedt Poincare method.

Most of the above literature is based on coupled van der Pol oscillators without time
delay. In this paper, we will use the method of normal form and center manifolds to
study the two-degree-of-freedom (TDOF) time delay van der Pol system. For the method
of center manifold and normal form, we can refer to the references [14,15]. Bifurcation
analysis and branch solutions can refer to the literature [16,17]. In fact, we can also
use the normal form theory and center manifold theory to analyze other bifurcation
types, such as double Hopf [18,19] and Fold-Hopf [20,21]. Qian et al. [22] studied the
dynamical behavior of double-Hopf bifurcations by the multi-scale method. Ge and Xu
considered four neurons and two delays of the bidirectional associative memory (BAM)
neural network. The dynamic behaviors in the neighborhood of the Fold-Hopf bifurcation
point are classified qualitatively by using the normal form theory and center manifold
theory [21]. Chen and Yu [18] studied the oscillator with time delay, in which the external
excitation causes double Hopf bifurcation. They obtained the critical conditions for double
Hopf bifurcation and approximate solutions of periodic and quasi-periodic motions. Based
on the study of Guckenheimer [14], Du et al. [19] presented the calculation form of double
Hopf bifurcation. Based on the normal form and center manifold theories, Song and Xu
analyzed the complex dynamic bifurcation of double neural networks with time-delay
coupling. The dynamic behaviors are classified, including stable equilibrium point, periodic
solution, 2-torus, 3-torus, and chaotic motions [20]. They also found that multiple delays
lead to a stable switch in the dynamic behavior of the system [23]. Besides, Song and Xu
studied Fold-Hopf bifurcation in a neural network system composed of two delay coupled
neural oscillators. It was found that the system exhibits different bursting behaviors with
different time delays [24]. Song et al. also considered the fast-slow system with time delay
and obtained the bursting oscillation of codimension two [25,26].

It can be seen that in the literature [8–11], we have studied the branching, chaos,
canard explosion, and other phenomena of the coupled van der Pol oscillators without time
delay from the phenomenology. However, they still lack the analysis of the theory behind
the coupled van der Pol oscillators. Additionally, through the literature [17,20,23–26], we
can get conclusions about the time delay nervous system. However, the above literature
does not involve the study of coupled van der Pol oscillators with time delay feedback.
Therefore, the research in this article is original. This research can also realize the change
of system dynamics through the adjustment of time delay feedback, which can provide
theoretical guidance for complex phenomena in engineering.

In this paper, we will use normal form theory and center manifold theory to study
van der Pol oscillators with two degrees of freedom. Some of the data in the article
were generated by the DDE_BIFTOOL package [27]. In Section 2, we discuss the Hopf
bifurcation and stability switching of Equation (2.1); In Section 3, we analyze the stability of
double Hopf bifurcation with two time delays, and divide the region near the double Hopf
according to its dynamic characteristics. Then, a numerical simulation and approximate
analytical solution are given.

2. Stability Analysis and Hopf Bifurcation

In this part, we discuss the stability and Hopf bifurcation of Equation (2) at the unique
equilibrium (0, 0, 0, 0). Additionally, Equation (2) can be shown as below:
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ẋ1(t) = x2(t),

ẋ2(t) = k(1− x1(t)2)x2(t)− lx1(t)− (β1x1(t− τ1)− β2x3(t− τ2)) + tanh(x1(t− τ1)x3(t− τ2)),

ẋ3(t) = x4(t),

ẋ4(t) = k(1− x3(t)2)x4(t)− lx3(t)− (β1x3(t− τ1)− β2x1(t− τ2)) + tanh(x3(t− τ1)x1(t− τ2)).

(2)

The linear part of Equation (2) is as follows:

ẋ1(t) = x2(t),

ẋ2(t) = kx2(t)− lx1(t)− (β1x1(t− τ1)− β2x3(t− τ2)),

ẋ3(t) = x4(t),

ẋ4(t) = kx4(t)− lx3(t)− (β1x3(t− τ1)− β2x1(t− τ2)).

(3)

The characteristic equation of the linearized System (3) reduces to

(λ2 − kλ + l + β1e−λτ1 − β2e−λτ2)(λ2 − kλ + l + β1e−λτ1 + β2e−λτ2) = 0. (4)

When τ1 = τ2 = 0, the characteristic equation becomes (λ2 − kλ + l + β1 − β2)(λ
2 −

kλ + l + β1 + β2) = 0. If the characteristic equation has zero real part eigenvalues at
the equilibrium point, then the equilibrium point is hyperbolic. The Hartman-Grobman
theorem tells us that the orbit topology near the hyperbolic equilibrium point is equivalent
to the linearized system.

We consider λ2 − kλ + Jn = 0, n ∈ {1, 2}, where

J1 = l + β1e−λτ1 − β2e−λτ2 , J2 = l + β1e−λτ1 + β2e−λτ2 . (5)

We can write the characteristic equation into the form of (λ2 − kλ + J1)(λ
2 − kλ +

J2) = 0. Take J1 as an example. Let ±iω01(ω01 > 0) be a pair of purely imaginary roots of
Equation (4).

(iω01)
2 − kiω01 + l + β1e−iω01τ1 − β2e−iω01τ2 = 0. (6)

Segregating the real part and imaginary part of Equation (6), we get{
−ω2

01 + l + β1cos(ω01τ1)− β2cos(ω01τ2) = 0,
kω01 + β1sin(ω01τ1)− β2sin(ω01τ2) = 0.

(7)

Eliminating τ2 from Equation (7), we obtain

G(ω01, τ2) = (−ω2
01 − β2cos(ω01τ2) + l)2 + (kω01 − β2sin(ω01τ2))

2 − β2
1. (8)

Where there is fixed τ2, if G(ω01, τ2) = 0 has one positive root, then there is a critical
value τ determined by

τ
j
11 =

1
ω01

[
arccos

−ω2
01 + l − β2cos(ω01τ2)

−β1
+ 2jπ

]
, j = 0, 1, 2 · · · . (9)

When the system passes through the critical value, it will lose stability. In order to
make sure the Hopf bifurcation occurs, we also need to verify its transversality condition.
Without loss of generality, here we calculate the derivative of λ to τ1.

dλ

dτ1
=

λβ1e−λτ1

2λ− k− β1e−λτ1 τ1 + β2e−λτ2 τ2
. (10)
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Notice that if
dλ

dτ1
6= 0, then there is a Hopf bifurcation. Thus, we draw the following

conclusion.

Theorem 1. Considering Equation (2),
(i) When G(ω01, τ2) = 0 has no positive real root, the trivial equilibrium of the system

Equation (2) is asymptotically stable for any τ1.
(ii) When G(ω01, τ2) = 0 has one positive root, there is a critical value τ11. The trivial

equilibrium of system Equation (2) is asymptotically stable for τ1 ∈ (0, τ11), and it will lose the
stability for τ1 > τ11, which means the system will undergo a Hopf bifurcation for τ1 = τ11.

(iii) When G(ω01, τ2) = 0 has several pairs of positive real roots, there exist several critical
values. Then we divide the interval, and we can also find that trivial equilibriums of systems are
asymptotically stable on finite intervals.

For example, we choose l = 0.5, β1 = 0.4, β2 = −0.4, k = −0.5, where the roots of
function G are related to ω, and the figures of function G are displayed in Figure 1 for
different τ2. Correspondingly, in Figures 2a and 3a, we show the eigenvalue diagram of
the system when τ1 changes. Figures 2b,c and 3b show the real and imaginary parts of the
eigenvalues when τ1, τ2 are fixed.

When τ2 = 1, G(ω01) = 0 has two positive real roots, it means there will be an
interval which makes the system stable. If τ1 separates from this interval, the stability
of the system will change and the positive real part will appear, which can be observed
in Figure 2a. When τ1 increases, the blue curve obviously crosses the zero line, then the
blue curve falls from above the zero line. When τ2 = 8, the situation becomes more
complicated. G(ω01) = 0 has several positive real roots, and the stability switching of the
system will be more frequent. It can be seen from Figure 3a that multiple curves of the
system move back and forth on the zero line, and it illustrates the complexity of positive
real characteristic roots.

In order to explain the stability switching of the system more clearly. We take τ2 =
1, τ1 = 0.1, 1 and τ2 = 8, τ1 = 1, respectively. Comparing Figure 2b,c with Figure 3b, it is
found that time delay can certainly make the system go from stable to unstable.
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Figure 1. Roots of function G when l = 0.5, β1 = 0.4, β2 = −0.4, k = −0.5, (a) τ2 = 1, (b) τ2 = 8.
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Figure 2. When τ2 = 1, (a) the eigenvalue diagrams of the system for τ1 kept changing, (b) shows the real and imaginary
parts of eigenvalue diagrams of the system for τ1 = 0.1, and (c) shows the real and imaginary parts of eigenvalue diagrams
of the system for τ1 = 1.
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Figure 3. When τ2 = 8, (a) the eigenvalue diagram of the system for τ1 kept changing, and (b) shows the eigenvalue sketch
diagram of the system for τ1 = 1.
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3. Analysis of Double Hopf Bifurcation

In this part, we will study the nature of double Hopf bifurcation about the direction
and the stability of bifurcating periodic solutions with two time delays, τ1 and τ2. Firstly,
we study double Hopf bifurcation based on the normal form theory and center manifold
theorem. Secondly, we carry out the numerical simulations.

3.1. Computation of Normal Form and Center-Manifold Reduction

For convenience, let β = β1 = −β2; then we derive the unfolding of the System (2) by
the normal form theory and center manifold theorem, and then we are able to reach the
stability near the critical value. Now, we need to regulate the time delay by changing the

time. Let t 7→ t
τ1

and r =
τ2

τ1
, where the system becomes:

ẋ1(t) = τ1x2(t),
ẋ2(t) = τ1[k(1− x1(t)2)x2(t)− lx1(t)− β(x1(t− 1) + x3(t− r)) + tanh(x1(t− 1)x3(t− r))],
ẋ3(t) = τ1x4(t),
ẋ4(t) = τ1[k(1− x3(t)2)x4(t)− lx3(t)− β(x1(t− r) + x3(t− 1)) + tanh(x1(t− r)x3(t− 1))].

(11)

Regarding the time delays τ1 and r as bifurcation parameters, we set

τ1 = τc
1 + εδ1, r = rc + εδ2, (12)

where εδ1 and εδ2 are unfolding parameters. It follows that

τ2 = τ1r = τc
2 + ε(rcδ1 + τc

1 δ2) + o(ε). (13)

We rewrite the system as follows:

ẋ1(t) = (τc
1 + εδ1)x2(t),

ẋ2(t) = (τc
1 + εδ1)[k(1− x1(t)2)x2(t)− lx1(t)− β(x1(t− 1) + x3(t− rc − εδ2))

+tanh(x1(t− 1)x3(t− rc − εδ2))],
ẋ3(t) = (τc

1 + εδ1)x4(t),
ẋ4(t) = (τc

1 + εδ1)[k(1− x3(t)2)x4(t)− lx3(t)− β(x1(t− rc − εδ2) + x3(t− 1))
+tanh(x3(t− 1)x1(t− rc − εδ2))].

(14)

To apply the central manifold reduction, we need to rewrite it into functional differen-
tial form. C([−τ, 0], R4) is the Banach space of continuous functions, where τ = max{1, r}.
For any φ ∈ C, we define:

η(θ, ε) = (τc
1 + εδ1)A1δ(θ)− (τc

1 + εδ1)A2δ(θ + 1)− (τc
1 + εδ1)A3δ(θ + rc + εδ2). (15)

Then we can obtain Lεφ(θ), A(ε)φ(θ), R(ε)φ(θ), A∗(ε)ψ(s), and the bilinear inner prod-
uct. (The detailed process is in the Appendix A).

If System (11) has two pairs of purely imaginary eigenvalues Λ = {±iω01,±iω02}
and other eigenvalues are negative, the phase space C can be divided into two subspaces.
That is, C = PΛ ⊕QΛ. PΛ is the central subspace obtained by extending the basis vector of
linear operator Aε with respect to ±iω01,±iω02. QΛ is its complementary space.

We suppose φj(θ) and ψj(s) are the eigenvectors of A(0) and A∗(0). They correspond
to eigenvalue iω0j,−iω0j, j = 1, 2, respectively. By direct computations, we have

φj(θ) = (1, pj2, pj3, pj4)
Teiω0jθ ,

ψj(s) = Dj(1, qj2, qj3, qj4)e
iω0js,

(16)
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where
pj2 = iω0j,

pj3 =
−l − βe−iω0j + ω2

0j + kiω0j

βe−iω0jτ
,

pj4 = iω0j
−l − βe−iω0j + ω2

0j + kiω0j

βe−iω0jτ
,

qj2 = − 1
k + iω0j

,

qj3 = −
−ω2

0j + kiω0j + l + βeiω0j

βeiω0jτ
,

qj4 =
−ω2

0j + kiω0j + l + βeiω0j

(k + iω0j)βeiω0jτ
,

1
D̄j

= 1 + pj2q̄j2 + pj3q̄j3 + pj4q̄j4 − βe−iω0j(pj1q̄j2 + pj3q̄j4)

−βτe−iω0jτ(pj3q̄j2 + pj1q̄j4).

(17)

The real basis of PΛ and its dual space can be expressed as follows:

Φ(θ) = (φ1(θ), φ̄1(θ), φ2(θ), φ̄2(θ)),
Ψ(θ) = (ψ1(s), ψ̄1(s), ψ2(s), ψ̄2(s))T .

(18)

Therefore, it is easy to see that

Φ̇ = ΦB, −Ψ̇ = BΨ, (19)

where

B =


iω01 0 0 0

0 −iω01 0 0
0 0 iω02 0
0 0 0 −iω02

. (20)

Define Z = (z1, z2, z3, z4)
T = 〈Ψ, xt〉, which represents the local coordinates on the

central manifold caused by Ψ. We can decompose the phase space by C = PΛ + QΛ. Then,

xi = xPΛ
i + xQΛ

i = Φ〈Ψ, xt〉+ xQΛ
t = ΦZ + xQΛ

t , (21)

where ΦZ is the projection of xi on the central manifold. Substituting Equation (21) into
ẋt = L(0)xt + Lεxt + Rεxt and expressing Ψ in its bilinear form, then we can obtain

〈Ψ, (ΦŻ + ẋQΛ
t )〉 = 〈Ψ, (L(0) + Lε + Rε)(ΦZ + xQΛ

t )〉. (22)

Then combining Equations (21)-(22), we obtain

〈Ψ, Φ〉Ż = 〈Ψ, L(0)Φ〉Z + 〈Ψ, LεΦ〉Z + 〈Ψ, RεΦ〉Z. (23)

It means Ż = BZ + Ψ(0)F(t, ΦZ). We know that
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F(ΦZ, δ1, δ2) =


εδ1φ2(0)

εδ1[kφ2(0)− lφ1(0)− β(φ1(−1) + φ3(−rc − εδ2))]− βτc
1 φ3(−rc − εδ2)

εδ1φ4(0)
εδ1[kφ4(0)− lφ3(0)− β(φ3(−1) + φ1(−rc − εδ2))]− βτc

1 φ1(−rc − εδ2)



+


0

τc
1 [−kφ1(0)2φ2(0) + α1φ1(−1)φ3(−rc − εδ2)]

0
τc

1 [−kφ3(0)2φ4(0) + α2φ3(−1)φ1(−rc − εδ2)]


(24)

and

Φ(θ)Z =


eiω01θz1 + e−iω01θz2 + eiω02θz3 + e−iω02θz4

p12eiω01θz1 + ¯p12e−iω01θz2 + p22eiω02θz3 + ¯p22e−iω02θz4
p13eiω01θz1 + ¯p13e−iω01θz2 + p23eiω02θz3 + ¯p23e−iω02θz4
p14eiω01θz1 + ¯p14e−iω01θz2 + p24eiω02θz3 + ¯p24e−iω02θz4

. (25)

Following the computation of the normal forms introduced by [14], we can get the
normal form as follows:

ż1 = iω01z1 + m11εδ1z1 + m21εδ2z1 + m2100z2
1z2 + m1011z1z3z4,

ż2 = −iω01z2 + m̄11εδ1z2 + m̄21εδ2z2 + m̄2100z1z2
2 + m̄1011z2z3z4,

ż3 = iω02z3 + m13εδ1z3 + m23εδ2z3 + m0021z2
3z4 + m1110z1z2z3,

ż4 = −iω02z4 + m̄13εδ1z4 + m̄23εδ2z4 + m̄0021z3z2
4 + m̄1110z1z2z4.

(26)

Furthermore, we can derive the following results:

m11 = D1 p12 + D1q12(kp12 − l − βe−iω01 − βp13e−iω01rc
) + D1q13 p14

+D1q14(kp14 − lp13 − βp13e−iω01 − βe−iω01rc
),

m21 = iω01D1q12τc
1 p13βe−iω01rc

+ iω01D1q14τc
1 βe−iω01rc

,
m13 = D2 p22 + D2q22(kp22 − l − βe−iω02 − βp23e−iω02rc

) + D2q23 p24
+D2q24(kp24 − lp23 − βp23e−iω02 − βe−iω02rc

),
m23 = iω02D2q22τc

1 p23βe−iω02rc
+ iω02D2q24τc

1 βe−iω02rc
,

m2100 = −kD1q12τc
1( p̄12 + 2p12)− kD1q14τc

1(p2
13 p̄14 + 2p13 p̄13 p14),

m1011 = −kD1q12τc
1(2p̄22 + 2p22 + 2p12)− kD1q14τc

1(2p13 p23 p̄24 + 2p13 p̄23 p24 + 2p23 p̄23 p14)
m0021 = −kD2q22τc

1( p̄22 + 2p22)− kD2q24τc
1(p2

23 p̄24 + 2p23 p̄23 p24),
m1110 = −kD2q22τc

1(2p̄12 + 2p12 + 2p22)− kD2q24τc
1(2p23 p13 p̄14 + 2p23 p̄13 p14 + 2p13 p̄13 p24).

(27)

We then apply double polar coordinate transformation by

z1 = r1cosθ1 − ir1sinθ1,
z2 = r1cosθ1 + ir1sinθ1,
z3 = r2cosθ2 − ir2sinθ2,
z4 = r2cosθ2 + ir2sinθ2,

(28)

where r1, r2 > 0. Then, Equation (26) becomes

ṙ1 = r1(c1 + a0r2
1 + b0r2

2),
ṙ2 = r2(c2 + c0r2

1 + d0r2
2),

θ̇1 = ω1τ,
θ̇2 = ω2τ,

(29)
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where

c1 = Rem11εδ1 + Rem21εδ2,
c2 = Rem13εδ1 + Rem23εδ2,
a0 = Rem2100, b0 = Rem1011,
c0 = Rem0021, d0 = Rem1110.

(30)

3.2. Classification of Dynamical Behaviours

We take k = −0.5, β = 0.4, l = 0.5, and let τ1 and τ2 be the bifurcation parameters. We
can draw the curves of Hopf bifurcation when τ1, τ2 vary. As shown clearly in Figure 4, two
Hopf bifurcation curves intersect, and we call the intersections the double Hopf bifurcation
point, denoted by HH. It follows that the (τ2, τ1) plane is divided into different regions,
in which the stability of trivial equilibria are different. When the system moves through
these curves, the stability switches. Now we take Figure 4b as an example, when τ1 =
1.693, τ2 = 0.190, τ0

01, and τ0
02 intersect. Figure 5 shows two pairs of pure virtual roots.

Correspondingly, ω can be calculated, and we denote ω11 = 0.5731, ω12 = 0.9424. Using
the central manifold method, we can get

c1 = 0.1328εδ1 − 0.2735εδ2,
c2 = 0.0933εδ1 + 0.8495εδ2,
a0 = −0.5008, b0 = −0.3969,
c0 = −0.3269, d0 = −0.8860.

(31)
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Figure 4. When k = −0.5, β = 0.4, l = 0.5, (a) is the bifurcation set diagram with τ2 as the x-axis and τ1 as the y-axis, and (b)
is the partial enlarged diagram and the double Hopf bifurcation point.
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Figure 5. When τ1 = 1.693, τ2 = 0.190, two pairs of pure imaginary root eigenvalues at the double
Hopf point.

The detailed process can be referred to in Chapter 7 of the Reference [14]. By classifying
the bifurcation solutions, we can clearly analyze the dynamic system near the double Hopf
bifurcation point. Let ṙ1 = 0, ṙ2 = 0 of Equation (29), where we arrived at

E0 = (0, 0), E1 = (±
√
−c1

a0
, 0), E2 = (0,±

√
−c2

d0
),

E∗ = (±

√
c2b0 − c1d0

a0d0 − b0c0
,±
√

c0c1 − a0c2

a0d0 − b0c0
).

(32)

The value of the equilibrium point depends on c1, c2 in Equation (30). That is when
c1, c2 changes near the critical value (τc

2 , τc
1), and the stability of the equilibrium will

change as well. We need to pay attention to the straight lines c2 =
c1d0

b0
and c2 =

c0c1

a0
,

because there are different dynamic behaviors on both sides of them. At this time, the neigh-
borhood of (τc

2 , τc
1) is divided into several parts, including region I −VI :

I = {(τc
2 , τc

1) | c1 < 0, c2 < 0}, I I = {(τc
2 , τc

1) | c1 > 0, c2 < 0},

I I I = {(τc
2 , τc

1) | c1 > 0, 0 < c2 <
c0c1

a0
}, IV = {(τc

2 , τc
1) | c1 > 0,

c0c1

a0
< c2 <

d0c1

b0
},

V = {(τc
2 , τc

1) | c1 > 0, c2 >
d0c1

b0
> 0}, VI = {(τc

2 , τc
1) | c1 < 0, c2 > 0}.

(33)

We study the normal form of System (29), which is reduced by the central manifold of
Equation (11). It can reflect some properties of System (11). Now, Figure 6 shows the area
division of the c1 − c2 and τ2 − τ1 planes at the critical point (τc

2 , τc
1). In addition, Figure 7

is a phase diagram of different regions.
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Figure 6. Classification of the double Hopf bifurcation in (a) c1 − c2; (b) τ2 − τ1.

Hence, the phase diagrams of different regions are as follows:
When (τ2, τ1) is in Region I, Equation (29) shows a stable equilibrium point E0 = (0, 0),

and this area is called the amplitude death region.
When (τ2, τ1) enters Region II, the equilibrium point E0 = (0, 0) becomes a saddle

point and produces a new equilibrium point E1 = (

√
−c1

a0
, 0), which is stable.

When (τ2, τ1) is in Region III, the equilibrium point E0, E1 still exists, and a new
equilibrium E2 appears. At this time, E0 is unstable, E1 is stable, and E2 is a saddle.

When (τ2, τ1) enters Region IV, it is different from Region III. There appears a new
equilibrium point, which is expressed as E∗. E0, E1, and E2 are unstable and E∗ is stable in
this case.

When (τ2, τ1) is in Region V, E∗ disappears and there are two other equilibria left.
E0, E1 remain unstable, and E2 becomes stable.

When (τ2, τ1) enters the last Region VI, the dynamical properties are similar to Region
II. The equilibrium E0 is unstable, but E2 is stable.
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Figure 7. Bifurcation sets of the solutions derived from the double Hopf bifurcation in the c1 − c2

plane. (a) Region I, (b) Region II, (c) Region III, (d) Region IV, (e) Region V, (f) Region VI in Figure 6,
respectively.

3.3. Numerical Simulation

Due to the instability limit cycle generated by the system, the Runge Kutta method
could not be calculated for numerical simulation in the case. Therefore, we could deduce
the approximate analytical formula of the limit cycle of the System (2) by x = ΦZ. Figure 8
shows the comparison between the approximate analytical formula (red) and numerical
solution (blue). It can be seen that when the parameter is closed to the bifurcations of
double Hopf, the approximate solution is in good agreement with the numerical solution.
It is worth noting that the accuracy of the approximate solution of the system will decrease
rapidly when the parameter selection is far away from the double Hopf bifurcation point.
When τ1 = 1.52, τ2 = 0.25, the approximate analytical solution of x1 can be expressed
as follows:

x1(t) = 0.3276cos(0.9703t + θ), (34)

where θ depends on the initial value.
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Figure 8. Comparison of the approximate analytical solution and numerical solution. The dotted line
represents the approximate analytical solution, and the solid line represents the numerical solution.

Now we give a numerical simulation. We choose points (1.4, 0.1), (1.52, 0.25), (1.75, 0.1),
(1.8, 0.22) from each area in Figure 6b, respectively.

Through the phase diagram and time history diagram in Figure 9, it is found that the
system is locally asymptotically stable in Region I. With the change of delay τ1, the equilib-
rium point loses its stability because of the supercritical Hopf bifurcation, and a stable limit
cycle appeared in Region VI. Note that the system periodically oscillates with ω01 = 0.5637.
When the system is in Region II, the equilibrium point loses its stability again, and it was
caused by a subcritical Hopf bifurcation and produced an unstable limit cycle. The system
oscillates at ω01 = 0.5871. However, in Area IV, the system is affected by two frequencies,
ω01 = 0.5695, ω02 = 0.9602 (Figure 10b). Due to the unstable limit cycle, it is impossible to
simulate the system numerically, so an approximate solution of the system is given by

x1(t) = 0.2490cos(0.9642t) + 0.2170cos(1.6256t). (35)
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Figure 9. The time history diagram and phase diagram of the system. (a,b) Region I in Figure 6, (c,d) Region VI in Figure 6.
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4. Conclusions

Time delay is an inevitable factor in practice. However, in engineering, more atten-
tion is being paid to the phenomenon, and few people study the underlying mechanism
theoretically. This paper discussed a type of two-degree-of-freedom van der Pol oscillator
with time delay feedback. It was analyzed by using the normal form theory and central
manifold theory. Research shows that the time delay transition can cause the stability of the
system to switch. Moreover, the greater the time delay, the more complicated the stability
switches. Secondly, there are abundant dynamic behaviors near the double Hopf bifurca-
tion. According to the stability of the equilibria, it can be divided into six regions, including
the amplitude dead zone and limit cycle zone. It should be noted that, due to the subcritical
Hopf bifurcation in the system, it will lead to unstable limit cycles. The Runge Kutta
method cannot directly calculate the numerical solution, and the approximate analytical
solution of the system can be derived by using the central manifold method.
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Appendix A

System (2) can be rewrite into the following form

ẋ(t) = Lε(xt) + F(ε, xt), (A1)

where x(t) = (x1(t), x2(t), x3(t), x4(t))T ∈ C, C = C([−1, 0], R4), xt(θ) = x(t + θ) ∈ C and
Lε : C → R4, F : R× C → R4. Formalizing time delays can obtain:

Lε(φ) = (τc
1 + εδ1)A1φ(0) + (τc

1 + εδ1)A2φ(−1) + (τc
1 + εδ1)A3φ(−(rc + εδ2)), (A2)

and
Fε(φ) = (τc

1 + εδ1)(F1, F2, F3, F4)
T , (A3)

where

φ(θ) = (φ1(θ), φ2(θ), φ3(θ), φ4(θ))
T ∈ C,

A1 =


0 1 0 0
−l k 0 0
0 0 0 1
0 0 −l k

, A2 =


0 0 0 0
−β 0 0 0
0 0 0 0
0 0 −β 0

, A3 =


0 0 0 0
0 0 −β 0
0 0 0 0
−β 0 0 0

.
(A4)

Then we define F as the following form:

F2i−1 = 0, (i = 1, 2),
F2i = −kφ2

i (0)φ2i(0) + tanh(φ1(−1)φ3(−r)).
(A5)
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According to the Rieze representation theorem, there has a 4× 4 matrix function η(θ, ε)
of bounded variation when θ ∈ [−1, 0], by which

Lεφ =
∫ 0

−1
dη(θ, ε)φ(θ). (A6)

And we choose

η(θ, ε) = (τc
1 + ε)A1δ(θ)− (τc

1 + ε)A2δ(θ + 1)− (τc
1 + ε)A3δ(θ + r), (A7)

where δ(θ) represents the Dirac delta function.

δ(θ) =

{
0, θ 6= 0,
1, θ = 0.

(A8)

For φ ∈ C([−1, 0], R4), we set A(ε), which is a strongly continuous semigroup of
linear operators with infinitesimal generator. The operator is generated by linear functional
differential equation.

A(ε)φ(θ) =


dφ(θ)

dθ
θ ∈ [−1, 0),

∫ 0
−1 dη(s, ε)φ(s) θ = 0,

(A9)

and

R(ε)φ =

{
0 θ ∈ [−1, 0),
F(ε, φ) θ = 0.

(A10)

Then Equation (2) is equivalent to

ẋt = A(ε)xt + R(ε)xt, (A11)

where xt = x(t + θ) = (x1(t + θ), x2(t + θ), x3(t + θ), x4(t + θ))T , θ ∈ [−1, 0].
For ψ ∈ C([−1, 0], (R4)∗), where (R4)∗ is the two-dimensional space of row vectors,

we define

A∗(ε)ψ(s) =


−dψ(s)

ds
s ∈ [−1, 0),

∫ 0
−1 dηT(s, 0)ψ(−s) s = 0.

(A12)

For φ ∈ C([−1, 0], R4), ψ ∈ C([−1, 0], (R4)∗), we further define a bilinear inner
product

〈ψ(s), φ(θ)〉 = ψ̄(0)φ(0)−
∫ 0

−1

∫ θ

ξ=0
ψ̄(ξ − θ)dη(θ)φ(ξ)dξ, (A13)

where η(θ) = η(θ, 0).
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